1
|
Ye J, Shi R, Wu X, Fan H, Zhao Y, Hu X, Wang L, Bo X, Li D, Ge Y, Wang D, Xia B, Zhao Z, Xiao C, Zhao B, Wang Y, Liu X. Stevioside mitigates metabolic dysregulation in offspring induced by maternal high-fat diet: the role of gut microbiota-driven thermogenesis. Gut Microbes 2025; 17:2452241. [PMID: 39838262 DOI: 10.1080/19490976.2025.2452241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Maternal obesity poses a significant threat to the metabolic profiles of offspring. Microorganisms acquired from the mother early in life critically affect the host's metabolic functions. Natural non-nutritive sweeteners, particularly stevioside (STV), play a crucial role in reducing obesity and affecting gut microbiota composition. Based on this, we hypothesized that maternal STV supplementation could improve the health of mothers and offspring by altering their gut microbiota. Our study found that maternal STV supplementation reduced obesity during pregnancy, decreased abnormal lipid accumulation in offspring mice caused by maternal obesity, and modified the gut microbiota of both dams and offspring, notably increasing the abundance of Lactobacillus apodemi (L. apodemi). Co-housing and fecal microbiota transplant experiments confirmed that gut microbiota mediated the effects of STV on metabolic disorders. Furthermore, treatment with L. apodemi alone replicated the beneficial effects of STV, which were associated with increased thermogenesis. In summary, maternal STV supplementation could alleviate lipid metabolic disorders in offspring by enhancing L. apodemi levels and promoting thermogenic activity, potentially involving changes in bile acid metabolism pathways.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yapei Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinyun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lulu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaowei Bo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Dongning Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunshu Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhenting Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Heeren FAN, Himadi M, Flood-Grady E, Xu K, Loop MS, Francois M, Louis-Jacques AF, Thompson L, Cardel MI, Gillespie Y, DeCicco L, Lemas DJ. Recruitment and retention of participants with obesity into a longitudinal birth cohort: the Breastfeeding and Early Child Health (BEACH) study. Int J Obes (Lond) 2025; 49:93-100. [PMID: 39251767 PMCID: PMC12005089 DOI: 10.1038/s41366-024-01625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND The study aimed to evaluate how maternal pre-pregnant body mass index (BMI) impacts participant recruitment and retention. METHODS Participants were enrolled in a longitudinal study between 30 and 36 weeks of pregnancy as having normal weight (pre-pregnant BMI ≥ 18.5 and <25 kg/m2) or obesity (pre-pregnant BMI ≥ 30.0 kg/m2). Recruitment channels included Facebook, email, newspaper, phone calls, radio advertisements, flyers, and word-of-mouth. The stages of recruitment included eligibility, consent, and completion. Pearson's chi-square tests were used to evaluate the relationship between BMI and enrollment outcomes. RESULTS Recruitment yielded 2770 total prospective participants. After screening, 141 individuals were eligible, 83 consented, and 60 completed the study. Facebook was the most successful method for identifying eligible pregnant patients with obesity, while a higher percentage of participants recruited through word-of-mouth and flyers consented to the study. Pre-pregnant BMI was significantly associated with the stage of recruitment completed by the participant (p = 0.04), whereby individuals eligible for the study with obesity were less likely to consent and complete study visits. CONCLUSION We demonstrated that maternal obesity was significantly associated with enrollment outcomes in a longitudinal birth cohort study. This study showed that pre-pregnancy BMI influenced study participation. Therefore, tailored recruitment strategies to enhance the recruitment and enrollment of individuals with obesity in maternal-infant health research may be necessary.
Collapse
Affiliation(s)
- Faith Anne N Heeren
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michele Himadi
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Elizabeth Flood-Grady
- STEM Translational Communication Center, University of Florida, Gainesville, FL, USA
- Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Ke Xu
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Matthew Shane Loop
- Department of Health Outcomes Research and Policy, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Magda Francois
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Adetola F Louis-Jacques
- Department of Obstetrics & Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Research in Perinatal Outcomes, University of Florida, Gainesville, FL, USA
| | - Lindsay Thompson
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michelle I Cardel
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA
- WW International Inc., New York, NY, USA
| | - Yasmine Gillespie
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lewis DeCicco
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Dominick J Lemas
- Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA.
- Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA.
- Department of Obstetrics & Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Hill KB, Mullen GP, Nagareddy PR, Zimmerman KA, Rudolph MC. Key questions and gaps in understanding adipose tissue macrophages and early-life metabolic programming. Am J Physiol Endocrinol Metab 2024; 327:E478-E497. [PMID: 39171752 PMCID: PMC11482221 DOI: 10.1152/ajpendo.00140.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
The global obesity epidemic, with its associated comorbidities and increased risk of early mortality, underscores the urgent need for enhancing our understanding of the origins of this complex disease. It is increasingly clear that metabolism is programmed early in life and that metabolic programming can have life-long health consequences. As a critical metabolic organ sensitive to early-life stimuli, proper development of adipose tissue (AT) is crucial for life-long energy homeostasis. Early-life nutrients, especially fatty acids (FAs), significantly influence the programming of AT and shape its function and metabolism. Of growing interest are the dynamic responses during pre- and postnatal development to proinflammatory omega-6 (n6) and anti-inflammatory omega-3 (n3) FA exposures in AT. In the US maternal diet, the ratio of "pro-inflammatory" n6- to "anti-inflammatory" n3-FAs has grown dramatically due to the greater prevalence of n6-FAs. Notably, AT macrophages (ATMs) form a significant population within adipose stromal cells, playing not only an instrumental role in AT formation and maintenance but also acting as key mediators of cell-to-cell lipid and cytokine signaling. Despite rapid advances in ATM and immunometabolism fields, research has focused on responses to obesogenic diets and during adulthood. Consequently, there is a significant gap in identifying the mechanisms contributing metabolic health, especially regarding lipid exposures during the establishment of ATM physiology. Our review highlights the current understanding of ATM diversity, their critical role in AT, their potential role in early-life metabolic programming, and the broader implications for metabolism and health.
Collapse
Affiliation(s)
- Kaitlyn B Hill
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Gregory P Mullen
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Cardiovascular Section, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael C Rudolph
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
4
|
Sanusi KO, Abubakar MB, Ibrahim KG, Imam MU. Transgenerational impact of maternal zinc deficiency on offspring metabolic outcomes in Drosophila melanogaster. J Nutr Biochem 2024; 130:109669. [PMID: 38754792 DOI: 10.1016/j.jnutbio.2024.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Maternal zinc deficiency significantly influences fetal development and long-term health outcomes, yet its transgenerational effects remain poorly understood. This study aims to investigate the transgenerational effects of maternal zinc deficiency on metabolic outcomes in Drosophila melanogaster. Zinc deficiency was induced in Drosophila by incorporating TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine) into their diet. Offspring (F1 to F3) were maintained on a standard diet for subsequent analyses. Various metabolic markers, including glucose, trehalose, glycogen, and triglyceride levels, were assessed, and gene expression analyses were conducted to examine the molecular responses across generations. Significant reductions in locomotor performance in female F1 flies and increased body weight in the F2 generation were observed. Maternal zinc deficiency exhibited gender- and generation-specific impacts on metabolic markers. Notably, an adaptive response in the F3 generation included increased catalase activity and total antioxidant capacity, along with decreased malondialdehyde levels. Gene expression analyses revealed upregulation of DILP2 mRNA across generations and significant variations in PEPCK, SOD1, CAT, EGR, and UPD2 mRNA levels, demonstrating intricate responses to maternal zinc deficiency. This study provides a holistic understanding of the consequences of maternal zinc deficiency, emphasizing the complex interplay between zinc status and metabolic outcomes across generations in Drosophila. These findings lay the foundation for future research elucidating the underlying molecular mechanisms, with potential implications for humans. The insights gained contribute to informing targeted interventions aimed at optimizing offspring health in the context of maternal zinc deficiency.
Collapse
Affiliation(s)
- Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Physiology, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Human Physiology, Faculty of Health Sciences, Al-Hikmah University, Ilorin 1601, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Physiology, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Physiology, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Basic Medical and Dental Sciences, Zarqa University, Zarqa 13110, Jordan; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Republic of South of Africa
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Medical Biochemistry, Usmanu Danfodiyo University, Sokoto 2346, Nigeria.
| |
Collapse
|
5
|
Ding L, Weger BD, Liu J, Zhou L, Lim Y, Wang D, Xie Z, Liu J, Ren J, Zheng J, Zhang Q, Yu M, Weger M, Morrison M, Xiao X, Gachon F. Maternal high fat diet induces circadian clock-independent endocrine alterations impacting the metabolism of the offspring. iScience 2024; 27:110343. [PMID: 39045103 PMCID: PMC11263959 DOI: 10.1016/j.isci.2024.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Maternal obesity has long-term effects on offspring metabolic health. Among the potential mechanisms, prior research has indicated potential disruptions in circadian rhythms and gut microbiota in the offspring. To challenge this hypothesis, we implemented a maternal high fat diet regimen before and during pregnancy, followed by a standard diet after birth. Our findings confirm that maternal obesity impacts offspring birth weight and glucose and lipid metabolisms. However, we found minimal impact on circadian rhythms and microbiota that are predominantly driven by the feeding/fasting cycle. Notably, maternal obesity altered rhythmic liver gene expression, affecting mitochondrial function and inflammatory response without disrupting the hepatic circadian clock. These changes could be explained by a masculinization of liver gene expression similar to the changes observed in polycystic ovarian syndrome. Intriguingly, such alterations seem to provide the first-generation offspring with a degree of protection against obesity when exposed to a high fat diet.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Benjamin D. Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100022, China
| | - Yenkai Lim
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ziyan Xie
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Australian Infectious Diseases Research Centre, St. Lucia, QLD 4072, Australia
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Choudhary D, Andreani GA, Mahmood S, Wen X, Patel MS, Rideout TC. Postnatal Consumption of Black Bean Powder Protects against Obesity and Dyslipidemia in Male Adult Rat Offspring from Obese Pregnancies. Nutrients 2024; 16:1029. [PMID: 38613062 PMCID: PMC11013182 DOI: 10.3390/nu16071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The adverse influence of maternal obesity on offspring metabolic health throughout the life-course is a significant public health challenge with few effective interventions. We examined if black bean powder (BBP) supplementation to a high-calorie maternal pregnancy diet or a postnatal offspring diet could offer protection against the metabolic programming of metabolic disease risk in adult offspring. Female Sprague Dawley rats were randomly assigned to one of three diets (n = 10/group) for a 3-week pre-pregnancy period and throughout gestation and lactation: (i) a low-caloric control diet (CON); (ii) a high-caloric obesity-inducing diet (HC); or (iii) the HC diet with 20% black bean powder (HC-BBP). At weaning [postnatal day (PND) 21], one male pup from each dam was weaned onto the CON diet throughout the postnatal period until adulthood (PND120). In addition, a second male from the HC group only was weaned onto the CON diet supplemented with BBP (CON-BBP). Thus, based on the maternal diet exposure and offspring postnatal diet, four experimental adult offspring groups were compared: CON/CON, HC/CON, HC-BPP/CON, and HC/CON-BBP. On PND120, blood was collected for biochemical analysis (e.g., lipids, glycemic control endpoints, etc.), and livers were excised for lipid analysis (triglycerides [TG] and cholesterol) and the mRNA/protein expression of lipid-regulatory targets. Compared with the CON/CON group, adult offspring from the HC/CON group exhibited a higher (p < 0.05) body weight (BW) (682.88 ± 10.67 vs. 628.02 ± 16.61 g) and hepatic TG (29.55 ± 1.31 vs. 22.86 ± 1.85 mmol/g). Although maternal BBP supplementation (HC-BBP/CON) had little influence on metabolic outcomes, the consumption of BBP in the postnatal period (HC/CON-BBP) lowered hepatic TG and cholesterol compared with the other treatment groups. Reduced hepatic TG in the HC/CON-BBP was likely associated with lower postnatal BW gain (vs. HC/CON), lower mRNA and protein expression of hepatic Fasn (vs. HC/CON), and lower serum leptin concentration (vs. CON/CON and HC groups). Our results suggest that the postnatal consumption of a black-bean-powder-supplemented diet may protect male rat offspring against the programming of obesity and dyslipidemia associated with maternal obesity. Future work should investigate the bioactive fraction of BBP responsible for the observed effect.
Collapse
Affiliation(s)
- Divya Choudhary
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
- Department of Pediatrics, Division of Behavioral Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA;
| | - Gabriella A. Andreani
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
| | - Saleh Mahmood
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
| | - Xiaozhong Wen
- Department of Pediatrics, Division of Behavioral Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA;
| | - Mulchand S. Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA;
| | - Todd C. Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA; (D.C.); (G.A.A.); (S.M.)
| |
Collapse
|
7
|
Rosolen APF, Ribeiro RA, Teleken JL, de Oliveira Chaves J, Padilha SC, Goes ME, Morari J, Boschero AC, Balbo SL, Bonfleur ML. Pubertal glyphosate-based herbicide exposure aggravates high-fat diet-induced obesity in female mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15872-15884. [PMID: 38302837 DOI: 10.1007/s11356-024-32234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Glyphosate-based herbicides (GBH) are the most widely used pesticides globally. Studies have indicated that they may increase the risk of various organic dysfunctions. Herein, we verified whether exposure to GBH during puberty increases the susceptibility of male and female mice to obesity when they are fed a high-fat diet (HFD) in adulthood. From the 4th-7th weeks of age, male and female C57Bl/6 mice received water (CTL group) or 50 mg GBH /kg body weight (BW; GBH group). From the 8th-21st weeks of age, the mice were fed a standard diet or a HFD. It was found that pubertal GBH exposure exacerbated BW gains and hyperphagia induced by HFD, but only in female GBH-HFD mice. These female mice also exhibited high accumulation of perigonadal and subcutaneous fat, as well as reduced lean body mass. Both male and female GBH-HFD displayed hypertrophic white adipocytes. However, only in females, pubertal GBH exposure aggravated HFD-induced fat accumulation in brown adipocytes. Furthermore, GBH increased plasma cortisol levels by 80% in GBH-HFD males, and 180% in GBH-HFD females. In conclusion, pubertal GBH exposure aggravated HFD-induced obesity, particularly in adult female mice. This study provides novel evidence that GBH misprograms lipid metabolism, accelerating the development of obesity when individuals are challenged by a second metabolic stressor, such as an obesogenic diet.
Collapse
Affiliation(s)
- Ana Paula Farina Rosolen
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Rosane Aparecida Ribeiro
- Departamento de Biologia Geral, Setor de Ciências Biológicas E da Saúde, Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
- Programa de Pós-Graduação Em Produtos Bioativos E Biociências, Universidade Federal Do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Jakeline Liara Teleken
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Janaina de Oliveira Chaves
- Programa de Pós-Graduação Em Produtos Bioativos E Biociências, Universidade Federal Do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Suellen Camila Padilha
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Maria Eduarda Goes
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Joseane Morari
- Centro de Pesquisa Em Obesidade E Comorbidades (OCRC), Faculdade de Ciências Médicas (FCM), UNICAMP, Campinas, SP, Brazil
| | - Antonio Carlos Boschero
- Centro de Pesquisa Em Obesidade E Comorbidades (OCRC), Faculdade de Ciências Médicas (FCM), UNICAMP, Campinas, SP, Brazil
| | - Sandra Lucinei Balbo
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil
| | - Maria Lúcia Bonfleur
- Laboratório de Fisiologia Endócrina E Metabolismo (LAFEM), Centro de Ciências Biológicas E da Saúde, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Cascavel, CEP: 85819-110, Brazil.
| |
Collapse
|
8
|
Bryan EE, Bode NM, Chen X, Burris ES, Johnson DC, Dilger RN, Dilger AC. The effect of chronic, non-pathogenic maternal immune activation on offspring postnatal muscle and immune outcomes. J Anim Sci 2024; 102:skad424. [PMID: 38189595 PMCID: PMC10794819 DOI: 10.1093/jas/skad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
The objective was to determine the effects of maternal inflammation on offspring muscle development and postnatal innate immune response. Sixteen first-parity gilts were randomly allotted to repeated intravenous injections with lipopolysaccharide (LPS; n = 8, treatment code INFLAM) or comparable volume of phosphate buffered saline (CON, n = 8). Injections took place every other day from gestational day (GD) 70 to GD 84 with an initial dose of 10 μg LPS/kg body weight (BW) increasing by 12% each time to prevent endotoxin tolerance. On GD 70, 76, and 84, blood was collected at 0 and 4 h postinjection via jugular or ear venipuncture to determine tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β concentrations. After farrowing, litter mortality was recorded, and the pig closest to litter BW average was used for dissection and muscle fiber characterization. On weaning (postnatal day [PND] 21), pigs were weighed individually and 2 barrows closest to litter BW average were selected for another study. The third barrow closest to litter BW average was selected for the postnatal LPS challenge. On PND 52, pigs were given 5 μg LPS/kg BW via intraperitoneal injection, and blood was collected at 0, 4, and 8 h postinjection to determine TNF-α concentration. INFLAM gilt TNF-α concentration increased (P < 0.01) 4 h postinjection compared to 0 h postinjection, while CON gilt TNF-α concentration did not differ between time points. INFLAM gilt IL-6 and IL-1β concentrations increased (P = 0.03) 4 h postinjection compared to 0 h postinjection on GD 70, but did not differ between time points on GD 76 and 84. There were no differences between INFLAM and CON gilts litter mortality outcomes (P ≥ 0.13), but INFLAM pigs were smaller (P = 0.04) at birth and tended (P = 0.09) to be smaller at weaning. Muscle and organ weights did not differ (P ≥ 0.17) between treatments, with the exception of semitendinosus, which was smaller (P < 0.01) in INFLAM pigs. INFLAM pigs tended (P = 0.06) to have larger type I fibers. INFLAM pig TNF-α concentration did not differ across time, while CON pig TNF-α concentration peaked (P = 0.01) 4 h postinjection. TNF-α concentration did not differ between treatments at 0 and 8 h postinjection, but CON pigs had increased (P = 0.01) TNF-α compared to INFLAM pigs 4 h postinjection. Overall, maternal immune activation did not alter pig muscle development, but resulted in suppressed innate immune activation.
Collapse
Affiliation(s)
- Erin E Bryan
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Nick M Bode
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Xuenan Chen
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Elli S Burris
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Danielle C Johnson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
9
|
Arslan S, Yıldıran H, Seymen CM. The Effect of Maternal High-Fat Diet on Adipose Tissue Histology and Lipid Metabolism-Related Genes Expression in Offspring Rats. Nutrients 2024; 16:150. [PMID: 38201978 PMCID: PMC10780511 DOI: 10.3390/nu16010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The developing fetus is dependent on the maternal nutritional environment. This study was conducted to determine the effects of a maternal high-fat diet (HFD) applied during pregnancy and/or lactation on the expression levels of some lipid-related genes in rat models. Half of the pregnant rats (n: 6) were fed an HFD (energy from fat: 45%), while the other half (n: 6) were fed a control diet (CD) (energy from fat, 7.7%) during the pregnancy period. During lactation, dams in both groups were divided into two subgroups, with half fed the CD and the other half fed the HFD. Thus, four groups were obtained: CD-CD, CD-HFD, HFD-CD, and HFD-HFD. At the end of lactation, all mothers and half of the offspring were sacrificed. The remaining offspring were fed a CD for five weeks. The average birth weight of the CD group offspring was found to be lower than that of the HFD group (p < 0.05). The amount of adipose tissue was highest in CD-HFD (p < 0.05), while gene expression levels were similar between groups (p > 0.05), and the most degenerative histological changes were observed in the eight-week HFD-HFD (p < 0.05). This study suggests that maternal HFD during pregnancy and lactation may increase adiposity in offspring rats, especially during the weaning period.
Collapse
Affiliation(s)
- Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Turkey;
| | - Hilal Yıldıran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Turkey;
| | - Cemile Merve Seymen
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06500, Turkey;
| |
Collapse
|
10
|
Shook LL, James KE, Roberts DJ, Powe CE, Perlis RH, Thornburg KL, O'Tierney-Ginn PF, Edlow AG. Sex-specific impact of maternal obesity on fetal placental macrophages and cord blood triglycerides. Placenta 2023; 140:100-108. [PMID: 37566941 PMCID: PMC10529163 DOI: 10.1016/j.placenta.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Maternal obesity is associated with increased risk of offspring obesity and cardiometabolic disease. Altered fetoplacental immune programming is a potential candidate mechanism. Differences in fetal placental macrophages, or Hofbauer cells (HBCs), have been observed in maternal obesity, and lipid metabolism is a key function of resident macrophages that may be deranged in inflammation/immune activation. We sought to test the following hypotheses: 1) maternal obesity is associated with altered HBC density and phenotype in the term placenta and 2) obesity-associated HBC changes are associated with altered placental lipid transport to the fetus. The impact of fetal sex was evaluated in all experiments. METHODS We quantified the density and morphology of CD163-and CD68-positive HBCs in placental villi in 34 full-term pregnancies undergoing cesarean delivery (N = 15, maternal BMI ≥30 kg/m2; N = 19, BMI <30 kg/m2). Antibody-positive cells in terminal villi were detected and cell size and circularity analyzed using a semi-automated method for thresholding of bright-field microscopy images (ImageJ). Placental expression of lipid transporter genes was quantified using RTqPCR, and cord plasma triglycerides (TGs) were profiled using modified Wahlefeld method. The impact of maternal obesity and fetal sex on HBC features, lipid transporters, and cord TGs were evaluated by two-way ANOVA. Spearman correlations of cord TGs, HBC metrics and gene expression levels were calculated. RESULTS Maternal obesity was associated with significantly increased density of HBCs, with male placentas most affected (fetal sex by maternal obesity interaction p = 0.04). CD163+ HBCs were larger and rounder in obesity-exposed male placentas. Sexually dimorphic expression of placental FATP4, FATP6, FABPPM, AMPKB1 and AMPKG and cord TGs was noted in maternal obesity, such that levels were higher in males and lower in females relative to sex-matched controls. Cord TGs were positively correlated with HBC density and FATP1 expression. DISCUSSION Maternal obesity is associated with sex-specific alterations in HBC density and placental lipid transporter expression, which may impact umbilical cord blood TG levels and offspring cardiometabolic programming.
Collapse
Affiliation(s)
- Lydia L Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kaitlyn E James
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Camille E Powe
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Department of Medicine, Diabetes Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA; Center for Quantitative Health, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kent L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Perrie F O'Tierney-Ginn
- Tufts Medical Center, Mother Infant Research Institute, Box# 394, 800 Washington Street, Boston, MA, 02111, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Liu T, Jia F, Differding MK, Zhao N, Doyon M, Bouchard L, Perron P, Guérin R, Massé E, Hivert MF, Mueller NT. Pre-pregnancy body mass index and gut microbiota of mothers and children 5 years postpartum. Int J Obes (Lond) 2023; 47:807-816. [PMID: 37173396 PMCID: PMC10911130 DOI: 10.1038/s41366-023-01322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Maternal pre-pregnancy body mass index (BMI) has been linked to altered gut microbiota in women shortly after delivery and in their offspring in the first few years of life. But little is known about how long these differences persist. METHODS We followed 180 mothers and children from pregnancy until 5-year postpartum in the Gen3G cohort (Canada, enrolled 2010-2013). At 5 years postpartum we collected stool samples from mothers and children and estimated the gut microbiota by 16 S rRNA sequencing (V4 region) using Illumina MiSeq, and assigning amplicon sequence variants (ASV). We examined whether overall microbiota composition (as measured by microbiota β diversity) was more similar between mother-child pairs compared to between mothers or between children. We also assessed whether mother-child pair sharing of overall microbiota composition differed by the weight status of mothers before pregnancy and of children at 5-year. Furthermore, in mothers, we examined whether pre-pregnancy BMI, BMI 5-year postpartum, and change in BMI between time points was associated with maternal gut microbiota 5-year postpartum. In children, we further examined associations of maternal pre-pregnancy BMI and child 5-year BMI z-score with child 5-year gut microbiota. RESULTS Mother-child pairs had greater similarity in overall microbiome composition compared to between mothers and between children. In mothers, higher pre-pregnancy BMI and 5-year postpartum BMI were associated with lower microbiota observed ASV richness and Chao 1 index; in children's gut microbiota, higher maternal pre-pregnancy BMI was weakly associated with lower microbiota Shannon index, whereas child's 5-year BMI z-score was associated with higher observed ASV richness. Pre-pregnancy BMI was also linked to differential abundances of several microbial ASVs in the Ruminococcaceae and Lachnospiraceae families, but no specific ASV had overlapping associations with BMI measures in both mothers and children. CONCLUSIONS Pre-pregnancy BMI was associated with gut microbiota diversity and composition of mothers and children 5 years after birth, however, the nature and direction of most associations differed for mothers and children. Future studies are encouraged to confirm our findings and look into potential mechanisms or factors that may drive these associations.
Collapse
Affiliation(s)
- Tiange Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Fan Jia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Moira K Differding
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Myriam Doyon
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, CIUSSS-SLSJ, Saguenay, QC, Canada
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Renée Guérin
- Department of Medical Biology, CIUSSS-SLSJ, Saguenay, QC, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-France Hivert
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Purcell AR, Glastras SJ. Maternal Weight Management to Prevent the Developmental Programming of MAFLD in Offspring of Obese Mothers. Nutrients 2023; 15:2155. [PMID: 37432265 DOI: 10.3390/nu15092155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 07/12/2023] Open
Abstract
The global surge of obesity amongst women of reproductive age has raised concerns surrounding the health consequences for their offspring as there is a formidable link between an obesogenic maternal environment and the developmental programming of metabolic dysfunction in the offspring. Specifically, the offspring of mothers with obesity have a three-fold higher risk of developing metabolic-associated fatty liver disease (MAFLD) compared to the offspring of healthy-weight mothers. Given the burgeoning burden of obesity and its comorbidities, it is essential to focus research efforts on methods to alleviate the intergenerational onset of obesity and MAFLD. This review summarizes the current research surrounding the developmental programming of MAFLD in the offspring of mothers with obesity and examines the potential for weight interventions to prevent such metabolic dysfunction in the offspring. It focuses on the benefits of pre-pregnancy interventional strategies, including dietary and exercise intervention, to ameliorate adverse liver health outcomes in the offspring. The utility and translation of these interventions for humans may be difficult for prospective mothers with obesity, thus the use of pre-pregnancy therapeutic weight loss aids, such as glucagon-like peptide-1 receptor agonists, is also discussed.
Collapse
Affiliation(s)
- Amanda Renae Purcell
- Kolling Institute of Medical Research, Sydney 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Sarah Jean Glastras
- Kolling Institute of Medical Research, Sydney 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia
| |
Collapse
|
13
|
Su CW, Chen CY, Mao T, Chen N, Steudel N, Jiao L, Lan J, Fasano A, Walker WA, Shi HN. Maternal helminth infection protects offspring from high-fat-diet-induced obesity through altered microbiota and SCFAs. Cell Mol Immunol 2023; 20:389-403. [PMID: 36788341 PMCID: PMC10066288 DOI: 10.1038/s41423-023-00979-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Helminth-induced Th2 immunity and gut microbiota have been recently shown to be highly effective in modulating metabolic syndromes in animal models. This study aimed to determine whether maternal immunity and microbial factors affect the induction and development of obesity in offspring. Here, Heligomosomoides polygyrus (Hp)-infected or control female C57BL/6J mice mated with normal males and their offspring were fed a high-fat diet (HFD) for 9 weeks after weaning. Our results showed that Hp-induced maternal outcomes during gestation and lactation significantly impacted offspring metabolic phenotypes. This was evidenced by results showing that offspring from helminth-infected mothers on an HFD (Hp-offspring + HFD) gained significantly less body weight than those from uninfected mothers (Cont-offspring + HFD). Hp-offspring + HFD exhibited no Th2 phenotype but displayed a pattern of gut microbiota composition similar to that of Hp-infected mothers. Cross-fostering experiments confirmed that the helminth-induced maternal attenuation of offspring obesity was mediated through both prenatal and postnatal effects. Our results further showed that helminth-infected dams and their offspring had a markedly altered gut microbiome composition, with increased production of short-chain fatty acids (SCFAs). Intriguingly, Hp-infected mothers and Hp-offspring + HFD showed increased SCFA receptor (GPR) expression in adipose and colonic tissues compared to noninfected mothers and Cont-offspring + HFD, respectively. Moreover, SCFA supplementation to the pups of uninfected control mothers during lactation protected against HFD-induced weight gain, which corresponded with changes in gut bacterial colonization. Collectively, our findings provide new insights into the complex interaction of maternal immune status and gut microbiome, Hp infection, and the immunity and gut microbiome in obese-prone offspring in infant life.
Collapse
Affiliation(s)
- Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tangyou Mao
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ning Chen
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Nicholas Steudel
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lefei Jiao
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jinggang Lan
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
14
|
Rideout TC, Andreani GA, Pembroke J, Choudhary D, Browne RW, Mahmood S, Patel MS. Maternal Pea Protein Intake Provides Sex-Specific Protection against Dyslipidemia in Offspring from Obese Pregnancies. Nutrients 2023; 15:nu15040867. [PMID: 36839225 PMCID: PMC9968008 DOI: 10.3390/nu15040867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Increased consumption of dietary pulse protein has been shown to assist in body weight regulation and improve a range of metabolic health outcomes. We investigated if the exchange of casein for yellow pea protein (YPPN) in an obese-inducing maternal diet throughout pregnancy and lactation offered protection against obesity and dyslipidemia in offspring. Sixty female Sprague Dawley rats were fed a low-calorie control diet (CON), a high-caloric obesity-inducing diet (with casein protein (CP), HC-CP), or an isocaloric/macronutrient-matched HC diet supplemented with YPPN isolate (HC-PPN) in pre-pregnancy, gestation, and lactation. Body weight (BW) and metabolic outcomes were assessed in male and female offspring at weaning and in adulthood after consuming the CON diet in the postnatal period. Consumption of the HC-PPN diet did not protect against maternal obesity but did improve reproductive success compared with the HC-CP group (72.7% versus 43.7%) and reduced total energy, fat, and protein in maternal milk. Male, but not female, offspring from mothers fed the HC-CP diet demonstrated hyperphagia, obesity, dyslipidemia, and hepatic triglyceride (TG) accumulation as adults compared with CON offspring. Isocaloric exchange of CP for YPPN in a high-calorie obese-inducing diet did not protect against obesity but did improve several aspects of lipid metabolism in adult male offspring including serum total cholesterol, LDL/VLDL cholesterol, triglycerides (TGs), and hepatic TG concentration. Our results suggest that the exchange of CP for YPPN in a maternal obese-inducing diet selectively protects male offspring from the malprogramming of lipid metabolism in adulthood.
Collapse
Affiliation(s)
- Todd C. Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
- Correspondence:
| | - Gabriella A. Andreani
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Jillian Pembroke
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Divya Choudhary
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard W. Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Saleh Mahmood
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Mulchand S. Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
15
|
Mihalovičová L, Kunšteková V, Miláček D, Janko J, Pastorek M, Konečná B, Gurecká R, Rausová Z, Uličná O, Celec P, Šebeková K. Severe gestational diabetes mellitus in lean dams is associated with low IL-1α levels and affects the growth of the juvenile mouse offspring. Sci Rep 2023; 13:1700. [PMID: 36717684 PMCID: PMC9886986 DOI: 10.1038/s41598-023-28903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
We investigated how maternal gestational diabetes (GDM) impacts the metabolic status of offspring. GDM was induced in CD1 mice consuming a fast-food diet (FFD) by repeated low-dose streptozotocin injections before mating. Offspring of normoglycemic standard chow or the FFD consuming dams served as controls. In 4-week-old offspring weaned to standard chow, plasma concentrations of extracellular DNA, inflammatory markers, and parameters of the cardiometabolic status (glycemia, liver lipid content; body, organ, and fat weight) were determined. Two-factor analysis of variance indicated that the male offspring of GDM dams manifest postnatal growth retardation and lower relative kidney weight. Regardless of sex, GDM offspring manifest the lowest IL-1α levels, and other inflammatory markers showed mild and inconsistent alterations. Offspring of dams consuming the FFD displayed higher liver triacylglycerols content. The three groups of offspring showed no significant differences in glycemia and extracellular DNA. Partial least squares-discriminant analysis indicated that male GDM offspring present lower kidney, body, and brown adipose tissue weights; lower IL-1α levels, and higher concentrations of GM-CSF and IL-10 compared with their FFD counterparts. The model failed to select discriminative variables in females. In conclusion, in mice, maternal GDM in the absence of obesity adversely affects the early growth of juvenile male offspring.
Collapse
Affiliation(s)
- Lucia Mihalovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Veronika Kunšteková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.,Department of Biology, Faculty of Medicine, Slovak Medical University, 833 03, Bratislava, Slovakia
| | - Dávid Miláček
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Jakub Janko
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia
| | - Radana Gurecká
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.,Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Zuzana Rausová
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Oľga Uličná
- Pharmacobiochemical Laboratory of 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinskova 4, 811 08, Bratislava, Slovakia.
| |
Collapse
|
16
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. A comprehensive approach to modeling maternal immune activation in rodents. Front Neurosci 2022; 16:1071976. [PMID: 36590294 PMCID: PMC9800799 DOI: 10.3389/fnins.2022.1071976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Prenatal brain development is a highly orchestrated process, making it a very vulnerable window to perturbations. Maternal stress and subsequent inflammation during pregnancy leads to a state referred to as, maternal immune activation (MIA). If persistent, MIA can pose as a significant risk factor for the manifestation of neurodevelopmental disorders (NDDs) such as autism spectrum disorder and schizophrenia. To further elucidate this association between MIA and NDD risk, rodent models have been used extensively across laboratories for many years. However, there are few uniform approaches for rodent MIA models which make not only comparisons between studies difficult, but some established approaches come with limitations that can affect experimental outcomes. Here, we provide researchers with a comprehensive review of common experimental variables and potential limitations that should be considered when designing an MIA study based in a rodent model. Experimental variables discussed include: innate immune stimulation using poly I:C and LPS, environmental gestational stress paradigms, rodent diet composition and sterilization, rodent strain, neonatal handling, and the inclusion of sex-specific MIA offspring analyses. We discuss how some aspects of these variables have potential to make a profound impact on MIA data interpretation and reproducibility.
Collapse
Affiliation(s)
- Morgan C. Bucknor
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anand Gururajan
- The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Russell C. Dale
- The Children’s Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Robertson OC, Marceau K, Moding KJ, Knopik VS. Developmental pathways linking obesity risk and early puberty: The thrifty phenotype and fetal overnutrition hypotheses. DEVELOPMENTAL REVIEW 2022. [DOI: 10.1016/j.dr.2022.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Shawky NM. Cardiovascular disease risk in offspring of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2022; 13:977819. [PMID: 36531474 PMCID: PMC9747927 DOI: 10.3389/fendo.2022.977819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder affecting women at reproductive age. PCOS diagnosis (Rotterdam criteria) is based on the presence of two out of three criteria; clinical and/or biochemical hyperandrogenism, oligo- or an-ovulation and polycystic ovaries. PCOS women suffer from a constellation of reproductive and metabolic abnormalities including obesity and insulin resistance. PCOS women also have increased blood pressure and increased risk of cardiovascular diseases (CVD). In-utero, offspring of PCOS women are exposed to altered maternal hormonal environment and maternal obesity (for most of PCOS women). Offspring of PCOS women could also be subject to genetic susceptibility, the transgenerational transmission of some of the PCOS traits or epigenetic changes. Offspring of PCOS women are commonly reported to have an abnormal birth weight, which is also a risk factor for developing CVD and hypertension later in life. Although studies have focused on the growth pattern, reproductive and metabolic health of children of PCOS women, very limited number of studies have addressed the risk of hypertension and CVD in those offspring particularly as they age. The current narrative review is designed to summarize the available literature (both human studies and experimental animal studies) and highlight the gaps in addressing hypertension and CVD risks in offspring of PCOS women or hyperandrogenemic female animal models.
Collapse
Affiliation(s)
- Noha M Shawky
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- Women's Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
19
|
Di Gesù CM, Matz LM, Bolding IJ, Fultz R, Hoffman KL, Marino Gammazza A, Petrosino JF, Buffington SA. Maternal gut microbiota mediate intergenerational effects of high-fat diet on descendant social behavior. Cell Rep 2022; 41:111461. [PMID: 36223744 PMCID: PMC9597666 DOI: 10.1016/j.celrep.2022.111461] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022] Open
Abstract
Dysbiosis of the maternal gut microbiome during pregnancy is associated with adverse neurodevelopmental outcomes. We previously showed that maternal high-fat diet (MHFD) in mice induces gut dysbiosis, social dysfunction, and underlying synaptic plasticity deficits in male offspring (F1). Here, we reason that, if HFD-mediated changes in maternal gut microbiota drive offspring social deficits, then MHFD-induced dysbiosis in F1 female MHFD offspring would likewise impair F2 social behavior. Metataxonomic sequencing reveals reduced microbial richness among female F1 MHFD offspring. Despite recovery of microbial richness among MHFD-descendant F2 mice, they display social dysfunction. Post-weaning Limosilactobacillus reuteri treatment increases the abundance of short-chain fatty acid-producing taxa and rescues MHFD-descendant F2 social deficits. L. reuteri exerts a sexually dimorphic impact on gut microbiota configuration, increasing discriminant taxa between female cohorts. Collectively, these results show multigenerational impacts of HFD-induced dysbiosis in the maternal lineage and highlight the potential of maternal microbiome-targeted interventions for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy,Current address: Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston,These authors contributed equally
| | - Lisa M. Matz
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,These authors contributed equally
| | - Ian J. Bolding
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert Fultz
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kristi L. Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shelly A. Buffington
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Microbiome Research, The University of Texas Medical Branch, Galveston, TX 77555, USA,Lead contact,Correspondence:
| |
Collapse
|
20
|
Savva C, Helguero LA, González-Granillo M, Melo T, Couto D, Angelin B, Domingues MR, Li X, Kutter C, Korach-André M. Molecular programming modulates hepatic lipid metabolism and adult metabolic risk in the offspring of obese mothers in a sex-specific manner. Commun Biol 2022; 5:1057. [PMID: 36195702 PMCID: PMC9532402 DOI: 10.1038/s42003-022-04022-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Male and female offspring of obese mothers are known to differ extensively in their metabolic adaptation and later development of complications. We investigate the sex-dependent responses in obese offspring mice with maternal obesity, focusing on changes in liver glucose and lipid metabolism. Here we show that maternal obesity prior to and during gestation leads to hepatic steatosis and inflammation in male offspring, while female offspring are protected. Females from obese mothers display important changes in hepatic transcriptional activity and triglycerides profile which may prevent the damaging effects of maternal obesity compared to males. These differences are sustained later in life, resulting in a better metabolic balance in female offspring. In conclusion, sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in offspring liver, explaining the sexual dimorphism in obesity-associated metabolic risk. Sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in the livers of female and male offspring, contributing to the sexual dimorphism in obesity-associated metabolic risk.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | | | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bo Angelin
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Xidan Li
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden. .,Department of Gene Technology, Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden.
| |
Collapse
|
21
|
Kelly AC, J Rosario F, Chan J, Cox LA, Powell TL, Jansson T. Transcriptomic responses are sex-dependent in the skeletal muscle and liver in offspring of obese mice. Am J Physiol Endocrinol Metab 2022; 323:E336-E353. [PMID: 35858246 PMCID: PMC9529275 DOI: 10.1152/ajpendo.00263.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Infants born to obese mothers are more likely to develop metabolic disease, including glucose intolerance and hepatic steatosis, in adult life. We examined the effects of maternal obesity on the transcriptome of skeletal muscle and liver tissues of the near-term fetus and 3-mo-old offspring in mice born to dams fed a high-fat and -sugar diet. Previously, we have shown that male, but not female, offspring develop glucose intolerance, insulin resistance, and liver steatosis at 3 mo old. Female C57BL6/J mice were fed normal chow or an obesogenic high-calorie diet before mating and throughout pregnancy. RNAseq was performed on the liver and gastrocnemius muscle following collection from fetuses on embryonic day 18.5 (E18.5) as well as from 3-mo-old offspring from obese dams and control dams. Significant genes were generated for each sex, queried for enrichment, and modeled to canonical pathways. RNAseq was corroborated by protein quantification in offspring. The transcriptomic response to maternal obesity in the liver was more marked in males than females. However, in both male and female offspring of obese dams, we found significant enrichment for fatty acid metabolism, mitochondrial transport, and oxidative stress in the liver transcriptomes as well as decreased protein concentrations of electron transport chain members. In skeletal muscle, pathway analysis of gene expression revealed sexual dimorphic patterns, including metabolic processes of fatty acids and glucose, as well as PPAR, AMPK, and PI3K-Akt signaling pathways. Transcriptomic responses to maternal obesity in skeletal muscle were more marked in female offspring than males. Female offspring had greater expression of genes associated with glucose uptake, and protein abundance reflected greater activation of mTOR signaling. Skeletal muscle and livers in mice born to obese dams had sexually dimorphic transcriptomic responses that changed from the fetus to the adult offspring. These data provide insights into mechanisms underpinning metabolic programming in maternal obesity.NEW & NOTEWORTHY Transcriptomic data support that fetuses of obese mothers modulate metabolism in both muscle and liver. These changes were strikingly sexually dimorphic in agreement with published findings that male offspring of obese dams exhibit pronounced metabolic disease earlier. In both males and females, the transcriptomic responses in the fetus were different than those at 3 mo, implicating adaptive mechanisms throughout adulthood.
Collapse
Affiliation(s)
- Amy C Kelly
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fredrick J Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeannie Chan
- Section of Molecular Medicine, Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Laura A Cox
- Section of Molecular Medicine, Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Theresa L Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
22
|
Comas-Armangue G, Makharadze L, Gomez-Velazquez M, Teperino R. The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility. Biomedicines 2022; 10:biomedicines10102461. [PMID: 36289722 PMCID: PMC9599218 DOI: 10.3390/biomedicines10102461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
While a dramatic increase in obesity and related comorbidities is being witnessed, the underlying mechanisms of their spread remain unresolved. Epigenetic and other non-genetic mechanisms tend to be prominent candidates involved in the establishment and transmission of obesity and associated metabolic disorders to offspring. Here, we review recent findings addressing those candidates, in the context of maternal and paternal influences, and discuss the effectiveness of preventive measures.
Collapse
Affiliation(s)
- Gemma Comas-Armangue
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Lela Makharadze
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Melisa Gomez-Velazquez
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| | - Raffaele Teperino
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| |
Collapse
|
23
|
Akter S, Akhter H, Chaudhury HS, Rahman MH, Gorski A, Hasan MN, Shin Y, Rahman MA, Nguyen MN, Choi TG, Kim SS. Dietary carbohydrates: Pathogenesis and potential therapeutic targets to obesity-associated metabolic syndrome. Biofactors 2022; 48:1036-1059. [PMID: 36102254 DOI: 10.1002/biof.1886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS) is a common feature in obesity, comprising a cluster of abnormalities including abdominal fat accumulation, hyperglycemia, hyperinsulinemia, dyslipidemia, and hypertension, leading to diabetes and cardiovascular diseases (CVD). Intake of carbohydrates (CHO), particularly a sugary diet that rapidly increases blood glucose, triglycerides, and blood pressure levels is the predominant determining factor of MetS. Complex CHO, on the other hand, are a stable source of energy taking a longer time to digest. In particular, resistant starch (RS) or soluble fiber is an excellent source of prebiotics, which alter the gut microbial composition, which in turn improves metabolic control. Altering maternal CHO intake during pregnancy may result in the child developing MetS. Furthermore, lifestyle factors such as physical inactivity in combination with dietary habits may synergistically influence gene expression by modulating genetic and epigenetic regulators transforming childhood obesity into adolescent metabolic disorders. This review summarizes the common pathophysiology of MetS in connection with the nature of CHO, intrauterine nutrition, genetic predisposition, lifestyle factors, and advanced treatment approaches; it also emphasizes how dietary CHO may act as a key element in the pathogenesis and future therapeutic targets of obesity and MetS.
Collapse
Affiliation(s)
- Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Biotechnology, Bangladesh University of Health Sciences, Dhaka 1216, Bangladesh
| | - Hajara Akhter
- Biomedical and Toxicological Research Institute, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Habib Sadat Chaudhury
- Department of Biochemistry, International Medical College Hospital, Tongi 1711, Bangladesh
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Andrew Gorski
- Department of Philosophy in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | | | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Minh Nam Nguyen
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Pristine Pharmaceuticals, Patuakhali 8600, Bangladesh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
24
|
da Silva RKB, de Vasconcelos DAA, da Silva AVE, da Silva RPB, de Oliveira Neto OB, Galindo LCM. Effects of maternal high-fat diet on the hypothalamic components related to food intake and energy expenditure in mice offspring. Life Sci 2022; 307:120880. [PMID: 35963301 DOI: 10.1016/j.lfs.2022.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Maternal exposure to a high-fat diet (HFD) during pregnancy and lactation has been related to changes in the hypothalamic circuits involved in the regulation of food intake. Furthermore, maternal HFD during the critical period of development can alter the offspring's metabolic programming with long-term repercussions. This study systematically reviewed the effects of HFD consumption during pre-pregnancy, pregnancy and/or lactation. The main outcomes evaluated were food intake; body weight; cellular or molecular aspects of peptides and hypothalamic receptors involved in the regulation of energy balance in mice. Two independent authors performed a search in the electronic databases Medline/PubMed, LILACS, Web of Science, EMBASE, SCOPUS and Sigle via Open Gray. Included were experimental studies of mice exposed to HFD during pregnancy and/or lactation that evaluated body composition, food intake, energy expenditure and hypothalamic components related to energy balance. Internal validity was assessed using the SYRCLE risk of bias. The Kappa index was measured to analyze the agreement between reviewers. The PRISMA statement was used to report this systematic review. Most studies demonstrated that there was a higher body weight, body fat deposits and food intake, as well as alterations in the expression of hypothalamic neuropeptides in offspring that consumed HFD. Therefore, the maternal diet can affect the phenotype and metabolism of the offspring, in addition to harming the hypothalamic circuits and favoring the orexigenic pathways.
Collapse
Affiliation(s)
- Regina Katiuska Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Diogo Antonio Alves de Vasconcelos
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil; Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil
| | | | - Roxana Patrícia Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | | | - Lígia Cristina Monteiro Galindo
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Department of Anatomy, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil; Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
25
|
Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc Nutr Soc 2022; 81:227-242. [DOI: 10.1017/s0029665122001914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an ever increasing prevalence of maternal obesity worldwide such that in many populations over half of women enter pregnancy either overweight or obese. This review aims to summarise the impact of maternal obesity on offspring cardiometabolic outcomes. Maternal obesity is associated with increased risk of adverse maternal and pregnancy outcomes. However, beyond this exposure to maternal obesity during development also increases the risk of her offspring developing long-term adverse cardiometabolic outcomes throughout their adult life. Both human studies and those in experimental animal models have shown that maternal obesity can programme increased risk of offspring developing obesity and adipose tissue dysfunction; type 2 diabetes with peripheral insulin resistance and β-cell dysfunction; CVD with impaired cardiac structure and function and hypertension via impaired vascular and kidney function. As female offspring themselves are therefore likely to enter pregnancy with poor cardiometabolic health this can lead to an inter-generational cycle perpetuating the transmission of poor cardiometabolic health across generations. Maternal exercise interventions have the potential to mitigate some of the adverse effects of maternal obesity on offspring health, although further studies into long-term outcomes and how these translate to a clinical context are still required.
Collapse
|
26
|
Chakarov S, Blériot C, Ginhoux F. Role of adipose tissue macrophages in obesity-related disorders. J Exp Med 2022; 219:213212. [PMID: 35543703 PMCID: PMC9098652 DOI: 10.1084/jem.20211948] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/04/2022] Open
Abstract
The obesity epidemic has led researchers and clinicians to reconsider the etiology of this disease and precisely decipher its molecular mechanisms. The excessive accumulation of fat by cells, most notably adipocytes, which play a key role in this process, has many repercussions in tissue physiology. Herein, we focus on how macrophages, immune cells well known for their tissue gatekeeping functions, assume fundamental, yet ill-defined, roles in the genesis and development of obesity-related metabolic disorders. We first discuss the determinants of the biology of these cells before introducing the specifics of the adipose tissue environment, while highlighting its heterogeneity. Finally, we detail how obesity transforms both adipose tissue and local macrophage populations. Understanding macrophage diversity and their cross talk with the diverse cell types constituting the adipose tissue environment will allow us to frame the therapeutic potential of adipose tissue macrophages in obesity.
Collapse
Affiliation(s)
- Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Camille Blériot
- Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France.,Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
27
|
Saullo C, Cruz LLD, Damasceno DC, Volpato GT, Sinzato YK, Karki B, Gallego FQ, Vesentini G. Effects of a maternal high-fat diet on adipose tissue in murine offspring: A systematic review and meta-analysis. Biochimie 2022; 201:18-32. [PMID: 35779649 DOI: 10.1016/j.biochi.2022.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
The aim of this systematic review and meta-analysis was to analyze the influence of a maternal and/or offspring high-fat diet (HFD) on the morphology of the offspring adipocytes and amount of food and energy consumption. The search was conducted through Pubmed, EMBASE, and Web of Science databases up to October 31st, 2021. The outcomes were extracted and pooled as a standardized mean difference with random effect models. 5,004 articles were found in the databases. Of these, only 31 were selected for this systematic review and 21 were included in the meta-analysis. A large discrepancy in the percentage of fat composing the HFD (from 14% to 62% fat content) was observed. Considering the increase of adipose tissue by hyperplasia (cell number increase) and hypertrophy (cell size increase) in HFD models, the meta-analysis showed that excessive consumption of a maternal HFD influences the development of visceral white adipose tissue in offspring, related to adipocyte hypertrophy, regardless of their HFD or control diet consumption. Upon following a long-term HFD, hyperplasia was confirmed in the offspring. When analyzing the secondary outcome in terms of the amount of food and energy consumed, there was an increase of caloric intake in the offspring fed with HFD whose mothers consumed HFD. Furthermore, the adipocyte hypertrophy in different regions of the adipose tissue is related to the sex of the pups. Thus, the adipose tissue obesity phenotypes in offspring are programmed by maternal consumption of a high-fat diet, independent of postnatal diet.
Collapse
Affiliation(s)
- Carolina Saullo
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Larissa Lopes da Cruz
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil; Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Barshana Karki
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Franciane Quintanilha Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Giovana Vesentini
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil.
| |
Collapse
|
28
|
De los Santos S, Coral‐Vázquez RM, Menjivar M, Ángeles Granados‐Silvestre M, De la Rosa S, Reyes‐Castro LA, Méndez JP, Zambrano E, Canto P. (−)‐Epicatechin improves body composition of male rats descendant of obese mothers postnatally fed with a high‐fat diet. Fundam Clin Pharmacol 2022; 36:526-535. [DOI: 10.1111/fcp.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/03/2021] [Accepted: 12/30/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Sergio De los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México Mexico
- Subdirección de Investigación Clínica, Dirección de Investigación Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| | - Ramón Mauricio Coral‐Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina Instituto Politécnico Nacional Ciudad de México Mexico
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional “20 de Noviembre” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado Ciudad de México Mexico
| | - Marta Menjivar
- Departamento de Biología, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
- Unidad Académica de Ciencias y Tecnología Universidad Nacional Autónoma de México‐Yucatán Mérida Mexico
| | | | - Sebastián De la Rosa
- Unidad de Investigación en Obesidad, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México Mexico
- Subdirección de Investigación Clínica, Dirección de Investigación Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| | - Luis Antonio Reyes‐Castro
- Departamento de Biología de Reproducción Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México Mexico
- Subdirección de Investigación Clínica, Dirección de Investigación Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| | - Elena Zambrano
- Departamento de Biología de Reproducción Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina Universidad Nacional Autónoma de México Ciudad de México Mexico
- Subdirección de Investigación Clínica, Dirección de Investigación Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Ciudad de México Mexico
| |
Collapse
|
29
|
Sandovici I, Fernandez-Twinn DS, Hufnagel A, Constância M, Ozanne SE. Sex differences in the intergenerational inheritance of metabolic traits. Nat Metab 2022; 4:507-523. [PMID: 35637347 DOI: 10.1038/s42255-022-00570-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/05/2022] [Indexed: 02/02/2023]
Abstract
Strong evidence suggests that early-life exposures to suboptimal environmental factors, including those in utero, influence our long-term metabolic health. This has been termed developmental programming. Mounting evidence suggests that the growth and metabolism of male and female fetuses differ. Therefore, sexual dimorphism in response to pre-conception or early-life exposures could contribute to known sex differences in susceptibility to poor metabolic health in adulthood. However, until recently, many studies, especially those in animal models, focused on a single sex, or, often in the case of studies performed during intrauterine development, did not report the sex of the animal at all. In this review, we (a) summarize the evidence that male and females respond differently to a suboptimal pre-conceptional or in utero environment, (b) explore the potential biological mechanisms that underlie these differences and (c) review the consequences of these differences for long-term metabolic health, including that of subsequent generations.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonia Hufnagel
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
30
|
Savva C, Helguero LA, González-Granillo M, Melo T, Couto D, Buyandelger B, Gustafsson S, Liu J, Domingues MR, Li X, Korach-André M. Maternal high-fat diet programs white and brown adipose tissue lipidome and transcriptome in offspring in a sex- and tissue-dependent manner in mice. Int J Obes (Lond) 2022; 46:831-842. [PMID: 34997206 PMCID: PMC8960419 DOI: 10.1038/s41366-021-01060-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The prevalence of overweight and obesity among children has drastically increased during the last decades and maternal obesity has been demonstrated as one of the ultimate factors. Nutrition-stimulated transgenerational regulation of key metabolic genes is fundamental to the developmental origins of the metabolic syndrome. Fetal nutrition may differently influence female and male offspring. METHODS Mice dam were fed either a control diet or a high-fat diet (HFD) for 6-week prior mating and continued their respective diet during gestation and lactation. At weaning, female and male offspring were fed the HFD until sacrifice. White (WAT) and brown (BAT) adipose tissues were investigated in vivo by nuclear magnetic resonance at two different timepoints in life (midterm and endterm) and tissues were collected at endterm for lipidomic analysis and RNA sequencing. We explored the sex-dependent metabolic adaptation and gene programming changes by maternal HFD in visceral AT (VAT), subcutaneous AT (SAT) and BAT of offspring. RESULTS We show that the triglyceride profile varies between adipose depots, sexes and maternal diet. In female offspring, maternal HFD remodels the triglycerides profile in SAT and BAT, and increases thermogenesis and cell differentiation in BAT, which may prevent metabolic complication later in life. Male offspring exhibit whitening of BAT and hyperplasia in VAT when born from high-fat mothers, with impaired metabolic profile. Maternal HFD differentially programs gene expression in WAT and BAT of female and male offspring. CONCLUSION Maternal HFD modulates metabolic profile in offspring in a sex-dependent manner. A sex- and maternal diet-dependent gene programming exists in VAT, SAT, and BAT which may be key player in the sexual dimorphism in the metabolic adaptation later in life.
Collapse
Affiliation(s)
- Christina Savva
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Marcela González-Granillo
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Byambajav Buyandelger
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sonja Gustafsson
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jianping Liu
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Xidan Li
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Marion Korach-André
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden.
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden.
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
31
|
Magalhaes MS, Potter HG, Ahlback A, Gentek R. Developmental programming of macrophages by early life adversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:213-259. [PMID: 35636928 DOI: 10.1016/bs.ircmb.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages are central elements of all organs, where they have a multitude of physiological and pathological functions. The first macrophages are produced during fetal development, and most adult organs retain populations of fetal-derived macrophages that self-maintain without major input of hematopoietic stem cell-derived monocytes. Their developmental origins make macrophages highly susceptible to environmental perturbations experienced in early life, in particular the fetal period. It is now well recognized that such adverse developmental conditions contribute to a wide range of diseases later in life. This chapter explores the notion that macrophages are key targets of environmental adversities during development, and mediators of their long-term impact on health and disease. We first briefly summarize our current understanding of macrophage ontogeny and their biology in tissues and consider potential mechanisms by which environmental stressors may mediate fetal programming. We then review evidence for programming of macrophages by adversities ranging from maternal immune activation and diet to environmental pollutants and toxins, which have disease relevance for different organ systems. Throughout this chapter, we contemplate appropriate experimental strategies to study macrophage programming. We conclude by discussing how our current knowledge of macrophage programming could be conceptualized, and finally highlight open questions in the field and approaches to address them.
Collapse
Affiliation(s)
- Marlene S Magalhaes
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry G Potter
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Ahlback
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
32
|
Gut microbiota mediates the alleviative effect of polar lipids-enriched milk fat globule membrane on obesity-induced glucose metabolism disorders in peripheral tissues in rat dams. Int J Obes (Lond) 2022; 46:793-801. [PMID: 35091670 DOI: 10.1038/s41366-021-01029-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity during pregnancy and lactation not only increases the incidence of metabolic disorders and gestational diabetes in mothers, but also programs adiposity and related metabolic diseases in offspring. The aim of this study was to investigate the effects of milk polar lipids on gut microbiota and glucose metabolism in high-fat diet (HFD)-fed rat dams. METHODS Sprague Dawley (SD) female rats were fed a HFD for 8 weeks to induce obesity, followed by HFD with or without oral administration of polar lipids-enriched milk fat globule membrane (MFGM-PL) at 400 mg/kg BW during pregnancy and lactation. At the end of lactation, fresh fecal samples of dams were collected, the gut microbiota was assessed, and the insulin-signaling protein expression in peripheral tissues (adipose tissue, liver and skeletal muscle) were measured. RESULTS MFGM-PL supplementation attenuated body weight gain, ameliorated serum lipid profiles and improved insulin sensitivity in obese dams at the end of lactation. 16 S rDNA sequencing revealed that MFGM-PL increased the community richness and diversity of gut microbiota. The composition of gut microbiota was also changed after MFGM-PL supplementation as shown by an increase in the ratio of Bacteroidetes/Firmicutes and the relative abundance of Akkermansia, as well as a decrease in the relative abundance of Ruminococcaceae. The functional prediction of microbial communities by PICRUSt analysis showed that there were 7 KEGG pathways related to carbohydrate metabolism changed after MFGM-PL supplementation to HFD dams, including glycolysis/gluconeogenesis and insulin signaling pathway. Furthermore, MFGM-PL improved insulin signaling in the peripheral tissues including liver, adipose tissue and skeletal muscle. CONCLUSIONS MFGM-PL supplementation during pregnancy and lactation improves the glucose metabolism disorders in HFD-induced obese dams, which may be linked to the regulation of gut microbiota induced by MFGM-PL.
Collapse
|
33
|
Corken A, Thakali KM. Maternal Obesity Programming of Perivascular Adipose Tissue and Associated Immune Cells: An Understudied Area With Few Answers and Many Questions. Front Physiol 2022; 12:798987. [PMID: 35126181 PMCID: PMC8815821 DOI: 10.3389/fphys.2021.798987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
At present, the worldwide prevalence of obesity has become alarmingly high with estimates foreshadowing a continued escalation in the future. Furthermore, there is growing evidence attributing an individual’s predisposition for developing obesity to maternal health during gestation. Currently, 60% of pregnancies in the US are to either overweight or obese mothers which in turn contributes to the persistent rise in obesity rates. While obesity itself is problematic, it conveys an increased risk for several diseases such as diabetes, inflammatory disorders, cancer and cardiovascular disease (CVD). Additionally, as we are learning more about the mechanisms underlying CVD, much attention has been brought to the role of perivascular adipose tissue (PVAT) in maintaining cardiovascular health. PVAT regulates vascular tone and for a significant number of individuals, obesity elicits PVAT disruption and dysregulation of vascular function. Obesity elicits changes in adipocyte and leukocyte populations within PVAT leading to an inflammatory state which promotes vasoconstriction thereby aiding the onset/progression of CVD. Our current understanding of obesity, PVAT and CVD has only been examined at the individual level without consideration for a maternal programming effect. It is unknown if maternal obesity affects the propensity for PVAT remodeling in the offspring, thereby enhancing the obesity/CVD link, and what role PVAT leukocytes play in this process. This perspective will focus on the maternal contribution of the interplay between obesity, PVAT disruption and CVD and will highlight the leukocyte/PVAT interaction as a novel target to stem the tide of the current obesity epidemic and its secondary health consequences.
Collapse
Affiliation(s)
- Adam Corken
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Keshari M. Thakali
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Keshari M. Thakali,
| |
Collapse
|
34
|
Sugino KY, Mandala A, Janssen RC, Gurung S, Trammell M, Day MW, Brush RS, Papin JF, Dyer DW, Agbaga MP, Friedman JE, Castillo-Castrejon M, Jonscher KR, Myers DA. Western diet-induced shifts in the maternal microbiome are associated with altered microRNA expression in baboon placenta and fetal liver. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:945768. [PMID: 36935840 PMCID: PMC10012127 DOI: 10.3389/fcdhc.2022.945768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Maternal consumption of a high-fat, Western-style diet (WD) disrupts the maternal/infant microbiome and contributes to developmental programming of the immune system and nonalcoholic fatty liver disease (NAFLD) in the offspring. Epigenetic changes, including non-coding miRNAs in the fetus and/or placenta may also underlie this risk. We previously showed that obese nonhuman primates fed a WD during pregnancy results in the loss of beneficial maternal gut microbes and dysregulation of cellular metabolism and mitochondrial dysfunction in the fetal liver, leading to a perturbed postnatal immune response with accelerated NAFLD in juvenile offspring. Here, we investigated associations between WD-induced maternal metabolic and microbiome changes, in the absence of obesity, and miRNA and gene expression changes in the placenta and fetal liver. After ~8-11 months of WD feeding, dams were similar in body weight but exhibited mild, systemic inflammation (elevated CRP and neutrophil count) and dyslipidemia (increased triglycerides and cholesterol) compared with dams fed a control diet. The maternal gut microbiome was mainly comprised of Lactobacillales and Clostridiales, with significantly decreased alpha diversity (P = 0.0163) in WD-fed dams but no community-wide differences (P = 0.26). At 0.9 gestation, mRNA expression of IL6 and TNF in maternal WD (mWD) exposed placentas trended higher, while increased triglycerides, expression of pro-inflammatory CCR2, and histological evidence for fibrosis were found in mWD-exposed fetal livers. In the mWD-exposed fetus, hepatic expression levels of miR-204-5p and miR-145-3p were significantly downregulated, whereas in mWD-exposed placentas, miR-182-5p and miR-183-5p were significantly decreased. Notably, miR-1285-3p expression in the liver and miR-183-5p in the placenta were significantly associated with inflammation and lipid synthesis pathway genes, respectively. Blautia and Ruminococcus were significantly associated with miR-122-5p in liver, while Coriobacteriaceae and Prevotellaceae were strongly associated with miR-1285-3p in the placenta; both miRNAs are implicated in pathways mediating postnatal growth and obesity. Our findings demonstrate that mWD shifts the maternal microbiome, lipid metabolism, and inflammation prior to obesity and are associated with epigenetic changes in the placenta and fetal liver. These changes may underlie inflammation, oxidative stress, and fibrosis patterns that drive NAFLD and metabolic disease risk in the next generation.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael W. Day
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Richard S. Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - James F. Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Karen R. Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- CORRESPONDENCE: Karen R. Jonscher,
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
35
|
Hafner H, Mulcahy MC, Carlson Z, Hartley P, Sun H, Westerhoff M, Qi N, Bridges D, Gregg B. Lactational High Fat Diet in Mice Causes Insulin Resistance and NAFLD in Male Offspring Which Is Partially Rescued by Maternal Metformin Treatment. Front Nutr 2021; 8:759690. [PMID: 34977118 PMCID: PMC8714922 DOI: 10.3389/fnut.2021.759690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
Maternal metabolic disease and diet during pregnancy and lactation have important implications for the programming of offspring metabolic disease. In addition, high-fat diets during pregnancy and lactation can predispose the offspring to non-alcoholic fatty liver disease (NAFLD), a rising health threat in the U.S. We developed a model of maternal high-fat feeding exclusively during the lactation period. We previously showed that offspring from dams, given lactational high-fat diet (HFD), are predisposed to obesity, glucose intolerance, and inflammation. In separate experiments, we also showed that lactational metformin treatment can decrease offspring metabolic risk. The purpose of these studies was to understand the programming implications of lactational HFD on offspring metabolic liver disease risk. Dams were fed a 60% lard-based HFD from the day of delivery through the 21-day lactation period. A subset of dams was also given metformin as a co-treatment. Starting at weaning, the offspring were fed normal fat diet until 3 months of age; at which point, a subset was challenged with an additional HFD stressor. Lactational HFD led male offspring to develop hepatic insulin resistance. The post-weaning HFD challenge led male offspring to progress to NAFLD with more severe outcomes in the lactational HFD-challenged offspring. Co-administration of metformin to lactating dams on HFD partially rescued the offspring liver metabolic defects in males. Lactational HFD or post-weaning HFD had no impact on female offspring who maintained a normal insulin sensitivity and liver phenotype. These findings indicate that HFD, during the lactation period, programs the adult offspring to NAFLD risk in a sexually dimorphic manner. In addition, early life intervention with metformin via maternal exposure may prevent some of the liver programming caused by maternal HFD.
Collapse
Affiliation(s)
- Hannah Hafner
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
| | - Molly C. Mulcahy
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Zach Carlson
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
| | - Phillip Hartley
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Haijing Sun
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
| | - Maria Westerhoff
- Department of Pathology, Michigan Medicine, Ann Arbor, MI, United States
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, Michigan Medicine, Ann Arbor, MI, United States
| | - Dave Bridges
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Brigid Gregg
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
36
|
Schoonejans JM, Ozanne SE. Developmental programming by maternal obesity: Lessons from animal models. Diabet Med 2021; 38:e14694. [PMID: 34553414 DOI: 10.1111/dme.14694] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
The obesity epidemic has led to more women entering pregnancy overweight or obese. In addition to adverse short-term outcomes, maternal obesity and/or gestational diabetes predispose offspring to developing obesity, type 2 diabetes and cardiovascular disease in adulthood through developmental programming. Human epidemiological studies, although vital in identifying associations, are often unable to address causality and mechanistic studies can be limited by the lack of accessibility of key metabolic tissues. Furthermore, multi-generational studies take many years to complete. Integration of findings from human studies with those from animal models has therefore been critical in moving forward this field that has been termed the 'Developmental Origins of Health and Disease'. This review summarises the evidence from animal models and highlights how animal models provide valuable insight into the maternal factors responsible for developmental programming, potential critical developmental windows, sexual dimorphism, molecular mechanisms and age-related offspring outcomes throughout life. Moreover, we describe how animal models are vital to explore clinically relevant interventions to prevent adverse offspring outcomes in obese or glucose intolerant pregnancy, such as antioxidant supplementation, exercise and maternal metformin treatment.
Collapse
Affiliation(s)
- Josca Mariëtte Schoonejans
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Susan Elizabeth Ozanne
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Tang Z, Luo T, Huang P, Luo M, Zhu J, Wang X, Lin Q, He Z, Gao P, Liu S. Nuciferine administration in C57BL/6J mice with gestational diabetes mellitus induced by a high-fat diet: the improvement of glycolipid disorders and intestinal dysbacteriosis. Food Funct 2021; 12:11174-11189. [PMID: 34636388 DOI: 10.1039/d1fo02714j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gestational diabetes mellitus (GDM) has become a global health concern as the main result of its contribution to the high risk of adverse pregnancy outcomes for both the mother and fetus. However, there is absence of an ideal and widely acceptable therapy. Nuciferine has previously been shown to exert beneficial effects in various metabolic diseases. This study aimed to investigate the potential therapeutic efficacy of nuciferine on GDM in C57BL/6J mice induced by a high-fat diet (HFD), which has not been reported before. The results showed that nuciferine improved glucose intolerance, reduced lipid accumulation and increased the glycogen content within hepatocytes, and decreased placental lipid and glycogen deposition, thus ameliorating glycolipid disorders in GDM mice. Additionally, nuciferine protected against histological degeneration of metabolism-associated critical organs including the liver, pancreas, and abdominal adipose tissue. Most interestingly, nuciferine could correct intestinal dysbacteriosis in GDM mice, as evidenced by the elevation of probiotic abundances consisting of Akkermansia, Lactobacillus, and Bifidobacterium, which were all negatively correlated with serum and liver triglyceride (TG) and positively associated with hepatic glycogen, and the reduction of conditional pathogen abundances including Escherichia-Shigella and Staphylococcus, and the latter was positively related to serum and liver TG and negatively linked with liver glycogen. Collectively, these findings suggest that nuciferine as a food-borne strategy played important roles in the management of GDM.
Collapse
Affiliation(s)
- Zhuohong Tang
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China. .,Foshan Maternal and Child Health Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Ting Luo
- Nephrology Division, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Peng Huang
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Mi Luo
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Jianghua Zhu
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Xing Wang
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Qingmei Lin
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Zihao He
- Department of Pharmacy, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pingming Gao
- Department of Pharmacy, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
38
|
Zhou P, Guan H, Guo Y, Zhu L, Liu X. Maternal High-Fat Diet Programs Renal Peroxisomes and Activates NLRP3 Inflammasome-Mediated Pyroptosis in the Rat Fetus. J Inflamm Res 2021; 14:5095-5110. [PMID: 34675590 PMCID: PMC8502058 DOI: 10.2147/jir.s329972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Maternal obesity impairs kidney development and function of the offspring and leads to a greater risk of kidney disease in adulthood. The present study aimed to investigate the link between peroxisomes, oxidative stress (OS), and inflammasomes in the fetal kidney of maternal obesity rats and to explore the potential therapeutic effects of the antioxidant pyrroloquinoline quinone (PQQ). METHODS Maternal obesity rats were developed by administration of a high fat diet plus supplementation with PQQ (40 mg/kg body weight) as a potential therapy. Renal histology was observed by Periodic Acid-Schiff staining. The expression profiles of peroxins, fatty acid β-oxidation enzymes, antioxidants, and the regulators of the unfolded protein response (UPR) pathway and NLRP3 inflammasome were analyzed in the kidneys and tubular epithelial cells (TECs) from near-term fetuses (embryonic day 20). RESULTS The present work revealed that: 1) a maternal high fat diet (MHF) led to higher blood pressure in adult offspring; 2) MHF led to downregulation of peroxisome markers PEX3 and 14 in fetal kidneys; 3) the antioxidant SOD2 and catalase were decreased, and oxidative stress marker Ephx2 was increased; 4) MHF-induced activation of the UPR pathway; 5) the KEAP1-NRF2 pathway was activated; 6) activation of the NLRP3 inflammasome led to secretion of pro-inflammation factors; 7) in TECs, the changes in PEXs and NLRP3 are similar to tissues, but UPR and NRF2 pathways showed opposite trends; 8) and the antioxidant PQQ alleviated maternal lipotoxicity by decreasing ROS levels and inhibiting activation of ER stress and inflammasome in fetal kidney. CONCLUSION A maternal high fat diet decreased the number of peroxisomes, subsequently activated OS and inflammasomes, resulting in pyroptosis and apoptosis in fetal kidney. The antioxidant PQQ served a protective role against the effects of lipotoxicity on kidney programming and, thus, is a potential candidate to prevent maternal obesity-induced renal programming.
Collapse
Affiliation(s)
- Pei Zhou
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Hongbo Guan
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Yanyan Guo
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Liangliang Zhu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Xiaomei Liu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| |
Collapse
|
39
|
Bariani MV, Correa F, Rubio APD, Wolfson ML, Schander JA, Cella M, Aisemberg J, Franchi AM. Maternal obesity reverses the resistance to LPS-induced adverse pregnancy outcome and increases female offspring metabolic alterations in cannabinoid receptor 1 knockout mice. J Nutr Biochem 2021; 96:108805. [PMID: 34147601 DOI: 10.1016/j.jnutbio.2021.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Maternal overnutrition negatively impacts the offspring's health leading to an increased risk of developing chronic diseases or metabolic syndrome in adulthood. What we eat affects the endocannabinoid system (eCS) activity, which in turn modulates lipogenesis and fatty acids utilization in hepatic, muscle, and adipose tissues. This study aimed to evaluate the transgenerational effect of maternal obesity on cannabinoid receptor 1 knock-out (CB1 KO) animals in combination with a postnatal obesogenic diet on the development of metabolic disturbances on their offspring. CB1 KO mice were fed a control diet (CD) or a high-fat diet (HFD; 33% more energy from fat) for 3 months. Offspring born to control and obese mothers were also fed with CD or HFD. We observed that pups born to an HFD-fed mother presented higher postnatal weight, lower hepatic fatty acid amide hydrolase activity, and increased blood cholesterol levels when compared to the offspring born to CD-fed mothers. When female mice born to HFD-fed CB1 KO mothers were exposed to an HFD, they gained more weight, presented elevated blood cholesterol levels, and more abdominal adipose tissue accumulation than control-fed adult offspring. The eCS is involved in several reproductive physiological processes. Interestingly, we showed that CB1 KO mice in gestational day 15 presented resistance to LPS-induced deleterious effects on pregnancy outcome, which was overcome when these mice were obese. Our results suggest that an HFD in CB1 receptor-deficient mice contributes to a "nutritional programming" of the offspring resulting in increased susceptibility to metabolic challenges both perinatally and during adulthood.
Collapse
Affiliation(s)
- María Victoria Bariani
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica. Intendente Güiraldes, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Manuel Luis Wolfson
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aylen Schander
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Cella
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Ana María Franchi
- Laboratorio de Fisiología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO-UBA/CONICET). Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
40
|
Kislal S, Jin W, Maesner C, Edlow AG. Mismatch between obesogenic intrauterine environment and low-fat postnatal diet may confer offspring metabolic advantage. Obes Sci Pract 2021; 7:450-461. [PMID: 34401203 PMCID: PMC8346367 DOI: 10.1002/osp4.501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/25/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Mismatch between a depleted intrauterine environment and a substrate-rich postnatal environment confers an increased risk of offspring obesity and metabolic syndrome. Maternal diet-induced obesity (MATOB) is associated with the same outcomes. These experiments tested the hypothesis that a mismatch between a nutrient-rich intrauterine environment and a low-fat postnatal environment would ameliorate offspring metabolic morbidity. METHODS C57BL6/J female mice were fed either a 60% high-fat diet (HFD) or a 10% fat control diet (CD) for 14-week pre-breeding and during pregnancy/lactation. Offspring were weaned to CD. Weight was evaluated weekly; body composition was determined using EchoMRI. Serum fasting lipids and glucose and insulin tolerance tests were performed. Metabolic rate, locomotor, and sleep behavior were evaluated with indirect calorimetry. RESULTS MATOB-exposed/CD-weaned offspring of both sexes had improved glucose tolerance and insulin sensitivity compared to controls. Males had improved fasting lipids. Females had significantly increased weight and body fat percentage in adulthood compared to sex-matched controls. Females also had significantly increased sleep duration and reduced locomotor activity compared to males. CONCLUSIONS Reduced-fat dietary switch following intrauterine and lactational exposure to MATOB was associated with improved glucose handling and lipid profiles in adult offspring, more pronounced in males. A mismatch between a high-fat prenatal and low-fat postnatal environment may confer a metabolic advantage. The amelioration of deleterious metabolic programming by strict offspring adherence to a low-fat diet may have translational potential.
Collapse
Affiliation(s)
- Sezen Kislal
- Vincent Center for Reproductive BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - William Jin
- Vincent Center for Reproductive BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Claire Maesner
- Vincent Center for Reproductive BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Andrea G. Edlow
- Vincent Center for Reproductive BiologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of Obstetrics and GynecologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
41
|
Rodgers A, Sferruzzi-Perri AN. Developmental programming of offspring adipose tissue biology and obesity risk. Int J Obes (Lond) 2021; 45:1170-1192. [PMID: 33758341 PMCID: PMC8159749 DOI: 10.1038/s41366-021-00790-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
Obesity is reaching epidemic proportions and imposes major negative health crises and an economic burden in both high and low income countries. The multifaceted nature of obesity represents a major health challenge, with obesity affecting a variety of different organs and increases the risk of many other noncommunicable diseases, such as type 2 diabetes, fatty liver disease, dementia, cardiovascular diseases, and even cancer. The defining organ of obesity is the adipose tissue, highlighting the need to more comprehensively understand the development and biology of this tissue to understand the pathogenesis of obesity. Adipose tissue is a miscellaneous and highly plastic endocrine organ. It comes in many different sizes and shades and is distributed throughout many different locations in the body. Though its development begins prenatally, quite uniquely, it has the capacity for unlimited growth throughout adulthood. Adipose tissue is also a highly sexually dimorphic tissue, patterning men and women in different ways, which means the risks associated with obesity are also sexually dimorphic. Recent studies show that environmental factors during prenatal and early stages of postnatal development have the capacity to programme the structure and function of adipose tissue, with implications for the development of obesity. This review summarizes the evidence for a role for early environmental factors, such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during gestation in the programming of adipose tissue and obesity in the offspring. We will also discuss the complexity of studying adipose tissue biology and the importance of appreciating nuances in adipose tissue, such as sexual dimorphism and divergent responses to metabolic and endocrine stimuli. Given the rising levels of obesity worldwide, understanding how environmental conditions in early life affects adipose tissue phenotype and the subsequent development of obesity is of absolute importance.
Collapse
Affiliation(s)
- Amanda Rodgers
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK.
| |
Collapse
|
42
|
Decreased Lymphangiogenic Activities and Genes Expression of Cord Blood Lymphatic Endothelial Progenitor Cells (VEGFR3 +/Pod +/CD11b + Cells) in Patient with Preeclampsia. Int J Mol Sci 2021; 22:ijms22084237. [PMID: 33921847 PMCID: PMC8073258 DOI: 10.3390/ijms22084237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
The abnormal development or disruption of the lymphatic vasculature has been implicated in metabolic and hypertensive diseases. Recent evidence suggests that the offspring exposed to preeclampsia (PE) in utero are at higher risk of long-term health problems, such as cardiovascular and metabolic diseases in adulthood, owing to in utero fetal programming. We aimed to investigate lymphangiogenic activities in the lymphatic endothelial progenitor cells (LEPCs) of the offspring of PE. Human umbilical cord blood LEPCs from pregnant women with severe PE (n = 10) and gestationally matched normal pregnancies (n = 10) were purified with anti-vascular endothelial growth factor receptor 3 (VEGFR3)/podoplanin/CD11b microbeads using a magnetic cell sorter device. LEPCs from PE displayed significantly delayed differentiation and reduced formation of lymphatic endothelial cell (LEC) colonies compared with the LEPCs from normal pregnancies. LECs differentiated from PE-derived LEPCs exhibited decreased tube formation, migration, proliferation, adhesion, wound healing, and 3D-sprouting activities as well as increased lymphatic permeability through the disorganization of VE-cadherin junctions, compared with the normal pregnancy-derived LECs. In vivo, LEPCs from PE showed significantly reduced lymphatic vessel formation compared to the LEPCs of the normal pregnancy. Gene expression analysis revealed that compared to the normal pregnancy-derived LECs, the PE-derived LECs showed a significant decrease in the expression of pro-lymphangiogenic genes (GREM1, EPHB3, VEGFA, AMOT, THSD7A, ANGPTL4, SEMA5A, FGF2, and GBX2). Collectively, our findings demonstrate, for the first time, that LEPCs from PE have reduced lymphangiogenic activities in vitro and in vivo and show the decreased expression of pro-lymphangiogenic genes. This study opens a new avenue for investigation of the molecular mechanism of LEPC differentiation and lymphangiogenesis in the offspring of PE and subsequently may impact the treatment of long-term health problems such as cardiovascular and metabolic disorders of offspring with abnormal development of lymphatic vasculature.
Collapse
|
43
|
The dual nature of obesity in metabolic programming: quantity versus quality of adipose tissue. Clin Sci (Lond) 2021; 134:2447-2451. [PMID: 32975284 DOI: 10.1042/cs20201028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
The global prevalence of obesity has been rising at an alarming rate, accompanied by an increase in both childhood and maternal obesity. The concept of metabolic programming is highly topical, and in this context, describes a predisposition of offspring of obese mothers to the development of obesity independent of environmental factors. Research published in this issue of Clinical Science conducted by Litzenburger and colleagues (Clin. Sci. (Lond.) (2020) 134, 921-939) have identified sex-dependent differences in metabolic programming and identify putative signaling pathways involved in the differential phenotype of adipose tissue between males and females. Delineating the distinction between metabolically healthy and unhealthy obesity is a topic of emerging interest, and the precise nature of adipocytes are key to pathogenesis, independent of adipose tissue volume.
Collapse
|
44
|
Saengnipanthkul S, Noh HL, Friedline RH, Suk S, Choi S, Acosta NK, Tran DA, Hu X, Inashima K, Kim AM, Lee KW, Kim JK. Maternal exposure to high-fat diet during pregnancy and lactation predisposes normal weight offspring mice to develop hepatic inflammation and insulin resistance. Physiol Rep 2021; 9:e14811. [PMID: 33769706 PMCID: PMC7995551 DOI: 10.14814/phy2.14811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing evidence shows a potential link between the perinatal nutrient environment and metabolic outcome in offspring. Here, we investigated the effects of maternal feeding of a high-fat diet (HFD) during the perinatal period on hepatic metabolism and inflammation in male offspring mice at weaning and in early adulthood. Female C57BL/6 J mice were fed HFD or normal chow (NC) for 4 weeks before mating and during pregnancy and lactation. The male offspring mice were weaned onto an NC diet, and metabolic and molecular experiments were performed in early adulthood. At postnatal day 21, male offspring mice from HFD-fed dams (Off-HFD) showed significant increases in whole body fat mass and fasting levels of glucose, insulin, and cholesterol compared to male offspring mice from NC-fed dams (Off-NC). The RT-qPCR analysis showed two- to fivefold increases in hepatic inflammatory markers (MCP-1, IL-1β, and F4/80) in Off-HFD mice. Hepatic expression of G6Pase and PEPCK was elevated by fivefold in the Off-HFD mice compared to the Off-NC mice. Hepatic expression of GLUT4, IRS-1, and PDK4, as well as lipid metabolic genes, CD36, SREBP1c, and SCD1 were increased in the Off-HFD mice compared to the Off-NC mice. In contrast, CPT1a mRNA levels were reduced by 60% in the Off-HFD mice. At postnatal day 70, despite comparable body weights to the Off-NC mice, Off-HFD mice developed hepatic inflammation with increased expression of MCP-1, CD68, F4/80, and CD36 compared to the Off-NC mice. Despite normal body weight, Off-HFD mice developed insulin resistance with defects in hepatic insulin action and insulin-stimulated glucose uptake in skeletal muscle and brown fat, and these metabolic effects were associated with hepatic inflammation in Off-HFD mice. Our findings indicate hidden, lasting effects of maternal exposure to HFD during pregnancy and lactation on metabolic homeostasis of normal weight offspring mice.
Collapse
Affiliation(s)
- Suchaorn Saengnipanthkul
- Division of NutritionDepartment of PediatricsFaculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Hye Lim Noh
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Randall H. Friedline
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Sujin Suk
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Stephanie Choi
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Nicholas K. Acosta
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Duy A. Tran
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Xiaodi Hu
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Kunikazu Inashima
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Allison M. Kim
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Ki Won Lee
- Department of Agricultural BiotechnologyCollege of Agricultural and Life SciencesSeoul National UniversitySeoulSouth Korea
| | - Jason K. Kim
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Division of Endocrinology, Metabolism, and DiabetesDepartment of MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Department of Agricultural BiotechnologyCollege of Agricultural and Life SciencesSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
45
|
Yang Y, Kurian J, Schena G, Johnson J, Kubo H, Travers JG, Kang C, Lucchese AM, Eaton DM, Lv M, Li N, Leynes LG, Yu D, Yang F, McKinsey TA, Kishore R, Khan M, Mohsin S, Houser SR. Cardiac Remodeling During Pregnancy With Metabolic Syndrome: Prologue of Pathological Remodeling. Circulation 2021; 143:699-712. [PMID: 33587660 PMCID: PMC7888689 DOI: 10.1161/circulationaha.120.051264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The heart undergoes physiological hypertrophy during pregnancy in healthy individuals. Metabolic syndrome (MetS) is now prevalent in women of child-bearing age and might add risks of adverse cardiovascular events during pregnancy. The present study asks if cardiac remodeling during pregnancy in obese individuals with MetS is abnormal and whether this predisposes them to a higher risk for cardiovascular disorders. METHODS The idea that MetS induces pathological cardiac remodeling during pregnancy was studied in a long-term (15 weeks) Western diet-feeding animal model that recapitulated features of human MetS. Pregnant female mice with Western diet (45% kcal fat)-induced MetS were compared with pregnant and nonpregnant females fed a control diet (10% kcal fat). RESULTS Pregnant mice fed a Western diet had increased heart mass and exhibited key features of pathological hypertrophy, including fibrosis and upregulation of fetal genes associated with pathological hypertrophy. Hearts from pregnant animals with WD-induced MetS had a distinct gene expression profile that could underlie their pathological remodeling. Concurrently, pregnant female mice with MetS showed more severe cardiac hypertrophy and exacerbated cardiac dysfunction when challenged with angiotensin II/phenylephrine infusion after delivery. CONCLUSIONS These results suggest that preexisting MetS could disrupt physiological hypertrophy during pregnancy to produce pathological cardiac remodeling that could predispose the heart to chronic disorders.
Collapse
Affiliation(s)
- Yijun Yang
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Justin Kurian
- Center for Metabolic Disease and Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Giana Schena
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jaslyn Johnson
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hajime Kubo
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Joshua G. Travers
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Chunya Kang
- Medical University of Lublin, Lublin, Poland
| | - Anna Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Deborah M. Eaton
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Maoting Lv
- Second Ultrasound Department, Cangzhou Central Hospital, Hebei, China
| | - Na Li
- Second Department of Obstetrics, Cangzhou Central Hospital, Hebei, China
| | - Lorianna G. Leynes
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, PA, United States
| | - Fengzhen Yang
- Second Department of Obstetrics, Cangzhou Central Hospital, Hebei, China
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Mohsin Khan
- Center for Metabolic Disease and Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sadia Mohsin
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Steven R. Houser
- Independence Blue Cross Cardiovascular Research Center and Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
46
|
Savva C, Helguero LA, González-Granillo M, Couto D, Melo T, Li X, Angelin B, Domingues MR, Kutter C, Korach-André M. Obese mother offspring have hepatic lipidic modulation that contributes to sex-dependent metabolic adaptation later in life. Commun Biol 2021; 4:14. [PMID: 33398027 PMCID: PMC7782679 DOI: 10.1038/s42003-020-01513-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023] Open
Abstract
With the increasing prevalence of obesity in women of reproductive age, there is an urgent need to understand the metabolic impact on the fetus. Sex-related susceptibility to liver diseases has been demonstrated but the underlying mechanism remains unclear. Here we report that maternal obesity impacts lipid metabolism differently in female and male offspring. Males, but not females, gained more weight and had impaired insulin sensitivity when born from obese mothers compared to control. Although lipid mass was similar in the livers of female and male offspring, sex-specific modifications in the composition of fatty acids, triglycerides and phospholipids was observed. These overall changes could be linked to sex-specific regulation of genes controlling metabolic pathways. Our findings revised the current assumption that sex-dependent susceptibility to metabolic disorders is caused by sex-specific postnatal regulation and instead we provide molecular evidence supporting in utero metabolic adaptations in the offspring of obese mothers.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Marcela González-Granillo
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Daniela Couto
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Xidan Li
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bo Angelin
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
47
|
Akhaphong B, Gregg B, Kumusoglu D, Jo S, Singer K, Scheys J, DelProposto J, Lumeng C, Bernal-Mizrachi E, Alejandro EU. Maternal High-Fat Diet During Pre-Conception and Gestation Predisposes Adult Female Offspring to Metabolic Dysfunction in Mice. Front Endocrinol (Lausanne) 2021; 12:780300. [PMID: 35111136 PMCID: PMC8801938 DOI: 10.3389/fendo.2021.780300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/24/2021] [Indexed: 01/31/2023] Open
Abstract
The risk of obesity in adulthood is subject to programming in the womb. Maternal obesity contributes to programming of obesity and metabolic disease risk in the adult offspring. With the increasing prevalence of obesity in women of reproductive age there is a need to understand the ramifications of maternal high-fat diet (HFD) during pregnancy on offspring's metabolic heath trajectory. In the present study, we determined the long-term metabolic outcomes on adult male and female offspring of dams fed with HFD during pregnancy. C57BL/6J dams were fed either Ctrl or 60% Kcal HFD for 4 weeks before and throughout pregnancy, and we tested glucose homeostasis in the adult offspring. Both Ctrl and HFD-dams displayed increased weight during pregnancy, but HFD-dams gained more weight than Ctrl-dams. Litter size and offspring birthweight were not different between HFD-dams or Ctrl-dams. A significant reduction in random blood glucose was evident in newborns from HFD-dams compared to Ctrl-dams. Islet morphology and alpha-cell fraction were normal but a reduction in beta-cell fraction was observed in newborns from HFD-dams compared to Ctrl-dams. During adulthood, male offspring of HFD-dams displayed comparable glucose tolerance under normal chow. Male offspring re-challenged with HFD displayed glucose intolerance transiently. Adult female offspring of HFD-dams demonstrated normal glucose tolerance but displayed increased insulin resistance relative to controls under normal chow diet. Moreover, adult female offspring of HFD-dams displayed increased insulin secretion in response to high-glucose treatment, but beta-cell mass were comparable between groups. Together, these data show that maternal HFD at pre-conception and during gestation predisposes the female offspring to insulin resistance in adulthood.
Collapse
Affiliation(s)
- Brian Akhaphong
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Brigid Gregg
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Doga Kumusoglu
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
| | - Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Kanakadurga Singer
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Joshua Scheys
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
| | - Jennifer DelProposto
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carey Lumeng
- Department of Pediatrics, Division of Diabetes, Endocrinology, and Metabolism, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
- Diabetes, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Miami VA Healthcare System and Division Endocrinology, Metabolism and Diabetes, University of Miami, Miami, FL, United States
- *Correspondence: Ernesto Bernal-Mizrachi, ; Emilyn U. Alejandro,
| | - Emilyn U. Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN, United States
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, Ann Arbor, United States
- *Correspondence: Ernesto Bernal-Mizrachi, ; Emilyn U. Alejandro,
| |
Collapse
|
48
|
Camacho-Morales A, Caba M, García-Juárez M, Caba-Flores MD, Viveros-Contreras R, Martínez-Valenzuela C. Breastfeeding Contributes to Physiological Immune Programming in the Newborn. Front Pediatr 2021; 9:744104. [PMID: 34746058 PMCID: PMC8567139 DOI: 10.3389/fped.2021.744104] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023] Open
Abstract
The first 1,000 days in the life of a human being are a vulnerable stage where early stimuli may program adverse health outcomes in future life. Proper maternal nutrition before and during pregnancy modulates the development of the fetus, a physiological process known as fetal programming. Defective programming promotes non-communicable chronic diseases in the newborn which might be prevented by postnatal interventions such as breastfeeding. Breast milk provides distinct bioactive molecules that contribute to immune maturation, organ development, and healthy microbial gut colonization, and also secures a proper immunological response that protects against infection and inflammation in the newborn. The gut microbiome provides the most critical immune microbial stimulation in the newborn in early life, allowing a well-trained immune system and efficient metabolic settings in healthy subjects. Conversely, negative fetal programming by exposing mothers to diets rich in fat and sugar has profound effects on breast milk composition and alters the immune profiles in the newborn. At this new stage, newborns become vulnerable to immune compromise, favoring susceptibility to defective microbial gut colonization and immune response. This review will focus on the importance of breastfeeding and its immunological biocomponents that allow physiological immune programming in the newborn. We will highlight the importance of immunological settings by breastfeeding, allowing proper microbial gut colonization in the newborn as a window of opportunity to secure effective immunological response.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Martín García-Juárez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | | | | |
Collapse
|
49
|
High Maternal Omega-3 Supplementation Dysregulates Body Weight and Leptin in Newborn Male and Female Rats: Implications for Hypothalamic Developmental Programming. Nutrients 2020; 13:nu13010089. [PMID: 33396616 PMCID: PMC7823471 DOI: 10.3390/nu13010089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal diet is critical for offspring development and long-term health. Here we investigated the effects of a poor maternal diet pre-conception and during pregnancy on metabolic outcomes and the developing hypothalamus in male and female offspring at birth. We hypothesised that offspring born to dams fed a diet high in fat and sugar (HFSD) peri-pregnancy will have disrupted metabolic outcomes. We also determined if these HFSD-related effects could be reversed by a shift to a healthier diet post-conception, in particular to a diet high in omega-3 polyunsaturated fatty acids (ω3 PUFAs), since ω3 PUFAs are considered essential for normal neurodevelopment. Unexpectedly, our data show that there are minimal negative effects of maternal HFSD on newborn pups. On the other hand, consumption of an ω3-replete diet during pregnancy altered several developmental parameters. As such, pups born to high-ω3-fed dams weighed less for their length, had reduced circulating leptin, and also displayed sex-specific disruption in the expression of hypothalamic neuropeptides. Collectively, our study shows that maternal intake of a diet rich in ω3 PUFAs during pregnancy may be detrimental for some metabolic developmental outcomes in the offspring. These data indicate the importance of a balanced dietary intake in pregnancy and highlight the need for further research into the impact of maternal ω3 intake on offspring development and long-term health.
Collapse
|
50
|
Shrestha N, Ezechukwu HC, Holland OJ, Hryciw DH. Developmental programming of peripheral diseases in offspring exposed to maternal obesity during pregnancy. Am J Physiol Regul Integr Comp Physiol 2020; 319:R507-R516. [PMID: 32877239 DOI: 10.1152/ajpregu.00214.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is an increasing global health epidemic that affects all ages, including women of reproductive age. During pregnancy, maternal obesity is associated with adverse pregnancy outcomes that lead to complications for the mother. In addition, maternal obesity can increase the risk of poor perinatal outcomes for the infant due to altered development. Recent research has investigated the effects of maternal obesity on peripheral organ development and health in later life in offspring. In this review, we have summarized studies that investigated the programming effects of maternal obesity before and during pregnancy on metabolic, cardiovascular, immune, and microbiome perturbations in offspring. Epidemiological studies investigating the effects of maternal obesity on offspring development can be complex due to other copathologies and genetic diversity. Animal studies have provided some insights into the specific mechanisms and pathways involved in programming peripheral disease risk. The effects of maternal obesity during pregnancy on offspring development are often sex specific, with sex-specific changes in placental transport and function suggestive that this organ is likely to play a central role. We believe that this review will assist in facilitating future investigations regarding the underlying mechanisms that link maternal obesity and offspring disease risk in peripheral organs.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Henry C Ezechukwu
- Department of Medical Biochemistry, EKO University of Medicine and Health Science, Ijanikin, Nigeria
| | - Olivia J Holland
- School of Medical Science, Griffith University, Southport, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Deanne H Hryciw
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland, Australia.,Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|