1
|
Berrio Sanchez JP, Wilzopolski J, Hohlbaum K, Kalliokoski O. The threshold for intracranial self-stimulation does not increase in rats exposed to chronic unpredictable stress - A systematic review and meta-analysis. Behav Brain Res 2025; 484:115483. [PMID: 39984128 DOI: 10.1016/j.bbr.2025.115483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/10/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
The chronic unpredictable stress model is a rodent model of stress-induced anhedonia. The sucrose preference test, often used to validate it, is unreliable. Intracranial self-stimulation offers an alternative and is often cited as supporting evidence of the model's validity. Our aim was to assess whether an increased self-stimulation threshold is found after stress and if such a change correlates with decreases in sweet consumption. We searched PubMed, Embase (ovid), and Web of Science for studies in rats exposed to chronic unpredictable stress that employed intracranial self-stimulation. Thresholds for stressed and control animals were pooled from 11 studies that collectively reported on 23 different experiments. Over 50 % of the data was contributed by one research group, so a three-level meta-analytical random effects model was fit to account for methodological differences between different networks of researchers. After this adjustment, we did not find that the self-stimulation thresholds were increased in stressed rats. Pioneering experiments with positive results failed to be replicated by others, although no specific factor could be pointed to as a likely explanation. What is more, the available evidence suggests a lack of connection between sweet preference and self-stimulation, although this relationship has been seldom investigated. No study reported correlation coefficients. Methods known to mitigate biases were frequently absent, as was a transparent report of crucial study details. Our findings challenge the claim made in support of the validity of the model. Further efforts would be well-invested in assessing how reliably other tests of anhedonia have found the effects of the chronic unpredictable stress model.
Collapse
Affiliation(s)
- Jenny Paola Berrio Sanchez
- Department of Experimental Medicine. Section of Research and Education. Faculty of Health and Medical sciences. University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| | - Jenny Wilzopolski
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin 10589, Germany
| | - Katharina Hohlbaum
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin 10589, Germany
| | - Otto Kalliokoski
- Department of Experimental Medicine. Section of Research and Education. Faculty of Health and Medical sciences. University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
2
|
Kilic A, Ipek BE, Tatonyan S, Kilic K, Demirci H, Atalar F, Ustunova S, Dariyerli N. Alamandine enhanced spatial memory in rats by reducing neuroinflammation and altering BDNF levels in the hippocampus and prefrontal cortex. Sci Rep 2025; 15:12205. [PMID: 40204820 PMCID: PMC11982245 DOI: 10.1038/s41598-025-95683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Our study aims to determine the effects of alamandine, the newest component of the renin-angiotensin system, on cognitive functions, neuroinflammation, and oxidative stress in the pathophysiology of depression. 35 male Sprague dawley rats, three months old, weighing between 300 and 350 g, were used. The chronic, unpredictable mild stress model of depression was performed. Experimental animals were divided into five groups: control (C), depression (D), alamandine (50 µg/kg, ip) (D + ALA), A779 (300 µg/kg, ip) (D + A779), and both alamandine and A779 treatment groups (D + ALA + A779). After confirming the development of depression through behavioral tests, the animals' learning and memory performances were measured using the Morris water maze test. At the end of the experiment, the animals' prefrontal cortex, hippocampus, and blood samples were isolated for biochemical studies and gene expression analyses. The sucrose preference, open field, elevated plus maze, tail suspension, and forced swimming tests were performed to determine the animals' anxiety levels. There was a significant increase in anxiety-like behaviors in the D group and the A779-treated group, while alamandine exhibited an anxiolytic effect. Moreover, improvements in cognitive skills observed in the Morris water maze test were paralleled by molecular changes, including an increase in BDNF protein levels and NMDA receptor expression and a decrease in GABA levels. In addition, the levels of TNF-α, IL-1β, IL-6, and oxidative stress markers were increased in the depression groups while significantly decreased with alamandine treatment. It was concluded that alamandine has an anxiolytic effect and facilitates spatial memory by reducing neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Aysu Kilic
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Fatih, Istanbul, Turkey.
| | - Betul Esra Ipek
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Suzin Tatonyan
- Department of Immunology, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Rare Diseases Research Laboratory, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Kubra Kilic
- School of Medicine, Istanbul University, Istanbul, Turkey
| | - Huri Demirci
- Department of Medical Biochemistry, School of Medicine, Biruni University, Istanbul, Turkey
| | - Fatmahan Atalar
- Department of Rare Diseases, Istanbul University, Child Health Institute, Istanbul, Turkey
| | - Savas Ustunova
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Nuran Dariyerli
- Department of Physiology, School of Medicine, Istanbul University - Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Soto C, Orihuela L, Apostol G, Vivar C. Running Reverses Chronic Stress-Induced Changes in Serotonergic Modulation of Hippocampal Granule Cells and Altered Behavioural Responses. Eur J Neurosci 2025; 61:e70084. [PMID: 40165404 PMCID: PMC11959172 DOI: 10.1111/ejn.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Chronic stress increases susceptibility to anxiety and depression disorders, recurrent and common psychiatric conditions. Current antidepressant medications have varying degrees of efficacy and often have multiple side effects limiting treatment adherence. Physical exercise has beneficial effects on stress-related mental disorders. However, the underlying mechanisms are unclear. Dentate gyrus granule cells (GCs) excitability may mediate stress resilience. Here, we expose young adult C57Bl6 mice to chronic restraint stress (CRS) for 14 days followed by 30 days of running treatment. Behavioural evaluation before and after treatment showed that the behavioural alterations elicited by CRS were mitigated by running. Next, we evaluated serotonergic modulation of GC excitability, as a potential mechanism underlying running-induced stress resilience. Electrophysiological recordings indicate that CRS alters serotonergic modulation of GC excitability. Utilising (S)-WAY 100135 and Tropisetron, antagonists of 5-HT1A and 5-HT3 receptors respectively, we show that running recovers 5-HT1A receptor activity lost by CRS. Additionally, running promotes the indirect modulation of GCs through 5-HT3 receptor activation. Thus, 5-HT1A and 5-HT3 receptors may be potential targets for the treatment of stress-related psychiatric disorders.
Collapse
MESH Headings
- Animals
- Stress, Psychological/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Running/physiology
- Neurons/metabolism
- Neurons/drug effects
- Neurons/physiology
- Hippocampus/metabolism
- Hippocampus/drug effects
- Restraint, Physical
- Receptor, Serotonin, 5-HT1A/metabolism
- Behavior, Animal/physiology
- Behavior, Animal/drug effects
- Serotonin/metabolism
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Physical Conditioning, Animal/physiology
- Receptors, Serotonin, 5-HT3/metabolism
Collapse
Affiliation(s)
- Carmen Soto
- Laboratory of Neurogenesis and Neuroplasticity. Department of Physiology, Biophysics and NeuroscienceCentro de Investigacion y de Estudios Avanzados del Instituto Politécnico NacionalMexico CityMexico
| | - Lazaro P. Orihuela
- Laboratory of Neurogenesis and Neuroplasticity. Department of Physiology, Biophysics and NeuroscienceCentro de Investigacion y de Estudios Avanzados del Instituto Politécnico NacionalMexico CityMexico
| | - Grego Apostol
- Laboratory of Neurogenesis and Neuroplasticity. Department of Physiology, Biophysics and NeuroscienceCentro de Investigacion y de Estudios Avanzados del Instituto Politécnico NacionalMexico CityMexico
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity. Department of Physiology, Biophysics and NeuroscienceCentro de Investigacion y de Estudios Avanzados del Instituto Politécnico NacionalMexico CityMexico
| |
Collapse
|
4
|
Nisha, Paramanik V. Neuroprotective Roles of Daidzein Through Extracellular Signal-Regulated Kinases Dependent Pathway In Chronic Unpredictable Mild Stress Mouse Model. Mol Neurobiol 2025; 62:4899-4921. [PMID: 39495229 DOI: 10.1007/s12035-024-04567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Depression is a stress-related neuropsychiatric disorder causing behavioural, biochemical, molecular dysfunctions and cognitive impairments. Previous studies suggested connection between neuropsychiatric diseases like depression with estrogen and estrogen receptors (ER). Daidzein is a phytoestrogen that functions as mammalian estrogen and regulates gene expressions through extracellular signal-regulated kinases (ERKs) dependent pathway by activating ERβ. ERβ modulates stress responses, physiological processes by activating protein kinases and plays a significant role in various neurological diseases like depression. However, significant roles of daidzein in depression involving ERK1/2, pERK1/2, and mTOR still unknown. Herein, we examined neuroprotective role of daidzein in chronic unpredictable mild stress (CUMS) mouse model. CUMS model was prepared, and placed in six groups namely, control, CUMS, CUMS vehicle, CUMS DZ (Daidzein 1 mg/kgbw, orally), CUMS PHTPP (ERβ blocker, 0.3 mg/kgbw, i..p.) and CUMS Untreated. Supplementation of daidzein to CUMS mice exhibits decrease depressive and anxiety-like behaviour, improved motor coordination and memory. Further, immunofluorescence results showed daidzein improved ERK1/2, pERK1/2 and mTOR expressions in the cortex, hippocampus and medulla of stressed mice. SOD, catalase and acetylcholinesterase levels were also improved. Blocking of ERβ with PHTPP stressed mice showed deficits in behaviour, low expression of ERK1/2, pERK1/2 and mTOR, and no significant changes in SOD, catalase and acetylcholinesterase level. Collectively, this study suggests that daidzein may ameliorate depressive and anxiety-like behaviour through ERK downregulating pathway by activating ERβ through ERK1/2, pERK1/2 and mTOR. Such study may be useful to understand daidzein dependent neuroprotection through ERβ in depression.
Collapse
Affiliation(s)
- Nisha
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484887, MP, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484887, MP, India.
| |
Collapse
|
5
|
Pietrantonio AF, Urian RA, Hardy DB, Allman BL, Willmore KE. Hyperactivity in male and female mice manifests differently following early, acute prenatal alcohol exposure and mild juvenile stress. Front Behav Neurosci 2025; 19:1501937. [PMID: 40170739 PMCID: PMC11958967 DOI: 10.3389/fnbeh.2025.1501937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Chronic prenatal alcohol exposure (PAE) and severe juvenile stress independently contribute to hyperactive and depressive behavioral phenotypes, with their combination exacerbating these effects. However, while chronic PAE and traumatic juvenile stress are well-studied, little is known about the impact of early, acute PAE and mild juvenile stress on hyperactivity and depression. This knowledge gap is clinically relevant, as these milder early-life insults are common in Western societies. Here, we provide the first investigation into the effects of early, acute PAE and juvenile sub-chronic, unpredictable, mild stress (SUMS)-both independently and in combination-on hyperactivity and depressive-like behaviors in mice throughout the lifespan. Methods We assessed hyperactivity through movement-related measures (i.e., distance traveled, thigmotaxis, and rearing), whereas depressive-like behaviors were evaluated using the u-shaped two-choice field and forced swim tests. Behavioural testing was performed on equivalent numbers of male and female offspring and repeated at juvenile, adolescent, and adult timepoints to enable assessment of sex and age effects. Results Neither early, acute PAE, juvenile SUMS, nor their combination induced depressive-like behaviors at any age; findings in contrast to the more severe chronic PAE and stress insults used in previous studies. However, these milder early-life insults did result in various hyperactivity phenotypes in both the male and female offspring. For example, juvenile SUMS had the strongest impact on hyperactive behaviors across both sexes, but only the adolescent females exhibited increased emotionality-associated activity. Moreover, early, acute PAE-both alone and in combination with juvenile SUMS significantly increased movement during adolescence and adulthood exclusively in male offspring. Discussion Thus, our collective findings not only indicate that early, acute PAE and juvenile SUMS influence hyperactivity in a sex- and age-dependent manner, but also highlight that their influence on hyperactive and depressive phenotypes do not simply mirror those of the more severe early-life insults. Given the potential prevalence of early, acute alcohol exposure and juvenile stress in Western society, further research is warranted to fully understand their long-term behavioral consequences.
Collapse
Affiliation(s)
- Amy F. Pietrantonio
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Raluca A. Urian
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
| | - Brian L. Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
| | - Katherine E. Willmore
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
| |
Collapse
|
6
|
Yadav S, Yadav A, Mishra RK. Chronic unpredictable stress exposure disrupts testicular function by modulating germ cell-junctional dynamics and Nrf2/HO-1/IKKβ/NF-κB pathway. Reprod Toxicol 2025; 132:108845. [PMID: 39884400 DOI: 10.1016/j.reprotox.2025.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The unpredictable nature of stress complicates understanding its relationship with male infertility. In this study, we investigated testicular germ cell and junctional dynamics in male mice following exposure to chronic unpredictable stress (CUS). Adult Parkes male mice were exposed to CUS for 35 days (one complete spermatogenic cycle), with a random stressor (restraint stress, water deprivation, food deprivation, light flashing, wet bedding, cage shaking, or cage tilting) applied once per day in an intermittent and unpredictable manner to avoid repeating the same stimulus on consecutive days. CUS exposure caused behavioral alterations in mice, as observed through the forced swim test and the tail suspension test. CUS inhibited testosterone biosynthesis by decreasing steroidogenic markers (SF-1, StAR, 3β-HSD, and 17β-HSD). It also resulted in altered oxido-inflammatory and apoptotic markers, including increased LPO, Caspase-3, IKKβ, and NF-κB, along with decreased Nrf2, HO-1, SOD, and catalase in the testis. CUS exposure reduced 1 C and 4 C germ cell populations and decreased germ cell ratios (1 C:2 C, 4 C:2 C, and 4 C:S-phase), impairing sperm development. CUS disrupted meiosis initiation, chromosomal synapsis, and germ cell maintenance by reducing Stra8, SYCP3, and Piwil1 expression in the testis. It also adversely affected blood-testis barrier markers, such as ZO-1 and connexin43. These changes led to altered testicular histomorphology, reduced daily sperm production, and disrupted germ cell dynamics. The findings suggest that CUS inhibits steroidogenesis and perturbs the Nrf2/HO-1/IKKβ/NF-κB oxido-inflammatory pathway. This leads to disrupted germ cell dynamics, compromised blood-testis barrier integrity, altered histomorphology, and reduced sperm production, collectively resulting in testicular dysfunction.
Collapse
Affiliation(s)
- Shubhanshu Yadav
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anupam Yadav
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Raghav Kumar Mishra
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
7
|
Tiwari S, Paramanik V. Lactobacillus fermentum ATCC 9338 Supplementation Prevents Depressive-Like Behaviors Through Glucocorticoid Receptor and N-Methyl-D-aspartate2b in Chronic Unpredictable Mild Stress Mouse Model. Mol Neurobiol 2025:10.1007/s12035-025-04738-3. [PMID: 39956887 DOI: 10.1007/s12035-025-04738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Depression is a long-term, related to stress neuropsychiatric disorder, leading to psychological health issues including worthlessness, anhedonia, sleep and appetite disturbances, dysregulated HPA axis, neuronal cell death, and alterations in the gut microbiota (GM). Dysregulated HPA axis increases level of glucocorticoids that induce proinflammatory response with activation of abnormal kynurenine pathway via metabolizing indoleamine-2,3-dioxygenase (IDO). Kynurenine pathway leads to excitotoxicity of N-methyl-D-aspartate (NMDA) receptor responsible for neuronal cell death. Further, probiotics supplementation gained attention from researchers and clinicians to treat neuropsychiatric diseases. GM alteration remains a key reason for depression; however, there is limited information about the role of probiotics on depression involving glucocorticoid receptor and NMDA excitotoxicity through IDO. Chronic unpredictable mild stress (CUMS) model was prepared to check the role of Lactobacillus fermentum ATCC 9338 (LF) and 1-methyl-D-tryptophan (1-MT) in depression. Herein, mice were placed into experimental groups: control, CUMS stressed, CUMS vehicle, CUMS LF, CUMS 1-MT, and CUMS UT (untreated). Results showed that peroral administration of 1 × 108 CFU/day/mouse LF and intraperitoneal dose of 1-MT (15 mg/kg BW/day) alleviate depressive-like behavior and improve motor coordination and walking patterns. Mice supplemented with LF and 1-MT exhibited a decreased expression of GR and NMDAR2b in the cortex, hippocampus, and medulla. Acetylcholinesterase, SOD, and CAT activities were improved in CUMS mice with supplementation of LF and 1-MT. The GM abundance in LF mice was similar to that in control mice. Such study suggests the roles of LF and 1-MT in depression and oxidative stress, and helpful to understand their therapeutic potential through the HPA axis and IDO.
Collapse
Affiliation(s)
- Sneha Tiwari
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484 887, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484 887, India.
| |
Collapse
|
8
|
Dagher M, Cahill CM, Andrews AM. Safety in treatment: Classical pharmacotherapeutics and new avenues for addressing maternal depression and anxiety during pregnancy. Pharmacol Rev 2025; 77:100046. [PMID: 40056793 DOI: 10.1016/j.pharmr.2025.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025] Open
Abstract
We aimed to review clinical research on the safety profiles of antidepressant drugs and associations with maternal depression and neonatal outcomes. We focused on neuroendocrine changes during pregnancy and their effects on antidepressant pharmacokinetics. Pregnancy-induced alterations in drug disposition and metabolism impacting mothers and their fetuses are discussed. We considered evidence for the risks of antidepressant use during pregnancy. Teratogenicity associated with ongoing treatment, new prescriptions during pregnancy, or pausing medication while pregnant was examined. The Food and Drug Administration advises caution regarding prenatal exposure to most drugs, including antidepressants, largely owing to a dearth of safety studies caused by the common exclusion of pregnant individuals in clinical trials. We contrasted findings on antidepressant use with the lack of treatment where detrimental effects to mothers and children are well researched. Overall, drug classes such as selective serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors appear to have limited adverse effects on fetal health and child development. In the face of an increasing prevalence of major mood and anxiety disorders, we assert that individuals should be counseled before and during pregnancy about the risks and benefits of antidepressant treatment given that withholding treatment has possible negative outcomes. Moreover, newer therapeutics, such as ketamine and κ-opioid receptor antagonists, warrant further investigation for use during pregnancy. SIGNIFICANCE STATEMENT: The safety of antidepressant use during pregnancy remains controversial owing to an incomplete understanding of how drug exposure affects fetal development, brain maturation, and behavior in offspring. This leaves pregnant people especially vulnerable, as pregnancy can be a highly stressful experience for many individuals, with stress being the biggest known risk factor for developing a mood or anxiety disorder. This review focuses on perinatal pharmacotherapy for treating mood and anxiety disorders, highlighting the current knowledge and gaps in our understanding of consequences of treatment.
Collapse
Affiliation(s)
- Merel Dagher
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California.
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, California
| | - Anne M Andrews
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California; Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
9
|
Siemsen BM, Franco D, Lobo MK. Corticostriatal contributions to dysregulated motivated behaviors in stress, depression, and substance use disorders. Neurosci Res 2025; 211:37-48. [PMID: 36565858 DOI: 10.1016/j.neures.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Coordinated network activity, particularly in circuits arising from the prefrontal cortex innervating the ventral striatum, is crucial for normal processing of reward-related information which is perturbed in several psychiatric disorders characterized by dysregulated reward-related behaviors. Stress-induced depression and substance use disorders (SUDs) both share this common underlying pathology, manifested as deficits in perceived reward in depression, and increased attribution of positive valence to drug-predictive stimuli and dysfunctional cognition in SUDs. Here we review preclinical and clinical data that support dysregulation of motivated and reward-related behaviors as a core phenotype shared between these two disorders. We posit that altered processing of reward-related stimuli arises from dysregulated control of subcortical circuits by upstream regions implicated in executive control. Although multiple circuits are directly involved in reward processing, here we focus specifically on the role of corticostriatal circuit dysregulation. Moreover, we highlight the growing body of evidence indicating that such abnormalities may be due to heightened neuroimmune signaling by microglia, and that targeting the neuroimmune system may be a viable approach to treating this shared symptom.
Collapse
Affiliation(s)
| | - Daniela Franco
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Demin KA, Kolesnikova TO, Galstyan DS, Krotova NA, Ilyin NP, Derzhavina KA, Seredinskaya M, Nerush M, Pushkareva SA, Masharsky A, de Abreu MS, Kalueff AV. The Utility of Prolonged Chronic Unpredictable Stress to Study the Effects of Chronic Fluoxetine, Eicosapentaenoic Acid, and Lipopolysaccharide on Anxiety-Like Behavior and Hippocampal Transcriptomic Responses in Male Rats. J Neurosci Res 2025; 103:e70025. [PMID: 39907099 DOI: 10.1002/jnr.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/05/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Chronic stress is a common trigger of multiple neuropsychiatric illnesses. Animal models are widely used to study stress-induced brain disorders and their interplay with neuroinflammation and other neuroimmune processes. Here, we apply the prolonged 12-week chronic unpredictable stress (PCUS) model to examine rat behavioral and hippocampal transcriptomic responses to stress and to chronic 4-week treatment with a classical antidepressant fluoxetine, an anti-inflammatory agent eicosapentaenoic acid (EPA), a pro-inflammatory agent lipopolysaccharide and their combinations. Overall, PCUS evoked anxiety-like behavioral phenotype in rats, corrected by chronic fluoxetine (alone or combined with other drugs), and EPA. PCUS also evoked pronounced transcriptomic responses in rat hippocampi, involving > 200 differentially expressed genes. While pharmacological manipulations did not affect hippocampal gene expression markedly, Gpr6, Drd2 and Adora2a were downregulated in stressed rats treated with fluoxetine, EPA and fluoxetine + EPA, suggesting their respective protein products (G protein-coupled receptor 6, dopamine D2 receptor and adenosine A2A receptor) as potential evolutionarily conserved targets under chronic stress. Overall, these findings support the validity of rat PCUS paradigm as a useful model to study stress-related anxiety pathogenesis, and call for further research probing how various conventional and novel drugs may (co)modulate behavioral and neurotranscriptomic biomarkers of chronic stress.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neuroscience Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Natalia A Krotova
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Maria Seredinskaya
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Maria Nerush
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Sofia A Pushkareva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey Masharsky
- Core Facility Centre for Molecular and Cell Technologies, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Western Caspian University, Baku, Azerbaijan
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
11
|
Buesing D, Fourman S, Ulrich-Lai YM. Time-limited access to palatable food reveals differential effects of psychological stress on homeostatic vs. hedonic feeding behavior in male rats. Appetite 2025; 206:107791. [PMID: 39608722 PMCID: PMC11789920 DOI: 10.1016/j.appet.2024.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Psychological stress has complex effects on eating behavior, appearing to reduce homeostatically regulated feeding, while increasing hedonically motivated feeding. The present work tests this idea using two feeding paradigms that offer a highly palatable food on a time-limited basis, together with continual access to a low palatability food. This approach provides a natural separation between periods of eating that are primarily homeostatic vs. hedonically regulated. First, the impact of acute stress exposure on feeding behavior was tested using an acute "meal-dessert" paradigm. When fasted adult male rats were given a recent stressor of moderate intensity (restraint), refeeding with a chow-meal was reduced, without affecting chocolate-dessert intake, thereby increasing the proportion of calories derived from chocolate. Next, the effect of chronic moderate stress was tested using a "binge" eating paradigm. Chow-fed rats were given unexpected (3d per week) vs. expected (7d per week) brief access to a highly palatable high-fat diet (HFD), and feeding behavior was compared to control groups that were maintained with continuous access to only chow or only HFD. Chronic stress reduced total caloric intake in all groups, including binge-like HFD intake. Binge-like HFD intake caused metabolic dysfunction (increased adiposity and impaired glucose homeostasis) to an extent beyond that predicted by total caloric intake or body weight gain. Finally, binge-like HFD intake shifted stress coping behavior from an active to a passive phenotype, particularly in rats receiving concurrent chronic stress, suggesting the possibility of increased risk for stress-related disorders, like depression, in individuals who binge eat during stress.
Collapse
Affiliation(s)
- Dana Buesing
- Department of Pharmacology, Physiology, and Neurobiology, College of Medicine, University of Cincinnati, OH, USA
| | - Sarah Fourman
- Department of Pharmacology, Physiology, and Neurobiology, College of Medicine, University of Cincinnati, OH, USA
| | - Yvonne M Ulrich-Lai
- Department of Pharmacology, Physiology, and Neurobiology, College of Medicine, University of Cincinnati, OH, USA.
| |
Collapse
|
12
|
Sarapultsev A, Komelkova M, Lookin O, Khatsko S, Gusev E, Trofimov A, Tokay T, Hu D. Rat Models in Post-Traumatic Stress Disorder Research: Strengths, Limitations, and Implications for Translational Studies. PATHOPHYSIOLOGY 2024; 31:709-760. [PMID: 39728686 DOI: 10.3390/pathophysiology31040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a multifaceted psychiatric disorder triggered by traumatic events, leading to prolonged psychological distress and varied symptoms. Rat models have been extensively used to explore the biological, behavioral, and neurochemical underpinnings of PTSD. This review critically examines the strengths and limitations of commonly used rat models, such as single prolonged stress (SPS), stress-re-stress (S-R), and predator-based paradigms, in replicating human PTSD pathology. While these models provide valuable insights into neuroendocrine responses, genetic predispositions, and potential therapeutic targets, they face challenges in capturing the full complexity of PTSD, particularly in terms of ethological relevance and translational validity. We assess the degree to which these models mimic the neurobiological and behavioral aspects of human PTSD, highlighting areas where they succeed and where they fall short. This review also discusses future directions in refining these models to improve their utility for translational research, aiming to bridge the gap between preclinical findings and clinical applications.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, 620049 Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76 Lenin Prospekt, 454080 Chelyabinsk, Russia
| | - Oleg Lookin
- National Scientific Medical Center, Astana 010000, Kazakhstan
| | - Sergey Khatsko
- Anatomical and Physiological Experimental Laboratory, Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, 48 Kuybysheva Str., 620026 Ekaterinburg, Russia
| | - Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, 620049 Ekaterinburg, Russia
| | - Alexander Trofimov
- Biology Department, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan
| | - Tursonjan Tokay
- Biology Department, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Key Laboratory of Biological Targeted Therapy, China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
13
|
Sharma M, Rana S, Aggarwal S, Ahsan AU, Budhwar M, Mehra S, Sahoo SC, Chopra M. Efficacy of Nigella sativa seed oil against psychophysical stress induced irritable bowel syndrome and anxiety-like symptoms in Wistar rats. Psychopharmacology (Berl) 2024; 241:2609-2626. [PMID: 39516296 DOI: 10.1007/s00213-024-06713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
RATIONALE Stressors play a critical role in the progression of irritable bowel syndrome (IBS). Heterogenous stress causes alterations in our bowel movements which can further cause anxiety and depression-like symptoms, decreasing the ability of individuals worldwide to function in social, academic, and employment settings. OBJECTIVES This study was aimed to investigate the effect of orally administered Nigella sativa (0.2 mL/kg b.wt.) seed oil (NSSO) on stress-induced IBS, anxiety, and depression-like symptoms in Wistar rats. METHODS In the present study, modelling IBS induced anxiety and depression-like symptoms in rodents have been employed to correlate the pathophysiological mechanisms behind this disorder. Moreover, evaluation of ameliorative potential of traditionally used NSSO in IBS was also carried out. RESULTS Present investigation indicated that acute stress of 1.5 h daily for 20 days induced hyper cortisol, gastrointestinal (GI) hypermotility, diarrhoea, altered levels of short chain fatty acids (SCFAs), and inflammation which are common symptoms of IBS. Furthermore, depression and anxiety-like symptoms were validated in test groups by various behavioral tests and decreased levels of 5-HT-Transporter mRNA gene expression, which are clear indicators of cognitive impairment. CONCLUSIONS It is possible that these IBS-like symptoms may have contributed to the pathogenesis of cognitive deficits and depression. However, the anti-oxidative, anti-inflammatory, anti-spasmodic, and possibly the anti-anxiolytic properties of NSSO helped in the mitigation of altered gut-brain axis. Because the concurrent treatment of NSSO alleviated the symptoms of modified GI function and consequently, the anxious & depressive behavior of the animals. Overall, this research explored the protective efficacy of NSSO against stress-induced IBS and depression-like symptoms, shedding light on the potential of this natural compound as a therapeutic option in the field of gastroenterology and psychiatry.
Collapse
Affiliation(s)
- Madhu Sharma
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Swati Rana
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Shiwangi Aggarwal
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Aitizaz Ul Ahsan
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Muskan Budhwar
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Sweety Mehra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | | | - Mani Chopra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
14
|
Chen S, Wei J, Wang Y, Yao Y, Wang H, Peng J, Li J. Disrupted NAD(P) Metabolism and Xanthine Dehydrogenase in a Stress-Induced Rat Model of Depression: NMR Metabolomics Insights. Metabolites 2024; 14:660. [PMID: 39728441 DOI: 10.3390/metabo14120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Clinical findings have shown a negative correlation between the severity of depressive symptoms and serum uric acid levels in men, yet the role of metabolic regulation in the pathophysiology of depression remains largely unknown. Methods: In this study, we utilized an acute restraint-stress-induced male rat model of depression to investigate biochemical changes through NMR-based metabolomics combined with serum biochemical analysis. Additionally, we employed qPCR, immunoblotting, and enzyme activity assays to assess the expression and activity of xanthine oxidoreductase, the rate-limiting enzyme in uric acid production. Results: Our findings indicate the following: (1) restraint stress is a valid method for inducing a depressive phenotype in rats; (2) depressive rats exhibit decreased NAD(P) levels in the liver and increased nicotinamide N-oxide and nicotinate levels in urine, accompanied by decreased levels of uric acid, allantoin, and allantoic acid in serum or tissues; (3) xanthine dehydrogenase activity is diminished in depressive rats without corresponding changes in gene or protein expression. Conclusion: The increased urinary excretion of NAD(P) precursors results in reduced hepatic NAD(P) levels, thereby suppressing NAD-dependent xanthine dehydrogenase activity and diminishing the production of uric acid and its downstream metabolites (allantoin and allantoic acid).
Collapse
Affiliation(s)
- Songjiao Chen
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Jumeng Wei
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Yongchi Wang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Yidan Yao
- School of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Haibo Wang
- School of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Jie Peng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jinquan Li
- School of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
15
|
Kovačević S, Pavković Ž, Brkljačić J, Elaković I, Vojnović Milutinović D, Djordjevic A, Pešić V. High-Fructose Diet and Chronic Unpredictable Stress Modify Each Other's Neurobehavioral Effects in Female Rats. Int J Mol Sci 2024; 25:11721. [PMID: 39519293 PMCID: PMC11546065 DOI: 10.3390/ijms252111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
A pervasive exposure to stressors and the consumption of fructose-containing beverages usually go hand-in-hand in everyday life. In contrast to their metabolic outcomes, their impact on the brain and behavior is still understudied. We examined the behavioral response to a novelty (open field test), the expression of biochemical indicators of neuronal activity (Egr1 and FosB/ΔFosB), the synaptic potentiation (CaMKIIα and pCaMKIIThr286), the synaptic plasticity (synaptophysin, PSD95, gephyrin, and drebrin), and the GABAergic system (parvalbumin and GAD67), along with the glucocorticoid receptor (GR) and AMPK, in the medial prefrontal cortex of female Wistar rats subjected to liquid fructose supplementation (F), chronic unpredictable stress (S), or both (SF) over 9 weeks. The only hallmark of the F group was an increased expression of pCaMKIIThr286, which was also observed in the S group, but not in the SF group. The SF group did not show hyperactivity, a decreased expression of FosB, or an increased expression of parvalbumin, as the S group did. The SF group, as with the S group, showed a decreased expression of the GR, although the basal level of corticosterone was unchanged. The SF group showed, as de novo marks, thigmotactic behavior, increased drebrin, and decreased gephyrin expression. These findings suggest that the long-term consumption of fructose, which itself has subtle neurobehavioral consequences, in combination with stress prevents some of its effects, but also contributes to novel outcomes not seen in single treatments.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11060 Belgrade, Serbia
| | - Željko Pavković
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11060 Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11060 Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11060 Belgrade, Serbia
| | - Vesna Pešić
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| |
Collapse
|
16
|
Dudhabhate BB, Awathale SN, Choudhary AG, Subhedar NK, Kokare DM. Deep brain stimulation targeted at lateral hypothalamus-medial forebrain bundle reverses depressive-like symptoms and related cognitive deficits in rat: Role of serotoninergic system. Neuroscience 2024; 556:96-113. [PMID: 39103042 DOI: 10.1016/j.neuroscience.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
The aim of the study is to understand the rationale behind the application of deep brain stimulation (DBS) in the treatment of depression. Male Wistar rats, rendered depressive with chronic unpredictable mild stress (CUMS) were implanted with electrode in the lateral hypothalamus-medial forebrain bundle (LH-MFB) and subjected to deep brain stimulation (DBS) for 4 h each day for 14 days. DBS rats, as well as controls, were screened for a range of parameters indicative of depressive state. Symptomatic features noticed in CUMS rats like the memory deficit, anhedonia, reduction in body weight and 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in mPFC and elevated plasma corticosterone were reversed in rats subjected to DBS. DBS arrested CUMS induced degeneration of 5-HT cells in interfascicular region of dorsal raphe nucleus (DRif) and fibers in LH-MFB and induced dendritic proliferation in mPFC neurons. MFB is known to serve as a major conduit for the DRif-mPFC serotoninergic pathway. While the density of serotonin fibers in the LH-MFB circuit was reduced in CUMS, it was upregulated in DBS-treated rats. Furthermore, microinjection of 5-HT1A receptor antagonist, WAY100635 into mPFC countered the positive effects of DBS like the antidepressant and memory-enhancing action. In this background, we suggest that DBS at LH-MFB may exercise positive effect in depressive rats via upregulation of the serotoninergic system. While these data drawn from the experiments on rat provide meaningful clues, we suggest that further studies aimed at understanding the usefulness of DBS at LH-MFB in humans may be rewarding.
Collapse
Affiliation(s)
- Biru B Dudhabhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Sanjay N Awathale
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424 001, Maharashtra, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India.
| |
Collapse
|
17
|
Maehashi S, Arora K, Fisher AL, Schweitzer DR, Akefe IO. Neurolipidomic insights into anxiety disorders: Uncovering lipid dynamics for potential therapeutic advances. Neurosci Biobehav Rev 2024; 163:105741. [PMID: 38838875 DOI: 10.1016/j.neubiorev.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Anxiety disorders constitute a spectrum of psychological conditions affecting millions of individuals worldwide, imposing a significant health burden. Historically, the development of anxiolytic medications has been largely focused on neurotransmitter function and modulation. However, in recent years, neurolipids emerged as a prime target for understanding psychiatric pathogenesis and developing novel medications. Neurolipids influence various neural activities such as neurotransmission and cellular functioning, as well as maintaining cell membrane integrity. Therefore, this review aims to elucidate the alterations in neurolipids associated with an anxious mental state and explore their potential as targets of novel anxiolytic medications. Existing evidence tentatively associates dysregulated neurolipid levels with the etiopathology of anxiety disorders. Notably, preclinical investigations suggest that several neurolipids, including endocannabinoids and polyunsaturated fatty acids, may hold promise as potential pharmacological targets. Overall, the current literature tentatively suggests the involvement of lipids in the pathogenesis of anxiety disorders, hinting at potential prospects for future pharmacological interventions.
Collapse
Affiliation(s)
- Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- Academy for Medical Education, The University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
18
|
Behrens LMP, Gasparotto J, Rampelotto PH, Escalona MAR, da Silva LDS, Carazza-Kessler FG, Barbosa CP, Campos MS, Dorn M, Gelain DP, Moreira JCF. Sodium propionate oral supplementation ameliorates depressive-like behavior through gut microbiome and histone 3 epigenetic regulation. J Nutr Biochem 2024; 130:109660. [PMID: 38685283 DOI: 10.1016/j.jnutbio.2024.109660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Major depressive disorder (MDD) is a global health concern, affecting over 250 million individuals worldwide. In recent years, the gut-brain axis has emerged as a promising field for understanding the pathophysiology of MDD. Microbial metabolites, such as short-chain fatty acids (SCFAs)-acetate, butyrate, and propionate-, have gained attention for their potential to influence epigenetic modifications within the host brain. However, the precise mechanisms through which these metabolites participate in MDD pathophysiology remain elusive. This study was designed to investigate the effects of oral SCFA supplementation in adult male Wistar rats subjected to chronic unpredictable mild stress (CUMS). A subset of control and CUMS-exposed rats received different supplementations: sodium acetate (NaOAc) at a concentration of 60 mM, sodium butyrate (NaB) at 40 mM, sodium propionate (NaP) at 50 mM, or a mixture of these SCFAs. The gut microbiome was assessed through 16S rRNA sequencing, and epigenetic profiling was performed using Western blot analysis. Results demonstrated that NaP supplementation significantly alleviated anhedonia in stressed animals, as evidenced by improved performance in the sucrose consumption test. This ameliorative effect was potentially associated with the modulation of gut bacterial communities, accompanied by the attenuation of the region-specific epigenetic dysregulation in the brain of the animals exposed to chronic stress. These findings suggest a potential association between gut dysbiosis and stress response, and NaP could be a promising target for future MDD interventions. However, further studies are needed to fully elucidate the underlying mechanisms of these effects.
Collapse
Affiliation(s)
- Luiza Marques Prates Behrens
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil.
| | - Juciano Gasparotto
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-907, Brazil
| | - Manuel Adrian Riveros Escalona
- Graduate Program in Veterinary Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91540-000, Brazil
| | - Lucas Dos Santos da Silva
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil
| | - Flávio Gabriel Carazza-Kessler
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Camila Pocharski Barbosa
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Marlene Soares Campos
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - Márcio Dorn
- Department of Theoretical Informatics, Institute of Informatics, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil; Center of Biotechnology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 91501-970, Brazil
| | - Daniel Pens Gelain
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Center of Oxidative Stress Studies, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre 90035-003, Brazil
| |
Collapse
|
19
|
Yan H, Wang H, Chen W, Jia Y, Yan F, Yuan S. Integrative proteomics and metabolomics data analysis exploring the mechanism of brain injury after cardiac surgery in chronic stress rats. BMC Anesthesiol 2024; 24:111. [PMID: 38519946 PMCID: PMC10958840 DOI: 10.1186/s12871-024-02492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
OBJECTIVE Preoperative chronic stress (CS) is associated with postoperative brain injury in patients undergoing open heart cardiac surgery. This research is to explore the potential molecular biological mechanisms of brain damage following cardiac surgery in preoperative CS rats by the analyses combining proteomics and metabolomics. METHODS We constructed the chronic unpredictable stress (CUS) and cardiac surgery models in adult rats. We proved the brain injury in CUS cardiac surgery rats by Hematoxylin-Eosin (H&E) staining, followed by separating the hippocampal tissue and investigating the potential mechanisms of brain injury by the methods of data-independent acquisition proteomics and untargeted metabolomics. RESULTS The signaling pathways of glycoproteins and metabolism of amino acids were the main possible mechanisms of brain injury in CUS rats following cardiac surgery according to the proteomics and metabolomics. In addition, the pathways of animo acids metabolism such as the pathways of lysine degradation and β-alanine metabolism may be the main mechanism of cardiac surgery related brain injury in preoperative CUS rats. CONCLUSIONS The pathways of animo acids metabolism such as lysine degradation and β-alanine metabolism may be the potential mechanisms of brain injury in CUS rats following cardiac surgery. We should focus on the varieties of bioproteins and metabolites in these pathways, and related changes in other signaling pathways induced by the two pathways.
Collapse
Affiliation(s)
- Haoqi Yan
- Department of Anesthesiology, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Hongbai Wang
- Department of Anesthesiology, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Wenlin Chen
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Jia
- Department of Anesthesiology, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Fuxia Yan
- Department of Anesthesiology, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Su Yuan
- Department of Anesthesiology, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| |
Collapse
|
20
|
Frayre P, Ponce-Rubio K, Frayre J, Medrano J, Na ES. POMC-specific knockdown of MeCP2 leads to adverse phenotypes in mice chronically exposed to high fat diet. Behav Brain Res 2024; 461:114863. [PMID: 38224819 PMCID: PMC10872214 DOI: 10.1016/j.bbr.2024.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is an epigenetic factor associated with the neurodevelopmental disorders Rett Syndrome and MECP2 duplication syndrome. Previous studies have demonstrated that knocking out MeCP2 globally in the central nervous system leads to an obese phenotype and hyperphagia, however it is not clear if the hyperphagia is the result of an increased preference for food reward or due to an increase in motivation to obtain food reward. We show that mice deficient in MeCP2 specifically in pro-opiomelanocortin (POMC) neurons have an increased preference for high fat diet as measured by conditioned place preference but do not have a greater motivation to obtain food reward using a progressive ratio task, relative to wildtype littermate controls. We also demonstrate that POMC-Cre MeCP2 knockout (KO) mice have increased body weight after long-term high fat diet exposure as well as elevated plasma leptin and corticosterone levels compared to wildtype mice. Taken together, these results are the first to show that POMC-specific loss-of-function Mecp2 mutations leads to dissociable effects on the rewarding/motivational properties of food as well as changes to hormones associated with body weight homeostasis and stress.
Collapse
Affiliation(s)
- Priscila Frayre
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Karen Ponce-Rubio
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Jessica Frayre
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Jacquelin Medrano
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA
| | - Elisa Sun Na
- Texas Woman's University, School of Social Work, Psychology, & Philosophy, Denton, TX, USA.
| |
Collapse
|
21
|
Mușat MI, Mitran SI, Udriștoiu I, Albu CV, Cătălin B. The impact of stress on the behavior of C57BL/6 mice with liver injury: a comparative study. Front Behav Neurosci 2024; 18:1358964. [PMID: 38510829 PMCID: PMC10950904 DOI: 10.3389/fnbeh.2024.1358964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Depressive-like behavior has been shown to be associated with liver damage. This study aimed to evaluate the impact of three different models of depression on the behavior of mice with liver injury. Methods During the 4 weeks of methionine/choline deficiency diet (MCD), adult C57BL/6 mice were randomly divided into four groups: MCD (no stress protocol, n = 6), chronic unpredictable mild stress (CUMS, n = 9), acute and repeated forced swim stress [aFSS (n = 9) and rFSS (n = 9)]. Results All depression protocols induced increased anhedonia and anxiety-like behavior compared to baseline and had no impact on the severity of liver damage, according to ultrasonography. However, different protocols evoked different overall behavior patterns. After the depressive-like behavior induction protocols, animals subjected to aFSS did not exhibit anxiety-like behavior differences compared to MCD animals, while mice subjected to CUMS showed additional weight loss compared to FSS animals. All tested protocols for inducing depressive-like behavior decreased the short-term memory of mice with liver damage, as assessed by the novel object recognition test (NORT). Discussion Our results show that the use of all protocols seems to generate different levels of anxiety-like behavior, but only the depressive-like behavior induction procedures associate additional anhedonia and memory impairment in mice with liver injury.
Collapse
Affiliation(s)
- Mădălina Iuliana Mușat
- U.M.F. Doctoral School Craiova, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Smaranda Ioana Mitran
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ion Udriștoiu
- Department of Psychiatry, University of Medicine and Pharmacy, Craiova, Romania
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy, Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
22
|
Szalanczy AM, Fitzpatrick M, Beeson A, Bui T, Dyson C, Eller S, Landry J, Scott C, Grzybowski M, Klotz J, Geurts AM, Weiner JL, Redei EE, Solberg Woods LC. Chronic stress from adolescence to adulthood increases adiposity and anxiety in rats with decreased expression of Krtcap3. Front Genet 2024; 14:1247232. [PMID: 38323241 PMCID: PMC10844407 DOI: 10.3389/fgene.2023.1247232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
We previously identified Keratinocyte-associated protein 3, Krtcap3, as a novel adiposity gene, but subsequently found that its impact on adiposity may depend on environmental stress. To more thoroughly understand the connection between Krtcap3, adiposity, and stress, we exposed wild-type (WT) and Krtcap3 knock-out (KO) rats to chronic stress then measured adiposity and behavioral outcomes. We found that KO rats displayed lower basal stress than WT rats under control conditions and exhibited metabolic and behavioral responses to chronic stress exposure. Specifically, stress-exposed KO rats gained more weight, consumed more food when socially isolated, and displayed more anxiety-like behaviors relative to control KO rats. Meanwhile, there were minimal differences between control and stressed WT rats. At study conclusion stress-exposed KO rats had increased corticosterone (CORT) relative to control KO rats with no differences between WT rats. In addition, KO rats, independent of prior stress exposure, had an increased CORT response to removal of their cage-mate (psychosocial stress), which was only seen in WT rats when exposed to chronic stress. Finally, we found differences in expression of the glucocorticoid receptor, Nr3c1, in the pituitary and colon between control and stress-exposed KO rats that were not present in WT rats. These data support that Krtcap3 expression affects stress response, potentially via interactions with Nr3c1, with downstream effects on adiposity and behavior. Future work is necessary to more thoroughly understand the role of Krtcap3 in the stress response.
Collapse
Affiliation(s)
- Alexandria M. Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Mackenzie Fitzpatrick
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Angela Beeson
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Trangdai Bui
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Christina Dyson
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Seth Eller
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Julia Landry
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Christina Scott
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeff L. Weiner
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| |
Collapse
|
23
|
Berrio JP, Hestehave S, Kalliokoski O. Reliability of sucrose preference testing following short or no food and water deprivation-a Systematic Review and Meta-Analysis of rat models of chronic unpredictable stress. Transl Psychiatry 2024; 14:39. [PMID: 38242881 PMCID: PMC10799054 DOI: 10.1038/s41398-024-02742-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
The sucrose preference test is a popular test for anhedonia in the chronic unpredictable stress model of depression. Yet, the test does not always produce consistent results. Long food and water deprivation before the test, while often implemented, confounds the results by introducing unwanted drives in the form of hunger and thirst. We assessed the reliability of the test when only short or no fasting was used. We searched PubMed, Embase, and Web of Science for studies in rats exposed to chronic unpredictable stress that used no more than 6 h of food and/or water deprivation before the test. Sweet consumptions, for stressed and control/antidepressant-treated animals, in 132 studies were pooled using random effects models. We found a decrease in sweet consumption in stressed rats, compared to controls, that was halved when a non-caloric sweetener was used and significantly reduced when sucrose consumption was corrected for body weight. What is more, the length of food and water deprivation was found to confound the effect. The effect was reversed when the stressed rats were treated with antidepressants. Methodological strategies meant to control for recognized sources of bias when conducting the test were often missing, and so was a clear and complete report of essential study information. Our results indicate that not only is food and water deprivation before the test unnecessary, but not recommended. Even in absence of long fasting, we found evidence of an additional effect on sweet consumption that is unrelated to anhedonia. Without properly controlling for non-hedonic drivers of consumption, the test is unreliable as a proxy measure of anhedonia. Strengthening the methodological rigor and addressing the confounding effect of metabolic factors in the sucrose preference test prevents misleading conclusions that harm the translatability of the associated research and perpetuates the use of animals for little gain.
Collapse
Affiliation(s)
- Jenny P Berrio
- Department of Experimental Medicine, Section of Research and Education, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark.
| | - Sara Hestehave
- Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, United Kingdom
| | - Otto Kalliokoski
- Department of Experimental Medicine, Section of Research and Education, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| |
Collapse
|
24
|
Yang EJ, Frolinger T, Iqbal U, Estill M, Shen L, Trageser KJ, Pasinetti GM. The role of the Toll like receptor 4 signaling in sex-specific persistency of depression-like behavior in response to chronic stress. Brain Behav Immun 2024; 115:169-178. [PMID: 37838079 PMCID: PMC11146676 DOI: 10.1016/j.bbi.2023.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023] Open
Abstract
Chronic stress is a major risk factor for Major Depressive Disorder (MDD), and it has been shown to impact the immune system and cause microglia activation in the medial prefrontal cortex (mPFC) involved in the pathogenesis of depression. The aim of this study is to further investigate cellular and molecular mechanisms underlying persistent depression behavior in sex specific manner, which is observed clinically. Here, we report that both male and female mice exhibited depression-like behavior following exposure to chronic stress. However, only female mice showed persistent depression-like behavior, which was associated with microglia activation in mPFC, characterized by distinctive alterations in the phenotype of microglia. Given these findings, to further investigate the underlying molecular mechanisms associated with persistent depression-like behavior and microglia activation in female mice, we used translating-ribosome affinity purification (TRAP). We find that Toll like receptor 4 (TLR4) signaling is casually related to persistent depression-like behavior in female mice. This is supported by the evidence that the fact that genetic ablation of TLR4 expression in microglia significantly reduced the persistent depression-like behavior to baseline levels in female mice. This study tentatively supports the hypothesis that the TLR4 signaling in microglia may be responsible for the sex differences in persistent depression-like behavior in female.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Tal Frolinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Umar Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Li Shen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York 10468, United States.
| |
Collapse
|
25
|
Lee J, Kim EJ, Park GS, Kim J, Kim TE, Lee YJ, Park J, Kang J, Koo JW, Choi TY. Lactobacillus reuteri ATG-F4 Alleviates Chronic Stress-induced Anhedonia by Modulating the Prefrontal Serotonergic System. Exp Neurobiol 2023; 32:313-327. [PMID: 37927130 PMCID: PMC10628864 DOI: 10.5607/en23028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Mental health is influenced by the gut-brain axis; for example, gut dysbiosis has been observed in patients with major depressive disorder (MDD). Gut microbial changes by fecal microbiota transplantation or probiotics treatment reportedly modulates depressive symptoms. However, it remains unclear how gut dysbiosis contributes to mental dysfunction, and how correction of the gut microbiota alleviates neuropsychiatric disorders. Our previous study showed that chronic consumption of Lactobacillus reuteri ATG-F4 (F4) induced neurometabolic alterations in healthy mice. Here, we investigated whether F4 exerted therapeutic effects on depressive-like behavior by influencing the central nervous system. Using chronic unpredictable stress (CUS) to induce anhedonia, a key symptom of MDD, we found that chronic F4 consumption alleviated CUS-induced anhedonic behaviors, accompanied by biochemical changes in the gut, serum, and brain. Serum and brain metabolite concentrations involved in tryptophan metabolism were regulated by CUS and F4. F4 consumption reduced the elevated levels of serotonin (5-HT) in the brain observed in the CUS group. Additionally, the increased expression of Htr1a, a subtype of the 5-HT receptor, in the medial prefrontal cortex (mPFC) of stressed mice was restored to levels observed in stress-naïve mice following F4 supplementation. We further demonstrated the role of Htr1a using AAV-shRNA to downregulate Htr1a in the mPFC of CUS mice, effectively reversing CUS-induced anhedonic behavior. Together, our findings suggest F4 as a potential therapeutic approach for relieving some depressive symptoms and highlight the involvement of the tryptophan metabolism in mitigating CUS-induced depressive-like behaviors through the action of this bacterium.
Collapse
Affiliation(s)
- Jiyun Lee
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Eum-Ji Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | | | - Jeongseop Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Tae-Eun Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yoo Jin Lee
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Juyi Park
- AtoGen Co., Ltd., Daejeon 34015, Korea
| | | | - Ja Wook Koo
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Tae-Yong Choi
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
26
|
Rojas-Carvajal M, Leandro R, Brenes JC. Distinct acute stressors exert an antagonistic effect on complex grooming during novelty habituation in rats. Behav Processes 2023; 212:104931. [PMID: 37598764 DOI: 10.1016/j.beproc.2023.104931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Grooming is a common readout in multiple rat models of neuropsychiatric diseases. It is usually associated with distress and negative emotionality, but also with emotional de-arousal after stress. These seemingly conflicting interpretations may result from specific grooming sequences appearing at different arousal levels and during distinct phases of the stress response. To further explore this hypothesis, we analyzed how distinct stressors affect grooming syntaxis and kinetics. To that end, we explored the independent and interacting effects of foot shocks, corticosterone (CORT), and novelty on exploratory activity, grooming, and ultrasonic vocalizations (USVs) in an open-field test (OF). Wistar rats were intraperitoneally injected either with vehicle or CORT, placed in a chamber where half of them were foot-shocked and then assessed in the OF. The next day, animals were re-exposed to the shock chamber and then tested in the OF without receiving any treatment. On day 1, foot shocks and -to a less extent CORT- increased freezing and inhibited rearing in the chamber, but only foot shocks increased distress USVs. In the OF, both treatments suppressed complex grooming, with foot-shocks also inhibiting exploration and CORT marginally reducing rearing. On day 2, foot-shocked rats showed conditioned fear when re-exposed to the chamber. When tested in the OF, foot-shocked and CORT-treated animals still showed low levels of complex grooming, with the former group also showing increased distress USVs. In this study, all different stressors inhibited complex grooming, suggesting an inverse association between these grooming subtypes and negative emotionality.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica.
| | - Rita Leandro
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica
| |
Collapse
|
27
|
Ben-Shalom N, Sandbank E, Abramovitz L, Hezroni H, Levine T, Trachtenberg E, Fogel N, Mor M, Yefet R, Stoler-Barak L, Hagin D, Nakai A, Noda M, Suzuki K, Shulman Z, Ben-Eliyahu S, Freund NT. β2-adrenergic signaling promotes higher-affinity B cells and antibodies. Brain Behav Immun 2023; 113:66-82. [PMID: 37369341 DOI: 10.1016/j.bbi.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Stress-induced β2-adrenergic receptor (β2AR) activation in B cells increases IgG secretion; however, the impact of this activation on antibody affinity and the underlying mechanisms remains unclear. In the current study, we demonstrate that stress in mice following ovalbumin (OVA) or SARS-CoV-2 RBD immunization significantly increases both serum and surface-expressed IgG binding to the immunogen, while concurrently reducing surface IgG expression and B cell clonal expansion. These effects were abolished by pharmacological β2AR blocking or when the experiments were conducted in β2AR -/- mice. In the second part of our study, we used single B cell sorting to characterize the monoclonal antibodies (mAbs) generated following β2AR activation in cultured RBD-stimulated B cells from convalescent SARS-CoV-2 donors. Ex vivo β2AR activation increased the affinities of the produced anti-RBD mAbs by 100-fold compared to mAbs produced by the same donor control cultures. Consistent with the mouse experiments, β2AR activation reduced both surface IgG levels and the frequency of expanded clones. mRNA sequencing revealed a β2AR-dependent upregulation of the PI3K pathway and B cell receptor (BCR) signaling through AKT phosphorylation, as well as an increased B cell motility. Overall, our study demonstrates that stress-mediated β2AR activation drives changes in B cells associated with BCR activation and higher affinity antibodies.
Collapse
Affiliation(s)
- Noam Ben-Shalom
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Elad Sandbank
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Lilach Abramovitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Hadas Hezroni
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talia Levine
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Estherina Trachtenberg
- The Sagol School of Neurosciences, Gordon Faculty of Social Sciences, Tel Aviv University, Israel
| | - Nadav Fogel
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Michael Mor
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Ron Yefet
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Hagin
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel; Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, 623906, Israel
| | - Akiko Nakai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Noda
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shamgar Ben-Eliyahu
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel; The Sagol School of Neurosciences, Gordon Faculty of Social Sciences, Tel Aviv University, Israel.
| | - Natalia T Freund
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel.
| |
Collapse
|
28
|
Gallas-Lopes M, Bastos LM, Benvenutti R, Panzenhagen AC, Piato A, Herrmann AP. Systematic review and meta-analysis of 10 years of unpredictable chronic stress in zebrafish. Lab Anim (NY) 2023; 52:229-246. [PMID: 37709998 DOI: 10.1038/s41684-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
The zebrafish (Danio rerio) is a model animal that is being increasingly used in neuroscience research. A decade ago, the first study on unpredictable chronic stress (UCS) in zebrafish was published, inspired by protocols established for rodents in the early 1980s. Since then, several studies have been published by different groups, in some cases with conflicting results. Here we conducted a systematic review to identify studies evaluating the effects of UCS in zebrafish and meta-analytically synthetized the data of neurobehavioral outcomes and relevant biomarkers. Literature searches were performed in three databases (PubMed, Scopus and Web of Science) with a two-step screening process based on inclusion/exclusion criteria. The included studies underwent extraction of qualitative and quantitative data, as well as risk-of-bias assessment. Outcomes of included studies (n = 38) were grouped into anxiety/fear-related behavior, locomotor function, social behavior or cortisol level domains. UCS increased anxiety/fear-related behavior and cortisol levels while decreasing locomotor function, but a significant summary effect was not observed for social behavior. Despite including a substantial number of studies, the high heterogeneity and the methodological and reporting problems evidenced in the risk-of-bias analysis made it difficult to assess the internal validity of most studies and the overall validity of the model. Our review thus evidences the need to conduct well-designed experiments to better evaluate the effects of UCS on diverse behavioral patterns displayed by zebrafish.
Collapse
Affiliation(s)
- Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo M Bastos
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Radharani Benvenutti
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alana C Panzenhagen
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angelo Piato
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil.
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
29
|
Cruz KLO, Salla DH, Oliveira MP, Silva LE, Vedova LMD, Mendes TF, Bressan CBC, Silva MR, Santos SML, Soares HJ, Mendes RL, Vernke CN, Silva MG, Laurentino AOM, Medeiros FD, Vilela TC, Lemos I, Bitencourt RM, Réus GZ, Streck EL, Mello AH, Rezin GT. Energy metabolism and behavioral parameters in female mice subjected to obesity and offspring deprivation stress. Behav Brain Res 2023; 451:114526. [PMID: 37271313 DOI: 10.1016/j.bbr.2023.114526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the behavioral and energy metabolism parameters in female mice subjected to obesity and offspring deprivation (OD) stress. Eighty female Swiss mice, 40 days old, were weighed and divided into two groups: Control group (control diet, n = 40) and Obese group (high-fat diet, n = 40), for induction of the animal model of obesity, the protocol was based on the consumption of a high-fat diet and lasted 8 weeks. Subsequently, the females were subjected to pregnancy, after the birth of the offspring, were divided again into the following groups (n = 20): Control non-deprived (ND), Control + OD, Obese ND, and Obese + OD, for induction of the stress protocol by OD. After the offspring were 21 days old, weaning was performed and the dams were subjected to behavioral tests. The animals were humanely sacrificed, the brain was removed, and brain structures were isolated to assess energy metabolism. Both obesity and OD led to anhedonia in the dams. It was shown that the structures most affected by obesity and OD are the hypothalamus and hippocampus, as evidenced by the mitochondrial dysfunction found in these structures. When analyzing the groups separately, it was observed that OD led to more pronounced mitochondrial damage; however, the association of obesity with OD, as well as obesity alone, also generated damage. Thus, it is concluded that obesity and OD lead to anhedonia in animals and to mitochondrial dysfunction in the hypothalamus and hippocampus, which may lead to losses in feeding control and cognition of the dams.
Collapse
Affiliation(s)
- Kenia L O Cruz
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Daniele H Salla
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariana P Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Larissa E Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil.
| | - Larissa M D Vedova
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Talita F Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Catarina B C Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariella R Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Sheila M L Santos
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Hevylin J Soares
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Rayane L Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Camila N Vernke
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Marina G Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Ana O M Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Fabiana D Medeiros
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Thais C Vilela
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Isabela Lemos
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Rafael M Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, Brazil
| | - Emilio L Streck
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Aline H Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gislaine T Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| |
Collapse
|
30
|
Pangemanan L, Irwanto I, Maramis MM. Psychological dominant stressor modification to an animal model of depression with chronic unpredictable mild stress. Vet World 2023; 16:595-600. [PMID: 37041835 PMCID: PMC10082728 DOI: 10.14202/vetworld.2023.595-600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/09/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Chronic unpredictable mild stress (CUMS) is a protocol widely used to create an animal model of depression with food deprivation, water deprivation, and physical-dominant stressors as routine procedures. However, human depression mainly involves psychological stressors and does not always involve a lack of food and water; thus, CUMS procedures should be modified accordingly. Therefore, this study aimed to create an animal model of depression, mainly focusing on a psychologically dominant stressor without food and water deprivation. Materials and Methods The CUMS and control groups, respectively, received CUMS modification (psychologically dominant stressors without food and water deprivation) for 21 days. A 24-h sucrose preference test (SPT) was used to assess the successful creation of an animal model of depression. Daily food intake measurements, weekly weight monitoring, and weight gain calculations were performed. Either an independent sample t-test or the Mann-Whitney test was used. Results Of the 42 rats included, 39 completed the study. Chronic unpredictable mild stress procedures for 21 days significantly reduced the SPT (p < 0.05), mean body weight (p < 0.05), and weekly weight gain (p < 0.05) in the CUMS group compared to the control group. However, the weekly average food intake did not statistically differ between the two groups. Conclusion Psychological dominant CUMS modification to an animal model of depression resulted in lower SPT, body weight, and weekly weight gain in the CUMS group than in the control group.
Collapse
Affiliation(s)
- Lisa Pangemanan
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Child Health, Faculty of Medicine, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Irwanto Irwanto
- Department of Child Health, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Corresponding author: Irwanto Irwanto, e-mail: Co-authors: LP: , MMM:
| | - Margarita M. Maramis
- Department of Psychiatry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
31
|
Pradhan LK, Sahoo PK, Sarangi P, Chauhan NR, Das SK. Suppression of Chronic Unpredictable Stress-Persuaded Increased Monoamine Oxidase Activity by Taurine Promotes Significant Neuroprotection in Zebrafish Brain. Neurochem Res 2023; 48:82-95. [PMID: 36001190 DOI: 10.1007/s11064-022-03724-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
Neuropsychiatric upshots following chronic exposure to unpredictable adverse stressors have been well documented in the literature. Considering the significant impact of chronic unpredictable stress (CUS), the literature is elusive regarding the neuroprotective efficacy of taurine against CUS-induced oxidative stress and chromatin condensation in the zebrafish brain. In this study, to ameliorate CUS-persuaded neurological outcomes, waterborne treatment of taurine as a prophylactic intervention was undertaken. Further, our approach also focused on the gross neurobehavioral response of zebrafish, oxidative stress indices and neuromorphology of the zebrafish brain following CUS exposure with taurine treatment. Because taurine provides significant neuroprotection against oxidative insult, the cytosolic level of monoamine oxidase (MAO) in the zebrafish brain following CUS exposure is worth investigating. Further, as heightened MAO activity is associated with augmented oxidative and chromatin condensation, the focus of this study was on whether taurine provides neuroprotection by downregulating MAO levels in the brain. Our findings show that CUS-persuaded altered neurobehavioral response was significantly rescued by taurine. Moreover, our findings firmly support the hypothesis that taurine acts as a radical neuroprotector by restoring glutathione biosynthesis in the zebrafish brain subsequent to CUS exposure. Additionally, the rising level of brain MAO following chronic exposure to CUS is ameliorated by taurine treatment. These findings strongly advocate the role of taurine as a natural MAO inhibitor through the neuroprotection it provides against CUS-instigated oxidative stress in zebrafish. However, the fundamental neuroprotective mechanism of such natural compounds needs to be elucidated to determine their neuroprotective efficacy against stress regimens.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Nishant Ranjan Chauhan
- Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
| |
Collapse
|
32
|
Tongta S, Daendee S, Kalandakanond-Thongsong S. Anxiety-like behavior and GABAergic system in ovariectomized rats exposed to chronic mild stress. Physiol Behav 2023; 258:114014. [PMID: 36328075 DOI: 10.1016/j.physbeh.2022.114014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Stress or low level of estrogen could promote anxiety and depression; thus, it is of interest to investigate the combined effect of mild stress and the lack of estrogen on mental disorders by utilizing an animal model. This study was conducted to assess anxiety- and depressive- like behaviors in ovariectomized (Ovx) rats exposed to chronic mild stress (CMS) and determine the alteration in gamma-aminobutyric acid (GABA)-related transmission. Ovx rats were randomly assigned into four groups: (1) estrogen replacement (E2-NoCMS), (2) estrogen replacement and exposure to CMS (E2-CMS), (3) vehicle (VEH-NoCMS), and (4) vehicle and exposure to CMS (VEH-CMS). Following 4-week CMS, VEH groups (VEH-NoCMS and VEH-CMS) showed a similar level of anxiety-like behavior in elevated T-maze, whereas E2-CMS, VEH-NoCMS and VEH-CMS showed anxiety-like behavior in open field. The depressive-like behavior in the force swimming test tended to be affected by estrogen deprivation than CMS. The alteration of the GABAergic system as determined from the GABA level and mRNA expression of GABA-related transmission (i.e., glutamic acid decarboxylase, GABA transporter and GABAA subunits) showed that the GABA level in the amygdala and frontal cortex was affected by CMS. For mRNA expression, the mRNA profile in the amygdala and hippocampus of VEH-NoCMS and E2-CMS was the same but different from those of VEH-NoCMS and E2-CMS. In addition, compared with E2-NoCMS, the mRNA profile in the frontal cortex was similar in VEH-NoCMS, E2-CMS, and VEH-CMS. These findings indicated that the underlying mechanism of the GABAergic system was differently modified, although VEH-NoCMS and VEH-CMS showed anxiety-like behavior. The findings of this study may provide a comprehensive understanding of the modulation of the GABAergic system during estrogen deprivation under CMS, as observed in menopausal women who were daily exposed to stress.
Collapse
Affiliation(s)
- Sushawadee Tongta
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwaporn Daendee
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | | |
Collapse
|
33
|
Bansal Y, Fee C, Misquitta KA, Codeluppi SA, Sibille E, Berman RM, Coric V, Sanacora G, Banasr M. Prophylactic Efficacy of Riluzole against Anxiety- and Depressive-Like Behaviors in Two Rodent Stress Models. Complex Psychiatry 2023; 9:57-69. [PMID: 37101541 PMCID: PMC10123365 DOI: 10.1159/000529534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Chronic stress-related illnesses such as major depressive disorder and post-traumatic stress disorder share symptomatology, including anxiety, anhedonia, and helplessness. Across disorders, neurotoxic dysregulated glutamate (Glu) signaling may underlie symptom emergence. Current first-line antidepressant drugs, which do not directly target Glu signaling, fail to provide adequate benefit for many patients and are associated with high relapse rates. Riluzole modulates glutamatergic neurotransmission by increasing metabolic cycling and modulating signal transduction. Clinical studies exploring riluzole's efficacy in stress-related disorders have provided varied results. However, the utility of riluzole for treating specific symptom dimensions or as a prophylactic treatment has not been comprehensively assessed. Methods We investigated whether chronic prophylactic riluzole (∼12-15 mg/kg/day p.o.) could prevent the emergence of behavioral deficits induced by unpredictable chronic mild stress (UCMS) in mice. We assessed (i) anxiety-like behavior using the elevated-plus maze, open-field test, and novelty-suppressed feeding, (ii) mixed anxiety/anhedonia-like behavior in the novelty-induced hypophagia test, and (iii) anhedonia-like behavior using the sucrose consumption test. Z-scoring summarized changes across tests measuring similar dimensions. In a separate learned helplessness (LH) cohort, we investigated whether chronic prophylactic riluzole treatment could block the development of helplessness-like behavior. Results UCMS induced an elevation in anhedonia-like behavior and overall behavioral emotionality that was blocked by prophylactic riluzole. In the LH cohort, prophylactic riluzole blocked the development of helplessness-like behavior. Discussion/Conclusion This study supports the utility of riluzole as a prophylactic medication for preventing anhedonia and helplessness symptoms associated with stress-related disorders.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Corey Fee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Keith A. Misquitta
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | | | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
34
|
Kwarteng F, Wang R, Micov V, Hausknecht KA, Turk M, Ishiwari K, Oubraim S, Wang AL, Richards JB, Haj-Dahmane S, Shen RY. Adolescent chronic unpredictable stress leads to increased anxiety and attention deficit/hyperactivity-like symptoms in adulthood. Psychopharmacology (Berl) 2022; 239:3779-3791. [PMID: 36348027 PMCID: PMC11831988 DOI: 10.1007/s00213-022-06242-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Early-life adversities during development (e.g., child abuse and neglect) are linked to multiple behavioral and cognitive dysfunctions, such as attention deficit/hyperactivity disorder (ADHD) and anxiety disorders, which have high comorbidity. However, the impact of adversities during adolescence, a crucial period in early life for these disorders, is understudied. Using a chronic unpredictable stress (CUS) model in rats, we investigated whether adversities in adolescence could lead to increased anxiety and ADHD-like symptoms in adulthood. METHODS Mid- to late-adolescent (5-7-week-old) male and female Sprague-Dawley rats underwent a mild CUS procedure for 2 weeks. Various stressors were applied in an unpredictable way. Rats of both sexes were then trained with a 2-choice reaction time (2-CRT) task during adulthood, which are designed to detect ADHD-like symptoms, including increased impulsivity and lapse of attention. In addition, an open field test was conducted to examine if CUS resulted in a persistent increase in anxiety-like behavior during adulthood. RESULTS Both male and female rats with CUS exposure travelled shorter distances in the open field and spent less time in the center zone, indicating increased anxiety. In the 2-CRT task, rats of both sexes with CUS exposure showed increased impulsivity. Augmented lapses of attention were observed in female but not male rats. CONCLUSION Chronic unpredictable stress during adolescence increases anxiety and leads to ADHD-like symptoms in both male and female rats in adulthood. The deficits are more severe in females than in males. These observations support that adversities during adolescence persistently increase anxiety, which is comorbid with attention deficits.
Collapse
Affiliation(s)
- Francis Kwarteng
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Ruixiang Wang
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Veronika Micov
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Kathryn A Hausknecht
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Marisa Turk
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Keita Ishiwari
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Saida Oubraim
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - An-Li Wang
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Jerry B Richards
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
35
|
Huang CX, Xiao Q, Zhang L, Gao Y, Ma J, Liang X, Tang J, Wang SR, Luo YM, Chao FL, Xiu Y, Tang Y. Stress-induced myelin damage in the hippocampal formation in a rat model of depression. J Psychiatr Res 2022; 155:401-409. [PMID: 36182770 DOI: 10.1016/j.jpsychires.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND According to previous studies, myelin damage may be involved in the occurrence of depression. However, to date, no study has quantitatively investigated the changes in myelinated fibers and myelin sheaths in the hippocampal formation (HF) and hippocampal subfields in the context of depression. METHODS Male Sprague-Dawley (SD) rats (aged 4-5 weeks) were evenly divided into the control group and chronic unpredictable stress (CUS) group. Behavioral tests were performed, and then changes in myelinated fibers and myelin ultrastructure in hippocampal subfields in depression model rats were investigated using modern stereological methods and transmission electron microscopy techniques. RESULTS After a four-week CUS protocol, CUS rats showed depressive-like and anxiety-like behaviors. The total length and total volume of myelinated fibers were reduced in the CA1 region and DG in the CUS group compared with the control group. The total volumes of myelin sheaths and axons in the CA1 region but not in the DG were significantly lower in the CUS group than in the control group. The decrease in the total length of myelinated nerve fibers in the CA1 region in CUS rats was mainly due to a decrease in the length of myelinated fibers with a myelin sheath thickness of 0.15 μm-0.20 μm. LIMITATIONS The exact relationship between the degeneration of myelin sheaths and depression-like, anxiety-like behaviors needs to be further investigated. CONCLUSIONS CUS induces depression- and anxiety-like behaviors, and the demyelination in the CA1 region induced by 4 weeks of CUS might be an important structural basis for these behaviors.
Collapse
Affiliation(s)
- Chun-Xia Huang
- Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China.
| | - Qian Xiao
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Radioactive Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Lei Zhang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Yuan Gao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Jing Ma
- Department of Anatomy, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Xin Liang
- Department of Pathophysiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Jing Tang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - San-Rong Wang
- Department of Rehabilitation, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Yan-Min Luo
- Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Feng-Lei Chao
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Yun Xiu
- Institute of Life Science, Chongqing Medical University, Chongqing, PR China
| | - Yong Tang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
36
|
Helman TJ, Headrick JP, Vider J, Peart JN, Stapelberg NJC. Sex-specific behavioral, neurobiological, and cardiovascular responses to chronic social stress in mice. J Neurosci Res 2022; 100:2004-2027. [PMID: 36059192 DOI: 10.1002/jnr.25115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Psychosocial stress promotes and links mood and cardiovascular disorders in a sex-specific manner. However, findings in animal models are equivocal, in some cases opposing human dimorphisms. We examined central nervous system (CNS), behavioral, endocrine, cardiac, and hepatic outcomes in male or female C57Bl/6 mice subjected to chronic social stress (56 days of social isolation, with intermittent social confrontation encounters twice daily throughout the final 20 days). Females exhibited distinct physiological and behavioral changes, including relative weight loss, and increases in coronary resistance, hepatic inflammation, and thigmotaxic behavior in the open field. Males evidence reductions in coronary resistance and cardiac ischemic tolerance, with increased circulating and hippocampal monoamine levels and emerging anhedonia. Shared CNS gene responses include reduced hippocampal Maoa and increased Htr1b expression, while unique responses include repression of hypothalamic Ntrk1 and upregulation of cortical Nrf2 and Htr1b in females; and repression of hippocampal Drd1 and hypothalamic Gabra1 and Oprm in males. Declining cardiac stress resistance in males was associated with repression of cardiac leptin levels and metabolic, mitochondrial biogenesis, and anti-inflammatory gene expression. These integrated data reveal distinct biological responses to social stress in males and females, and collectively evidence greater biological disruption or allostatic load in females (consistent with propensities to stress-related mood and cardiovascular disorders in humans). Distinct stress biology, and molecular to organ responses, emphasize the importance of sex-specific mechanisms and potential approaches to stress-dependent disease.
Collapse
Affiliation(s)
- Tessa J Helman
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - John P Headrick
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jelena Vider
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Nicolas J C Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia.,Gold Coast Hospital and Health Service, Southport, Queensland, Australia
| |
Collapse
|
37
|
Sequeira-Cordero A, Brenes JC. Time course of plasticity-related alterations following the first exposure to amphetamine in juvenile rats. Pharmacol Biochem Behav 2022; 221:173489. [PMID: 36375621 DOI: 10.1016/j.pbb.2022.173489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
In vulnerable consumers, the first drug exposure induces various neurobehavioral adaptations that may represent the starting point toward addiction. Elucidating the neuroplastic mechanisms underlying that first rewarding experience would contribute to understanding the transition from recreational to compulsive drug use. In a preclinical model with juvenile rats, we analyzed the time-dependent fluctuations in the expression of neuroplasticity-related genes like the brain-derived neurotrophic factor (BDNF), its tropomyosin receptor kinase B (TrkB), the cAMP response element-binding protein (CREB), the microRNA-132, the Rho GTPase-activating protein 32 (p250GAP), the corticotropin-releasing factor (CRF), and the neurotransmitters contents in the nucleus accumbens (NAc) and the dorsal striatum (DS) 45, 90, and 180 min after an amphetamine (AMPH) injection. As expected, AMPH altered the concentration of norepinephrine, dopamine, DOPAC, and serotonin in a region- and time-dependent manner. Regarding gene expression, AMPH at 45 min upregulated BDNF and primiR-132 expression in NAc and downregulated TrkB expression in DS. At 90 min, AMPH upregulated TrkB, CREB, p250GAP, and primiR-132 expression in NAc and BDNF, primiR-132, and CRF in DS. At 180 min, only BNDF in NAc continued to be upregulated by AMPH. Based on the levels of AMPH-induced hyperactivity, we classified the rats as low and high AMPH responders. High AMPH responders characterized by overexpressing BDNF, CREB, p250GAP, and CRF in NAc and by showing lower levels of dopamine and serotonin metabolites and turnovers in both regions. Our findings demonstrated that a single AMPH administration is enough to induce neuroplastic adaptations, especially in the NAc of prone rats.
Collapse
Affiliation(s)
- Andrey Sequeira-Cordero
- Instituto de Investigaciones en Salud, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica
| | - Juan C Brenes
- Instituto de Investigaciones Psicológicas, Universidad de Costa Rica, Costa Rica; Centro de Investigación en Neurociencias, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
38
|
Potrebić MS, Pavković ŽZ, Srbovan MM, Ðmura GM, Pešić VT. Changes in the Behavior and Body Weight of Mature, Adult Male Wistar Han Rats after Reduced Social Grouping and Social Isolation. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:615-623. [PMID: 36328417 PMCID: PMC9732776 DOI: 10.30802/aalas-jaalas-22-000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Changes in housing density, including individual housing, are commonly necessary in animal research. Obtaining reproducibility and translational validity in biomedical research requires an understanding of how animals adapt to changes in housing density. Existing literature mainly addresses acclimatization after transportation. We used a within-subject design to examine changes in behavior and weight gain of 4-mo-old male Wistar Han rats after reduction of their social group (RSG; due to removal of one rat from a cage containing 3 rats) and social isolation (SI; the removed rat) for the subsequent 2 wk. Changes in weight gain and in exploratory and center-avoidance behavior in an inescapable open arena (OA) were measured before (D0) and on days 7 and 14 (D7 and D14, respectively) after social change. The motor response to d-amphetamine (1.5 mg/kg), which stimulates behavioral arousal in response to novelty, was assessed at D14. Within-subject design revealed that RSG rats in OA had less locomotion at D7 but not more center-avoidance behavior and had returned to the D0 activity level at D14; SI rats in OA had consistently less locomotion and more center-avoidance behavior. Rearing behavior during OA exposure did not change in either group. However, SI rats showed more center-avoidance behavior in OA, greater weight gain, and less amphetamine-induced rearing at D14 as compared with RSG rats. These data indicate that after RSG, mature adult male rats require 2 wk to return to their baseline level of OA-related behavior, while after SI they gain weight and acquire maladaptive exploratory and center-avoidance behavior. The finding that SI produces maladaptive behavioral and physiologic alterations in adult male rats deserves attention because these changes could have confounding effects on research findings.
Collapse
Affiliation(s)
- Milica S Potrebić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Željko Z Pavković
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja M Srbovan
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran M Ðmura
- Animal Facility, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna T Pešić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia,,Corresponding author.
| |
Collapse
|
39
|
Akber U, Bong S, Park ZY, Park CS. Effects of cereblon on stress-activated redox proteins and core behavior. Brain Res 2022; 1793:148054. [PMID: 35973609 DOI: 10.1016/j.brainres.2022.148054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
The mechanisms underlying the vulnerability and resilience of an individual to stress are only partly understood. Response to stress is determined by behavioral and biochemical changes in the brain. Chronic ultra-mild stress (CUMS) induces an anhedonic-like state in mice that resembles symptoms of human depression. This study reports the role of cereblon (CRBN) in regulating the metabolic and antioxidant status of neuronal tissues in the mouse model of CUMS. Intriguingly, Crbn-/- (KO) mice showed resilient responsiveness, both at the behavioral and proteomic levels. Several core behaviors were also differentially altered by CUMS in KO mice. Liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based proteome analysis of whole brain lysate (WBL) showed an enriched chaperonic, metabolic, and antioxidant status in the brains of KO subjects, including several members of DNAJ chaperones, creatine kinase, quinone oxidoreductase, superoxide dismutase (SOD1), glutathione S-transferase Mu (GSTM), peroxiredoxin-6 (PRDX6), and thioredoxin. Pathological phosphorylation as characterized by aggregation of tau and α-synuclein (α-syn) was significantly reduced in the neuronal tissues of KO mouse model of CUMS as compared to wild type (WT) mice. Furthermore, significantly increased SOD1 activity and reduced lipid peroxidation were observed in Crbn-KO systems. Integrated signaling pathways were also identified in CRBN-specific sub-networks constructed from protein-protein interaction analysis by STRING. The present study highlights the roles of CRBN in regulating the stress response (SR) and reshaping metabolic status in the brains of mice exposed to CUMS. A better understanding of the molecular mechanisms of depression and neurodegeneration can improve the development of novel treatments.
Collapse
Affiliation(s)
- Uroos Akber
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sunhwa Bong
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Zee-Yong Park
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
40
|
Sucrose Preference Test as a Measure of Anhedonic Behavior in a Chronic Unpredictable Mild Stress Model of Depression: Outstanding Issues. Brain Sci 2022; 12:brainsci12101287. [PMID: 36291221 PMCID: PMC9599556 DOI: 10.3390/brainsci12101287] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022] Open
Abstract
Despite numerous studies on the neurobiology of depression, the etiological and pathophysiological mechanisms of this disorder remain poorly understood. A large number of animal models and tests to evaluate depressive-like behavior have been developed. Chronic unpredictable mild stress (CUMS) is the most common and frequently used model of depression, and the sucrose preference test (SPT) is one of the most common tests for assessing anhedonia. However, not all laboratories can reproduce the main effects of CUMS, especially when this refers to a decrease in sucrose preference. It is also unknown how the state of anhedonia, assessed by the SPT, relates to the state of anhedonia in patients with depression. We analyzed the literature available in the PubMed database using keywords relevant to the topic of this narrative review. We hypothesize that the poor reproducibility of the CUMS model may be due to differences in sucrose consumption, which may be influenced by such factors as differences in sucrose preference concentration threshold, water and food deprivation, and differences in animals’ susceptibility to stress. We also believe that comparisons between animal and human states of anhedonia should be made with caution because there are many inconsistencies between the two, including in assessment methods. We also tried to offer some recommendations that should improve the reproducibility of the CUMS model and provide a framework for future research.
Collapse
|
41
|
Grigoryan GA, Pavlova IV, Zaichenko MI. Effects of Social Isolation on the Development of Anxiety and Depression-Like Behavior in Model Experiments in Animals. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:722-738. [PMID: 36119650 PMCID: PMC9471030 DOI: 10.1007/s11055-022-01297-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
This review describes the role of social isolation in the development of anxiety and depression-like behavior in rodents. The duration of social isolation, age from onset of social isolation, sex, species, and strain of animals, the nature of the model used, and other factors have been shown to have influences. The molecular-cellular mechanisms of development of anxiety and depression-like behavior under the influence of social isolation and the roles of the HHAS, oxidative and nitrosative stress, neuroinflammation, BDNF, neurogenesis, synaptic plasticity, as well as monoamines in these mechanisms are discussed. This review presents data on sex differences in the effects of social isolation, along with the effects of interactions with other types of stress, and the roles of an enriched environment and other factors in ameliorating the negative sequelae of social isolation.
Collapse
Affiliation(s)
- G. A. Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - I. V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - M. I. Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
42
|
Hirata RYS, Oliveira RN, Silva MSCF, Armada-Moreira A, Vaz SH, Ribeiro FF, Sebastião AM, Lemes JA, de Andrade JS, Rosário BA, Céspedes IC, Viana MB. Platinum nanoparticle-based microreactors protect against the behavioral and neurobiological consequences of chronic stress exposure. Brain Res Bull 2022; 190:1-11. [PMID: 36089164 DOI: 10.1016/j.brainresbull.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022]
Abstract
Excitotoxicity is described as the exacerbated activation of glutamate AMPA and NMDA receptors that leads to neuronal damage, and ultimately to cell death. Astrocytes are responsible for the clearance of 80-90% of synaptically released glutamate, preventing excitotoxicity. Chronic stress renders neurons vulnerable to excitotoxicity and has been associated to neuropsychiatric disorders, i.e., anxiety. Microreactors containing platinum nanoparticles (Pt-NP) and glutamate dehydrogenase have shown in vitro activity against excitotoxicity. The purpose of the present study was to investigate the in vivo effects of these microreactors on the behavioral and neurobiological effects of chronic stress exposure. Rats were either unstressed or exposed for 2 weeks to an unpredictable chronic mild stress paradigm (UCMS), administered intra-ventral hippocampus with the microreactors (with or without the blockage of astrocyte functioning), and seven days later tested in the elevated T-maze (ETM; Experiment 1). The ETM allows the measurement of two defensive responses, avoidance and escape, in terms of psychopathology respectively related to generalized anxiety and panic disorder. Locomotor activity in an open field was also measured. Since previous evidence shows that stress inhibits adult neurogenesis, we evaluated the effects of the different treatments on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the dorsal and ventral hippocampus (Experiment 2). Results showed that UCMS induces anxiogenic effects, increases locomotion, and decreases the number of DCX cells in the dorsal and ventral hippocampus, effects that were counteracted by microreactor administration. This is the first study to demonstrate the in vivo efficacy of Pt-NP against the behavioral and neurobiological effects of chronic stress exposure.
Collapse
Affiliation(s)
- Rafael Y S Hirata
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Roberto N Oliveira
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Mariana S C F Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Adam Armada-Moreira
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, 602 21 Norrköping, Sweden
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jéssica A Lemes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - José S de Andrade
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Bárbara A Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Isabel C Céspedes
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, 04023-900 São Paulo, SP, Brazil
| | - Milena B Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil.
| |
Collapse
|
43
|
Abdelmeguid NE, Hammad TM, Abdel-Moneim AM, Salam SA. Effect of Epigallocatechin-3-gallate on Stress-Induced Depression in a Mouse Model: Role of Interleukin-1β and Brain-Derived Neurotrophic Factor. Neurochem Res 2022; 47:3464-3475. [PMID: 35939172 PMCID: PMC9546794 DOI: 10.1007/s11064-022-03707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) is a natural polyphenolic antioxidant in green tea leaves with well-known health-promoting properties. However, the influence of EGCG on a chronic animal model of depression remains to be fully investigated, and the details of the molecular and cellular changes are still unclear. Therefore, the present study aimed to investigate the antidepressant effect of EGCG in mice subjected to chronic unpredictable mild stress (CUMS). After eight consecutive weeks of CUMS, the mice were treated with EGCG (200 mg/kg b.w.) by oral gavage for two weeks. A forced swimming test (FST) was used to assess depressive symptoms. EGCG administration significantly alleviated CUMS-induced depression-like behavior in mice. EGCG also effectively decreased serum interleukin-1β (IL-1β) and increased the mRNA expression levels of brain-derived neurotrophic factor (BDNF) in the hippocampal CA3 region of CUMS mice. Furthermore, electron microscopic examination of CA3 neurons in CUMS mice showed morphological features of apoptosis, loss or disruption of the myelin sheath, and degenerating synapses. These neuronal injuries were diminished with the administration of EGCG. The treatment effect of EGCG in CUMS-induced behavioral alterations was comparable with that of clomipramine hydrochloride (Anafranil), a tricyclic antidepressant drug. In conclusion, our study demonstrates that the antidepressive action of EGCG involves downregulation of serum IL-1β, upregulation of BDNF mRNA in the hippocampus, and reduction of CA3 neuronal lesions.
Collapse
Affiliation(s)
- Nabila E Abdelmeguid
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Tasneem M Hammad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.,Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Ashraf M Abdel-Moneim
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
44
|
Dandi E, Spandou E, Tata DA. Investigating the role of environmental enrichment initiated in adolescence against the detrimental effects of chronic unpredictable stress in adulthood: Sex-specific differences in behavioral and neuroendocrinological findings. Behav Processes 2022; 200:104707. [PMID: 35842198 DOI: 10.1016/j.beproc.2022.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Environmental Enrichment (EE) improves cognitive function and enhances brain plasticity, while chronic stress increases emotionality, impairs learning and memory, and has adverse effects on brain anatomy and biochemistry. We explored the beneficial role of environmental enrichment initiated in adolescence against the negative outcomes of Chronic Unpredictable Stress (CUS) during adulthood on emotional behavior, cognitive function, as well as somatic and neuroendocrine markers in both sexes. Adolescent Wistar rats housed either in enriched or standard housing conditions for 10 weeks. On postnatal day 66, a subgroup from each housing condition was daily exposed to a 4-week stress protocol. Following stress, adult rats underwent behavioral testing to evaluate anxiety, exploration/locomotor activity, depressive-like behavior and spatial learning/memory. Upon completion of behavioral testing, animals were exposed to a 10-m stressful event to test the neuroendocrine response to acute stress. CUS decreased body weight gain and increased adrenal weight. Some stress-induced behavioral adverse effects were sex-specific since learning impairments were limited to males while depressive-like behavior to females. EE housing protected against CUS-related behavioral deficits and body weight loss. Exposure to CUS affected the neuroendocrine response of males to acute stress as revealed by the increased corticosterone levels. Our findings highlight the significant role of EE in adolescence as a protective factor against the negative effects of stress and underline the importance of inclusion of both sexes in animal studies.
Collapse
Affiliation(s)
- Evgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
45
|
Johnson AC, Uhlig F, Einwag Z, Cataldo N, Erdos B. The neuroendocrine stress response impairs hippocampal vascular function and memory in male and female rats. Neurobiol Dis 2022; 168:105717. [PMID: 35385769 PMCID: PMC9018625 DOI: 10.1016/j.nbd.2022.105717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic psychological stress affects brain regions involved in memory such as the hippocampus and accelerates age-related cognitive decline, including in Alzheimer's disease and vascular dementia. However, little is known about how chronic stress impacts hippocampal vascular function that is critically involved in maintaining neurocognitive health that could contribute to stress-related memory dysfunction. Here, we used a novel experimental rat model that mimics the neuroendocrine and cardiovascular aspects of chronic stress to determine how the neuroendocrine components of the stress response affect hippocampal function. We studied both male and female rats to determine potential sex differences in the susceptibility of the hippocampus and its vasculature to neuroendocrine stress-induced dysfunction. We show that activation of neuroendocrine stress pathways impaired the vasoreactivity of hippocampal arterioles to mediators involved in coupling neuronal activity with local blood flow that was associated with impaired memory function. Interestingly, we found more hippocampal arteriolar dysfunction and scarcer hippocampal microvasculature in male compared to female rats that was associated with greater memory impairment, suggesting the male sex may be at increased risk of neuroendocrine-derived hippocampal dysfunction during chronic stress. Overall, this study revealed the therapeutic potential of targeting hippocampal arterioles to prevent or slow memory decline in the setting of prolonged and/or unavoidable stress.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Friederike Uhlig
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Zachary Einwag
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Noelle Cataldo
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
46
|
The antidepressant and anxiolytic effects of cannabinoids in chronic unpredictable stress: a preclinical systematic review and meta-analysis. Transl Psychiatry 2022; 12:217. [PMID: 35641487 PMCID: PMC9156762 DOI: 10.1038/s41398-022-01967-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 12/09/2022] Open
Abstract
Neuroscience research presents contradictory evidence in support of both the protective and destructive effects of cannabinoids in depression. Therefore, this systematic review and meta-analysis summarizes the existing preclinical literature on the effects of cannabinoid administration in the chronic unpredictable stress model of depression in order to evaluate the effects of cannabinoids and identify gaps in the literature. After protocol registration (PROSPERO #CRD42020219986), we systematically searched Scopus, Embase, Psychology & Behavioral Sciences Collection, APA PsychINFO, PubMed, CINAHL Complete, and ProQuest Dissertations & Theses Global from the earliest record of the databases, February 1964, to November 2020 for articles that met inclusion criteria (e.g., rodent subjects and administration of a cannabinoid. A total of 26 articles were included representing a sample size estimate of 1132 rodents with the majority of articles administering daily intraperitoneal injections during chronic unpredictable stress. These articles were evaluated using a modified SYRCLE's risk-of-bias tool. For each continuous behavioral measure, the standardized mean difference was calculated between cannabinoid and vehicle groups in rodents subjected to chronic unpredictable stress. The effects of cannabinoids on depressive-like behavior was evaluated using a multilevel mixed-effects model with effect size weights nested within control groups. Cannabinoid administration moderately improved the pooled negative effects of chronic unpredictable stress on anhedonia, learned helplessness, novelty suppressed feeding, time in the anxiogenic context, and entries into the anxiogenic context. Although the interpretations are limited, these findings suggest that with further investigation, cannabinoids may be a viable long-term treatment for stress-related psychopathologies such as depression.
Collapse
|
47
|
Continuous Ingestion of Lacticaseibacillus rhamnosus JB-1 during Chronic Stress Ensures Neurometabolic and Behavioural Stability in Rats. Int J Mol Sci 2022; 23:ijms23095173. [PMID: 35563564 PMCID: PMC9106030 DOI: 10.3390/ijms23095173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
The intestinal microbiome composition and dietary supplementation with psychobiotics can result in neurochemical alterations in the brain, which are possible due to the presence of the brain–gut–microbiome axis. In the present study, magnetic resonance spectroscopy (MRS) and behavioural testing were used to evaluate whether treatment with Lacticaseibacillus rhamnosus JB-1 (JB-1) bacteria alters brain metabolites’ levels and behaviour during continuous exposure to chronic stress. Twenty Wistar rats were subjected to eight weeks of a chronic unpredictable mild stress protocol. Simultaneously, half of them were fed with JB-1 bacteria, and the second half was given a daily placebo. Animals were examined at three-time points: before starting the stress protocol and after five and eight weeks of stress onset. In the elevated plus maze behavioural test the placebo group displayed increased anxiety expressed by almost complete avoidance of exploration, while the JB-1 dietary supplementation mitigated anxiety which resulted in a longer exploration time. Hippocampal MRS measurements demonstrated a significant decrease in glutamine + glutathione concentration in the placebo group compared to the JB-1 bacteria-supplemented group after five weeks of stress. With the progression of stress, the decrease of glutamate, glutathione, taurine, and macromolecular concentrations were observed in the placebo group as compared to baseline. The level of brain metabolites in the JB-1-supplemented rats were stable throughout the experiment, with only the taurine level decreasing between weeks five and eight of stress. These data indicated that the JB-1 bacteria diet might stabilize levels of stress-related neurometabolites in rat brain and could prevent the development of anxiety/depressive-like behaviour.
Collapse
|
48
|
Kositsyn YMHB, Volgin AD, de Abreu MS, Demin KA, Zabegalov KN, Maslov GO, Petersen EV, Kolesnikova TO, Strekalova T, Kalueff AV. Towards translational modeling of behavioral despair and its treatment in zebrafish. Behav Brain Res 2022; 430:113906. [PMID: 35489477 DOI: 10.1016/j.bbr.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/03/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
Depression is a widespread and severely debilitating neuropsychiatric disorder whose key clinical symptoms include low mood, anhedonia and despair (the inability or unwillingness to overcome stressors). Experimental animal models are widely used to improve our mechanistic understanding of depression pathogenesis, and to develop novel antidepressant therapies. In rodents, various experimental models of 'behavioral despair' have already been developed and rigorously validated. Complementing rodent studies, the zebrafish (Danio rerio) is emerging as a powerful model organism to assess pathobiological mechanisms of depression and other related affective disorders. Here, we critically discuss the developing potential and important translational implications of zebrafish models for studying despair and its mechanisms, and the utility of such aquatic models for antidepressant drug screening.
Collapse
Affiliation(s)
- Yuriy M H B Kositsyn
- School of Pharmacy, Southwest University, Chongqing, China; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew D Volgin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; Sirius University of Science and Technology, Sochi, Russia.
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | | | - Gleb O Maslov
- Ural Federal University, Ekaterinburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | | | | | - Tatiana Strekalova
- University of Maastricht, Maastricht, Netherlands; Sirius University of Science and Technology, Sochi, Russia
| | - Allan V Kalueff
- Ural Federal University, Ekaterinburg, Russia; University of Maastricht, Maastricht, Netherlands; Sirius University of Science and Technology, Sochi, Russia.
| |
Collapse
|
49
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
50
|
Vindas-Smith R, Quesada D, Hernández-Solano MI, Castro M, Sequeira-Cordero A, Fornaguera J, Gómez G, Brenes JC. Fat intake and obesity-related parameters predict striatal BDNF gene expression and dopamine metabolite levels in cafeteria diet-fed rats. Neuroscience 2022; 491:225-239. [DOI: 10.1016/j.neuroscience.2022.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|