1
|
Plotnikov EV, Drozd AG, Artamonov AA, Larkina MS, Belousov MV, Lomov IV, Garibo D, Pestryakov AN, Bogdanchikova N. Silver nanoparticles enhance neutron radiation sensitivity in cancer cells: An in vitro study. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 65:102813. [PMID: 40024490 DOI: 10.1016/j.nano.2025.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/25/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Growing interest in cancer radiotherapy has led to the application of nanoparticles as radiosensitizers. Here, we, for the first time, present the results of the radiosensitizing properties of silver nanoparticles (AgNPs) (possessing low toxicity towards human body) against cancer cells under neutron irradiation. Five standard cancer cultures (including glioblastoma, known for its resistance to conventional photon radiation) were used to evaluate the radiosensitizing properties of AgNPs suing MTT test, flow cytometry, and optical fluorescence microscopy. Neutron irradiation was applied in the absorbed dose of 0.5-1.5 Gy with an average neutron energy of 7.5 MeV. AgNPs increased the irradiation efficiency with the radiosensitivity enhancement ratios 1.02-2.32, for glioblastoma with ratios 1.22-1.47. It was revealed that at 1.5 Gy, AgNP-induced cytotoxicity made a significant contribution to the total observed radiosensitizer effect: on average, for five cell types, 29.8 and 96.2 % at the AgNP concentration of 0.2 and 1.6 μg/mL, respectively.
Collapse
Affiliation(s)
- Evgenii V Plotnikov
- National Research Tomsk Polytechnic University, Tomsk, Russia; Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | | | - Anton A Artamonov
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Maria S Larkina
- National Research Tomsk Polytechnic University, Tomsk, Russia; Department of Pharmaceutical Analysis, Siberian State Medical University, 634050 Tomsk, Russia
| | - Mikhail V Belousov
- National Research Tomsk Polytechnic University, Tomsk, Russia; Department of Pharmaceutical Analysis, Siberian State Medical University, 634050 Tomsk, Russia
| | - Ivan V Lomov
- National Research Tomsk Polytechnic University, Tomsk, Russia
| | - D Garibo
- Nanoscience and Nanotechnology Center (CNyN), Campus Ensenada, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | | | - Nina Bogdanchikova
- Nanoscience and Nanotechnology Center (CNyN), Campus Ensenada, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
2
|
Amintas S, Dupin C, Derieppe MA, Moranvillier I, Lamrissi I, Bourdié C, Feurer Z, Fernandez B, Heng-Pradère T, Moreau-Gaudry F, Bedel A, Vendrely V, Dabernat S. Resveratrol and capsaicin as safer radiosensitizers for colorectal cancer compared to 5-fluorouracil. Biomed Pharmacother 2025; 183:117799. [PMID: 39755023 DOI: 10.1016/j.biopha.2024.117799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/14/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND AND AIM Standard rectal cancer treatment includes neoadjuvant radiotherapy sensitized by 5-fluorouracil (5-FU) chemotherapy. However, 5-FU increased chemoradiotherapy response rate comes with significant toxicity, especially in older, frail patients. The development of alternatives to chemotherapy enabling radiosensitization with limited systemic toxicity is therefore needed to improve patient management. Bioactive food components (BFCs) can exhibit chemo or radio-sensitizing properties against cancer cells. Moreover, the cytotoxic action of BFCs may be tumor-specific, with reduced impact on healthy cells. We hypothesized that BFCs, in particular resveratrol and capsaicin, alone or in association, could lead to specific radio-sensitization of colorectal tumors while offering reduced toxicity compared to 5-FU. EXPERIMENTAL PROCEDURE Colorectal tumor and non-tumor cell lines were treated with resveratrol, capsaicin, or 5-FU, alone or in combination, then irradiated; survival, cell cycle, and apoptosis were analyzed. RAGγ2C-/- mice with xenografts received oral resveratrol, resveratrol + capsaicin, or 5-FU, followed by radiotherapy, with tumor growth and systemic toxicity evaluated. KEY RESULTS Resveratrol alone or in association with capsaicin radio-potentiates colorectal tumor cells in vitro, impacting both cell cycle and apoptosis. In a preclinical mouse model, the oral administration of resveratrol and capsaicin, but not resveratrol alone, allowed the radio-sensitization of subcutaneous colorectal tumors with similar efficiency to 5-FU. Moreover, the global as well as the hematological toxicity of the BFC association was lower than those of 5-FU. CONCLUSION This work establishes BFCs as effective enhancers of radiotherapy, offering a safer alternative to traditional radiosensitization with chemotherapy.
Collapse
Affiliation(s)
- Samuel Amintas
- University of Bordeaux, Bordeaux, France; INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France; Tumor Biology and Tumor Bank Department, Bordeaux University Hospital, Bordeaux, France
| | - Charles Dupin
- University of Bordeaux, Bordeaux, France; INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France; Radiotherapy Department, Bordeaux University Hospital, Bordeaux, France
| | - Marie-Alix Derieppe
- University of Bordeaux, Bordeaux, France; Shared Animal Facility, Common Animal Facilities Service, University of Bordeaux, Bordeaux, France
| | - Isabelle Moranvillier
- University of Bordeaux, Bordeaux, France; INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France
| | - Isabelle Lamrissi
- University of Bordeaux, Bordeaux, France; INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France
| | - Corine Bourdié
- University of Bordeaux, Bordeaux, France; INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France
| | - Zoe Feurer
- University of Bordeaux, Bordeaux, France; INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France
| | - Benjamin Fernandez
- University of Bordeaux, Bordeaux, France; INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France; Colorectal Digestive Surgery Department, Bordeaux University Hospital (CHU de Bordeaux), France
| | - Tyty Heng-Pradère
- Pathology Department, Bordeaux University Hospital (CHU de Bordeaux), Bordeaux, France
| | - François Moreau-Gaudry
- University of Bordeaux, Bordeaux, France; INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France; Biochemistry Department, Bordeaux University Hospital (CHU de Bordeaux), Bordeaux, France
| | - Aurélie Bedel
- University of Bordeaux, Bordeaux, France; INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France; Biochemistry Department, Bordeaux University Hospital (CHU de Bordeaux), Bordeaux, France
| | - Véronique Vendrely
- University of Bordeaux, Bordeaux, France; INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France; Radiotherapy Department, Bordeaux University Hospital, Bordeaux, France
| | - Sandrine Dabernat
- University of Bordeaux, Bordeaux, France; INSERM U1312, Bordeaux Institute of Oncology - BRIC, BioGo Team, Bordeaux, France; Biochemistry Department, Bordeaux University Hospital (CHU de Bordeaux), Bordeaux, France.
| |
Collapse
|
3
|
Tamtaji OR, Ostadian A, Homayoonfal M, Nejati M, Mahjoubin-Tehran M, Nabavizadeh F, Ghelichi E, Mohammadzadeh B, Karimi M, Rahimian N, Mirzaei H. Cerium(IV) oxide:silver/graphene oxide (CeO2:Ag/GO) nanoparticles modulate gene expression and inhibit colorectal cancer cell growth: a pathway-centric therapeutic approach. Cancer Nanotechnol 2024; 15:62. [DOI: 10.1186/s12645-024-00300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 01/06/2025] Open
|
4
|
Li Q, Xu X, Xu F, Zhang X, Zhang L. Application effect of preoperative chemoradiotherapy combined with rehabilitation nursing in patients with rectal cancer surgery. Biotechnol Genet Eng Rev 2024; 40:2628-2642. [PMID: 37037006 DOI: 10.1080/02648725.2023.2200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
To study the effect of preoperative chemoradiotherapy combined with rehabilitation nursing in patients with rectal cancer surgery. 106 cases of rectal cancer patients in our hospital were selected. 53 cases in each group were treated with surgical treatment combined with rehabilitation nursing treatment and preoperative radiotherapy and chemotherapy combined with surgical treatment and rehabilitation nursing treatment in the study group. The T stage (ypT) and N stage (ypN) downgrading rates of serum carcinoembryonic antigen (CEA) and carbohydrate antigen (CA)19-9 were compared between the two groups after treatment. The 5-year cumulative survival rate, recurrence rate and the positive rate of Bax and antigen identified by monoclonal antibody Ki-67 (Ki-67) expression were detected. T stage downgrading rate and N stage downgrading rate were 77.36% (41/53) 35.85% (19/53) in control group and 94.34% (50/53) 64.15% (34/53) in research group, respectively. The CEA and CA19-9 levels measured at the end of surgery and one month after nursing in both groups were lower than those before treatment. After treatment, scores of quality of life indicators in both groups increased. The positive rates of Bax and Ki-67Ki-67 were significantly different between the two groups after treatment (P < 0.05). Preoperative chemoradiotherapy combined with rehabilitation nursing has obvious effect on patients with rectal cancer surgery, and has obvious advantages in inhibiting tumor growth, destroying tumor survival immune environment and reducing surgical complications, which can improve the prognosis and is worthy of clinical application. It could provide a potential treatment for patients with rectal cancer.
Collapse
Affiliation(s)
- Qinggang Li
- Department of Proctology, Dongying People's Hospital, Dongying Hospital Affiliated to Shandong Provincial Hospital Group, Dongying, China
| | - Xiaoqing Xu
- Operating Room, Dongying People's Hospital, Dongying Hospital Affiliated to Shandong Provincial Hospital Group, Dongying, China
| | - Fagang Xu
- Department of Proctology, Dongying People's Hospital, Dongying Hospital Affiliated to Shandong Provincial Hospital Group, Dongying, China
| | - Xuebin Zhang
- Department of Proctology, Dongying People's Hospital, Dongying Hospital Affiliated to Shandong Provincial Hospital Group, Dongying, China
| | - Li Zhang
- Department of Infectious Diseases, Dongying People's Hospital, Dongying Hospital Affiliated to Shandong Provincial Hospital Group, Dongying, China
| |
Collapse
|
5
|
Benej M, Hoyd R, Kreamer M, Wheeler CE, Grencewicz DJ, Choueiry F, Chan CH, Zakharia Y, Ma Q, Dodd RD, Ulrich CM, Hardikar S, Churchman ML, Tarhini AA, Robinson LA, Singer EA, Ikeguchi AP, McCarter MD, Tinoco G, Husain M, Jin N, Tan AC, Osman AE, Eljilany I, Riedlinger G, Schneider BP, Benejova K, Kery M, Papandreou I, Zhu J, Denko N, Spakowicz D. The Tumor Microbiome Reacts to Hypoxia and Can Influence Response to Radiation Treatment in Colorectal Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1690-1701. [PMID: 38904265 PMCID: PMC11234499 DOI: 10.1158/2767-9764.crc-23-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Tumor hypoxia has been shown to predict poor patient outcomes in several cancer types, partially because it reduces radiation's ability to kill cells. We hypothesized that some of the clinical effects of hypoxia could also be due to its impact on the tumor microbiome. Therefore, we examined the RNA sequencing data from the Oncology Research Information Exchange Network database of patients with colorectal cancer treated with radiotherapy. We identified microbial RNAs for each tumor and related them to the hypoxic gene expression scores calculated from host mRNA. Our analysis showed that the hypoxia expression score predicted poor patient outcomes and identified tumors enriched with certain microbes such as Fusobacterium nucleatum. The presence of other microbes, such as Fusobacterium canifelinum, predicted poor patient outcomes, suggesting a potential interaction between hypoxia, the microbiome, and radiation response. To experimentally investigate this concept, we implanted CT26 colorectal cancer cells into immune-competent BALB/c and immune-deficient athymic nude mice. After growth, in which tumors passively acquired microbes from the gastrointestinal tract, we harvested tumors, extracted nucleic acids, and sequenced host and microbial RNAs. We stratified tumors based on their hypoxia score and performed a metatranscriptomic analysis of microbial gene expression. In addition to hypoxia-tropic and -phobic microbial populations, analysis of microbial gene expression at the strain level showed expression differences based on the hypoxia score. Thus, hypoxia gene expression scores seem to associate with different microbial populations and elicit an adaptive transcriptional response in intratumoral microbes, potentially influencing clinical outcomes. SIGNIFICANCE Tumor hypoxia reduces radiotherapy efficacy. In this study, we explored whether some of the clinical effects of hypoxia could be due to interaction with the tumor microbiome. Hypoxic gene expression scores associated with certain microbes and elicited an adaptive transcriptional response in others that could contribute to poor clinical outcomes.
Collapse
Affiliation(s)
- Martin Benej
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Rebecca Hoyd
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - McKenzie Kreamer
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Caroline E. Wheeler
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Dennis J. Grencewicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Fouad Choueiry
- Department of Health Sciences, The Ohio State University, Columbus, Ohio.
| | - Carlos H.F. Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | - Yousef Zakharia
- Division of Oncology, Hematology and Blood & Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa.
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Sheetal Hardikar
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | | | - Ahmad A. Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Lary A. Robinson
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Eric A. Singer
- Department of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Alexandra P. Ikeguchi
- Department of Hematology/Oncology, Stephenson Cancer Center of University of Oklahoma, Oklahoma City, Oklahoma.
| | - Martin D. McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado.
| | - Gabriel Tinoco
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Marium Husain
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Ning Jin
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Aik C. Tan
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Afaf E.G. Osman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.
| | - Islam Eljilany
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Clinical Science Lab, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Gregory Riedlinger
- Department of Precision Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| | - Bryan P. Schneider
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana.
| | - Katarina Benejova
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Martin Kery
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Jiangjiang Zhu
- Department of Health Sciences, The Ohio State University, Columbus, Ohio.
| | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Daniel Spakowicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | | |
Collapse
|
6
|
Hatami Zharabad S, Mohammadian M, Zohdi Aghdam R, Hassanzadeh Dizaj M, Behrouzkia Z. Increasing the radiation-induced cytotoxicity by silver nanoparticles and docetaxel in prostate cancer cells. Mol Biol Rep 2024; 51:633. [PMID: 38724835 DOI: 10.1007/s11033-024-09506-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/02/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Radiation therapy is utilized for treatment of localized prostate cancer. Nevertheless, cancerous cells frequently develop radiation resistance. While higher radiation doses have not always been effective, radiosensitizers have been extensively studied for their ability to enhance the cytotoxic effects of radiation. So, this study aims to evaluate the possible radiosensitization effects of docetaxel (DTX) and silver nanoparticles (SNP) in LNCaP cells. METHODS The cytotoxic effects of DTX, SNP and 2 Gy of X-Ray radiation treatments were assessed in human LNCaP cell line using the MTT test after 24 h. Moreover, the effects of DTX, SNP and radiation on Epidermal growth factor (EGF), Caspase 3, inducible nitric oxide synthase and E-cadherin gene expression were analyzed using the Real-time PCR method. The level of Hydrogen peroxide (H2O2), an oxidative stress marker, was also detected 24 h after various single and combined treatments. RESULTS The combinations of SNP (in low toxic concentration) and/or DTX (0.25× IC50 and 0.5 × IC50 concentrations for triple and double combinations respectively) with radiation induced significant cytotoxicity in LNCaP cells in comparison to monotherapies. These cytotoxic effects were associated with the downregulation of EGF mRNA. Additionally, H2O2 levels increased after Radiation + SNP + DTX triple combination and double combinations including Radiation + SNP and Radiation + DTX versus single treatments. The triple combination treatment also increased Caspase 3 and and E-cadherin mRNA levels in compared to single treatments in LNCaP cells. CONCLUSION Our results indicate that the combination of SNP and DTX with radiation induces significant anti-cancer effects. Upregulation of Caspase 3 and E-cadherin gene expression, and decreased mRNA expression level of EGF may be exerted specifically by use of this combination versus single treatments.
Collapse
Affiliation(s)
- Shokrieh Hatami Zharabad
- Medical Physics Department, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahshid Mohammadian
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Zohdi Aghdam
- Medical Physics Department, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohsen Hassanzadeh Dizaj
- Medical Physics Department, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zhaleh Behrouzkia
- Medical Physics Department, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
7
|
Dong J, Wang B, Xiao Y, Liu J, Wang Q, Xiao H, Jin Y, Liu Z, Chen Z, Li Y, Fan S, Li Y, Cui M. Roseburia intestinalis sensitizes colorectal cancer to radiotherapy through the butyrate/OR51E1/RALB axis. Cell Rep 2024; 43:113846. [PMID: 38412097 DOI: 10.1016/j.celrep.2024.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
The radioresistant signature of colorectal cancer (CRC) hampers the clinical utility of radiotherapy. Here, we find that fecal microbiota transplantation (FMT) potentiates the tumoricidal effects of radiation and degrades the intertwined adverse events in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC mice. FMT cumulates Roseburia intestinalis (R. intestinalis) in the gastrointestinal tract. Oral gavage of R. intestinalis assembles at the CRC site and synthetizes butyrate, sensitizing CRC to radiation and alleviating intestinal toxicity in primary and CRC hepatic metastasis mouse models. R. intestinalis-derived butyrate activates OR51E1, a G-protein-coupled receptor overexpressing in patients with rectal cancer, facilitating radiogenic autophagy in CRC cells. OR51E1 shows a positive correlation with RALB in clinical rectal cancer tissues and CRC mouse model. Blockage of OR51E1/RALB signaling restrains butyrate-elicited autophagy in irradiated CRC cells. Our findings highlight that the gut commensal bacteria R. intestinalis motivates radiation-induced autophagy to accelerate CRC cell death through the butyrate/OR51E1/RALB axis and provide a promising radiosensitizer for CRC in a pre-clinical setting.
Collapse
Affiliation(s)
- Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yunong Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jia Liu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qi Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Huiwen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuxiao Jin
- Department of Anesthesiology, Changshu No. 2 People's Hospital, Changshu, Jiangsu Province 215501, China
| | - Zhihong Liu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Zhiyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
8
|
Iranpour S, Bahrami AR, Dayyani M, Saljooghi AS, Matin MM. A potent multifunctional ZIF-8 nanoplatform developed for colorectal cancer therapy by triple-delivery of chemo/radio/targeted therapy agents. J Mater Chem B 2024; 12:1096-1114. [PMID: 38229578 DOI: 10.1039/d3tb02571c] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
BACKGROUND Multimodal cancer therapy has garnered significant interest due to its ability to target tumor cells from various perspectives. The advancement of novel nano-delivery platforms represents a promising approach for improving treatment effectiveness while minimizing detrimental effects on healthy tissues. METHODS This study aimed to develop a multifunctional nano-delivery system capable of simultaneously delivering an anti-cancer drug, a radiosensitizer agent, and a targeting moiety (three-in-one) for the triple combination therapy of colorectal cancer (CRC). This unique nano-platform, called Apt-PEG-DOX/ZIF-8@GQD, encapsulated both doxorubicin (DOX) and graphene quantum dots (GQDs) within the zeolitic imidazolate framework-8 (ZIF-8). To enhance the safety and anti-cancer potential of the platform, heterobifunctional polyethylene glycol (PEG) and an epithelial cell adhesion molecule (EpCAM) aptamer were conjugated with the system, resulting in the formation of targeted Apt-PEG-DOX/ZIF-8@GQD NPs. The physical and chemical characteristics of Apt-PEG-DOX/ZIF-8@GQD were thoroughly examined, and its therapeutic efficacy was evaluated in combination with radiotherapy (RT) against both EpCAM-positive HT-29 and EpCAM-negative CHO cells. Furthermore, the potential of Apt-PEG-DOX/ZIF-8@GQD as a tumor-specific, radio-enhancing, non-toxic, and controllable delivery system for in vivo cancer treatment was explored using immunocompromised C57BL/6 mice bearing human HT-29 tumors. RESULTS The large surface area of ZIF-8 (1013 m2 g-1) enabled successful loading of DOX with an encapsulation efficiency of approximately ∼90%. The synthesis of Apt-PEG-DOX/ZIF-8@GQD resulted in uniform particles with an average diameter of 100 nm. This targeted platform exhibited rapid decomposition under acidic conditions, facilitating an on-demand release of DOX after endosomal escape. In vitro experiments revealed that the biocompatible nano-platform induced selective toxicity in HT-29 cells by enhancing X-ray absorption. Moreover, in vivo experiments demonstrated that the therapeutic efficacy of Apt-PEG-ZIF-8/DOX@GQD against HT-29 tumors was enhanced through the synergistic effects of chemotherapy, radiotherapy, and targeted therapy, with minimal side effects. CONCLUSION The combination of Apt-PEG-DOX/ZIF-8@GQD with RT as a multimodal therapy approach demonstrated promising potential for the targeted treatment of CRC and enhancing therapeutic effectiveness. The co-delivery of DOX and GQD using this nano-platform holds great promise for improving the outcome of CRC treatment.
Collapse
Affiliation(s)
- Sonia Iranpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdieh Dayyani
- Radiation Oncology Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
9
|
Babu B, Stoltz SA, Mittal A, Pawar S, Kolanthai E, Coathup M, Seal S. Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2873. [PMID: 37947718 PMCID: PMC10647410 DOI: 10.3390/nano13212873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Nanotechnology has expanded what can be achieved in our approach to cancer treatment. The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize material characteristics, such as radio-blocking/absorbing high-Z atomic number elements, to mediate localized effects from therapeutic irradiation. These materials thereby allow subsequent scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g., protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials that activate under certain physiologic conditions, such as the tumor microenvironment, can selectively target tumor cells. These characteristics, combined with biological interactions that can target the tumor environment, allow for localized radio-sensitization while mitigating damage to healthy cells. This review explores the various nanomaterial formulations utilized in cancer radiosensitivity research. Emphasis on inorganic nanomaterials showcases the specific material characteristics that enable higher incidences of radiation while ensuring localized cancer targeting based on tumor microenvironment activation. The aim of this review is to guide future research in cancer radiosensitization using nanomaterial formulations and to detail common approaches to its treatment, as well as their relations to commonly implemented radiotherapy techniques.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Samantha Archer Stoltz
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA;
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
10
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Batibay GS, Keser Karaoglan G, Gumrukcu Kose G, Ozcelik Kazancioglu E, Metin E, Danisman Kalindemirtas F, Erdem Kuruca S, Arsu N. DNA groove binder and significant cytotoxic activity on human colon cancer cells: Potential of a dimeric zinc (II) phthalocyanine derivative. Biophys Chem 2023; 295:106974. [PMID: 36827854 DOI: 10.1016/j.bpc.2023.106974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The interaction of a multi-component system consisting of benzene-1,4-diyldimethanimine-bridged dimeric zinc-phthalocyanine groups (4OMPCZ) with calf thymus DNA (ct-DNA) was investigated using UV-Vis absorption, fluorescence emission spectroscopy methods, and viscosity measurements. The binding constant, Kb, which is an important parameter to gain information about the binding mode, was found as 9.7 × 107 M-1 from the UV-Vis absorption studies. Another important spectrophotometric tool is competitive displacement assays with Ethidium bromide and Hoechst 33342. Through this experiment, a higher KSV value was obtained with Hoechst for the phthalocyanine derivative, 4OMPCZ, and the ct-DNA complex than with ethidium bromide. Additionally, molecular docking studies were conducted to calculate the theoretical binding constant and visualize the interactions of 4OMPCZ with a model DNA. According to docking results, although the interactions are mainly located in the major groove of the DNA helix, due to the wrapping, these interactions can also be extended to the minor groove of the DNA. Spectrophotometric, molecular docking, and viscosity studies revealed that the interaction of 4OMPCZ with DNA is likely to be via the major and minor grooves. The in vitro cytotoxic activity of 4OMPCZ was evaluated by MTT assay on human colon cancer cells (HT29) after 72 h of treatment. 4OMPCZ indicated significant cytotoxic activity when stimulated with UV light compared to the standard chemotherapy drugs, fluorouracil (5-FU), and cisplatin on HT29 colon cancer cells. The IC50 value of 4OMPCZ displayed considerably lower concentrations compared to the standard drugs, 5-FU, and cisplatin.
Collapse
Affiliation(s)
- Gonul S Batibay
- Yildiz Technical University, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| | - Gulnur Keser Karaoglan
- Yildiz Technical University, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| | - Gulsah Gumrukcu Kose
- Yildiz Technical University, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| | | | - Eyup Metin
- Yildiz Technical University, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey; Turkish-German University, Department of Materials Science and Technology, 34820 Istanbul, Turkey
| | - Ferdane Danisman Kalindemirtas
- Erzincan Binali Yildirim University, Faculty of Medicine, Department of Physiology, Erzincan 24100, Turkey; Istanbul University, Faculty of Medicine, Department of Physiology, 34093 Istanbul, Turkey
| | - Serap Erdem Kuruca
- Atlas University, Faculty of Medicine, Department of Physiology, Istanbul 34403, Turkey; Istanbul University, Faculty of Medicine, Department of Physiology, 34093 Istanbul, Turkey
| | - Nergis Arsu
- Yildiz Technical University, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey.
| |
Collapse
|
12
|
Freitas SC, Sanderson D, Caspani S, Magalhães R, Cortés-Llanos B, Granja A, Reis S, Belo JH, Azevedo J, Gómez-Gaviro MV, de Sousa CT. New Frontiers in Colorectal Cancer Treatment Combining Nanotechnology with Photo- and Radiotherapy. Cancers (Basel) 2023; 15:383. [PMID: 36672333 PMCID: PMC9856291 DOI: 10.3390/cancers15020383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Despite recent advances in the treatment of this pathology, which include a personalized approach using radio- and chemotherapies in combination with advanced surgical techniques, it is imperative to enhance the performance of these treatments and decrease their detrimental side effects on patients' health. Nanomedicine is likely the pathway towards solving this challenge by enhancing both the therapeutic and diagnostic capabilities. In particular, plasmonic nanoparticles show remarkable potential due to their dual therapeutic functionalities as photothermal therapy agents and as radiosensitizers in radiotherapy. Their dual functionality, high biocompatibility, easy functionalization, and targeting capabilities make them potential agents for inducing efficient cancer cell death with minimal side effects. This review aims to identify the main challenges in the diagnosis and treatment of colorectal cancer. The heterogeneous nature of this cancer is also discussed from a single-cell point of view. The most relevant works in photo- and radiotherapy using nanotechnology-based therapies for colorectal cancer are addressed, ranging from in vitro studies (2D and 3D cell cultures) to in vivo studies and clinical trials. Although the results using nanoparticles as a photo- and radiosensitizers in photo- and radiotherapy are promising, preliminary studies showed that the possibility of combining both therapies must be explored to improve the treatment efficiency.
Collapse
Affiliation(s)
- Sara C. Freitas
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Sofia Caspani
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ricardo Magalhães
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Horta Belo
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José Azevedo
- Colorectal Surgery—Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisboa, Portugal
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Célia Tavares de Sousa
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, C/ Francisco Tomas y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
13
|
Gosztonyi B, Pestalozzi B, Kenkel D, Engel-Bicik I, Kaufmann PA, Treyer V, Siebenhüner AR. A descriptive analysis of the characteristics, treatment response and prognosis of hepatic dominant solid tumors undergoing selective internal radiation therapy (SIRT). J Gastrointest Oncol 2022; 13:3240-3253. [PMID: 36636090 PMCID: PMC9830351 DOI: 10.21037/jgo-22-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
Background Selective internal radiotherapy is widely used for liver dominant diseases of solid tumors. However, data about sequential treatment and prognostic factors are lacking. Methods We consecutively included all 209 patients who received a selective internal radiotherapy intervention between January 2015 and May 2019. A retrospective analysis of their electronic patient records was performed regarding diagnosis of cancer, previous therapies and applied radioactive activity. A multicenter follow-up at least 6 weeks after intervention to assess radiological response and irregular subsequent follow-ups to asses disease progression were conducted. In addition, subgroup analyses were carried out. Results The most frequently treated indications were hepatocellular carcinoma (37%), colorectal cancers (14%), neuroendocrine tumors (9%), and breast cancer (8%). In hepatocellular carcinoma, selective internal radiotherapy was most performed without prior systemic therapy (40%), and for the remaining indications, most often after surgery with systemic therapy in sequence. Local radiological response, defined as either regression or stable disease, was assessed at least 6 weeks after intervention and showed 52% across all indications. Hepatocellular carcinoma (59%) and breast cancer (67%) showed an excellent, colorectal cancers (29%) a particularly poor response rate. Neuroendocrine tumors showed the third longest median post-selective internal radiation therapy (SIRT) survival with 12.4 months and the second longest median progression-free time with 5.2 months. Hepatocellular carcinoma showed even better results with a post-SIRT survival of 15.7 months and a median progression-free time of 5.3 months. Pancreatic neuroendocrine tumors showed significantly worse outcomes than other neuroendocrine tumors, regarding median post-SIRT survival and median progression-free time. No relevant SIRT related differences among sexes were detected. Conclusions Patients with neuroendocrine tumors, breast cancer in late therapy lines and early-stage hepatocellular carcinoma seem to show better responses to SIRT than other entities. Colorectal cancers were mainly treated with SIRT in a second or third therapy line but with considerably weaker results than other entities.
Collapse
Affiliation(s)
- Benedict Gosztonyi
- University of Zurich, Zurich, Switzerland;,Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Bernhard Pestalozzi
- University of Zurich, Zurich, Switzerland;,Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - David Kenkel
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Ivette Engel-Bicik
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Philipp A. Kaufmann
- University of Zurich, Zurich, Switzerland;,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Valerie Treyer
- University of Zurich, Zurich, Switzerland;,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Alexander R. Siebenhüner
- University of Zurich, Zurich, Switzerland;,Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland;,Cantonal Hospital Schaffhausen, Schaffhausen, Switzerland
| |
Collapse
|
14
|
Differential Uridyl-diphosphate-Glucuronosyl Transferase 1A enzymatic arsenal explains the specific cytotoxicity of resveratrol towards tumor colorectal cells. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86:1-13. [DOI: 10.1016/j.semcancer.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
|
16
|
Gawel AM, Singh R, Debinski W. Metal-Based Nanostructured Therapeutic Strategies for Glioblastoma Treatment-An Update. Biomedicines 2022; 10:1598. [PMID: 35884903 PMCID: PMC9312866 DOI: 10.3390/biomedicines10071598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed and most lethal primary malignant brain tumor in adults. Standard treatments are ineffective, and despite promising results obtained in early phases of experimental clinical trials, the prognosis of GBM remains unfavorable. Therefore, there is need for exploration and development of innovative methods that aim to establish new therapies or increase the effectiveness of existing therapies. One of the most exciting new strategies enabling combinatory treatment is the usage of nanocarriers loaded with chemotherapeutics and/or other anticancer compounds. Nanocarriers exhibit unique properties in antitumor therapy, as they allow highly efficient drug transport into cells and sustained intracellular accumulation of the delivered cargo. They can be infused into and are retained by GBM tumors, and potentially can bypass the blood-brain barrier. One of the most promising and extensively studied groups of nanostructured therapeutics are metal-based nanoparticles. These theranostic nanocarriers demonstrate relatively low toxicity, thus they might be applied for both diagnosis and therapy. In this article, we provide an update on metal-based nanostructured constructs in the treatment of GBM. We focus on the interaction of metal nanoparticles with various forms of electromagnetic radiation for use in photothermal, photodynamic, magnetic hyperthermia and ionizing radiation sensitization applications.
Collapse
Affiliation(s)
- Agata M. Gawel
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
17
|
Kansara V, Tiwari S, Patel M. Graphene quantum dots: A review on the effect of synthesis parameters and theranostic applications. Colloids Surf B Biointerfaces 2022; 217:112605. [PMID: 35688109 DOI: 10.1016/j.colsurfb.2022.112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The rising demand for early-stage diagnosis of diseases such as cancer, diabetes, neurodegenerative can be met with the development of materials offering high sensitivity and specificity. Graphene quantum dots (GQDs) have been investigated extensively for theranostic applications owing to their superior photostability and high aqueous dispersibility. These are attractive for a range of biomedical applications as their physicochemical and optoelectronic properties can be tuned precisely. However, many aspects of these properties remain to be explored. In the present review, we have discussed the effect of synthetic parameters upon their physicochemical characteristics relevant to bioimaging. We have highlighted the effect of particle properties upon sensing of biological molecules through 'turn-on' and 'turn-off' fluorescence and generation of electrochemical signals. After describing the effect of surface chemistry and solution pH on optical properties, an inclusive view on application of GQDs in drug delivery and radiation therapy has been given. Finally, a brief overview on their application in gene therapy has also been included.
Collapse
Affiliation(s)
- Vrushti Kansara
- Maliba Pharmacy College, Uka Tarsadia University, Gujarat, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| | - Mitali Patel
- Maliba Pharmacy College, Uka Tarsadia University, Gujarat, India.
| |
Collapse
|
18
|
Marques A, Belchior A, Silva F, Marques F, Campello MPC, Pinheiro T, Santos P, Santos L, Matos APA, Paulo A. Dose Rate Effects on the Selective Radiosensitization of Prostate Cells by GRPR-Targeted Gold Nanoparticles. Int J Mol Sci 2022; 23:ijms23095279. [PMID: 35563666 PMCID: PMC9105611 DOI: 10.3390/ijms23095279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022] Open
Abstract
For a while, gold nanoparticles (AuNPs) have been recognized as potential radiosensitizers in cancer radiation therapy, mainly due to their physical properties, making them appealing for medical applications. Nevertheless, the performance of AuNPs as radiosensitizers still raises important questions that need further investigation. Searching for selective prostate (PCa) radiosensitizing agents, we studied the radiosensitization capability of the target-specific AuNP-BBN in cancer versus non-cancerous prostate cells, including the evaluation of dose rate effects in comparison with non-targeted counterparts (AuNP-TDOTA). PCa cells were found to exhibit increased AuNP uptake when compared to non-tumoral ones, leading to a significant loss of cellular proliferation ability and complex DNA damage, evidenced by the occurrence of multiple micronucleus per binucleated cell, in the case of PC3 cells irradiated with 2 Gy of γ-rays, after incubation with AuNP-BBN. Remarkably, the treatment of the PC3 cells with AuNP-BBN led to a much stronger influence of the dose rate on the cellular survival upon γ-photon irradiation, as well as on their genomic instability. Overall, AuNP-BBN emerged in this study as a very promising nanotool for the efficient and selective radiosensitization of human prostate cancer PC3 cells, therefore deserving further preclinical evaluation in adequate animal models for prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Ana Marques
- Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Correspondence: (A.B.); (F.S.)
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Correspondence: (A.B.); (F.S.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Teresa Pinheiro
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
- Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Pedro Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
| | - Luis Santos
- Laboratório de Metrologia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - António P. A. Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal;
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| |
Collapse
|
19
|
Shipunova VO, Belova MM, Kotelnikova PA, Shilova ON, Mirkasymov AB, Danilova NV, Komedchikova EN, Popovtzer R, Deyev SM, Nikitin MP. Photothermal Therapy with HER2-Targeted Silver Nanoparticles Leading to Cancer Remission. Pharmaceutics 2022; 14:1013. [PMID: 35631598 PMCID: PMC9145338 DOI: 10.3390/pharmaceutics14051013] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles exhibiting the localized surface plasmon resonance (LSPR) phenomenon are promising tools for diagnostics and cancer treatment. Among widely used metal nanoparticles, silver nanoparticles (Ag NPs) possess the strongest light scattering and surface plasmon strength. However, the therapeutic potential of Ag NPs has until now been underestimated. Here we show targeted photothermal therapy of solid tumors with 35 nm HER2-targeted Ag NPs, which were produced by the green synthesis using an aqueous extract of Lavandula angustifolia Mill. Light irradiation tests demonstrated effective hyperthermic properties of these NPs, namely heating by 10 °C in 10 min. To mediate targeted cancer therapy, Ag NPs were conjugated to the scaffold polypeptide, affibody ZHER2:342, which recognizes a clinically relevant oncomarker HER2. The conjugation was mediated by the PEG linker to obtain Ag-PEG-HER2 nanoparticles. Flow cytometry tests showed that Ag-PEG-HER2 particles successfully bind to HER2-overexpressing cells with a specificity comparable to that of full-size anti-HER2 IgGs. A confocal microscopy study showed efficient internalization of Ag-PEG-HER2 into cells in less than 2 h of incubation. Cytotoxicity assays demonstrated effective cell death upon exposure to Ag-PEG-HER2 and irradiation, caused by the production of reactive oxygen species. Xenograft tumor therapy with Ag-PEG-HER2 particles in vivo resulted in full primary tumor regression and the prevention of metastatic spread. Thus, for the first time, we have shown that HER2-directed plasmonic Ag nanoparticles are effective sensitizers for targeted photothermal oncotherapy.
Collapse
Affiliation(s)
- Victoria O. Shipunova
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (M.M.B.); (M.P.N.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia;
| | - Mariia M. Belova
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (M.M.B.); (M.P.N.)
| | - Polina A. Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Olga N. Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Aziz B. Mirkasymov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Natalia V. Danilova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia;
| | - Elena N. Komedchikova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia;
| | - Rachela Popovtzer
- Faculty of Engineering, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Maxim P. Nikitin
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (M.M.B.); (M.P.N.)
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia;
| |
Collapse
|
20
|
Yoshida A, Kitayama Y, Hayakawa N, Mizukawa Y, Nishimura Y, Takano E, Sunayama H, Takeuchi T. Biocompatible polymer-modified gold nanocomposites of different shapes as radiation sensitizers. Biomater Sci 2022; 10:2665-2672. [PMID: 35420601 DOI: 10.1039/d2bm00174h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiation therapy is a powerful approach for cancer treatment due to its low invasiveness. The development of radiation sensitizers is of great importance as they assist in providing radiation therapy at a low dose. In this study, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-modified gold nanocomposites of different shapes were created using the grafting-to approach to serve as a novel radiation sensitizer with high cellular uptake. The effect of the shape of the nanocomposite on cellular uptake by the breast cancer cell line MCF-7 was also investigated. The PMPC-modified gold nanostars showed the highest cellular uptake compared to the other gold nanocomposites (spheres and rods), whereas cell cytotoxicity was negligible among all candidates. Furthermore, the therapeutic effect of radiation of PMPC-modified nanostars was the highest among all the gold nanocomposites. These results clearly indicate that the shape of the gold nanocomposite is an important parameter for cellular uptake and radiation sensitizing effects in breast cancer cells.
Collapse
Affiliation(s)
- Aoi Yoshida
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | - Yukiya Kitayama
- Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Natsuki Hayakawa
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | - Yuki Mizukawa
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | - Yuya Nishimura
- Graduate School of Science, Technology and Innovation, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Eri Takano
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | - Hirobumi Sunayama
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan. .,Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
21
|
Kovács D, Igaz N, Gopisetty MK, Kiricsi M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality? Int J Mol Sci 2022; 23:839. [PMID: 35055024 PMCID: PMC8777983 DOI: 10.3390/ijms23020839] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
As an emerging new class, metal nanoparticles and especially silver nanoparticles hold great potential in the field of cancer biology. Due to cancer-specific targeting, the consequently attenuated side-effects and the massive anti-cancer features render nanoparticle therapeutics desirable platforms for clinically relevant drug development. In this review, we highlight those characteristics of silver nanoparticle-based therapeutic concepts that are unique, exploitable, and achievable, as well as those that represent the critical hurdle in their advancement to clinical utilization. The collection of findings presented here will describe the features that distinguish silver nanoparticles from other anti-cancer agents and display the realistic opportunities and implications in oncotherapeutic innovations to find out whether cancer therapy by silver nanoparticles is fiction or reality.
Collapse
Affiliation(s)
- Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, 660 Route des Lucioles, 06560 Valbonne, France
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
| | - Mohana K. Gopisetty
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
- Interdisciplinary Center of Excellence, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Tér 1, H-6720 Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (D.K.); (N.I.); (M.K.G.)
| |
Collapse
|
22
|
Miranda RR, Sampaio I, Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf B Biointerfaces 2021; 210:112254. [PMID: 34896692 DOI: 10.1016/j.colsurfb.2021.112254] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022]
Abstract
Nanomaterials have emerged as promising candidates for cancer therapy and diagnosis as they can solve long-term issues such as drug solubility, systemic distribution, tumor acquired resistance, and improve the performance of diagnostic methods. Among inorganic nanomaterials, AgNPs have been extensively studied in the context of cancer treatment and the reported results have raised exciting expectations. In this review, we provide an overview of the recent research on AgNPs antitumoral properties, their application in different cancer treatment modalities, their potential in biosensors development, and also highlight the main challenges and possible strategies to enable its translation to clinical use.
Collapse
Affiliation(s)
- Renata Rank Miranda
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil.
| | - Isabella Sampaio
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil.
| |
Collapse
|
23
|
Elbanna M, Chowdhury NN, Rhome R, Fishel ML. Clinical and Preclinical Outcomes of Combining Targeted Therapy With Radiotherapy. Front Oncol 2021; 11:749496. [PMID: 34733787 PMCID: PMC8558533 DOI: 10.3389/fonc.2021.749496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
In the era of precision medicine, radiation medicine is currently focused on the precise delivery of highly conformal radiation treatments. However, the tremendous developments in targeted therapy are yet to fulfill their full promise and arguably have the potential to dramatically enhance the radiation therapeutic ratio. The increased ability to molecularly profile tumors both at diagnosis and at relapse and the co-incident progress in the field of radiogenomics could potentially pave the way for a more personalized approach to radiation treatment in contrast to the current ‘‘one size fits all’’ paradigm. Few clinical trials to date have shown an improved clinical outcome when combining targeted agents with radiation therapy, however, most have failed to show benefit, which is arguably due to limited preclinical data. Several key molecular pathways could theoretically enhance therapeutic effect of radiation when rationally targeted either by directly enhancing tumor cell kill or indirectly through the abscopal effect of radiation when combined with novel immunotherapies. The timing of combining molecular targeted therapy with radiation is also important to determine and could greatly affect the outcome depending on which pathway is being inhibited.
Collapse
Affiliation(s)
- May Elbanna
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nayela N Chowdhury
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ryan Rhome
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L Fishel
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
24
|
Namasivayam SKR, Venkatachalam G, Bharani RSA, Kumar JA, Sivasubramanian S. Molecular intervention of colon cancer and inflammation manifestation by tannin capped biocompatible controlled sized gold nanoparticles from Terminalia bellirica: A green strategy for pharmacological drug formulation based on nanotechnology principles. 3 Biotech 2021; 11:401. [PMID: 34422541 PMCID: PMC8349386 DOI: 10.1007/s13205-021-02944-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Among the diverse nanomaterials, gold nanoparticles (AuNps) are utilised for various therapeutic application due to the distinct physical, chemical properties and biocompatibility. Synthesis of gold nanoparticles using plants is the promising route. This method is low cost, eco-friendly and higher biological activities. In this present study, Gold nanoparticles were synthesised from fruit extract of Terminalia bellirica fruit extract. Their anticancer and anti-inflammatory activity was evaluated against colorectal cancer cell line (HT29) and TNBS-induced zebrafish model. Highly stable tannin capped gold nanoparticles were synthesised from fruit extract broth of Terminalia bellirica rapidly. Structural and functional properties of the synthesised nanoparticles were studied by Fourier transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM) equipped with energy-dispersive atomic X-ray spectroscopy (EDAX) and X-ray diffraction (XRD). All the characterisation studies reveal highly stable, crystalline, phytochemicals, mainly tannin doped, spherical, 28 nm controlled sized gold nanoparticles. The molecular mechanism of anticancer activity was studied by determining cancer markers' expression, which was studied using quantitative real-time polymerase chain reaction (qPCR). Antioxidative enzymes' status and apoptosis changes were also investigated. Synthesised nanoparticles brought a drastic reduction of all the tested cancer markers' expression. Notable changes in antioxidative enzymes' status and a good sign of apoptosis were observed in nanoparticles' treatment. The anti-inflammatory activity was studied against TNBS-induced zebrafish model, which was confirmed by determining inflammatory markers' expression TNF-α, iNOS (induced Nitric Oxide Synthase) and histopathological examination. Nanoparticles' treatment recorded a drastic reduction of inflammatory markers' expression. No marked sign of inflammation was also observed in histopathological analysis of the nanoparticles' treatment group. The present study suggests the possible utilisation of T. bellirica-mediated gold nanoparticles as an effective therapeutic agent against a prolonged inflammatory disease that progressively develops into cancer.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - Gayathri Venkatachalam
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - R S Arvind Bharani
- Centre for Bioresource Research & Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - J Aravind Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - S Sivasubramanian
- Department of Chemical Engineering, Higher College of Technology, Muscat, Oman
| |
Collapse
|
25
|
Zhao J, Li D, Ma J, Yang H, Chen W, Cao Y, Liu P. Increasing the accumulation of aptamer AS1411 and verapamil conjugated silver nanoparticles in tumor cells to enhance the radiosensitivity of glioma. NANOTECHNOLOGY 2021; 32:145102. [PMID: 33296880 DOI: 10.1088/1361-6528/abd20a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Radioresistance significantly decreases the efficacy of radiotherapy, which can ultimately lead to tumor recurrence and metastasis. As a novel type of nano-radiosensitizer, silver nanoparticles (AgNPs) have shown promising radiosensitizing properties in the radiotherapy of glioma, but their ability to efficiently enter and accumulate in tumor cells needs to be improved. In the current study, AS1411 and verapamil (VRP) conjugated bovine serum albumin (BSA) coated AgNPs (AgNPs@BSA-AS-VRP) were synthesized and characterized. Dark-field imaging and inductively coupled plasma mass spectrometry were applied to investigate the accumulation of AgNPs@BSA-AS and AgNPs@BSA-AS-VRP mixed in different ratios in U251 glioma cells. To assess the influences of 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP on the P-glycoprotein (P-gp) efflux activity, rhodamine 123 accumulation assay was carried out. Colony formation assay and tumor-bearing nude mice model were employed to examine the radiosensitizing potential of 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP. Thioredoxin Reductase (TrxR) Assay Kit was used to detect the TrxR activity in cells treated with different functionally modified AgNPs. Characterization results revealed that AgNPs@BSA-AS-VRP were successfully constructed. When AgNPs@BSA-AS and AgNPs@BSA-AS-VRP were mixed in a ratio of 19:1, the amount of intracellular nanoparticles increased greatly through AS1411-mediated active targeting and inhibition of P-gp activity. In vitro and in vivo experiments clearly showed that the radiosensitization efficacy of 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP was much stronger than that of AgNPs@BSA and AgNPs@BSA-AS. It was also found that 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP significantly inhibited intracellular TrxR activity. These results indicate that 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP can effectively accumulate in tumor cells and have great potential as high-efficiency nano-radiosensitizers in the radiotherapy of glioma.
Collapse
Affiliation(s)
- Jing Zhao
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Dongdong Li
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Jun Ma
- Radiotherapy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Huiquan Yang
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Wenbin Chen
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Yuyu Cao
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing 210009, People's Republic of China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
26
|
Kumar SR, Hsu YH, Vi TTT, Pang JHS, Lee YC, Hsieh CH, Lue SJ. Graphene Oxide-Induced Protein Conformational Change in Nasopharyngeal Carcinoma Cells: A Joint Research on Cytotoxicity and Photon Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1396. [PMID: 33805683 PMCID: PMC8001416 DOI: 10.3390/ma14061396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
The objectives of this work aim to investigate the interaction and cytotoxicity between nanometric graphene oxide (GO) and nasopharyngeal carcinoma cells (NPC-BM1), and possible application in photon therapy. GO nanosheets were obtained in the size range of 100-200 nm, with a negative surface charge. This nanometric GO exhibited a limited (<10%) cytotoxicity effect and no significant dimensional change on NPC-BM1 cells in the tested GO concentration range (0.1-10 µg·mL-1). However, the secondary protein structure was modified in the GO-treated NPC-BM1 cells, as determined through synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM) mapping. To further study the cellular response of GO-treated NPC-BM1 cancer cells at low GO concentration (0.1 µg·mL-1), photon radiation was applied with increasing doses, ranging from 2 to 8 Gy. The low radiation energy (<5 Gy) did not cause significant cell mortality (5-7%). Increasing the radiation energy to 6-8 Gy accelerated cell apoptosis rate, especially in the GO-treated NPC-BM1 cells (27%). This necrosis may be due to GO-induced conformational changes in protein and DNA/RNA, resulting in cell vulnerability under photon radiation. The findings of the present work demonstrate the potential biological applicability of nanometric GO in different areas, such as targeted drug delivery, cellular imaging, and radiotherapy, etc.
Collapse
Affiliation(s)
- Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
| | - Ya-Hui Hsu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (Y.-H.H.); (J.-H.S.P.)
| | - Truong Thi Tuong Vi
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (Y.-H.H.); (J.-H.S.P.)
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Dinghu Road, Guishan, Taoyuan 333, Taiwan
| | - Yao-Chang Lee
- National Synchrotron Radiation Research Center, Hsin Ann Road, Hsinchu City 300, Taiwan;
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, Jincheng Road, New Taipei City 236, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Fusing Street, Guishan, Taoyuan 333, Taiwan
- School of Medicine, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
- Division of Join Reconstruction, Department of Orthopedics, Chang Gung Medical Center at Linkou, Fusing Street, Guishan, Taoyuan 333, Taiwan
- Department of Safety, Health and Environment Engineering, Ming-Chi University of Technology, Gongzhuan Road, Taishan, New Taipei City 243, Taiwan
- Center for Environmental Sustainability and Human Health, Ming-Chi University of Technology, Gongzhuan Road, Taishan, New Taipei City 243, Taiwan
| |
Collapse
|
27
|
Sears J, Swanner J, Fahrenholtz CD, Snyder C, Rohde M, Levi-Polyachenko N, Singh R. Combined Photothermal and Ionizing Radiation Sensitization of Triple-Negative Breast Cancer Using Triangular Silver Nanoparticles. Int J Nanomedicine 2021; 16:851-865. [PMID: 33574666 PMCID: PMC7872896 DOI: 10.2147/ijn.s296513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 12/31/2022] Open
Abstract
Background Ionizing radiation (IR) is commonly used in triple-negative breast cancer (TNBC) treatment regimens. However, off-target toxicity affecting normal tissue and grueling treatment regimens remain major limitations. Hyperthermia is one of the greatest IR sensitizers, but only if heat is administered simultaneously or immediately prior to ionizing radiation. Difficulty in co-localizing ionizing radiation (IR) in rapid succession with hyperthermia, and confining treatment to the tumor have hindered widespread clinical adoption of combined thermoradiation treatment. Metal nanoparticle-based approaches to IR sensitization and photothermal heat generation may aid in overcoming these issues and improve treatment specificity. Methods We assessed the potential to selectively treat MDA-MB-231 TNBC cells without affecting non-malignant MCF-10A breast cells using a multimodal approach based upon combined photothermal therapy, IR sensitization, and specific cytotoxicity using triangular silver nanoparticles (TAgNPs) with peak absorbance in the near-infrared light (NIR) spectrum. Results We found that TAgNP-mediated photothermal therapy and radiosensitization offer a high degree of specificity for treatment of TNBC without affecting non-malignant mammary epithelial cells. Discussion If given at a high enough dose, IR, heat, or TAgNPs alone could be sufficient for tumor treatment. However, when the dose of one or all of these modalities increases, off-target effects also increase. The challenge lies in identifying the minimal doses of each individual treatment such that when combined they provide maximum selectivity for treatment of TNBC cells with minimum off-target effects on non-malignant breast cells. Our results provide proof of concept that this combination is highly selective for TNBC cells while sparing non-malignant mammary epithelial cells. This treatment would be particularly important for patients undergoing breast conservation therapy and for treatment of invasive tumor margins near the periphery where each individual treatment might be at a sub-therapeutic level.
Collapse
Affiliation(s)
- James Sears
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jessica Swanner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cale D Fahrenholtz
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Christina Snyder
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Monica Rohde
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nicole Levi-Polyachenko
- Department of Plastic Surgery and Reconstructive Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
28
|
Anuje M, Pawaskar P, Sivan A, Lokhande C, Ahmed I, Patil D. Use of Poly (Ethylene Glycol) Coated Superparamagnetic Iron Oxide Nanoparticles as Radio Sensitizer in Enhancing Colorectal Cancer Radiation Efficacy. J Med Phys 2021; 46:278-285. [PMID: 35261497 PMCID: PMC8853453 DOI: 10.4103/jmp.jmp_15_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGORUND The aim of the radiotherapy is to deliver a lethal dose to tumor while reducing the impact on the normal tissue. This reduction in impact can be achieved to have a greater therapeutic ratio by using nanoparticles as radiosensitizer. MATERIALS AND METHODS In this article, the potential role of superparamagnetic iron oxide nanoparticles (SPIONs) as radiosensitization enhancer on HT 29 cell lines for different concentrations (0.007to 0.25 mg/ml) and different radiation doses (0.5to 2 Gy) of 6MV photon beam is presented. RESULTS The highest sensitization enhancement ratio (SER) value was observed with 2 Gy for 0.25 mg/ml concentration. Radio sensitization increases with increase in the concentration of nanoparticles. Combination of 6MV energy radiation and polyethylene glycol (PEG) coated SPIONs results in increasing cell killing of HT 29 as compared to cell killing with radiation therapy alone. CONCLUSION The results reveal that PEG coated nanoparticle might be a potential candidate to work as radiotherapy sensitizer in colorectal cancer.
Collapse
Affiliation(s)
- Madhuri Anuje
- Department of Medical Physics, Center for Interdisciplinary Research, DY Patil Education Society (Deemed to be) University, Kolhapur, Maharashtra, India,Integrated Cancer Treatment and Research Centre, Pune, Maharashtra, India
| | - Padamaja Pawaskar
- Department of Medical Physics, Center for Interdisciplinary Research, DY Patil Education Society (Deemed to be) University, Kolhapur, Maharashtra, India,Address for correspondence: Dr. Padamaja Pawaskar, Department of Medical Physics, Center for Interdisciplinary Research, DY Patil Education Society (Deemed to be) University, Kolhapur - 416 006, Maharashtra, India. E-mail:
| | - Ajay Sivan
- Integrated Cancer Treatment and Research Centre, Pune, Maharashtra, India
| | - Chandrakant Lokhande
- Department of Medical Physics, Center for Interdisciplinary Research, DY Patil Education Society (Deemed to be) University, Kolhapur, Maharashtra, India
| | - Imtiaz Ahmed
- Department of Radiation Oncology, KLES Belgaum Cancer Hospital, Belgaum, Karnataka, India
| | - Dhanashree Patil
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research (KLE University), Belgaum, Karnataka, India
| |
Collapse
|
29
|
Klebowski B, Depciuch J, Stec M, Krzempek D, Komenda W, Baran J, Parlinska-Wojtan M. Fancy-Shaped Gold-Platinum Nanocauliflowers for Improved Proton Irradiation Effect on Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21249610. [PMID: 33348549 PMCID: PMC7766784 DOI: 10.3390/ijms21249610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Enhancing the effectiveness of colorectal cancer treatment is highly desirable. Radiation-based anticancer therapy—such as proton therapy (PT)—can be used to shrink tumors before subsequent surgical intervention; therefore, improving the effectiveness of this treatment is crucial. The addition of noble metal nanoparticles (NPs), acting as radiosensitizers, increases the PT therapeutic effect. Thus, in this paper, the effect of novel, gold–platinum nanocauliflowers (AuPt NCs) on PT efficiency is determined. For this purpose, crystalline, 66-nm fancy shaped, bimetallic AuPt NCs were synthesized using green chemistry method. Then, physicochemical characterization of the obtained AuPt NCs by transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDS), and UV-Vis spectra measurements was carried out. Fully characterized AuPt NCs were placed into a cell culture of colon cancer cell lines (HCT116, SW480, and SW620) and a normal colon cell line (FHC) and subsequently subjected to proton irradiation with a total dose of 15 Gy. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) test, performed after 18-h incubation of the irradiated cell culture with AuPt NCs, showed a significant reduction in cancer cell viability compared to normal cells. Thus, the radio-enhancing features of AuPt NCs indicate their potential application for the improvement in effectiveness of anticancer proton therapy.
Collapse
Affiliation(s)
- Bartosz Klebowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (B.K.); (J.D.); (D.K.); (W.K.)
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (B.K.); (J.D.); (D.K.); (W.K.)
| | - Malgorzata Stec
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Dawid Krzempek
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (B.K.); (J.D.); (D.K.); (W.K.)
| | - Wiktor Komenda
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (B.K.); (J.D.); (D.K.); (W.K.)
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Correspondence: (J.B.); (M.P.-W.)
| | - Magdalena Parlinska-Wojtan
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (B.K.); (J.D.); (D.K.); (W.K.)
- Correspondence: (J.B.); (M.P.-W.)
| |
Collapse
|
30
|
Esgandari K, Mohammadian M, Zohdiaghdam R, Rastin SJ, Alidadi S, Behrouzkia Z. Combined treatment with silver graphene quantum dot, radiation, and 17-AAG induces anticancer effects in breast cancer cells. J Cell Physiol 2020; 236:2817-2828. [PMID: 32901933 DOI: 10.1002/jcp.30046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/10/2022]
Abstract
We aimed to investigate the possible anticancer effects of radiation in combination with 17-allylamino-17-demethoxy geldanamycin (17-AAG) and silver graphene quantum dot (SQD) in breast cancer (BC) cells. MCF-7 BC cells treated with, or without, different concentrations of 17-AAG and synthesized SQD and cellular viability detected. The growth inhibitory effects of low concentrations of 17-AAG with minimally toxic concentration of SQD in combination with 2 Gy of X-ray radiation were examined. The apoptosis induction assessed by acridine orange/ethedium bromide staining. Likewise, the levels of lactate, hydrogen peroxide (H2 O2 ), nitric oxide (NO) were evaluated. The relative gene expression levels of Bax and Bcl-2 were detected by real-time polymerase chain reaction and the Bax/Bcl-2 expression ratio was determined. Moreover, the protein expression of epidermal growth factor receptor (EGFR) was assessed by western blot analysis. Treatment with low concentrations of 17-AAG and SQD at a minimally toxic concentration promoted inhibition of BC cell growth and induced apoptosis. In addition, significant reduction in cell viability was seen in triple combination versus all double and single treatments. Indeed 17-AAG and SQD in combined with radiation significantly increased the H2 O2 and NO versus single and double treated cases. In addition, triple combination treatment showed decreased lactate level in compared tomonotherapies. EGFR protein expression levels were found to decreased in all double and triple combined cases versus single treatments. Additionally, in double and triple treatments, Bax/Bcl2 ratio were higher in compared to single treatments. Treatment with low concentrations of 17-AAG and SQD at a minimally toxic concentration tends to induce anticancer effects and increase the radiation effects when applied with 2 Gy of radiation versus radiation monotherapy.
Collapse
Affiliation(s)
- Kosar Esgandari
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahshid Mohammadian
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Zohdiaghdam
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sepideh Jafarzadeh Rastin
- Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Science, Yazd, Iran.,Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saba Alidadi
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zhaleh Behrouzkia
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
31
|
Wound therapy via a photo-responsively antibacterial nano-graphene quantum dots conjugate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111978. [PMID: 32771913 DOI: 10.1016/j.jphotobiol.2020.111978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/13/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023]
Abstract
Common bacterial pathogens have become resistant to traditional antibiotics, representing an indispensable public health crisis. Photodynamic therapy (PDT), especially when common visible light sources are used as photodynamic power, is a promising bactericidal method. Based on the special photodynamic properties triggered by commonly available light emitting diode (LED) lamps, a kind of graphene quantum dots (GQDs) based composite system (termed GQDs@hMSN(EM)) was prepared through loading both GQDs and erythromycin (EM) into the hollow mesoporous silica nanoparticle (hMSN), aiming to achieve joint antimicrobial effect. Bacterial density experiments confirmed that GQDs@hMSN(EM) had combined antimicrobial effects from photodynamic effect and drug release on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In animal models, the healing degree of wounds infected by bacteria also confirmed that GQDs@hMSN(EM) group had the best therapeutic effect, with the significantly reduced inflammatory factors in blood. Different from traditional GQDs synthesized by solvothermal method, the as-prepared GQDs@hMSN can produce singlet oxygen (1O2) under light exposure to destroy the structure of bacteria, thus achieving highly efficient antimicrobial effect. The GQDs@hMSN(EM) in this work possesses good antimicrobial activity, sufficient drug loading, and controllable drug release ability, which provides a new opportunity for GQDs-based nanoplatform to enhance antimicrobial effect and reduce their drug resistance.
Collapse
|
32
|
Preparation, characterization and anti-cancer activity of graphene oxide-‑silver nanocomposite. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111984. [PMID: 32771914 DOI: 10.1016/j.jphotobiol.2020.111984] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
This work reported the preparation, characterization, cytotoxicity of green synthesized Lespedeza cuneate mediated silver nanoparticles (Lc-AgNPs) and graphene oxide‑silver nanocomposite (GO-AgNComp) using Lc-AgNPs. The UV absorption spectrum at 419 nm indicated the successful formation of GO-AgNComp. The TEM analysis displayed the thin sheet of graphene decorated Lc-AgNPs in GO-AgNComp. Zeta potential was -13.2 mV for Lc-AgNPs and -30.5 mV for GO-AgNComp. The photothermal conversion efficiency was calculated as 31.09% for GO-AgNComp. The negatively charged zeta potential of GO-AgNComp enhanced its cellular penetration through enhanced permeability and retention (EPR) effect. The near-infrared laser (NIR) induced the anticancer activity of Lc-AgNPs and GO-AgNComp in human lung cancer cells (A549) and brain tumour (LN229). The results indicated that about 50% of A549 cells and LN229 cells were ablated by treatment of 24.73 ± 2.98 μg/mL and 27.34 ± 1.62 μg/mL of Lc-AgNPs, as well by 15.46 ± 2.31 μg/mL and 20.95 ± 1.35 μg/mL of GO-AgNComp respectively. Moreover, GO-AgNComp was not cytotoxic to normal mouse fibroblast cells (NIH3T3), but it caused the cancer cell death in A549 and LN229 through ROS generation, nuclear damage, and mitochondrial membrane potential (∆ψm) loss. This work reported the anticancer potential of GO-AgNComp, which deserves further study on the molecular elucidation of GO-AgNComp mediated human lung and tumour therapy.
Collapse
|