1
|
Jones FK, Bhuiyan TR, Slater DM, Ternier R, Hutt Vater KR, Khan AI, Chowdhury F, Visieres K, Biswas R, Kamruzzaman M, Ryan ET, Calderwood SB, LaRocque RC, Charles RC, Leung DT, Lessler J, Ivers LC, Qadri F, Harris JB, Azman AS. Expanding cholera serosurveillance to vaccinated populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.09.25323598. [PMID: 40162250 PMCID: PMC11952589 DOI: 10.1101/2025.03.09.25323598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mass oral cholera vaccination campaigns targeted at subnational areas with high incidence are central to global cholera elimination efforts. Serological surveillance offers a complementary approach to address gaps in clinical surveillance in these regions. However, similar immune responses from vaccination and infection can lead to overestimates of incidence of infection. To address this, we analyzed antibody dynamics in infected and vaccinated individuals to refine seroincidence estimation strategies for partially vaccinated populations. We tested 757 longitudinal serum samples from confirmed Vibrio cholerae O1 cases and uninfected contacts in Bangladesh as well as vaccinees from Bangladesh and Haiti, using a multiplex bead assay to measure IgG, IgM, and IgA binding to five cholera-specific antigens. Infection elicited stronger and broader antibody responses than vaccination, with rises in cholera toxin B-subunit (CTB) and toxin-coregulated pilus A (TcpA) antibodies uniquely associated with infection. Previously proposed random forest models frequently misclassified vaccinated individuals as recently infected (over 20% at some time points) during the first four months post-vaccination. To address this, we developed new random forest models incorporating vaccinee data, which kept false positive rates among vaccinated (1%) and unvaccinated (4%) individuals low without a significant loss in sensitivity. Simulated serosurveys demonstrated that unbiased seroincidence estimates could be achieved within 21 days of vaccination campaigns by ascertaining vaccination status of participants or applying updated models. These approaches to overcome biases in serological surveillance enable reliable seroincidence estimation even in areas with recent vaccination campaigns enhancing the utility of serological surveillance as an epidemiologic tool in moderate-to-high cholera incidence settings.
Collapse
Affiliation(s)
- Forrest K Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Taufiqur R Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Damien M Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, USA
| | | | | | - Ashraful I Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Rajib Biswas
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Daniel T Leung
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Justin Lessler
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
- Carolina Population Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Louise C Ivers
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, USA
- Center for Global Health, Massachusetts General Hospital, Boston, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, USA
- Harvard Global Health Institute, Cambridge, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
- Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
2
|
Matson Z, Cooley G, Parameswaran N, Simon A, Bankamp B, Coughlin MM. shinyMBA: a novel R shiny application for quality control of the multiplex bead assay for serosurveillance studies. Sci Rep 2024; 14:7442. [PMID: 38548772 PMCID: PMC10978933 DOI: 10.1038/s41598-024-57652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
The multiplex bead assay (MBA) based on Luminex xMAP technology can be used as a tool to measure seroprevalence as part of population immunity evaluations to multiple antigens in large-scale serosurveys. However, multiplexing several antigens presents challenges for quality control (QC) assessments of the data because multiple parameters must be evaluated for each antigen. MBA QC parameters include monitoring bead counts and median fluorescence intensity (MFI) for each antigen in plate wells, and performance of assay controls included on each plate. Analyzing these large datasets to identify plates failing QC standards presents challenges for many laboratories. We developed a novel R Shiny application, shinyMBA, to expedite the MBA QC processes and reduce the risk of user error. The app allows users to rapidly merge multi-plate assay outputs to evaluate bead count, MFI, and performance of assay controls using statistical process control charts for all antigen targets simultaneously. The utility of the shinyMBA application and its various outputs are demonstrated using data from 32 synthetic xPONENT files with 3 multiplex antigens and two population serosurveillance studies that evaluated 1200 and 3871 samples, respectively, for 20 multiplexed antigens. The shinyMBA open-source code is available for download and modification at https://github.com/CDCgov/shinyMBA . Incorporation of shinyMBA into Luminex serosurveillance workflows can vastly improve the speed and accuracy of QC processes.
Collapse
Affiliation(s)
- Zachary Matson
- Viral Vaccine Preventable Diseases Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Gretchen Cooley
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nishanth Parameswaran
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ashley Simon
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bettina Bankamp
- Viral Vaccine Preventable Diseases Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melissa M Coughlin
- Laboratory Branch, Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
3
|
Fonseca A, Spytek M, Biecek P, Cordeiro C, Sepúlveda N. Antibody selection strategies and their impact in predicting clinical malaria based on multi-sera data. BioData Min 2024; 17:2. [PMID: 38273386 PMCID: PMC10811867 DOI: 10.1186/s13040-024-00354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Nowadays, the chance of discovering the best antibody candidates for predicting clinical malaria has notably increased due to the availability of multi-sera data. The analysis of these data is typically divided into a feature selection phase followed by a predictive one where several models are constructed for predicting the outcome of interest. A key question in the analysis is to determine which antibodies should be included in the predictive stage and whether they should be included in the original or a transformed scale (i.e. binary/dichotomized). METHODS To answer this question, we developed three approaches for antibody selection in the context of predicting clinical malaria: (i) a basic and simple approach based on selecting antibodies via the nonparametric Mann-Whitney-Wilcoxon test; (ii) an optimal dychotomizationdichotomization approach where each antibody was selected according to the optimal cut-off via maximization of the chi-squared (χ2) statistic for two-way tables; (iii) a hybrid parametric/non-parametric approach that integrates Box-Cox transformation followed by a t-test, together with the use of finite mixture models and the Mann-Whitney-Wilcoxon test as a last resort. We illustrated the application of these three approaches with published serological data of 36 Plasmodium falciparum antigens for predicting clinical malaria in 121 Kenyan children. The predictive analysis was based on a Super Learner where predictions from multiple classifiers including the Random Forest were pooled together. RESULTS Our results led to almost similar areas under the Receiver Operating Characteristic curves of 0.72 (95% CI = [0.62, 0.82]), 0.80 (95% CI = [0.71, 0.89]), 0.79 (95% CI = [0.7, 0.88]) for the simple, dichotomization and hybrid approaches, respectively. These approaches were based on 6, 20, and 16 antibodies, respectively. CONCLUSIONS The three feature selection strategies provided a better predictive performance of the outcome when compared to the previous results relying on Random Forest including all the 36 antibodies (AUC = 0.68, 95% CI = [0.57;0.79]). Given the similar predictive performance, we recommended that the three strategies should be used in conjunction in the same data set and selected according to their complexity.
Collapse
Affiliation(s)
- André Fonseca
- FCT - Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
- CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Mikolaj Spytek
- Faculty of Mathematics & Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Przemysław Biecek
- Faculty of Mathematics & Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Clara Cordeiro
- FCT - Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
- CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Sepúlveda
- CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
- Faculty of Mathematics & Information Science, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
4
|
Leonard CM, Uhomoibhi P, Abubakar A, Ogunniyi A, Mba N, Greby SM, Okoye MI, Iriemenam NC, Ihekweazu C, Steinhardt L, Rogier E. Dynamics of IgG antibody response against Plasmodium antigens among Nigerian infants and young children. Front Immunol 2023; 14:1208822. [PMID: 37691957 PMCID: PMC10484571 DOI: 10.3389/fimmu.2023.1208822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
Background Plasmodium falciparum malaria is a leading cause of child mortality in Nigeria. Neonates are born with maternal antibodies from placental transfer which may protect against malaria infection in the first months of life. The IgG dynamics of the transition from passively transferred antimalarial antibodies to actively acquired IgG from natural exposure have not been well elucidated. Methods Blood samples collected during a 2018 Nigeria nationwide HIV/AIDS household survey were available for 9,443 children under 5 years of age, with a subset of infants under 2 months of age having maternal samples available (n=41). Samples were assayed for the P. falciparum HRP2 antigen and anti-malarial IgG antibodies. LOESS regression examined the dynamics in IgG response in the first 5 years of life. Correlation with maternal IgG levels was assessed for mother/child pairs. Results Consistent decreases were observed in median IgG levels against all Plasmodium spp. antigen targets for the first months of life. At a population level, P. falciparum apical membrane antigen-1 (AMA1) and merozoite surface protein-1 19kD (PfMSP1) IgG decreased during the first 12 months of life before reaching a nadir, whereas IgGs to other targets only declined for the first 4 months of life. Seropositivity showed a similar decline with the lowest seropositivity against AMA1 and PfMSP1 at 10-12 months, though remaining above 50% during the first 2 years of life in higher transmission areas. No protective association was observed between IgG positivity and P. falciparum infection in infants. Maternal antibody levels showed a strong positive correlation with infant antibody levels for all P. falciparum antigens from birth to 2 months of age, but this correlation was lost by 6 months of age. Discussion Maternally transferred anti-malarial IgG antibodies rapidly decline during the first 6 months of life, with variations among specific antigens and malaria transmission intensity. From 3-23 months of age, there was a wide range in IgG levels for the blood-stage antigens indicating high individual variation in antibody production as children are infected with malaria. Non-falciparum species-specific antigens showed similar patterns in waning immunity and correlation with paired mother's IgG levels compared to P. falciparum antigens.
Collapse
Affiliation(s)
- Colleen M. Leonard
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN, United States
| | - Perpetua Uhomoibhi
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | - Ado Abubakar
- Institute of Human Virology (IHVN), Abuja, Nigeria
| | | | - Nwando Mba
- Nigeria Centre for Disease Control (NCDC), Abuja, Nigeria
| | - Stacie M. Greby
- Division of Global HIV and Tuberculosis, Center for Global Health, Centers for Disease Control and Prevention, Abuja, Nigeria
| | - McPaul I. Okoye
- Division of Global HIV and Tuberculosis, Center for Global Health, Centers for Disease Control and Prevention, Abuja, Nigeria
| | - Nnaemeka C. Iriemenam
- Division of Global HIV and Tuberculosis, Center for Global Health, Centers for Disease Control and Prevention, Abuja, Nigeria
| | | | - Laura Steinhardt
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - NMS4 Technical Working Group
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
5
|
Hamre KES, Dismer AM, Rogier E, van den Hoogen LL, Williamson J, Kishore N, Travers A, McGee K, Pierre B, Fouché B, Impoinvil D, Holmes K, Stresman G, Druetz T, Eisele TP, Drakeley C, Lemoine JF, Chang MA. Spatial Clustering and Risk Factors for Malaria Infections and Marker of Recent Exposure to Plasmodium falciparum from a Household Survey in Artibonite, Haiti. Am J Trop Med Hyg 2023; 109:258-272. [PMID: 37277106 PMCID: PMC10397426 DOI: 10.4269/ajtmh.22-0599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
Targeting malaria interventions in elimination settings where transmission is heterogeneous is essential to ensure the efficient use of resources. Identifying the most important risk factors among persons experiencing a range of exposure can facilitate such targeting. A cross-sectional household survey was conducted in Artibonite, Haiti, to identify and characterize spatial clustering of malaria infections. Household members (N = 21,813) from 6,962 households were surveyed and tested for malaria. An infection was defined as testing positive for Plasmodium falciparum by either a conventional or novel highly sensitive rapid diagnostic test. Seropositivity to the early transcribed membrane protein 5 antigen 1 represented recent exposure to P. falciparum. Clusters were identified using SaTScan. Associations among individual, household, and environmental risk factors for malaria, recent exposure, and living in spatial clusters of these outcomes were evaluated. Malaria infection was detected in 161 individuals (median age: 15 years). Weighted malaria prevalence was low (0.56%; 95% CI: 0.45-0.70%). Serological evidence of recent exposure was detected in 1,134 individuals. Bed net use, household wealth, and elevation were protective, whereas being febrile, over age 5 years, and living in either households with rudimentary wall material or farther from the road increased the odds of malaria. Two predominant overlapping spatial clusters of infection and recent exposure were identified. Individual, household, and environmental risk factors are associated with the odds of individual risk and recent exposure in Artibonite; spatial clusters are primarily associated with household-level risk factors. Findings from serology testing can further strengthen the targeting of interventions.
Collapse
Affiliation(s)
- Karen E. S. Hamre
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
- CDC Foundation, Atlanta, Georgia
| | - Amber M. Dismer
- Emergency Response and Recovery Branch, Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lotus L. van den Hoogen
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - John Williamson
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Nishant Kishore
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
- CDC Foundation, Atlanta, Georgia
| | - Anyess Travers
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
- CDC Foundation, Atlanta, Georgia
| | - Kathleen McGee
- Population Services International/Organisation Haïtienne de Marketing Social pour la Santé, Peguy-ville, Haiti
| | - Baby Pierre
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | | | - Daniel Impoinvil
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kathleen Holmes
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Gillian Stresman
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Thomas Druetz
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
- University of Montreal School of Public Health, Montreal, Canada
| | - Thomas P. Eisele
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Chris Drakeley
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jean Frantz Lemoine
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Michelle A. Chang
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
6
|
Macalinao MLM, Fornace KM, Reyes RA, Hall T, Bareng APN, Adams JH, Huon C, Chitnis CE, Luchavez JS, Tetteh KK, Yui K, Hafalla JCR, Espino FEJ, Drakeley CJ. Analytical approaches for antimalarial antibody responses to confirm historical and recent malaria transmission: an example from the Philippines. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 37:100792. [PMID: 37693871 PMCID: PMC10485684 DOI: 10.1016/j.lanwpc.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 09/12/2023]
Abstract
Background Assessing the status of malaria transmission in endemic areas becomes increasingly challenging as countries approach elimination. Serology can provide robust estimates of malaria transmission intensities, and multiplex serological assays allow for simultaneous assessment of markers of recent and historical malaria exposure. Methods Here, we evaluated different statistical and machine learning methods for analyzing multiplex malaria-specific antibody response data to classify recent and historical exposure to Plasmodium falciparum and Plasmodium vivax. To assess these methods, we utilized samples from a health-facility based survey (n = 9132) in the Philippines, where we quantified antibody responses against 8 P. falciparum and 6 P. vivax-specific antigens from 3 sites with varying transmission intensity. Findings Measurements of antibody responses and seroprevalence were consistent with the 3 sites' known endemicity status. Among the models tested, a machine learning (ML) approach (Random Forest model) using 4 serological markers (PfGLURP R2, Etramp5.Ag1, GEXP18, and PfMSP119) gave better predictions for P. falciparum recent infection in Palawan (AUC: 0.9591, CI 0.9497-0.9684) than individual antigen seropositivity. Although the ML approach did not improve P. vivax infection predictions, ML classifications confirmed the absence of recent exposure to P. falciparum and P. vivax in both Occidental Mindoro and Bataan. For predicting historical P. falciparum and P. vivax transmission, seroprevalence and seroconversion rates based on cumulative exposure markers AMA1 and MSP119 showed reliable trends in the 3 sites. Interpretation Our study emphasizes the utility of serological markers in predicting recent and historical exposure in a sub-national elimination setting, and also highlights the potential use of machine learning models using multiplex antibody responses to improve assessment of the malaria transmission status of countries aiming for elimination. This work also provides baseline antibody data for monitoring risk in malaria-endemic areas in the Philippines. Funding Newton Fund, Philippine Council for Health Research and Development, UK Medical Research Council.
Collapse
Affiliation(s)
- Maria Lourdes M. Macalinao
- Department of Parasitology and National Reference Laboratory for Malaria and Other Parasites, Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kimberly M. Fornace
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ralph A. Reyes
- Department of Parasitology and National Reference Laboratory for Malaria and Other Parasites, Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Tom Hall
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison Paolo N. Bareng
- Department of Parasitology and National Reference Laboratory for Malaria and Other Parasites, Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | | | - Christèle Huon
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Chetan E. Chitnis
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Jennifer S. Luchavez
- Department of Parasitology and National Reference Laboratory for Malaria and Other Parasites, Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Kevin K.A. Tetteh
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Katsuyuki Yui
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Julius Clemence R. Hafalla
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fe Esperanza J. Espino
- Department of Parasitology and National Reference Laboratory for Malaria and Other Parasites, Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Chris J. Drakeley
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Chang MA, Impoinvil D, Hamre KES, Dalexis PE, Mérilien JB, Dismer AM, Fouché B, Desir L, Holmes K, Lafortune W, Herman C, Rogier E, Noland GS, Young AJ, Druetz T, Ashton R, Eisele TP, Cohen J, van den Hoogen L, Stresman G, Drakeley C, Pothin E, Cameron E, Battle KE, Williamson J, Telfort MA, Lemoine JF. Acceptability, Feasibility, Drug Safety, and Effectiveness of a Pilot Mass Drug Administration with a Single Round of Sulfadoxine-Pyrimethamine Plus Primaquine and Indoor Residual Spraying in Communities with Malaria Transmission in Haiti, 2018. Am J Trop Med Hyg 2023; 108:1127-1139. [PMID: 37160282 PMCID: PMC10540127 DOI: 10.4269/ajtmh.22-0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/24/2023] [Indexed: 05/11/2023] Open
Abstract
For a malaria elimination strategy, Haiti's National Malaria Control Program piloted a mass drug administration (MDA) with indoor residual spraying (IRS) in 12 high-transmission areas across five communes after implementing community case management and strengthened surveillance. The MDA distributed sulfadoxine-pyrimethamine and single low-dose primaquine to eligible residents during house visits. The IRS campaign applied pirimiphos-methyl insecticide on walls of eligible houses. Pre- and post-campaign cross-sectional surveys were conducted to assess acceptability, feasibility, drug safety, and effectiveness of the combined interventions. Stated acceptability for MDA before the campaign was 99.2%; MDA coverage estimated at 10 weeks post-campaign was 89.6%. Similarly, stated acceptability of IRS at baseline was 99.9%; however, household IRS coverage was 48.9% because of the high number of ineligible houses. Effectiveness measured by Plasmodium falciparum prevalence at baseline and 10 weeks post-campaign were similar: 1.31% versus 1.43%, respectively. Prevalence of serological markers were similar at 10 weeks post-campaign compared with baseline, and increased at 6 months. No severe adverse events associated with the MDA were identified in the pilot; there were severe adverse events in a separate, subsequent campaign. Both MDA and IRS are acceptable and feasible interventions in Haiti. Although a significant impact of a single round of MDA/IRS on malaria transmission was not found using a standard pre- and post-intervention comparison, it is possible there was blunting of the peak transmission. Seasonal malaria transmission patterns, suboptimal IRS coverage, and low baseline parasitemia may have limited the effectiveness or the ability to measure effectiveness.
Collapse
Affiliation(s)
- Michelle A. Chang
- Malaria Branch, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Daniel Impoinvil
- Entomology Branch, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Karen E. S. Hamre
- Malaria Branch, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
- CDC Foundation, Atlanta, Georgia
| | | | - Jean-Baptiste Mérilien
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Amber M. Dismer
- Emergency Response and Recovery Branch, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Kathleen Holmes
- Malaria Branch, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Willy Lafortune
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Camelia Herman
- Malaria Branch, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Rogier
- Malaria Branch, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Alyssa J. Young
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Thomas Druetz
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Ruth Ashton
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Thomas P. Eisele
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Justin Cohen
- Clinton Health Access Initiative, Washington, District of Columbia
| | | | - Gillian Stresman
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Emilie Pothin
- Clinton Health Access Initiative, Washington, District of Columbia
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ewan Cameron
- School of Public Health, Curtin University, Bentley, Australia
| | - Katherine E. Battle
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, Washington
| | - John Williamson
- Malaria Branch, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marc-Aurèle Telfort
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Jean Frantz Lemoine
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| |
Collapse
|
8
|
Herman C, Leonard CM, Uhomoibhi P, Maire M, Moss D, Inyang U, Abubakar A, Ogunniyi A, Mba N, Greby SM, Okoye MI, Iriemenam NC, Maikore I, Steinhardt L, Rogier E. Non-falciparum malaria infection and IgG seroprevalence among children under 15 years in Nigeria, 2018. Nat Commun 2023; 14:1360. [PMID: 36914649 PMCID: PMC10011577 DOI: 10.1038/s41467-023-37010-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Plasmodium falciparum (Pf) is the dominant malaria parasite in Nigeria though P. vivax (Pv), P. ovale (Po), and P. malariae (Pm) are also endemic. Blood samples (n = 31,234) were collected from children aged 0-14 years during a 2018 nationwide HIV survey and assayed for Plasmodium antigenemia, Plasmodium DNA, and IgG against Plasmodium MSP1-19 antigens. Of all children, 6.6% were estimated to have Pm infection and 1.4% Po infection with no Pv infections detected. The highest household wealth quintile was strongly protective against infection with Pm (aOR: 0.11, 95% CI: 0.05-0.22) or Po (aOR= 0.01, 0.00-0.10). Overall Pm seroprevalence was 34.2% (95% CI: 33.3-35.2) with lower estimates for Po (12.1%, 11.6-12.5) and Pv (6.3%, 6.0-6.7). Pm seropositivity was detected throughout the country with several local government areas showing >50% seroprevalence. Serological and DNA indicators show widespread exposure of Nigerian children to Pm with lower rates to Po and Pv.
Collapse
Affiliation(s)
- Camelia Herman
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30029, USA.,BeVera Solutions, Atlanta, GA, 30341, USA
| | - Colleen M Leonard
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30029, USA.,Oak Ridge Institute for Science and Education, US. Department of Energy, Oak Ridge, TN, 37831, USA
| | - Perpetua Uhomoibhi
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | - Mark Maire
- U.S. President's Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, U.S. Centers for Disease Control and Prevention, Abuja, Nigeria
| | - Delynn Moss
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Uwem Inyang
- U.S. President's Malaria Initiative, United States Agency for International Development (USAID), Abuja, Nigeria
| | - Ado Abubakar
- Institute of Human Virology (IHVN), Abuja, Nigeria
| | | | - Nwando Mba
- Nigeria Centre for Disease Control (NCDC), Abuja, Nigeria
| | - Stacie M Greby
- Division of Global HIV and Tuberculosis, Center for Global Health, Centers for Disease Control and Prevention, Abuja, Nigeria
| | - McPaul I Okoye
- Division of Global HIV and Tuberculosis, Center for Global Health, Centers for Disease Control and Prevention, Abuja, Nigeria
| | - Nnaemeka C Iriemenam
- Division of Global HIV and Tuberculosis, Center for Global Health, Centers for Disease Control and Prevention, Abuja, Nigeria
| | - Ibrahim Maikore
- World Health Organization, Nigeria Country Office, Abuja, Nigeria
| | - Laura Steinhardt
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30029, USA
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30029, USA.
| |
Collapse
|
9
|
Rogier EW, Giorgi E, Tetteh K, Sepúlveda N. Editorial: Current research on serological analyses of infectious diseases. Front Med (Lausanne) 2023; 10:1154584. [PMID: 36873877 PMCID: PMC9982155 DOI: 10.3389/fmed.2023.1154584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Affiliation(s)
- Eric William Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Emanuele Giorgi
- Centre for Health Informatics, Computing, and Statistics, Lancaster University, Lancaster, United Kingdom
| | - Kevin Tetteh
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nuno Sepúlveda
- Department of Mathematics & Information Science, Warsaw University of Technology, Warsaw, Poland.,Centro de Estatística e Aplicações da Universidade de Lisboa (CEAUL), Lisbon, Portugal
| |
Collapse
|
10
|
Jones FK, Bhuiyan TR, Muise RE, Khan AI, Slater DM, Hutt Vater KR, Chowdhury F, Kelly M, Xu P, Kováč P, Biswas R, Kamruzzaman M, Ryan ET, Calderwood SB, LaRocque RC, Lessler J, Charles RC, Leung DT, Qadri F, Harris JB, Azman AS. Identifying Recent Cholera Infections Using a Multiplex Bead Serological Assay. mBio 2022; 13:e0190022. [PMID: 36286520 PMCID: PMC9765614 DOI: 10.1128/mbio.01900-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Estimates of incidence based on medically attended cholera can be severely biased. Vibrio cholerae O1 leaves a lasting antibody signal and recent advances showed that these can be used to estimate infection incidence rates from cross-sectional serologic data. Current laboratory methods are resource intensive and challenging to standardize across laboratories. A multiplex bead assay (MBA) could efficiently expand the breadth of measured antibody responses and improve seroincidence accuracy. We tested 305 serum samples from confirmed cholera cases (4 to 1083 d postinfection) and uninfected contacts in Bangladesh using an MBA (IgG/IgA/IgM for 7 Vibrio cholerae O1-specific antigens) as well as traditional vibriocidal and enzyme-linked immunosorbent assays (2 antigens, IgG, and IgA). While postinfection vibriocidal responses were larger than other markers, several MBA-measured antibodies demonstrated robust responses with similar half-lives. Random forest models combining all MBA antibody measures allowed for accurate identification of recent cholera infections (e.g., past 200 days) including a cross-validated area under the curve (cvAUC200) of 92%, with simpler 3 IgG antibody models having similar accuracy. Across infection windows between 45 and 300 days, the accuracy of models trained on MBA measurements was non-inferior to models based on traditional assays. Our results illustrated a scalable cholera serosurveillance tool that can be incorporated into multipathogen serosurveillance platforms. IMPORTANCE Reliable estimates of cholera incidence are challenged by poor clinical surveillance and health-seeking behavior biases. We showed that cross-sectional serologic profiles measured with a high-throughput multiplex bead assay can lead to accurate identification of those infected with pandemic Vibrio cholerae O1, thus allowing for estimates of seroincidence. This provides a new avenue for understanding the epidemiology of cholera, identifying priority areas for cholera prevention/control investments, and tracking progress in the global fight against this ancient disease.
Collapse
Affiliation(s)
- Forrest K. Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Taufiqur R. Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rachel E. Muise
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ashraful I. Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Damien M. Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kian Robert Hutt Vater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Peng Xu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavol Kováč
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajib Biswas
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
- University of North Carolina Population Center, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Daniel T. Leung
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew S. Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Institute of Global Health, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Jaramillo-Underwood A, Impoinvil D, Sutcliff A, Hamre KES, Joseph V, van den Hoogen L, Lemoine JF, Ashton RA, Chang MA, Existe A, Boncy J, Drakeley C, Stresman G, Druetz T, Eisele T, Rogier E. Factors Associated With Human IgG Antibody Response to Anopheles albimanus Salivary Gland Extract, Artibonite Department, Haiti, 2017. J Infect Dis 2022; 226:1461-1469. [PMID: 35711005 PMCID: PMC10982684 DOI: 10.1093/infdis/jiac245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Serological data can provide estimates of human exposure to both malaria vector and parasite based on antibody responses. A multiplex bead-based assay was developed to simultaneously detect IgG to Anopheles albimanus salivary gland extract (SGE) and 23 Plasmodium falciparum antigens among 4185 participants enrolled in Artibonite department, Haiti in 2017. Logistic regression adjusted for participant- and site-level covariates and found children under 5 years and 6-15 years old had 3.7- and 5.4-fold increase in odds, respectively, of high anti-SGE IgG compared to participants >15 years. Seropositivity to P. falciparum CSP, Rh2_2030, and SEA-1 antigens was significantly associated with high IgG response against SGE, and participant enrolment at elevations under 200 m was associated with higher anti-SGE IgG levels. The ability to approximate population exposure to malaria vectors through SGE serology data is very dependent by age categories, and SGE antigens can be easily integrated into a multiplex serological assay.
Collapse
Affiliation(s)
- Alicia Jaramillo-Underwood
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Daniel Impoinvil
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alice Sutcliff
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Karen E. S. Hamre
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Vena Joseph
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Lotus van den Hoogen
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jean Frantz Lemoine
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Ruth A. Ashton
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Michelle A. Chang
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alexandre Existe
- Laboratorie National de Santé Publique, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Jacques Boncy
- Laboratorie National de Santé Publique, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gillian Stresman
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas Druetz
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
- Department of Social and Preventive Medicine, University of Montreal School of Public Health, Montreal, Québec, Canada
| | - Thomas Eisele
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Druetz T, van den Hoogen L, Stresman G, Joseph V, Hamre KES, Fayette C, Monestime F, Presume J, Romilus I, Mondélus G, Elismé T, Cooper S, Impoinvil D, Ashton RA, Rogier E, Existe A, Boncy J, Chang MA, Lemoine JF, Drakeley C, Eisele TP. Etramp5 as a useful serological marker in children to assess the immediate effects of mass drug campaigns for malaria. BMC Infect Dis 2022; 22:643. [PMID: 35883064 PMCID: PMC9321307 DOI: 10.1186/s12879-022-07616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Serological methods provide useful metrics to estimate age-specific period prevalence in settings of low malaria transmission; however, evidence on the use of seropositivity as an endpoint remains scarce in studies to evaluate combinations of malaria control measures, especially in children. This study aims to evaluate the immediate effects of a targeted mass drug administration campaign (tMDA) in Haiti by using serological markers. METHODS The tMDA was implemented in September-October 2018 using sulfadoxine-pyrimethamine and single low-dose primaquine. A natural quasi-experimental study was designed, using a pretest and posttest in a cohort of 754 randomly selected school children, among which 23% reported having received tMDA. Five antigens were selected as outcomes (MSP1-19, AMA-1, Etramp5 antigen 1, HSP40, and GLURP-R0). Posttest was conducted 2-6 weeks after the intervention. RESULTS At baseline, there was no statistical difference in seroprevalence between the groups of children that were or were not exposed during the posttest. A lower seroprevalence was observed for markers informative of recent exposure (Etramp5 antigen 1, HSP40, and GLURP-R0). Exposure to tMDA was significantly associated with a 50% reduction in the odds of seropositivity for Etramp5 antigen 1 and a 21% reduction in the odds of seropositivity for MSP119. CONCLUSION Serological markers can be used to evaluate the effects of interventions against malaria on the risk of infection in settings of low transmission. Antibody responses against Etramp5 antigen 1 in Haitian children were reduced in the 2-6 weeks following a tMDA campaign, confirming its usefulness as a short-term marker in child populations.
Collapse
Affiliation(s)
- T Druetz
- Center for Applied Malaria Research and Evaluation, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA. .,Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Canada. .,Centre de Recherche en Santé Publique, Montreal, Canada.
| | - L van den Hoogen
- Center for Applied Malaria Research and Evaluation, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - G Stresman
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - V Joseph
- Center for Applied Malaria Research and Evaluation, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA.,Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Canada
| | - K E S Hamre
- Malaria Branch, Centers for Diseases Control and Prevention, Atlanta, USA.,CDC Foundation, Atlanta, USA
| | - C Fayette
- IMA World Health, Port-au-Prince, Haiti
| | | | - J Presume
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - I Romilus
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - G Mondélus
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - T Elismé
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - S Cooper
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Canada
| | - D Impoinvil
- Malaria Branch, Centers for Diseases Control and Prevention, Atlanta, USA
| | - R A Ashton
- Center for Applied Malaria Research and Evaluation, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - E Rogier
- Malaria Branch, Centers for Diseases Control and Prevention, Atlanta, USA
| | - A Existe
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - J Boncy
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - M A Chang
- Malaria Branch, Centers for Diseases Control and Prevention, Atlanta, USA
| | - J F Lemoine
- Programme National de Contrôle du Paludisme, Port-au-Prince, Haiti
| | - C Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - T P Eisele
- Center for Applied Malaria Research and Evaluation, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| |
Collapse
|
13
|
The use of a chimeric antigen for Plasmodium falciparum and P. vivax seroprevalence estimates from community surveys in Ethiopia and Costa Rica. PLoS One 2022; 17:e0263485. [PMID: 35613090 PMCID: PMC9132309 DOI: 10.1371/journal.pone.0263485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Background In low-transmission settings, accurate estimates of malaria transmission are needed to inform elimination targets. Detection of antimalarial antibodies provides exposure history, but previous studies have mainly relied on species-specific antigens. The use of chimeric antigens that include epitopes from multiple species of malaria parasites in population-based serological surveys could provide data for exposure to multiple Plasmodium species circulating in an area. Here, the utility of P. vivax/P. falciparum chimeric antigen for assessing serological responses was evaluated in Ethiopia, an endemic country for all four human malarias, and Costa Rica, where P. falciparum has been eliminated with reports of sporadic P. vivax cases. Methods A multiplex bead-based assay was used to determine the seroprevalence of IgG antibodies against a chimeric malaria antigen (PvRMC-MSP1) from blood samples collected from household surveys in Ethiopia in 2015 (n = 7,077) and Costa Rica in 2015 (n = 851). Targets specific for P. falciparum (PfMSP1) and P. vivax (PvMSP1) were also included in the serological panel. Seroprevalence in the population and seroconversion rates were compared among the three IgG targets. Results Seroprevalence in Costa Rica was 3.6% for PfMSP1, 41.5% for PvMSP1 and 46.7% for PvRMC-MSP1. In Ethiopia, seroprevalence was 27.6% for PfMSP1, 21.4% for PvMSP1, and 32.6% for PvRMC-MSP1. IgG levels in seropositive individuals were consistently higher for PvRMC-MSP1 when compared to PvMSP1 in both studies. Seroconversion rates were 0.023 for PvMSP1 and 0.03 for PvRMC-MSP1 in Costa Rica. In Ethiopia, seroconversion rates were 0.050 for PfMSP1, 0.044 for PvMSP1 and 0.106 for PvRMC-MSP1. Conclusions Our data indicate that chimeric antigen PvRMC-MSP1 is able to capture antibodies to multiple epitopes from both prior P. falciparum and P. vivax infections, and suitable chimeric antigens can be considered for use in serosurveys with appropriate validation.
Collapse
|
14
|
Bridges DJ, Miller JM, Chalwe V, Moonga H, Hamainza B, Steketee RW, Mambwe B, Mulube C, Wu L, Tetteh KKA, Drakeley C, Chishimba S, Mwenda M, Silumbe K, Larsen DA. Reactive focal drug administration associated with decreased malaria transmission in an elimination setting: Serological evidence from the cluster-randomized CoRE study. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0001295. [PMID: 36962857 PMCID: PMC10021141 DOI: 10.1371/journal.pgph.0001295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2022] [Indexed: 12/12/2022]
Abstract
Efforts to eliminate malaria transmission need evidence-based strategies. However, accurately assessing end-game malaria elimination strategies is challenging due to the low level of transmission and the rarity of infections. We hypothesised that presumptively treating individuals during reactive case detection (RCD) would reduce transmission and that serology would more sensitively detect this change over standard approaches. We conducted a cluster randomised control trial (NCT02654912) of presumptive reactive focal drug administration (RFDA-intervention) compared to the standard of care, reactive focal test and treat (RFTAT-control) in Southern Province, Zambia-an area of low seasonal transmission (overall incidence of ~3 per 1,000). We measured routine malaria incidence from health facilities as well as PCR parasite prevalence / antimalarial seroprevalence in an endline cross-sectional population survey. No significant difference was identified from routine incidence data and endline prevalence by polymerase chain reaction (PCR) had insufficient numbers of malaria infections (i.e., 16 infections among 6,276 children) to assess the intervention. Comparing long-term serological markers, we found a 19% (95% CI = 4-32%) reduction in seropositivity for the RFDA intervention using a difference in differences approach incorporating serological positivity and age. We also found a 37% (95% CI = 2-59%) reduction in seropositivity to short-term serological markers in a post-only comparison. These serological analyses provide compelling evidence that RFDA both has an impact on malaria transmission and is an appropriate end-game malaria elimination strategy. Furthermore, serology provides a more sensitive approach to measure changes in transmission that other approaches miss, particularly in very low transmission settings. Trial Registration: Registered at www.clinicaltrials.gov (NCT02654912, 13/1/2016).
Collapse
Affiliation(s)
- Daniel J Bridges
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - John M Miller
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Victor Chalwe
- National Health Research Authority, Paediatric Centre of Excellence, University Teaching Hospital, Lusaka, Zambia
| | - Hawela Moonga
- National Malaria Elimination Centre, Zambia Ministry of Health, Chainama Hospital, Lusaka, Zambia
| | - Busiku Hamainza
- National Malaria Elimination Centre, Zambia Ministry of Health, Chainama Hospital, Lusaka, Zambia
| | - Richard W Steketee
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), Seattle, Washington, United States of America
| | - Brenda Mambwe
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Conceptor Mulube
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Lindsey Wu
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K A Tetteh
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sandra Chishimba
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Mulenga Mwenda
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - Kafula Silumbe
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Chainama Hospital College Grounds, Lusaka, Zambia
| | - David A Larsen
- Syracuse University Department of Public Health, Syracuse, New York, United States of America
| |
Collapse
|
15
|
Kearney EA, Agius PA, Chaumeau V, Cutts JC, Simpson JA, Fowkes FJI. Anopheles salivary antigens as serological biomarkers of vector exposure and malaria transmission: A systematic review with multilevel modelling. eLife 2021; 10:e73080. [PMID: 34939933 PMCID: PMC8860437 DOI: 10.7554/elife.73080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Entomological surveillance for malaria is inherently resource-intensive and produces crude population-level measures of vector exposure which are insensitive in low-transmission settings. Antibodies against Anopheles salivary proteins measured at the individual level may serve as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be quantified. Methods A systematic review of studies measuring antibodies against Anopheles salivary antigens (PROSPERO: CRD42020185449). Multilevel modelling (to account for multiple study-specific observations [level 1], nested within study [level 2], and study nested within country [level 3]) estimated associations between seroprevalence with Anopheles human biting rate (HBR) and malaria transmission measures. Results From 3981 studies identified in literature searches, 42 studies across 16 countries were included contributing 393 study-specific observations of anti-Anopheles salivary antibodies determined in 42,764 samples. A positive association between HBR (log transformed) and seroprevalence was found; overall a twofold (100% relative) increase in HBR was associated with a 23% increase in odds of seropositivity (OR: 1.23, 95% CI: 1.10-1.37; p<0.001). The association between HBR and Anopheles salivary antibodies was strongest with concordant, rather than discordant, Anopheles species. Seroprevalence was also significantly positively associated with established epidemiological measures of malaria transmission: entomological inoculation rate, Plasmodium spp. prevalence, and malarial endemicity class. Conclusions Anopheles salivary antibody biomarkers can serve as a proxy measure for HBR and malaria transmission, and could monitor malaria receptivity of a population to sustain malaria transmission. Validation of Anopheles species-specific biomarkers is important given the global heterogeneity in the distribution of Anopheles species. Salivary biomarkers have the potential to transform surveillance by replacing impractical, inaccurate entomological investigations, especially in areas progressing towards malaria elimination. Funding Australian National Health and Medical Research Council, Wellcome Trust.
Collapse
Affiliation(s)
- Ellen A Kearney
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Paul A Agius
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Julia C Cutts
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Department of Medicine at the Doherty Institute, The University of MelbourneMelbourneAustralia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Freya JI Fowkes
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| |
Collapse
|
16
|
McDonald SJ, Shultz SR, Agoston DV. The Known Unknowns: An Overview of the State of Blood-Based Protein Biomarkers of Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2652-2666. [PMID: 33906422 DOI: 10.1089/neu.2021.0011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blood-based protein biomarkers have revolutionized several fields of medicine by enabling molecular level diagnosis, as well as monitoring disease progression and treatment efficacy. Traumatic brain injury (TBI) so far has benefitted only moderately from using protein biomarkers to improve injury outcome. Because of its complexity and dynamic nature, TBI, especially its most prevalent mild form (mild TBI; mTBI), presents unique challenges toward protein biomarker discovery and validation given that blood is frequently obtained and processed outside of the clinical laboratory (e.g., athletic fields, battlefield) under variable conditions. As it stands, the field of mTBI blood biomarkers faces a number of outstanding questions. Do elevated blood levels of currently used biomarkers-ubiquitin carboxy-terminal hydrolase L1, glial fibrillary acidic protein, neurofilament light chain, and tau/p-tau-truly mirror the extent of parenchymal damage? Do these different proteins represent distinct injury mechanisms? Is the blood-brain barrier a "brick wall"? What is the relationship between intra- versus extracranial values? Does prolonged elevation of blood levels reflect de novo release or extended protein half-lives? Does biological sex affect the pathobiological responses after mTBI and thus blood levels of protein biomarkers? At the practical level, it is unknown how pre-analytical variables-sample collection, preparation, handling, and stability-affect the quality and reliability of biomarker data. The ever-increasing sensitivity of assay systems and lack of quality control of samples, combined with the almost complete reliance on antibody-based assay platforms, represent important unsolved issues given that false-negative results can lead to false clinical decision making and adverse outcomes. This article serves as a commentary on the state of mTBI biomarkers and the landscape of significant challenges. We highlight and discusses several biological and methodological "known unknowns" and close with some practical recommendations.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Sutcliffe AC, Irish SR, Rogier E, Finney M, Zohdy S, Dotson EM. Adaptation of ELISA detection of Plasmodium falciparum and Plasmodium vivax circumsporozoite proteins in mosquitoes to a multiplex bead-based immunoassay. Malar J 2021; 20:377. [PMID: 34556130 PMCID: PMC8461957 DOI: 10.1186/s12936-021-03910-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Plasmodium spp. sporozoite rates in mosquitoes are used to better understand malaria transmission intensity, the relative importance of vector species and the impact of interventions. These rates are typically estimated using an enzyme-linked immunosorbent assay (ELISA) utilizing antibodies against the circumsporozoite protein of Plasmodium falciparum, Plasmodium vivax VK210 (P. vivax210) or P. vivax VK247 (P. vivax247), employing assays that were developed over three decades ago. The ELISA method requires a separate assay plate for each analyte tested and can be time consuming as well as requiring sample volumes not always available. The bead-based multiplex platform allows simultaneous measurement of multiple analytes and may improve the lower limit of detection for sporozoites. METHODS Recombinant positive controls for P. falciparum, P. vivax210 and P. vivax247 and previously developed circumsporozoite (cs) ELISA antibodies were used to optimize conditions for the circumsporozoite multiplex bead assay (csMBA) and to determine the detection range of the csMBA. After optimizing assay conditions, known amounts of sporozoites were used to determine the lower limit of detection for the csELISA and csMBA and alternate cut-off measures were applied to demonstrate how cut-off criteria can impact lower limits of detection. Sporozoite rates from 1275 mosquitoes collected in Madagascar and 255 mosquitoes collected in Guinea were estimated and compared using the established csELISA and newly optimized csMBA. All mosquitoes were tested (initial test), and those that were positive were retested (retest). When sufficient sample volume remained, an aliquot of homogenate was boiled and retested (boiled retest), to denature any heat-unstable cross-reactive proteins. RESULTS Following optimization of the csMBA, the lower limit of detection was 25 sporozoites per mosquito equivalent for P. falciparum, P. vivax210 and P. vivax247 whereas the lower limits of detection for csELISA were found to be 1400 sporozoites for P. falciparum, 425 for P. vivax210 and 1650 for P. vivax247. Combined sporozoite rates after re-testing of samples that initially tested positive for Madagascar mosquitoes by csELISA and csMBA were 1.4 and 10.3%, respectively, and for Guinea mosquitoes 2% by both assays. Boiling of samples followed by csMBA resulted in a decrease in the Madagascar sporozoite rate to 2.8-4.4% while the Guinea csMBA sporozoite rate remained at 2.0%. Using an alternative csMBA cut-off value of median fluorescence intensity (MFI) of 100 yielded a sporozoite rate after confirmational testing of 3.7% for Madagascar samples and 2.0% for Guinea samples. Whether using csMBA or csELISA, the following steps may help minimize false positives: specimens are appropriately stored and bisected anterior to the thorax-abdomen junction, aliquots of homogenate are boiled and retested following initial testing, and an appropriate cut-off value is determined. CONCLUSIONS The csMBA is a cost-comparable and time saving alternative to the csELISA and may help eliminate false negatives due to a lower limit of detection, thus increasing sensitivity over the csELISA. The csMBA expands the potential analyses that can be done with a small volume of sample by allowing multiplex testing where analytes in addition to P. falciparum, P. vivax210 and P. vivax247 can be added following optimization.
Collapse
Affiliation(s)
- Alice C Sutcliffe
- The Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA.
| | - Seth R Irish
- The Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
- President's Malaria Initiative, Atlanta, GA, USA
| | - Eric Rogier
- The Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, GA, USA
| | - Micaela Finney
- College of Science and Mathematics, Auburn University, Auburn, AL, USA
- Entomology Department, College of Agriculture, Texas A&M University, College Station, TX, USA
| | - Sarah Zohdy
- The Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, GA, USA
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ellen M Dotson
- The Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| |
Collapse
|
18
|
Considerations for quality assurance of multiplex malaria antigen detection assays with large sample sets. Sci Rep 2021; 11:13248. [PMID: 34168264 PMCID: PMC8225651 DOI: 10.1038/s41598-021-92723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Multiplex assays for malaria antigen detection can gather data from large sample sets, but considerations for the consistency and quality assurance (QA) of mass testing lack evaluation. We present a QA framework for a study occurring November 2019 to March 2020 involving 504 assay plates detecting four Plasmodium antigens: pan-Plasmodium aldolase and lactate dehydrogenase (LDH), histidine-rich protein 2 (HRP2), P. vivax LDH (PvLDH). Controls on each plate included buffer blank, antigen negative blood, and 4-point positive dilution curve. The blank and negative blood provided consistently low signal for all targets except for pAldolase, which showed variability. Positive curve signals decreased throughout the 5-month study duration but retained a coefficient of variation (CV) of < 5%, with the exception of HRP2 in month 5 (CV of 11%). Regression fittings for inter-plate control signals provided mean and standard deviations (SDs), and of 504 assay plates, 6 (1.2%) violated the acceptable deviation limits and were repeated. For the 40,272 human blood samples assayed in this study, of 161,088 potential data points (each sample × 4 antigens), 160,641 (99.7%) successfully passed quality checks. The QA framework presented here can be utilized to ensure quality of laboratory antigen detection for large sample sets.
Collapse
|
19
|
Ashton RA, Joseph V, van den Hoogen LL, Tetteh KKA, Stresman G, Worges M, Druetz T, Chang MA, Rogier E, Lemoine JF, Drakeley C, Eisele TP. Risk Factors for Malaria Infection and Seropositivity in the Elimination Area of Grand'Anse, Haiti: A Case-Control Study among Febrile Individuals Seeking Treatment at Public Health Facilities. Am J Trop Med Hyg 2020; 103:767-777. [PMID: 32458784 PMCID: PMC7410432 DOI: 10.4269/ajtmh.20-0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The island of Hispaniola aims to eliminate malaria by 2025; however, there are limited data to describe epidemiologic risk factors for malaria in this setting. A prospective case–control study was conducted at four health facilities in southwest Haiti, aiming to describe factors influencing the risk of current and past malaria infection. Cases were defined as individuals attending facilities with current or recent fever and positive malaria rapid diagnostic test (RDT), while controls were those with current or recent fever and RDT negative. Serological markers of recent and cumulative exposure to Plasmodium were assessed using the multiplex bead assay from dried blood spots and used for alternate case definitions. Kuldorff’s spatial scan statistic was used to identify local clusters of infection or exposure. Logistic regression models were used to assess potential risk factors for RDT positivity and recent exposure markers, including age-group, gender, and recruiting health facility as group-matching variables. A total of 192 cases (RDT positive) and 915 controls (RDT negative) were recruited. Consistent spatial clusters were identified for all three infection and exposure metrics, indicating temporal stability of malaria transmission at these sites. Risk factors included remoteness from health facilities and household construction, furthermore, insecticide-treated net ownership or use was associated with reduced odds of RDT positivity. These findings indicate the malaria risk in Grand’Anse is driven primarily by location. Travel, occupation, and other behavioral factors were not associated with malaria. These data can support the National Malaria Program to refine and target their intervention approaches, and to move toward elimination.
Collapse
Affiliation(s)
- Ruth A Ashton
- Center for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Vena Joseph
- Center for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Lotus L van den Hoogen
- Center for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gillian Stresman
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matt Worges
- Center for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Thomas Druetz
- Department of Social and Preventive Medicine, University of Montreal School of Public Health, Montreal, Canada.,Center for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Michelle A Chang
- Division of Parasitic Diseases and Malaria, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jean Frantz Lemoine
- Programme National de Contrôle de la Malaria, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas P Eisele
- Center for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana
| |
Collapse
|
20
|
van den Hoogen LL, Stresman G, Présumé J, Romilus I, Mondélus G, Elismé T, Existe A, Hamre KES, Ashton RA, Druetz T, Joseph V, Beeson JG, Singh SK, Boncy J, Eisele TP, Chang MA, Lemoine JF, Tetteh KKA, Rogier E, Drakeley C. Selection of Antibody Responses Associated With Plasmodium falciparum Infections in the Context of Malaria Elimination. Front Immunol 2020; 11:928. [PMID: 32499783 PMCID: PMC7243477 DOI: 10.3389/fimmu.2020.00928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
In our aim to eliminate malaria, more sensitive tools to detect residual transmission are quickly becoming essential. Antimalarial antibody responses persist in the blood after a malaria infection and provide a wider window to detect exposure to infection compared to parasite detection metrics. Here, we aimed to select antibody responses associated with recent and cumulative exposure to malaria using cross-sectional survey data from Haiti, an elimination setting. Using a multiplex bead assay, we generated data for antibody responses (immunoglobulin G) to 23 Plasmodium falciparum targets in 29,481 participants across three surveys. This included one community-based survey in which participants were enrolled during household visits and two sentinel group surveys in which participants were enrolled at schools and health facilities. First, we correlated continuous antibody responses with age (Spearman) to determine which showed strong age-related associations indicating accumulation over time with limited loss. AMA-1 and MSP-119 antibody levels showed the strongest correlation with age (0.47 and 0.43, p < 0.001) in the community-based survey, which was most representative of the underlying age structure of the population, thus seropositivity to either of these antibodies was considered representative of cumulative exposure to malaria. Next, in the absence of a gold standard for recent exposure, we included antibody responses to the remaining targets to predict highly sensitive rapid diagnostic test (hsRDT) status using receiver operating characteristic curves. For this, only data from the survey with the highest hsRDT prevalence was used (7.2%; 348/4,849). The performance of the top two antigens in the training dataset (two-thirds of the dataset; n = 3,204)-Etramp 5 ag 1 and GLURP-R0 (area-under-the-curve, AUC, 0.892 and 0.825, respectively)-was confirmed in the test dataset (remaining one-third of the dataset; n = 1,652, AUC 0.903 and 0.848, respectively). As no further improvement was seen by combining seropositivity to GLURP-R0 and Etramp 5 ag 1 (p = 0.266), seropositivity to Etramp 5 ag 1 alone was selected as representative of current or recent exposure to malaria. The validation of antibody responses associated with these exposure histories simplifies analyses and interpretation of antibody data and facilitates the application of results to evaluate programs.
Collapse
Affiliation(s)
- Lotus L. van den Hoogen
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, United States
| | - Gillian Stresman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Gina Mondélus
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Tamara Elismé
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | | | - Karen E. S. Hamre
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
- CDC Foundation, Atlanta, GA, United States
| | - Ruth A. Ashton
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, United States
| | - Thomas Druetz
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, United States
- Department of Social and Preventive Medicine, University of Montreal School of Public Health, Montreal, QC, Canada
| | - Vena Joseph
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, United States
| | - James G. Beeson
- Burnet Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Susheel K. Singh
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Thomas P. Eisele
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, United States
| | - Michelle A. Chang
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jean F. Lemoine
- Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Kevin K. A. Tetteh
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|