1
|
Moon SA, Kim JM, Lee YS, Cho HJ, Choi YJ, Yoon JH, Kim D, Che X, Jin X, Baek IJ, Lee SH, Choi JY, Koh JM. VGF and the VGF-derived peptide AQEE30 stimulate osteoblastic bone formation through the C3a receptor. Exp Mol Med 2025; 57:637-651. [PMID: 40082672 PMCID: PMC11958639 DOI: 10.1038/s12276-025-01419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 03/16/2025] Open
Abstract
New therapeutic targets, especially those that stimulate bone formation in cortical bone, are needed to overcome the limitations of current antiosteoporotic drugs. We previously demonstrated that factors secreted from megakaryocytes (MKs) promote bone formation. Here we conducted a proteomic analysis to identify a novel bone-forming factor from MK secretions. We revealed that Vgf, a nerve growth factor-responsive gene, and its derived active peptide AQEE30 in MK-conditioned medium play important roles in osteoblast proliferation and in vitro bone formation. In both Vgf-deficient male and female mice, the cortical bone mass was significantly decreased due to reductions in osteoblast number and bone formation activity. AQEE30 stimulated intracellular cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) activity in osteoblasts, whereas an adenylyl cyclase inhibitor blocked AQEE30-stimulated osteoblast proliferation and in vitro bone formation. Complement C3a receptor-1 (C3AR1) was expressed and interacted with AQEE30 in osteoblasts, and C3AR1 inhibition blocked all AQEE30-induced changes, including stimulated proliferation, bone formation and cAMP production, in osteoblasts. Injecting mini-PEGylated AQEE30 into calvaria increased the number of osteocalcin-positive cells and new bone formation. In conclusion, this study reveals a novel role of VGF in bone formation, particularly in cortical bone, and shows that AQEE30, a VGF-derived peptide, mediates this role by activating cAMP-PKA signaling via the C3AR1 receptor in osteoblasts.
Collapse
Affiliation(s)
- Sung-Ah Moon
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Man Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young Jin Choi
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jong Hyuk Yoon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dayea Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jeoung Baek
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Je-Young Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Huang Z, Iqbal Z, Zhao Z, Liu J, Alabsi AM, Shabbir M, Mahmood A, Liang Y, Li W, Deng Z. Cellular crosstalk in the bone marrow niche. J Transl Med 2024; 22:1096. [PMID: 39627858 PMCID: PMC11613879 DOI: 10.1186/s12967-024-05900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair. Additionally, we elucidate the intercommunication among osteocytes, the regulation of osteoblast maturation and activation by lymphocytes, the deficiency of megakaryocytes that can markedly impair osteoblast formation, and the mechanism of interaction between macrophages and mesenchymal stem cells in the bone marrow niche. Finally, we discussed the new immunotherapies for bone tumors in the BM niche. In this review, we aimed to provide a candid overview of the crosstalk among bone marrow niche cells and to highlight new concepts underlying the unknown mechanisms of hematopoiesis and bone reconstruction. Thus, this review may provide a more comprehensive understanding of the role of these niche cells in improving hematopoietic function and help identify their therapeutic potential for different diseases in the future.
Collapse
Affiliation(s)
- Zeqi Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zoya Iqbal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - A M Alabsi
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia
- School of Dentistry, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 ShahAlam, Selangor, Malaysia
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ayesha Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yujie Liang
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia.
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| |
Collapse
|
3
|
Nazzal MK, Battina HL, Tewari NP, Mostardo SL, Nagaraj RU, Zhou D, Awosanya OD, Majety SK, Samson S, Blosser RJ, Dadwal UC, Mulcrone PL, Kacena MA. The effects of young and aged, male and female megakaryocyte conditioned media on angiogenic properties of endothelial cells. Aging (Albany NY) 2024; 16:13181-13200. [PMID: 39578050 PMCID: PMC11719103 DOI: 10.18632/aging.206077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/11/2024] [Indexed: 11/24/2024]
Abstract
With aging, the risk of fractures and compromised healing increases. Angiogenesis plays a significant role in bone healing and is impaired with aging. We have previously shown the impact of megakaryocytes (MKs) in regulating bone healing. Notably, MKs produce factors known to promote angiogenesis. We examined the effects of conditioned media (CM) generated from MKs derived from young (3-4-month-old) and aged (22-24-month-old), male and female C57BL/6J mice on bone marrow endothelial cell (BMEC) growth and function. Female MK CM, regardless of age, caused a >65% increase in BMEC proliferation and improved vessel formation by >115%. Likewise, young male MK CM increased vessel formation by 160%. Although aged male MK CM resulted in >150% increases in the formation of vascular nodes and meshes, 62% fewer vessels formed compared to young male MK CM treatment. Aged female MK CM improved migration by over 2500%. However, aged female and male MK CM caused less wound closure. MK CM treatments also significantly altered the expression of several genes including PDGFRβ, CXCR4, and CD36 relative to controls and between ages. Further testing of mechanisms responsible for age-associated differences may allow for novel strategies to improve MK-mediated angiogenesis and bone healing, particularly within the aging population.
Collapse
Affiliation(s)
- Murad K. Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nikhil P. Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Saveda K. Majety
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sue Samson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Patrick L. Mulcrone
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
5
|
Karnik SJ, Nazzal MK, Kacena MA, Bruzzaniti A. Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease. Calcif Tissue Int 2023; 113:83-95. [PMID: 37243755 PMCID: PMC11179715 DOI: 10.1007/s00223-023-01095-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
The bone marrow microenvironment contains a diverse array of cell types under extensive regulatory control and provides for a novel and complex mechanism for bone regulation. Megakaryocytes (MKs) are one such cell type that potentially acts as a master regulator of the bone marrow microenvironment due to its effects on hematopoiesis, osteoblastogenesis, and osteoclastogenesis. While several of these processes are induced/inhibited through MK secreted factors, others are primarily regulated by direct cell-cell contact. Notably, the regulatory effects that MKs exert on these different cell populations has been found to change with aging and disease states. Overall, MKs are a critical component of the bone marrow that should be considered when examining regulation of the skeletal microenvironment. An increased understanding of the role of MKs in these physiological processes may provide insight into novel therapies that can be used to target specific pathways important in hematopoietic and skeletal disorders.
Collapse
Affiliation(s)
- Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Zhang H, Liesveld JL, Calvi LM, Lipe BC, Xing L, Becker MW, Schwarz EM, Yeh SCA. The roles of bone remodeling in normal hematopoiesis and age-related hematological malignancies. Bone Res 2023; 11:15. [PMID: 36918531 PMCID: PMC10014945 DOI: 10.1038/s41413-023-00249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Prior research establishing that bone interacts in coordination with the bone marrow microenvironment (BMME) to regulate hematopoietic homeostasis was largely based on analyses of individual bone-associated cell populations. Recent advances in intravital imaging has suggested that the expansion of hematopoietic stem cells (HSCs) and acute myeloid leukemia cells is restricted to bone marrow microdomains during a distinct stage of bone remodeling. These findings indicate that dynamic bone remodeling likely imposes additional heterogeneity within the BMME to yield differential clonal responses. A holistic understanding of the role of bone remodeling in regulating the stem cell niche and how these interactions are altered in age-related hematological malignancies will be critical to the development of novel interventions. To advance this understanding, herein, we provide a synopsis of the cellular and molecular constituents that participate in bone turnover and their known connections to the hematopoietic compartment. Specifically, we elaborate on the coupling between bone remodeling and the BMME in homeostasis and age-related hematological malignancies and after treatment with bone-targeting approaches. We then discuss unresolved questions and ambiguities that remain in the field.
Collapse
Affiliation(s)
- Hengwei Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Jane L Liesveld
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura M Calvi
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Endocrinology/Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | - Brea C Lipe
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael W Becker
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Allergy/Immunology/Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Shu-Chi A Yeh
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Physiology/Pharmacology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
7
|
Gao Y, Fu Z, Guan J, Liu X, Zhang Q. The role of Notch signaling pathway in metabolic bone diseases. Biochem Pharmacol 2023; 207:115377. [PMID: 36513140 DOI: 10.1016/j.bcp.2022.115377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Metabolic bone diseases is the third most common endocrine diseases after diabetes and thyroid diseases. More than 500 million people worldwide suffer from metabolic bone diseases. The generation and development of bone metabolic diseases is a complex process regulated by multiple signaling pathways, among which the Notch signaling pathway is one of the most important pathways. The Notch signaling pathway regulates the differentiation and function of osteoblasts and osteoclasts, and affects the process of cartilage formation, bone formation and bone resorption. Genetic mutations in upstream and downstream of Notch signaling genes can lead to a series of metabolic bone diseases, such as Alagille syndrome, Adams-Oliver syndrome and spondylocostal dysostosis. In this review, we analyzed the mechanisms of Notch ligands, Notch receptors and signaling molecules in the process of signal transduction, and summarized the progress on the pathogenesis and clinical manifestations of bone metabolic diseases caused by Notch gene mutation. We hope to draw attention to the role of the Notch signaling pathway in metabolic bone diseases and provide new ideas and approaches for the diagnosis and treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| | - Zhanda Fu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Junxia Guan
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xinhua Liu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Qing Zhang
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| |
Collapse
|
8
|
Karagianni A, Matsuura S, Gerstenfeld LC, Ravid K. Inhibition of Osteoblast Differentiation by JAK2V617F Megakaryocytes Derived From Male Mice With Primary Myelofibrosis. Front Oncol 2022; 12:929498. [PMID: 35880162 PMCID: PMC9307716 DOI: 10.3389/fonc.2022.929498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Past studies described interactions between normal megakaryocytes, the platelet precursors, and bone cell precursors in the bone marrow. This relationship has also been studied in context of various mutations associated with increased number of megakaryocytes. The current study is the first to examine the effects of megakaryocytes from transgenic mice carrying the most common mutation that causes primary myelofibrosis (PMF) in humans (JAK2V617F) on bone cell differentiation. Organ level assessments of mice using micro-computed tomography showed decreased bone volume in JAK2V617F males, compared to matching controls. Tissue level histology revealed increased deposition of osteoid (bone matrix prior mineralization) in these mutated mice, suggesting an effect on osteoblast differentiation. Mechanistic studies using a megakaryocyte-osteoblast co-culture system, showed that both wild type or JAK2V617F megakaryocytes derived from male mice inhibited osteoblast differentiation, but JAK2V617F cells exerted a more significant inhibitory effect. A mouse mRNA osteogenesis array showed increased expression of Noggin, Chordin, Alpha-2-HS-glycoprotein, Collagen type IV alpha 1 and Collagen type XIV alpha 1 (mostly known to inhibit bone differentiation), and decreased expression of alkaline phosphatase, Vascular cell adhesion molecule 1, Sclerostin, Distal-less homeobox 5 and Collagen type III alpha 1 (associated with osteogenesis) in JAK2V617F megakaryocytes, compared to controls. This suggested that the mutation re-programs megakaryocytes to express a cluster of genes, which together could orchestrate greater suppression of osteogenesis in male mice. These findings provide mechanistic insight into the effect of JAK2V617F mutation on bone, encouraging future examination of patients with this or other PMF-inducing mutations.
Collapse
Affiliation(s)
- Aikaterini Karagianni
- Department of Internal Medicine, University of Crete, School of Medicine, Heraklion, Greece
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
| | - Shinobu Matsuura
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
| | - Louis C. Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Katya Ravid
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Katya Ravid,
| |
Collapse
|
9
|
Lee SH, Park NR, Kim JE. Bioinformatics of Differentially Expressed Genes in Phorbol 12-Myristate 13-Acetate-Induced Megakaryocytic Differentiation of K562 Cells by Microarray Analysis. Int J Mol Sci 2022; 23:ijms23084221. [PMID: 35457039 PMCID: PMC9031040 DOI: 10.3390/ijms23084221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Megakaryocytes are large hematopoietic cells present in the bone marrow cavity, comprising less than 0.1% of all bone marrow cells. Despite their small number, megakaryocytes play important roles in blood coagulation, inflammatory responses, and platelet production. However, little is known about changes in gene expression during megakaryocyte maturation. Here we identified the genes whose expression was changed during K562 leukemia cell differentiation into megakaryocytes using an Affymetrix GeneChip microarray to determine the multifunctionality of megakaryocytes. K562 cells were differentiated into mature megakaryocytes by treatment for 7 days with phorbol 12-myristate 13-acetate, and a microarray was performed using RNA obtained from both types of cells. The expression of 44,629 genes was compared between K562 cells and mature megakaryocytes, and 954 differentially expressed genes (DEGs) were selected based on a p-value < 0.05 and a fold change >2. The DEGs was further functionally classified using five major megakaryocyte function-associated clusters—inflammatory response, angiogenesis, cell migration, extracellular matrix, and secretion. Furthermore, interaction analysis based on the STRING database was used to generate interactions between the proteins translated from the DEGs. This study provides information on the bioinformatics of the DEGs in mature megakaryocytes after K562 cell differentiation.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Na Rae Park
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4949
| |
Collapse
|
10
|
Khatib-Massalha E, Méndez-Ferrer S. Megakaryocyte Diversity in Ontogeny, Functions and Cell-Cell Interactions. Front Oncol 2022; 12:840044. [PMID: 35186768 PMCID: PMC8854253 DOI: 10.3389/fonc.2022.840044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) rely on local interactions in the bone marrow (BM) microenvironment with stromal cells and other hematopoietic cells that facilitate their survival and proliferation, and also regulate their functions. HSCs and multipotent progenitor cells differentiate into lineage-specific progenitors that generate all blood and immune cells. Megakaryocytes (Mks) are hematopoietic cells responsible for producing blood platelets, which are essential for normal hemostasis and blood coagulation. Although the most prominent function of Mks is platelet production (thrombopoiesis), other increasingly recognized functions include HSC maintenance and host immune response. However, whether and how these diverse programs are executed by different Mk subpopulations remains poorly understood. This Perspective summarizes our current understanding of diversity in ontogeny, functions and cell-cell interactions. Cumulative evidence suggests that BM microenvironment dysfunction, partly caused by mutated Mks, can induce or alter the progression of a variety of hematologic malignancies, including myeloproliferative neoplasms (MPNs) and other disorders associated with tissue scarring (fibrosis). Therefore, as an example of the heterogeneous functions of Mks in malignant hematopoiesis, we will discuss the role of Mks in the onset and progression of BM fibrosis. In this regard, abnormal interactions between of Mks and other immune cells might directly contribute to fibrotic diseases. Overall, further understanding of megakaryopoiesis and how Mks interact with HSCs and immune cells has potential clinical implications for stem cell transplantation and other therapies for hematologic malignancies, as well as for treatments to stimulate platelet production and prevent thrombocytopenia.
Collapse
Affiliation(s)
- Eman Khatib-Massalha
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Simón Méndez-Ferrer
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Instituto de Biomedicina de Sevilla-IBiS, Hospitales Universitarios Virgen del Rocío y Macarena/Spanish National Research Council (CSIC)/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
11
|
Kumar K, Datta K, Fornace AJ, Suman S. Total body proton and heavy-ion irradiation causes cellular senescence and promotes pro-osteoclastogenic activity in mouse bone marrow. Heliyon 2022; 8:e08691. [PMID: 35028468 PMCID: PMC8741516 DOI: 10.1016/j.heliyon.2021.e08691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Low-LET photon radiation-induced persistent alterations in bone marrow (BM) cells are well documented in total-body irradiated (TBI) rodents and also among radiotherapy patients. However, the late effects of protons and high-LET heavy-ion radiation on BM cells and its implications in osteoclastogenesis are not fully understood. Therefore, C57BL6/J female mice (8 weeks; n = 10/group) were irradiated to sham, and 1 Gy of the proton (0.22 keV/μm), or high-LET 56Fe-ions (148 keV/μm) and at 60 d post-exposure, mice were sacrificed and femur sections were obtained for histological, cellular and molecular analysis. Cell proliferation (PCNA), cell death (active caspase-3), senescence (p16), osteoclast (RANK), osteoblast (OPG), osteoblast progenitor (c-Kit), and osteoclastogenesis-associated secretory factors (like RANKL) were assessed using immunostaining. While no change in cell proliferation and apoptosis between control and irradiated groups was noted, the number of BM megakaryocytes was significantly reduced in irradiated mice at 60 d post-exposure. A remarkable increase in p16 positive cells indicated a persistent increase in cell senescence, whereas increased RANKL/OPG ratio, reductions in the number of osteoblast progenitor cells, and osteocalcin provided clear evidence that exposure to both proton and 56Fe-ions promotes pro-osteoclastogenic activity in BM. Among irradiated groups, 56Fe-induced alterations in the BM cellularity and osteoclastogenesis were significantly greater than the protons that demonstrated a radiation quality-dependent effect. This study has implications in understanding the role of IR-induced late changes in the BM cells and its involvement in bone degeneration among deep-space astronauts, and also in patients undergoing proton or heavy-ion radiotherapy.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Corresponding author.
| |
Collapse
|
12
|
Stavnichuk M, Komarova SV. Megakaryocyte-driven changes in bone health: lessons from mouse models of myelofibrosis and related disorders. Am J Physiol Cell Physiol 2021; 322:C177-C184. [PMID: 34910601 DOI: 10.1152/ajpcell.00328.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the years, numerous studies demonstrated reciprocal communications between processes of bone marrow hematopoiesis and bone remodeling. Megakaryocytes, rare bone marrow cells responsible for platelet production, were demonstrated to be involved in bone homeostasis. Myelofibrosis, characterized by an increase in pleomorphic megakaryocytes in the bone marrow, commonly leads to the development of osteosclerosis. In vivo, an increase in megakaryocyte number was shown to result in osteosclerosis in GATA-1low, NF-E2-/-, TPOhigh, Mpllf/f;PF4cre, Lnk-/-, Mpig6b-/-, Mpig6bfl/fl;Gp1ba-Cr+/KI, Pt-vWD mouse models. In vitro, megakaryocytes stimulate osteoblast proliferation and have variable effects on osteoclast proliferation and activity through soluble factors and direct cell-cell communications. Intriguingly, new studies revealed that the ability of megakaryocytes to communicate with bone cells is affected by the age and sex of animals. This mini-review summarises changes seen in bone architecture and bone cell function in mouse models with an elevated number of megakaryocytes and the effects megakaryocytes have on osteoblasts and osteoclasts in vitro, and discusses potential molecular players that can mediate these effects.
Collapse
Affiliation(s)
- Mariya Stavnichuk
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|
14
|
Ghosh J, El Koussa R, Mohamad SF, Liu J, Kacena MA, Srour EF. Cellular components of the hematopoietic niche and their regulation of hematopoietic stem cell function. Curr Opin Hematol 2021; 28:243-250. [PMID: 33966008 PMCID: PMC8169581 DOI: 10.1097/moh.0000000000000656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Development and functions of hematopoietic stem cells (HSC) are regulated by multiple cellular components of the hematopoietic niche. Here we review the recent advances in studying the role of three such components -- osteoblasts, osteomacs, and megakaryocytes and how they interact with each other in the hematopoietic niche to regulate HSC. RECENT FINDINGS Recent advances in transgenic mice models, scRNA-seq, transcriptome profile, proteomics, and live animal imaging have revealed the location of HSC within the bone and signaling molecules required for the maintenance of the niche. Interaction between megakaryocytes, osteoblasts and osteomacs enhances hematopoietic stem and progenitor cells (HSPC) function. Studies also revealed the niche as a dynamic entity that undergoes cellular and molecular changes in response to stress. Aging, which results in reduced HSC function, is associated with a decrease in endosteal niches and osteomacs as well as reduced HSC--megakaryocyte interactions. SUMMARY Novel approaches to study the cellular components of the niche and their interactions to regulate HSC development and functions provided key insights about molecules involved in the maintenance of the hematopoietic system. Furthermore, these studies began to build a more comprehensive model of cellular interactions and dynamics in the hematopoietic niche.
Collapse
Affiliation(s)
- Joydeep Ghosh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roy El Koussa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Safa F. Mohamad
- Department of Hematology/Oncology, Boston Children’s Hospital, Harvard University, Boston, MA, USA
| | - Jianyun Liu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward F. Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Lee SH, Ihn HJ, Park EK, Kim JE. S100 Calcium-Binding Protein P Secreted from Megakaryocytes Promotes Osteoclast Maturation. Int J Mol Sci 2021; 22:ijms22116129. [PMID: 34200172 PMCID: PMC8201154 DOI: 10.3390/ijms22116129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
Megakaryocytes (MKs) differentiate from hematopoietic stem cells and produce platelets at the final stage of differentiation. MKs directly interact with bone cells during bone remodeling. However, whether MKs are involved in regulating bone metabolism through indirect regulatory effects on bone cells is unclear. Here, we observed increased osteoclast differentiation of bone marrow-derived macrophages (BMMs) cultured in MK-cultured conditioned medium (MK CM), suggesting that this medium contains factors secreted from MKs that affect osteoclastogenesis. To identify the MK-secreted factor, DNA microarray analysis of the human leukemia cell line K562 and MKs was performed, and S100 calcium-binding protein P (S100P) was selected as a candidate gene affecting osteoclast differentiation. S100P was more highly expressed in MKs than in K562 cells, and showed higher levels in MK CM than in K562-cultured conditioned medium. In BMMs cultured in the presence of recombinant human S100P protein, osteoclast differentiation was promoted and marker gene expression was increased. The resorption area was significantly larger in S100P protein-treated osteoclasts, demonstrating enhanced resorption activity. Overall, S100P secreted from MKs promotes osteoclast differentiation and resorption activity, suggesting that MKs indirectly regulate osteoclast differentiation and activity through the paracrine action of S100P.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Hye Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41944, Korea;
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
- Correspondence: ; Tel.: +82-53-420-4949
| |
Collapse
|
16
|
Lee JY, Park SJ, Kim DA, Lee SH, Koh JM, Kim BJ. Muscle-Derived Lumican Stimulates Bone Formation via Integrin α2β1 and the Downstream ERK Signal. Front Cell Dev Biol 2020; 8:565826. [PMID: 33240876 PMCID: PMC7677261 DOI: 10.3389/fcell.2020.565826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle and bone are highly interrelated, and previous proteomic analyses suggest that lumican is one of muscle-derived factors. To further understand the role of lumican as a myokine affecting adjacent bone metabolism, we investigated the effects of lumican on osteoblast biology. Lumican expression was significantly higher in the cell lysates and conditioned media (CM) of myotubes than those of undifferentiated myoblasts, and the known anabolic effects of myotube CM on osteoblasts were reduced by excluding lumican from the CM. Lumican stimulated preosteoblast viability and differentiation, resulting in increased calvaria bone formation. The expression of osteoblast differentiation markers was consistently increased by lumican. Lumican increased the phosphorylation of ERK, whereas ERK inhibitors completely reversed lumican-mediated stimulation of Runx2 and ALP activities in osteoblasts. Results of a binding ELISA experiment in osteoblasts show that transmembrane integrin α2β1 directly interacted with lumican, and an integrin α2β1 inhibitor attenuated the stimulation of ERK and ALP activities by lumican. Taken together, the results indicate that muscle-derived lumican stimulates bone formation via integrin α2β1 and the downstream ERK signal, indicating that this is a potential therapeutic target for metabolic bone diseases.
Collapse
Affiliation(s)
- Jin Young Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - So Jeong Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Da Ae Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|