1
|
Sharma S, Thukral R, Singla LD, Singla N, Choudhury D. Quercetin-loaded solid lipid nanoparticles for enhanced anti-helminthic activity. Int J Pharm 2025; 672:125308. [PMID: 39894091 DOI: 10.1016/j.ijpharm.2025.125308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Quercetin, a naturally occurring flavonoid, exhibits various anti-carcinogenic, anti-viral, anti-inflammatory properties, and anti-helminthic properties. Still, a major portion of orally administered quercetin is metabolized in the intestine and only little amount get absorbed in the portal veins, attributing to its poor bioavailability. The lipid content of food increases the solubility, which inspired us to fabricate lipid-based nanoparticles that will be biocompatible, orally administrable, and enhance the effectiveness of quercetin in hosts. Quercetin-loaded solid lipid nanoparticles (SLN-Qt) are spherical-shaped, water-soluble in nature, and nanocarriers having a hydrodynamic size of 130.7 ± 42.0 nm showing a drug entrapment efficiency of 79.75 % with sustained drug release of 37.5 ± 1.5 % within the first 24 h at pH 6.4. The drug release was observed till 6 days with 93.7 ± 3.0 % of drug release at pH 7.4. These results suggest improved drug entrapment, high saturation solubility, and better drug distribution. The in-vivo analysis was performed in house rats (Rattus rattus), which were found infected with Syphacia muris, Aspicularis tetraptera, Hymenolepis diminuta, Hymenolepis nana, Cysticercus fasciolaris, Calodium hepaticum, and/ or Trichuris muris. SLN-Qt (200 mg/Kg) treatment showed a significant reduction of parasite egg counts (85.09 ± 15.00 %) of gastrointestinal helminths after 3-dose weekly treatment. Liver histology and biochemical analysis of blood plasma and liver homogenate showed no toxic effects of quercetin and SLN-Qt. Therefore, SLN-Qt presents a promising strategy for delivering poorly soluble drugs and could be a valuable tool in controlling parasitic infections and diseases.
Collapse
Affiliation(s)
- Sunidhi Sharma
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Ruchika Thukral
- Department of Zoology, Punjab Agricultural University (PAU), Ludhiana 141001, Punjab, India
| | - Lachhman Das Singla
- Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana 141001, Punjab, India
| | - Neena Singla
- Department of Zoology, Punjab Agricultural University (PAU), Ludhiana 141001, Punjab, India.
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
2
|
Lee SO, Chu KB, Yoon KW, Heo SI, Song JH, Li J, Hong SJ, Quan FS. Combinatorial Treatment with Praziquantel and Curcumin Reduces Clonorchis sinensis Parasite Burden and Clonorchiasis-Associated Pathologies in Rats. Pharmaceutics 2024; 16:1550. [PMID: 39771529 PMCID: PMC11678916 DOI: 10.3390/pharmaceutics16121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Clonorchiasis is a foodborne parasitic disease that can lead to severe biliary fibrosis and cholangiocarcinoma. While praziquantel (PZQ) is available for clonorchiasis treatment, it cannot revert the histopathological damage incurred through parasite-induced fibrosis. Curcumin (CUR) is an emerging experimental drug possessing anti-inflammatory and fibrosis-alleviating effects, thus signifying its potential as an anthelmintic drug. Here, we evaluated the effect of CUR+PZQ combinatorial drug treatment on C. sinensis infection as well as its effect on ameliorating fibrotic tissue damage in rats. Methods: Worm viabilities following CUR and PZQ treatments were confirmed through microscopy and tetrazolium salt absorption. Anthelminthic effect and hepatobiliary damage mitigation in rats were determined by quantifying worm recovery, histopathological staining, and enzyme-linked immunosorbent assay. Results: CUR+PZQ at LD50 doses demonstrated a time- and dose-dependent antiparasitic effect in vitro, which was markedly greater than either drug alone. Rats were infected with C. sinensis, and drugs were administered at 1 and 4 weeks post-infection (wpi) to assess drug-induced changes in worm burden. Significant reductions in worm burden recoveries were observed following CUR+PZQ treatment at both time points, accompanied by markedly reduced serum and mucosal IgG responses. ALT and AST levels were also substantially lower in combinatorial drug treatment groups than controls. Histopathological examinations confirmed that parasite-induced bile duct lumen widening and liver fibrosis were suppressed at 1 wpi, implying that CUR+PZQ co-treatment can alleviate clonorchiasis-associated pathologies. Conclusions: Our findings indicate that CUR+PZQ co-treatment improved parasite clearance and promoted the resolution of hepatobiliary tissue damage resulting from chronic clonorchiasis.
Collapse
Affiliation(s)
- Soon-Ok Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, College of Medicine, Inje University, Busan 47392, Republic of Korea;
- Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan 47392, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (K.-W.Y.); (S.I.H.)
| | - Su In Heo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (K.-W.Y.); (S.I.H.)
| | - Jin-Ho Song
- Department Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Jianhua Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Sung-Jong Hong
- Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea;
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Mahmoud M, Allam AF, Essawy AE, Shalaby TI, El-Sherif SS. Therapeutic efficacy of praziquantel loaded-chitosan nanoparticles on juvenile Schistosoma mansoni worms in murine model. Exp Parasitol 2024; 266:108843. [PMID: 39369770 DOI: 10.1016/j.exppara.2024.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Praziquantel (PZQ) is the standard treatment for schistosomiasis; however, it is poorly effective on immature and juvenile worms. The present study aimed to evaluate the therapeutic efficacy of praziquantel loaded-chitosan nanoparticles (PZQ-CSNPs) on the 25 days old juvenile Schistosoma mansoni worms compared to PZQ and chitosan nanoparticles (CSNPs). It was conducted on 60 Swiss albino mice, including 20 control and 40 experimental mice. The control groups included healthy uninfected and infected non-treated mice. The experimental groups included mice infected treated on the 25th day with 400 mg/kg PZQ, 30 mg/kg CSNPs, 100 mg/kg, and 400 mg/kg PZQ-CSNPs. The results revealed that PZQ-CSNPs (100, 400 mg/kg) gave the best results substantiated by a remarkable decrease in worm burden, egg count, granuloma count and size compared to the other treatments. Moreover, it induced severe deformations of worm morphology regarding oral and ventral suckers, tegument, spines distribution, and male gynaecophoric canal. Liver enzymes and oxidative stress markers were significantly decreased while antioxidant activities were increased compared to control and other treated groups. In conclusion, a single dose of PZQ-CSNPs had significant antischistosomal therapeutic effects during the early maturation phase.
Collapse
Affiliation(s)
- Mai Mahmoud
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| | - Amal Farahat Allam
- Parasitology Department, Medical Research Institute, Alexandria University, Egypt.
| | | | | | | |
Collapse
|
4
|
Müller H, Straßmann JK, Baier AS, von Bülow V, Stettler F, Hagen MJ, Schmidt FP, Tschuschner A, Schmid AR, Zahner D, Köhler K, Pons-Kühnemann J, Leufkens D, Glebe D, Kaur S, Möscheid MF, Haeberlein S, Grevelding CG, Weiskirchen R, El-Kassas M, Zalata K, Roeb E, Roderfeld M. Liver Fibrosis Is Enhanced by a Higher Egg Burden in Younger Mice Infected with S. mansoni. Cells 2024; 13:1643. [PMID: 39404406 PMCID: PMC11475498 DOI: 10.3390/cells13191643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Schistosomiasis affects over 250 million people worldwide, with the highest prevalence at the age of 10-14 years. The influence of the host's age on the severity of liver damage is unclear. We infected male 8, 14, and 20-week-old mice with S. mansoni. Hepatic damage, inflammation, fibrosis, and metabolism were analyzed by RT-qPCR, Western blotting, ELISA, immunohistochemistry, and mechanistic transwell chamber experiments using S. mansoni eggs and human hepatic stellate cells (HSCs) or primary mouse hepatocytes. Major results were validated in human biopsies. We found that hepatosplenomegaly, granuloma size, egg load, inflammation, fibrosis, and glycogen stores all improved with the increasing age of the host. However, serum alanine transaminase (ALT) levels were lowest in young mice infected with S. mansoni. Hepatic carbohydrate exploitation was characterized by a shift towards Warburg-like glycolysis in S. mansoni-infected animals. Notably, S. mansoni eggs stimulated hepatic stellate cells to an alternatively activated phenotype (GFAP+/desmin+/αSMA-) that secretes IL-6 and MCP-1. The reduction of fibrosis in older age likely depends on the fine-tuning of regulatory and inflammatory cytokines, alternative HSC activation, and the age-dependent preservation of hepatic energy stores. The current results emphasize the significance of investigations on the clinical relevance of host age-dependent liver damage in patients with schistosomiasis.
Collapse
Affiliation(s)
- Heike Müller
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (H.M.); (J.K.S.); (A.S.B.); (V.v.B.); (F.S.); (M.J.H.); (F.P.S.); (A.T.); (E.R.)
| | - Jan K. Straßmann
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (H.M.); (J.K.S.); (A.S.B.); (V.v.B.); (F.S.); (M.J.H.); (F.P.S.); (A.T.); (E.R.)
| | - Anne S. Baier
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (H.M.); (J.K.S.); (A.S.B.); (V.v.B.); (F.S.); (M.J.H.); (F.P.S.); (A.T.); (E.R.)
| | - Verena von Bülow
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (H.M.); (J.K.S.); (A.S.B.); (V.v.B.); (F.S.); (M.J.H.); (F.P.S.); (A.T.); (E.R.)
| | - Frederik Stettler
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (H.M.); (J.K.S.); (A.S.B.); (V.v.B.); (F.S.); (M.J.H.); (F.P.S.); (A.T.); (E.R.)
| | - Maximilian J. Hagen
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (H.M.); (J.K.S.); (A.S.B.); (V.v.B.); (F.S.); (M.J.H.); (F.P.S.); (A.T.); (E.R.)
| | - Fabian P. Schmidt
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (H.M.); (J.K.S.); (A.S.B.); (V.v.B.); (F.S.); (M.J.H.); (F.P.S.); (A.T.); (E.R.)
| | - Annette Tschuschner
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (H.M.); (J.K.S.); (A.S.B.); (V.v.B.); (F.S.); (M.J.H.); (F.P.S.); (A.T.); (E.R.)
| | - Andreas R. Schmid
- Department of Internal Medicine III, Justus Liebig University, 35392 Giessen, Germany;
| | - Daniel Zahner
- Central Laboratory Animal Facility, Justus Liebig University, 35392 Giessen, Germany;
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University, 35392, Germany;
| | - Jörn Pons-Kühnemann
- Institute of Medical Informatics, Justus Liebig University, 35392, Germany; (J.P.-K.); (D.L.)
| | - Daniel Leufkens
- Institute of Medical Informatics, Justus Liebig University, 35392, Germany; (J.P.-K.); (D.L.)
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF; Partner Site Giessen-Marburg-Langen), Justus Liebig University, 35392 Giessen, Germany; (D.G.); (S.K.)
| | - Surmeet Kaur
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF; Partner Site Giessen-Marburg-Langen), Justus Liebig University, 35392 Giessen, Germany; (D.G.); (S.K.)
| | - Max F. Möscheid
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (M.F.M.); (S.H.); (C.G.G.)
| | - Simone Haeberlein
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (M.F.M.); (S.H.); (C.G.G.)
| | - Christoph G. Grevelding
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany; (M.F.M.); (S.H.); (C.G.G.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany;
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo 11795, Egypt;
| | - Khaled Zalata
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (H.M.); (J.K.S.); (A.S.B.); (V.v.B.); (F.S.); (M.J.H.); (F.P.S.); (A.T.); (E.R.)
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany; (H.M.); (J.K.S.); (A.S.B.); (V.v.B.); (F.S.); (M.J.H.); (F.P.S.); (A.T.); (E.R.)
| |
Collapse
|
5
|
Soto-Sánchez J, Garza-Treviño G. Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics 2024; 16:1239. [PMID: 39458571 PMCID: PMC11510106 DOI: 10.3390/pharmaceutics16101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Neglected tropical diseases (NTDs), including leishmaniasis, trypanosomiasis, and schistosomiasis, impose a significant public health burden, especially in developing countries. Despite control efforts, treatment remains challenging due to drug resistance and lack of effective therapies. Objective: This study aimed to synthesize the current research on the combination therapy and phytochemical-loaded nanosystems, which have emerged as promising strategies to enhance treatment efficacy and safety. Methods/Results: In the present review, we conducted a systematic search of the literature and identified several phytochemicals that have been employed in this way, with the notable efficacy of reducing the parasite load in the liver and spleen in cases of visceral leishmaniasis, as well as lesion size in cutaneous leishmaniasis. Furthermore, they have a synergistic effect against Trypanosoma brucei rhodesiense rhodesain; reduce inflammation, parasitic load in the myocardium, cardiac hypertrophy, and IL-15 production in Chagas disease; and affect both mature and immature stages of Schistosoma mansoni, resulting in improved outcomes compared to the administration of phytochemicals alone or with conventional drugs. Moreover, the majority of the combinations studied demonstrated enhanced solubility, efficacy, and selectivity, as well as increased immune response and reduced cytotoxicity. Conclusions: These formulations appear to offer significant therapeutic benefits, although further research is required to validate their clinical efficacy in humans and their potential to improve treatment outcomes in affected populations.
Collapse
Affiliation(s)
- Jacqueline Soto-Sánchez
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| | - Gilberto Garza-Treviño
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| |
Collapse
|
6
|
Lee SO, Chu KB, Yoon KW, Eom GD, Mao J, Lee H, No JH, Song JH, Hong SJ, Kim SS, Quan FS. Efficacy assessment of miltefosine and curcumin against Clonorchis sinensis infection. Antimicrob Agents Chemother 2024; 68:e0064224. [PMID: 39082882 PMCID: PMC11373209 DOI: 10.1128/aac.00642-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024] Open
Abstract
Praziquantel (PZQ) is currently the only approved drug for treating clonorchiasis, but its poor efficacy against Clonorchis sinensis larvae has highlighted the need to develop newer drugs. In this study, to address this challenge, we investigated the anti-parasitic efficacy of miltefosine (MLT), curcumin (CUR), and PZQ against C. sinensis metacercariae (CsMC), newly excysted juvenile worms (CsNEJs), and adults. Larvicidal effects of MLT and CUR surpassed those elicited by PZQ in vitro. These two drugs exerted their effect against both CsMC and CsNEJs in a dose- and time-dependent manner. To confirm the effect of these drugs in vivo, Syrian golden hamsters were orally infected with 100 CsMC and subsequently treated with MLT, CUR, or PZQ at 1 and 4 weeks post-infection (wpi). MLT and CUR reduced the worm recoveries at 1 and 4 wpi, indicating that these drugs were efficacious against both larvae and adult C. sinensis. PZQ was only efficacious against adult worms. Interestingly, both MLT and CUR showed lower levels of C. sinensis-specific IgG responses than the infection control group, implying that worm burden and bile IgG responses could be correlated. These results indicate that MLT and CUR are efficacious against both larval and adult stages of C. sinensis, thereby highlighting their potential for further development as alternative therapeutic options for clonorchiasis.
Collapse
Affiliation(s)
- Soon-Ok Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan, Republic of Korea
- Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Jin Ho Song
- Department Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung-Jong Hong
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Republic of Korea
| | - Sung Soo Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Hidayatik N, Harini SL, Triwidiawati N, Putri SI, Proboningrat A, Kristianingtyas L, Khairullah AR, Suwanti LT, Hestianah EP, Kuncorojakti S, Yuliani MGA, Novianti AN, Ramdani D, Rahmatillah RS, Jayanegara A. Ovicidal activity and cytotoxicity of ethanolic extract of turmeric ( Curcuma longa) and green tea ( Camellia sinensis) to treat digestive parasite of sheep. Open Vet J 2024; 14:1467-1475. [PMID: 39055752 PMCID: PMC11268915 DOI: 10.5455/ovj.2024.v14.i6.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/19/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The Trichuris eggs are collected from naturally infected sheep. Natural antihelmintics such as herbal medicines are needed as an alternative, such as natural compounds from endemic plants. AIM This present study aims to evaluate the ovicidal activity and cytotoxicity effects of ethanolic extract of Curcuma longa (EECL) and Camelia sinensis (EECS) as a biological anthelmintic against the egg of Trichuris sp. METHODS The Trichuris eggs are collected from naturally infected sheep. CMC-Na solution 1% was used as a control. The treatments were 0.12% EECL; 0.24% EECL; 0.15% EECS; 0.30% EECS; a combination of 0.12% EECL and 0.30% EECS; a combination of 0.24% EECL; and 0.15% EECS. Ovicidal activity testing by microscopic examination of eggs treated using different concentrations of EECL extract, EECS, and a combination of them. They were exposed for various times (7, 14, 21, and 28 days) and incubated at room temperature. RESULTS The study shows that a combination of C. longa extract and tea extract exhibits good ovicidal anthelmintic activity against Trichuris sp. in sheep. Cytotoxicity examination using the 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) test. Based on MTT data processed using regression analysis, the obtained LC50 from the administration of EECL, EECS, and a combination of both in a ratio of 1:1, 2:2, 1:2, and 2:1. The combination of EECL extract and EECS with the highest concentration produced cell viability of 28.46%, 17.25%, 56.01%, and 46.47%, respectively. CONCLUSION It can be concluded that the most cytotoxic ingredient is found in the combination of EECL and EECS (2:2) at 17.25% and the safest is in the ratio (1:2) at 56.01%.
Collapse
Affiliation(s)
- Nanik Hidayatik
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sefi Lestyo Harini
- Master Program of Veterinary Science and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nafas Triwidiawati
- Bachelor Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Shalsa Izza Putri
- Bachelor Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Annise Proboningrat
- Division of Veterinary Pathology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Luviana Kristianingtyas
- Study Program of Veterinary Medicine, Faculty of Health, Muhammadiyah University (UM) West Sumatra, Bukit Tinggi, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Lucia Tri Suwanti
- Division of Veterinary Parasitology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Eka Pramyrtha Hestianah
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suryo Kuncorojakti
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - M. Gandul Atik Yuliani
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Arindita Niatazya Novianti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diky Ramdani
- Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ririn Siti Rahmatillah
- Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang, Indonesia
| | - Anuraga Jayanegara
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, IPB University, Bogor, Indonesia
| |
Collapse
|
8
|
Carvalho L, Sarcinelli M, Patrício B. Nanotechnological approaches in the treatment of schistosomiasis: an overview. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:13-25. [PMID: 38213572 PMCID: PMC10777326 DOI: 10.3762/bjnano.15.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Schistosomiasis causes over 200,000 deaths annually. The current treatment option, praziquantel, presents limitations, including low bioavailability and resistance. In this context, nanoparticles have emerged as a promising option for improving schistosomiasis treatment. Several narrative reviews have been published on this topic. Unfortunately, the lack of clear methodologies presented in these reviews leads to the exclusion of many important studies without apparent justification. This integrative review aims to examine works published in this area with a precise and reproducible method. To achieve this, three databases (i.e., Pubmed, Web of Science, and Scopus) were searched from March 31, 2022, to March 31, 2023. The search results included only original research articles that used nanoparticles smaller than 1 µm in the treatment context. Additionally, a search was conducted in the references of the identified articles to retrieve works that could not be found solely using the original search formula. As a result, 65 articles that met the established criteria were identified. Inorganic and polymeric nanoparticles were the most prevalent nanosystems used. Gold was the primary material used to produce inorganic nanoparticles, while poly(lactic-co-glycolic acid) and chitosan were commonly used to produce polymeric nanoparticles. None of these identified works presented results in the clinical phase. Finally, based on our findings, the outlook appears favorable, as there is a significant diversity of new substances with schistosomicidal potential. However, financial efforts are required to advance these nanoformulations.
Collapse
Affiliation(s)
- Lucas Carvalho
- Laboratory of Parasitic Diseases, FIOCRUZ, Avenida Brasil, 4365, Rio de Janeiro, Brazil
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Michelle Sarcinelli
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Beatriz Patrício
- Post-Graduate Program in Industrial Pharmaceutical Technology, Farmanguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Pharmaceutical and Technological Innovation Laboratory - Department of Physiological Sciences, Biomedical Institute, R. Frei Caneca, 94, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Mengarda AC, Iles B, Longo JPF, de Moraes J. Recent approaches in nanocarrier-based therapies for neglected tropical diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1852. [PMID: 36161523 DOI: 10.1002/wnan.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/09/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Neglected tropical diseases (NTDs) remain major public health problems in developing countries. Reducing the burden of NTDs requires sustained collaborative drug discovery efforts to achieve the goals of the new NTDs roadmap launched by the World Health Organization. Oral drugs are the most convenient choice and usually the safest and least expensive. However, the oral use of some drugs for NTDs treatment has many drawbacks, including toxicity, adverse reactions, drug resistance, drug low solubility, and bioavailability. Since there is an imperative need for novel and more effective drugs to treat the various NTDs, in recent years, several compound-loaded nanoparticles have been prepared with the objective of evaluating their application as an oral drug delivery system for the treatment of NTDs. This review focuses on the various types of nanoparticle drug delivery systems that have been recently used against the major NTDs caused by parasites such as leishmaniasis, Chagas disease, and schistosomiasis. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Ana C Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Bruno Iles
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - João Paulo F Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| |
Collapse
|
10
|
Abd El Hady WE, El-Emam GA, Saleh NE, Hamouda MM, Motawea A. The Idiosyncratic Efficacy of Spironolactone-Loaded PLGA Nanoparticles Against Murine Intestinal Schistosomiasis. Int J Nanomedicine 2023; 18:987-1005. [PMID: 36860210 PMCID: PMC9968784 DOI: 10.2147/ijn.s389449] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023] Open
Abstract
Background Schistosomiasis is a chronic debilitating parasitic disease accompanied with severe mortality rates. Although praziquantel (PZQ) acts as the sole drug for the management of this disease, it has many limitations that restrict the use of this treatment approach. Repurposing of spironolactone (SPL) and nanomedicine represents a promising approach to improve anti-schistosomal therapy. We have developed SPL-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to enhance the solubility, efficacy, and drug delivery and hence decrease the frequency of administration, which is of great clinical value. Methods The physico-chemical assessment was performed starting with particle size analysis and confirmed using TEM, FT-IR, DSC, and XRD. The antischistosomal effect of the SPL-loaded PLGA NPs against Schistosoma mansoni (S. mansoni)-induced infection in mice was also estimated. Results Our results manifested that the optimized prepared NPs had particle size of 238.00 ± 7.21 nm, and the zeta potential was -19.66 ± 0.98 nm, effective encapsulation 90.43±8.81%. Other physico-chemical features emphasized that nanoparticles were completely encapsulated inside the polymer matrix. The in vitro dissolution studies revealed that SPL-loaded PLGA NPs showed sustained biphasic release pattern and followed Korsmeyer-Peppas kinetics corresponding to Fickian diffusion (n<0.45). The used regimen was efficient against S. mansoni infection and induced significant reduction in spleen, liver indices, and total worm count (ρ<0.05). Besides, when targeting the adult stages, it induced decline in the hepatic egg load and the small intestinal egg load by 57.75% and 54.17%, respectively, when compared to the control group. SPL-loaded PLGA NPs caused extensive damage to adult worms on tegument and suckers, leading to the death of the parasites in less time, plus marked improvement in liver pathology. Conclusion Collectively, these findings provided proof-of-evidence that the developed SPL-loaded PLGA NPs could be potentially used as a promising candidate for new antischistosomal drug development.
Collapse
Affiliation(s)
| | - Ghada Ahmed El-Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nora E Saleh
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa M Hamouda
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt,Correspondence: Amira Motawea, Email
| |
Collapse
|
11
|
Qadeer A, Ullah H, Sohail M, Safi SZ, Rahim A, Saleh TA, Arbab S, Slama P, Horky P. Potential application of nanotechnology in the treatment, diagnosis, and prevention of schistosomiasis. Front Bioeng Biotechnol 2022; 10:1013354. [PMID: 36568300 PMCID: PMC9780462 DOI: 10.3389/fbioe.2022.1013354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis is one of the neglected tropical diseases that affect millions of people worldwide. Globally, it affects economically poor countries, typically due to a lack of proper sanitation systems, and poor hygiene conditions. Currently, no vaccine is available against schistosomiasis, and the preferred treatment is chemotherapy with the use of praziquantel. It is a common anti-schistosomal drug used against all known species of Schistosoma. To date, current treatment primarily the drug praziquantel has not been effective in treating Schistosoma species in their early stages. The drug of choice offers low bioavailability, water solubility, and fast metabolism. Globally drug resistance has been documented due to overuse of praziquantel, Parasite mutations, poor treatment compliance, co-infection with other strains of parasites, and overall parasitic load. The existing diagnostic methods have very little acceptability and are not readily applied for quick diagnosis. This review aims to summarize the use of nanotechnology in the treatment, diagnosis, and prevention. It also explored safe and effective substitute approaches against parasitosis. At this stage, various nanomaterials are being used in drug delivery systems, diagnostic kits, and vaccine production. Nanotechnology is one of the modern and innovative methods to treat and diagnose several human diseases, particularly those caused by parasite infections. Herein we highlight the current advancement and application of nanotechnological approaches regarding the treatment, diagnosis, and prevention of schistosomiasis.
Collapse
Affiliation(s)
- Abdul Qadeer
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hanif Ullah
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Muhammad Sohail
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Sher Zaman Safi
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore, Pakistan
- Faculty of Medicine, Bioscience and Nursing MAHSA University, Selangor, Malaysia
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
12
|
Gomes DS, Negrão-Corrêa DA, Miranda GS, Rodrigues JGM, Guedes TJFL, de Lucca Junior W, Sá Filho JCFD, Nizio DADC, Blank AF, Feitosa VLC, Dolabella SS. Lippia alba and Lippia gracilis essential oils affect the viability and oviposition of Schistosoma mansoni. Acta Trop 2022; 231:106434. [PMID: 35364048 DOI: 10.1016/j.actatropica.2022.106434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
Abstract
Schistosomiasis is a neglected tropical disease that affects millions of people around the world. Currently, the only drug available for the treatment of this disease is praziquantel, which has low efficacy against immature helminth stages and there are reports of drug resistance. In this study, the chemical composition and the in vitro effect of essential oils (EOs) and major compounds from Lippia gracilis and Lippia alba against schistosomula and adult Schistosoma mansoni worms were evaluated. Adult S. mansoni worms cultured for 8h in the presence of L. gracilis EO (50 and 100 µg/mL) or for 2h with its major compound, carvacrol (100 µg/mL), had a 100% reduction in viability. After interaction with L. alba EO (100µg/mL), there was a reduction of approximately 60% in the viability of adult worms after 24 hours of exposure; citral (50 and 100 µg/mL), its major compound, reduced the viability after 24 hours by more than 75%. Treatment of schistosomula with 100 µg/mL of L. gracilis or L. alba EOs for 6h led to a reduction in parasite viability of 80% and 16% respectively. Both EOs and their major compounds significantly reduced the oviposition of adult worms exposed to a non-lethal concentration (5 µg/mL). In addition, morphological changes such as the destruction of the tegument and disorganization of the reproductive system of male and female worms were visualized. Both EOs showed low cytotoxicity at a concentration of 50 µg/mL. The results encourage further investigation of these plants as a potential source of bioactive compounds against S. mansoni.
Collapse
|
13
|
Elmalawany AM, Osman GY, Elashwal MAS, Mohamed AH. Protective role of Balanities aegyptiaca fruit aqueous extract in mice infected with Schistosoma mansoni. Exp Parasitol 2022; 239:108290. [PMID: 35779646 DOI: 10.1016/j.exppara.2022.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
Abstract
the target of this research was to investigate the effect of Balanities aegyptiaca fruit aqueous extract (200 mg/kg BW), alone or in combination with Praziquantel PZQ (300 mg/kg BW) on some biochemical, parasitological, liver histopathology and immunohistochemical parameters in mice infected with Schistosoma mansoni. Results showed that treatment of S. mansoni-infected mice with B. aegyptiaca alone or in combination with PZQ significantly reduced the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as compared to that of the S. mansoni-infected mice group. Treatment of S. mansoni-infected mice with B. aegyptiaca or PZQ and their combination led to a significant reduction in the activity of malondialdehyde (MDA) as compared with the infected control group. While a significant elevation was observed in the activities of antioxidant enzymes glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and nitric oxide (NO) compared with the infected. Results revealed that the diameter and number of egg granuloma were significantly condensed after treatment of S. mansoni-infected mice with B. aegyptiaca, PZQ or their combination in hepatic and intestinal tissue. The histopathological alterations observed in the liver of S. mansoni-infected mice were remarkably recovered after B. aegyptiaca treatments. The reduction in angiogenesis was mostly observed in the group receiving the combination of B. aegyptiaca and PZQ. The alterations in vascular endothelial growth factor (VEGF) expression were significantly less in the liver sinusoids. Overall, B. aegyptiaca significantly inhibited the liver and intestinal damage accompanied by schistosomiasis. It demonstrated potent antioxidant and immunoprotective activities. This study advises that B. aegyptiaca can be considered promising for the development of a complementary and/or alternative against schistosomiasis.
Collapse
Affiliation(s)
- Alshimaa M Elmalawany
- Clinical Pathology Department, National Liver Institute, Menoufia University, Egypt.
| | - Gamalat Y Osman
- Zoology Department, Faculty of Science, Menoufia University, Egypt
| | | | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Egypt
| |
Collapse
|
14
|
Elzoheiry MA, Elmehankar MS, Aboukamar WA, El-Gamal R, Sheta H, Zenezan D, Nabih N, Elhenawy AA. Fluconazole as Schistosoma mansoni cytochrome P450 inhibitor: In vivo murine experimental study. Exp Parasitol 2022; 239:108291. [PMID: 35660528 DOI: 10.1016/j.exppara.2022.108291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
Abstract
Schistosomiasis is a chronic disease caused by blood flukes of the Schistosoma spp. New approaches against this morbid infection are needed. In this study, we investigated fluconazole (FLZ) as an inhibitor of Schistosoma mansoni cytochrome P450 (S. mansoni CYP450) enzyme at different life cycle stages. We compared FLZ (10 mg/kg for two days) effects when administrated early 5 days post-infection (dpi) (Early I) and 21 dpi (Early II) versus late administration 60 dpi on S. mansoni CYP450 gene expression. These different FLZ treatment regimens were evaluated in experimentally infected mice with S. mansoni. This study showed that administration of FLZ, whether early or late during schistosomal infection, resulted in significant inhibition of S. mansoni CYP450 expression in the adult stage (P < 0.001). Early exposure to FLZ during the first week of infection significantly decreased the number of schistosomula that reached the adult stage compared to the infected control group and resulted in significant inhibition of S. mansoni CYP450 expression (P < 0.001) in the adult stage. In the Early I group, the fewest number of eggs per liver tissue gram was recorded. Our data suggested that FLZ is a S. mansoni CYP450 gene expression inhibitor with greater effect on schistosomula stages.
Collapse
Affiliation(s)
- Manal A Elzoheiry
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt
| | - Manar S Elmehankar
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt
| | - Wafaa A Aboukamar
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Egypt
| | - Heba Sheta
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Dina Zenezan
- Department of Pathology, Faculty of Medicine, Suez Canal University, Egypt
| | - Nairmen Nabih
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt.
| | - Abeer A Elhenawy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
15
|
Adel Madbouly N, Emam M, Ayman M, Ayman M, Rabia I, El Amir A. In vitro and in vivo impacts of nifedipine and diltiazem on praziquantel chemotherapy in murine Schistosoma mansoni. Exp Parasitol 2022; 236-237:108256. [DOI: 10.1016/j.exppara.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
|
16
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
17
|
Khezri K, Saeedi M, Mohammadamini H, Zakaryaei AS. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res 2021; 35:5527-5563. [PMID: 34131980 DOI: 10.1002/ptr.7190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Today, due to the prevalence of various diseases such as the novel coronavirus (SARS-CoV-2), diabetes, central nervous system diseases, cancer, cardiovascular disorders, and so on, extensive studies have been conducted on therapeutic properties of natural and synthetic agents. A literature review on herbal medicine and commercial products in the global market showed that curcumin (Cur) has many therapeutic benefits compared to other natural ingredients. Despite the unique properties of Cur, its use in clinical trials is very limited. The poor biopharmaceutical properties of Cur such as short half-life in plasma, low bioavailability, poor absorption, rapid metabolism, very low solubility (at acidic and physiological pH), and the chemical instability in body fluids are major concerns associated with the clinical applications of Cur. Recently, nanoformulations are emerging as approaches to develop and improve the therapeutic efficacy of various drugs. Many studies have shown that Cur nanoformulations have tremendous therapeutic potential against various diseases such as SARS-CoV-2, cancer, inflammatory, osteoporosis, and so on. These nanoformulations can inhibit many diseases through several cellular and molecular mechanisms. However, successful long-term clinical results are required to confirm their safety and clinical efficacy. The present review aims to update and explain the therapeutic potential of Cur nanoformulations.
Collapse
Affiliation(s)
- Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|