1
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2025; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
2
|
Zhang X, Zhang Y, Zheng H, Yang X, Zou S, Chen J. Design, fabrication, and evaluation of antimicrobial sponge microneedles for the transdermal delivery of insulin. Eur J Pharm Biopharm 2025; 206:114586. [PMID: 39613270 DOI: 10.1016/j.ejpb.2024.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Transdermal drug delivery systems hold promise, but their effectiveness is often constrained by the skin's barrier. Microneedles (MNs) improve drug permeability by creating micro-channels in the skin, yet they continue to face challenges such as infection risks and safety concerns. To overcome these challenges, a novel antimicrobial sponge MNs (ASMNs@PVP-INS) modified with polyvinylpyrrolidone (PVP) for insulin (INS) delivery was designed. Mechanical testing demonstrated that these MNs possess excellent mechanical strength, capable of withstanding at least 0.11 N per needle without rupture. In vitro drug penetration tests revealed that the MNs consistently released over 75 % of INS within a 6 h. In an animal model, ASMNs@PVP-INS reduced initial blood glucose levels from 22.4 to 5.72 mmol/L, effectively maintaining glucose control for more than 6 h without inducing hypoglycemia. Additionally, agar diffusion assays indicated that INS loading did not compromise the antimicrobial properties of antimicrobial sponge MNs (ASMNs). Skin irritation tests showed that ASMNs@PVP-INS exhibited mild irritation (PII < 0.6), with skin damage fully recovering within 8 h. Safety assessments indicated no significant toxicity to mice, with biochemical markers remaining within normal ranges, thereby confirming their good biocompatibility. In conclusion, ASMNs@PVP-INS hold promise as a novel drug delivery vehicle.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Pharmacy, Fujian Medical University, Fujian, China; School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Yuelian Zhang
- School of Pharmacy, Fujian Medical University, Fujian, China; School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Huishan Zheng
- School of Pharmacy, Fujian Medical University, Fujian, China; School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Xue Yang
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Shiqi Zou
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Jianmin Chen
- School of Pharmacy, Fujian Medical University, Fujian, China; School of Pharmacy and Medical Technology, Putian University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China.
| |
Collapse
|
3
|
Limcharoen B, Wanichwecharungruang S, Kröger M, Sansureerungsikul T, Schleusener J, Lena Klein A, Banlunara W, Meinke MC, Darvin ME. Dissolvable microneedles in the skin: Determination the impact of barrier disruption and dry skin on dissolution. Eur J Pharm Biopharm 2024; 199:114303. [PMID: 38657740 DOI: 10.1016/j.ejpb.2024.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Dissolvable microneedles (DMNs), fabricated from biocompatible materials that dissolve in both water and skin have gained popularity in dermatology. However, limited research exists on their application in compromised skin conditions. This study compares the hyaluronic acid-based DMNs penetration, formation of microchannels, dissolution, and diffusion kinetics in intact, barrier-disrupted (tape stripped), and dry (acetone-treated) porcine ear skin ex vivo. After DMNs application, comprehensive investigations including dermoscopy, stereomicroscope, skin hydration, transepidermal water loss (TEWL), optical coherence tomography (OCT), reflectance confocal laser scanning microscopy (RCLSM), confocal Raman micro-spectroscopy (CRM), two-photon tomography combined with fluorescence lifetime imaging (TPT-FLIM), histology, and scanning electron microscopy (SEM) were conducted. The 400 µm long DMNs successfully penetrated the skin to depths of ≈200 µm for dry skin and ≈200-290 µm for barrier-disrupted skin. Although DMNs fully inserted into all skin conditions, their dissolution rates were high in barrier-disrupted and low in dry skin, as observed through stereomicroscopy and TPT-FLIM. The dissolved polymer exhibited a more significant expansion in barrier-disrupted skin compared to intact skin, with the smallest increase observed in dry skin. Elevated TEWL and reduced skin hydration levels were evident in barrier-disrupted and dry skins compared to intact skin. OCT and RCLSM revealed noticeable skin indentation and pronounced microchannel areas, particularly in barrier-disrupted and dry skin. Additional confirmation of DMN effects on the skin and substance dissolution was obtained through histology, SEM, and CRM techniques. This study highlights the impact of skin condition on DMN effectiveness, emphasizing the importance of considering dissolvability and dissolution rates of needle materials, primarily composed of hyaluronic acid, for optimizing DMN-based drug delivery.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Marius Kröger
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Titiporn Sansureerungsikul
- Mineed Technology, 928 Block 28, Building D, Chulalongkorn 7 Alley, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Johannes Schleusener
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Anna Lena Klein
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| | - Maxim E Darvin
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| |
Collapse
|
4
|
Patel KK, Brogden NK. Impact of Formulation and Microneedle Length on Transdermal Metronidazole Permeation through Microneedle-Treated Skin. Pharm Res 2024; 41:355-363. [PMID: 38133717 PMCID: PMC11156253 DOI: 10.1007/s11095-023-03640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE This study aimed to determine the impact of formulation (gel vs cream) and microneedle characteristics (length, number) on permeation of metronidazole through excised microneedle-treated skin. The long-term goal is to apply these results towards a pharmacokinetic study in human subjects with diverse skin types, using in vitro flux data to determine dosing conditions and ultimately establish in vitro-in vivo correlations. METHODS Metronidazole release from 0.75% gel and cream was quantified with flow-through diffusion cells, using a cellulose membrane. Excised porcine skin was treated with stainless steel microneedles (500 or 800 μm length), to create 50 or 100 micropores. Metronidazole gel or cream was applied to microneedle-treated skin and replaced every 48 h for up to 7 days. Metronidazole permeation was quantified using HPLC. Intact skin (no microneedle treatment) served as controls. RESULTS Metronidazole release was faster from the gel vs cream. At 7 days there was no difference between gel vs cream in total metronidazole permeated through intact skin. For both formulations, metronidazole permeation was significantly higher (vs intact skin) following microneedle application, regardless of microneedle length or micropore number. Increasing microneedle length and micropore number enhanced MTZ permeation multiple fold for both gel and cream. The greatest enhancement in total permeation for both formulations was achieved with the 800 μm MN, 100 micropore condition. CONCLUSIONS Formulation and microneedle conditions both impacted metronidazole permeation. These data will be used to estimate in vivo serum concentrations after applying metronidazole to microneedle-treated skin in humans.
Collapse
Affiliation(s)
- Krishna Kumar Patel
- Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, 180 South Grand Avenue, 552 CPB, Iowa City, IA, 52242-1112, USA
| | - Nicole K Brogden
- Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, 180 South Grand Avenue, 552 CPB, Iowa City, IA, 52242-1112, USA.
- Department of Dermatology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
5
|
Bolsoni J, Liu D, Mohabatpour F, Ebner R, Sadhnani G, Tafech B, Leung J, Shanta S, An K, Morin T, Chen Y, Arguello A, Choate K, Jan E, Ross CJ, Brambilla D, Witzigmann D, Kulkarni J, Cullis PR, Hedtrich S. Lipid Nanoparticle-Mediated Hit-and-Run Approaches Yield Efficient and Safe In Situ Gene Editing in Human Skin. ACS NANO 2023; 17:22046-22059. [PMID: 37918441 PMCID: PMC10655174 DOI: 10.1021/acsnano.3c08644] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Despite exciting advances in gene editing, the efficient delivery of genetic tools to extrahepatic tissues remains challenging. This holds particularly true for the skin, which poses a highly restrictive delivery barrier. In this study, we ran a head-to-head comparison between Cas9 mRNA or ribonucleoprotein (RNP)-loaded lipid nanoparticles (LNPs) to deliver gene editing tools into epidermal layers of human skin, aiming for in situ gene editing. We observed distinct LNP composition and cell-specific effects such as an extended presence of RNP in slow-cycling epithelial cells for up to 72 h. While obtaining similar gene editing rates using Cas9 RNP and mRNA with MC3-based LNPs (10-16%), mRNA-loaded LNPs proved to be more cytotoxic. Interestingly, ionizable lipids with a pKa ∼ 7.1 yielded superior gene editing rates (55%-72%) in two-dimensional (2D) epithelial cells while no single guide RNA-dependent off-target effects were detectable. Unexpectedly, these high 2D editing efficacies did not translate to actual skin tissue where overall gene editing rates between 5%-12% were achieved after a single application and irrespective of the LNP composition. Finally, we successfully base-corrected a disease-causing mutation with an efficacy of ∼5% in autosomal recessive congenital ichthyosis patient cells, showcasing the potential of this strategy for the treatment of monogenic skin diseases. Taken together, this study demonstrates the feasibility of an in situ correction of disease-causing mutations in the skin that could provide effective treatment and potentially even a cure for rare, monogenic, and common skin diseases.
Collapse
Affiliation(s)
- Juliana Bolsoni
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Danny Liu
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Fatemeh Mohabatpour
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Ronja Ebner
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Gaurav Sadhnani
- Berlin
Institute of Health @ Charité Universitätsmedizin, Berlin 10117, Germany
| | - Belal Tafech
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Jerry Leung
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Selina Shanta
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Kevin An
- NanoVation
Therapeutics, 2405 Wesbrook
Mall, Vancouver V6T 1Z3, BC, Canada
| | - Tessa Morin
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Yihang Chen
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Alfonso Arguello
- University
of Montréal, Faculty of Pharmacy, Montréal H3T 1J4, Quebec, Canada
| | - Keith Choate
- Departments
of Dermatology, Genetics, and Pathology, Yale University School of Medicine, New Haven 06510, Connecticut, United States
| | - Eric Jan
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Colin J.D. Ross
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Davide Brambilla
- University
of Montréal, Faculty of Pharmacy, Montréal H3T 1J4, Quebec, Canada
| | - Dominik Witzigmann
- NanoVation
Therapeutics, 2405 Wesbrook
Mall, Vancouver V6T 1Z3, BC, Canada
| | - Jayesh Kulkarni
- NanoVation
Therapeutics, 2405 Wesbrook
Mall, Vancouver V6T 1Z3, BC, Canada
| | - Pieter R. Cullis
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Sarah Hedtrich
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
- Berlin
Institute of Health @ Charité Universitätsmedizin, Berlin 10117, Germany
- Department
of Infectious Diseases and Respiratory Medicine, Charité -
Universitätsmedizin Berlin, corporate
member of Freie Universität Berlin and Humboldt Universität, Berlin 10117, Germany
- Max-Delbrück
Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| |
Collapse
|
6
|
Tobin KV, Brogden NK. Thermosensitive biomaterial gels with chemical permeation enhancers for enhanced microneedle delivery of naltrexone for managing opioid and alcohol dependency. Biomater Sci 2023; 11:5846-5858. [PMID: 37455601 PMCID: PMC10443048 DOI: 10.1039/d3bm00972f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Naltrexone (NTX) can be transdermally delivered using microneedles (MN) to treat opioid and alcohol misuse disorders, but delivery is blunted by rapid in vivo micropore closure. Poloxamer (P407), a thermosensitive biocompatible hydrogel, sustains NTX delivery through MN-treated skin by generating a drug depot within the micropores. Optimizing P407 formulations could maintain sustained delivery after micropore closure while reducing required patch sizes, which would be more discreet and preferred by most patients. Here we developed NTX-loaded P407 gels with chemical permeation enhancers (CPEs) and used these novel formulations alongside MN treatment to enhance NTX permeation, utilizing parallel micropore and intact skin transport pathways. We analyzed physicochemical and rheological properties of CPE-loaded P407 formulations and selected formulations with DMSO and benzyl alcohol for further study. In vitro permeation tests demonstrated more consistent and sustained NTX delivery through MN-treated porcine skin from 16% P407 formulations vs. aqueous solutions. P407 with 1% benzyl alcohol and 10% DMSO significantly, P < 0.05, increased flux through MN-treated skin vs. formulations with benzyl alcohol alone. This formulation would require a smaller size patch than previously used to deliver NTX in humans, with half the NTX concentration. This is the first time poloxamer biomaterials have been used in combination with CPEs to improve MN-assisted transdermal delivery of an opioid antagonist. Here we have demonstrated that P407 in combination with CPEs effectively sustains NTX delivery in MN-treated skin while requiring less NTX than previously needed to meet clinical goals.
Collapse
Affiliation(s)
- Kevin V Tobin
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa College of Pharmacy, Iowa City, IA 52242, USA.
| | - Nicole K Brogden
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa College of Pharmacy, Iowa City, IA 52242, USA.
- Department of Dermatology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Baker-Sediako RD, Richter B, Blaicher M, Thiel M, Hermatschweiler M. Industrial perspectives for personalized microneedles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:857-864. [PMID: 37615014 PMCID: PMC10442529 DOI: 10.3762/bjnano.14.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
Microneedles and, subsequently, microneedle arrays are emerging miniaturized medical devices for painless transdermal drug delivery. New and improved additive manufacturing methods enable novel microneedle designs to be realized for preclinical and clinical trial assessments. However, current literature reviews suggest that industrial manufacturers and researchers have focused their efforts on one-size-fits-all designs for transdermal drug delivery, regardless of patient demographic and injection site. In this perspective article, we briefly review current microneedle designs, microfabrication methods, and industrialization strategies. We also provide an outlook where microneedles may become personalized according to a patient's demographic in order to increase drug delivery efficiency and reduce healing times for patient-centric care.
Collapse
Affiliation(s)
| | - Benjamin Richter
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias Blaicher
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Thiel
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Hermatschweiler
- Nanoscribe Gmbh & Co, Hermann-von-Helmholtz-Platz 6, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Chen J, Cai X, Zhang W, Zhu D, Ruan Z, Jin N. Fabrication of Antibacterial Sponge Microneedles for Sampling Skin Interstitial Fluid. Pharmaceutics 2023; 15:1730. [PMID: 37376179 DOI: 10.3390/pharmaceutics15061730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) have recently garnered extensive interest concerning direct interstitial fluid (ISF) extraction or their integration into medical devices for continuous biomarker monitoring, owing to their advantages of painlessness, minimal invasiveness, and ease of use. However, micropores created by MN insertion may provide pathways for bacterial infiltration into the skin, causing local or systemic infection, especially with long-term in situ monitoring. To address this, we developed a novel antibacterial sponge MNs (SMNs@PDA-AgNPs) by depositing silver nanoparticles (AgNPs) on polydopamine (PDA)-coated SMNs. The physicochemical properties of SMNs@PDA-AgNPs were characterized regarding morphology, composition, mechanical strength, and liquid absorption capacity. The antibacterial effects were evaluated and optimized through agar diffusion assays in vitro. Wound healing and bacterial inhibition were further examined in vivo during MN application. Finally, the ISF sampling ability and biosafety of SMNs@PDA-AgNPs were assessed in vivo. The results demonstrate that antibacterial SMNs enable direct ISF extraction while preventing infection risks. SMNs@PDA-AgNPs could potentially be used for direct sampling or combined with medical devices for real-time diagnosis and management of chronic diseases.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy, Fujian Medical University, Putian 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Xiaozhen Cai
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Wenqin Zhang
- School of Pharmacy, Fujian Medical University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Danhong Zhu
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Zhipeng Ruan
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| | - Nan Jin
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian 351100, China
- School of Pharmacy and Medical technology, Putian University, Putian 351100, China
| |
Collapse
|
9
|
Liu X, Barresi R, Kaminer M, Qian K, Thillou F, Bataillon M, Liao IC, Zheng Q, Bouez C. Utilization of ex vivo tissue model to study skin regeneration following microneedle stimuli. Sci Rep 2022; 12:18115. [PMID: 36302808 PMCID: PMC9613915 DOI: 10.1038/s41598-022-22481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/14/2022] [Indexed: 12/30/2022] Open
Abstract
Microneedling is a popular skin resurfacing and rejuvenation procedure. In order to develop better adjunct products for consumers, there is a scientific need to establish greater understanding of the mechanism in which microneedling stimulates regeneration within skin. The purpose of this study is to develop a physiologically relevant ex vivo tissue model which closely mimics the actual microneedling procedure to elucidate its mechanism of action. In this study, human ex vivo skin was subjected to microneedling treatment and cultured for 6 days. Histological analysis demonstrated that the ex vivo skin was able to heal from microneedling injury throughout the culture period. Microneedling treatment stimulated proliferation and barrier renewal of the skin. The procedure also increased the levels of inflammatory cytokines and angiogenic growth factors in a dynamic and time dependent fashion. The tissue demonstrated hallmark signs of epidermal regeneration through morphological and molecular changes after the treatment. This is one of the first works to date that utilizes microneedled ex vivo skin to demonstrate its regenerative behavior. Our model recapitulates the main features of the microneedling treatment and enables the evaluation of future cosmetic active ingredients used in conjunction with microneedling.
Collapse
Affiliation(s)
- Xue Liu
- L’Oreal Research and Innovation, Clark, NJ USA
| | | | | | - Kun Qian
- L’Oreal Research and Innovation, Clark, NJ USA
| | | | | | | | - Qian Zheng
- L’Oreal Research and Innovation, Clark, NJ USA
| | | |
Collapse
|
10
|
Anjani QK, Sabri AHB, Domínguez-Robles J, Moreno-Castellanos N, Utomo E, Wardoyo LAH, Larrañeta E, Donnelly RF. Metronidazole nanosuspension loaded dissolving microarray patches: An engineered composite pharmaceutical system for the treatment of skin and soft tissue infection. BIOMATERIALS ADVANCES 2022; 140:213073. [PMID: 35964387 DOI: 10.1016/j.bioadv.2022.213073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Bacteroides fragilis is one of the most common causative group of microorganisms that is associated with skin and soft tissue infections (SSTI). Metronidazole (MTZ) is the drug of choice used in the treatment of SSTI caused by the bacterium. However, owing to its physiochemical properties, MTZ have limited skin permeation, which render the drug unsuitable for the treatment of deep-rooted SSTIs. One strategy to overcome this limitation is to reformulate MTZ into nanosuspension which will then be loaded into dissolving microarray patches (MAPs) for the treatment of SSTIs caused by B. fragilis. Herein, we report for the first time on the preparation and optimisation of MAP loaded with MTZ nanosuspension (MTZ-NS). After screening a range of polymeric surfactants, we identified that Soluplus® resulted in the formation of MTZ-NS with the smallest particle size (115 nm) and a narrow PDI of 0.27. Next, the MTZ-NS was further optimised using a design of experiments (DoE) approach. The optimised MTZ-NS was then loaded into dissolving MAPs with varying MTZ-NS content. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell proliferation assays along with LIVE/DEAD™ staining on the 3T3L1 cell line showed that the MTZ-NS loaded dissolving MAPs displayed minimal toxicity and acceptable biocompatibility. In vitro dermatokinetic studies showed that the MTZ-NS loaded MAPs were able to deliver the nitroimidazole antibiotic across all strata of the skin resulting in a delivery efficiency of 95 % after a 24-hour permeation study. Lastly, agar plating assay using bacterial cultures of B. fragilis demonstrated that MTZ-NS loaded MAP resulted in complete bacterial inhibition in the entire plate relative to the control group. Should this formulation be translated into clinical practice, this pharmaceutical approach may provide a minimally invasive strategy to treat SSTIs caused by B. fragilis.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Luki Ahmadi Hari Wardoyo
- Fakultas Seni Rupa dan Desain, Institut Teknologi Bandung, Jl. Ganesa No.10, Bandung 40132, Indonesia
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
11
|
Anjani QK, Sabri AHB, Moreno-Castellanos N, Utomo E, Cárcamo-Martínez Á, Domínguez-Robles J, Wardoyo LAH, Donnelly RF. Soluplus®-based dissolving microarray patches loaded with colchicine: towards a minimally invasive treatment and management of gout. Biomater Sci 2022; 10:5838-5855. [PMID: 35972236 DOI: 10.1039/d2bm01068b] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Considered as one of the most common inflammatory arthritis, gout is characterised by a sudden onset of severe joint pain. As the first-line drug of choice used in treating acute gout, colchicine (CLC) is hindered by poor gastrointestinal permeability as well as unfavourable gastrointestinal side effects. Herein, we present, for the first time, the preparation of microarray array patches (MAPs) made of a polymeric solubiliser, Soluplus®, loaded with CLC for its systemic delivery. The fabricated MAPs displayed acceptable mechanical properties and were capable of being inserted into the skin to a depth of ≈500 μm in full thickness ex vivo neonatal porcine skin, as evidenced by optical coherence tomography. In vitro dermatokinetic studies utilising full thickness neonatal porcine skin demonstrated that the CLC-loaded MAPs delivered CLC across all skin strata, resulting in a delivery efficiency of 73% after 24 hours. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell proliferation assays along with LIVE/DEAD™ staining on the 3T3-L1 cell line showed that the MAP formulation displayed minimal toxicity, with acceptable biocompatibility. Lastly, the anti-inflammatory properties of the formulation were evaluated using a THP-1 macrophage cell line. It was shown that treatment of THP-1 macrophages that are exposed to lipopolysaccharide (LPS) with CLC-loaded MAPs caused a significant (p < 0.05) reduction of TNF-α production, a pro-inflammatory cytokine typically associated with the early onset of acute gout. Accordingly, CLC-loaded MAPs could represent a new minimally-invasive alternative strategy for management of acute gout.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK. .,Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Álvaro Cárcamo-Martínez
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Luki Ahmadi Hari Wardoyo
- Fakultas Seni Rupa dan Desain, Institut Teknologi Bandung, Jl. Ganesa No.10, Bandung 40132, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
12
|
Ali M, Namjoshi S, Benson HAE, Mohammed Y, Kumeria T. Dissolvable polymer microneedles for drug delivery and diagnostics. J Control Release 2022; 347:561-589. [PMID: 35525331 DOI: 10.1016/j.jconrel.2022.04.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Dissolvable transdermal microneedles (μND) are promising micro-devices used to transport a wide selection of active compounds into the skin. To provide an effective therapeutic outcome, μNDs must pierce the human stratum corneum (~10 to 20 μm), without rupturing or bending during penetration, then release their cargo at the predetermined area and time. The ability of dissolvable μND arrays/patches to sufficiently pierce the skin is a crucial requirement, which depends on the material composition, μND geometry and fabrication techniques. This comprehensive review not only provides contemporary knowledge on the μND design approaches, but also the materials science facilitating these delivery systems and the opportunities these advanced materials can provide to enhance clinical outcomes.
Collapse
Affiliation(s)
- Masood Ali
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarika Namjoshi
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia; Vaxxas Pty Ltd, Brisbane, Woolloongabba, QLD 4102, Australia
| | - Heather A E Benson
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; Basil Hetzel institute for Translational Health Research, Adelaide, SA 5001, Australia.
| | - Yousuf Mohammed
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney. NSW 2052, Australia; Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
13
|
Sartawi Z, Blackshields C, Faisal W. Dissolving microneedles: Applications and growing therapeutic potential. J Control Release 2022; 348:186-205. [PMID: 35662577 DOI: 10.1016/j.jconrel.2022.05.045] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Microneedles are a rapidly developing method for the transdermal delivery of therapeutic compounds. All types of microneedles, whether solid, hollow, coated, or dissolving function by penetrating the stratum corneum layer of the skin producing a microchannel through which therapeutic agents may be delivered. To date, coated and hollow microneedles have been the most successful, despite suffering from issues such as poor drug loading capabilities and blocked pores. Dissolving microneedles, on the other hand, have superior drug loading as well as other positive attributes that make it an ideal delivery system, including simple methods of fabrication and disposal, and abundantly available materials. Indeed, dissolvable microneedles can even be fabricated entirely from the therapeutic agent itself thus eliminating the requirement for additional excipients. This focused review presents the recent developments and trends of dissolving microneedles as well as potential future directions. The advantages, and disadvantages of dissolving microneedles as well as fabrication materials and methods are discussed. The potential applications of dissolving microneedles as a drug delivery system in different therapeutic areas in both research literature and clinical trials is highlighted. Applications including the delivery of cosmetics, vaccine delivery, diagnosis and monitoring, cancer, pain and inflammation, diabetes, hair and scalp disorders and inflammatory skin diseases are presented. The current trends observed in the microneedle landscape with particular emphasis on contemporary clinical trials and commercial successes as well as barriers impeding microneedle development and commercialisation are also discussed.
Collapse
Affiliation(s)
- Ziad Sartawi
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Waleed Faisal
- School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
14
|
Yang D, Li X, Zhang Y, Li Z, Meng J. Skin Color and Attractiveness Modulate Empathy for Pain: An Event-Related Potential Study. Front Psychol 2022; 12:780633. [PMID: 35058849 PMCID: PMC8763853 DOI: 10.3389/fpsyg.2021.780633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Although racial in-group bias in empathy for pain has been reported, empathic responses to others’ pain may be influenced by other characteristics besides race. To explore whether skin color and attractiveness modulate empathy for pain, we recorded 24 participants’ reactions to painful faces from racial in-group members with different skin color (fair, wheatish, or dark) and attractiveness (more or less attractive) using event-related potentials (ERPs). Results showed that, for more attractive painful faces, dark skin faces were judged as less painful and elicited smaller N2 amplitudes than fair- and wheatish-skinned faces. However, for less attractive faces, there were no significant differences among the three skin colors. Our findings suggest that empathy for pain toward racial in-group members may be influenced by skin color and attractiveness.
Collapse
Affiliation(s)
- Di Yang
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Xiong Li
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Basic Psychology, Southwest University, Chongqing, China
| | - Yinya Zhang
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Zuoshan Li
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Jing Meng
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| |
Collapse
|
15
|
Ruan S, Zhang Y, Feng N. Microneedle-mediated transdermal nanodelivery systems: a review. Biomater Sci 2021; 9:8065-8089. [PMID: 34752590 DOI: 10.1039/d1bm01249e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The greatest limitation in the development of transdermal drug delivery systems is that only a few drugs can permeate the skin due to the barrier function of the stratum corneum. Active and passive methods are generally available for improving the ability of drug transdermal delivery. However, nanoparticles, as a passive approach, exhibit capacity-constrained permeation enhancement. Thus, microneedle-mediated nanoparticles possess enormous potential and broad prospects. Microneedles promote the penetration of macromolecules by creating microchannels on the skin surface. In this review, the prevailing subknowledge on microneedles (mechanism, classification, and applications of microneedles combined with nanoparticles) is discussed to provide a guideline for readers and a basic reference for further in-depth studies of this novel drug delivery system.
Collapse
Affiliation(s)
- Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
16
|
Balmert SC, Ghozloujeh ZG, Carey CD, Akilov OE, Korkmaz E, Falo LD. Research Techniques Made Simple: Skin-Targeted Drug and Vaccine Delivery Using Dissolvable Microneedle Arrays. J Invest Dermatol 2021; 141:2549-2557.e1. [PMID: 34688405 DOI: 10.1016/j.jid.2021.07.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 11/28/2022]
Abstract
Skin-targeted drug delivery is broadly employed for both local and systemic therapeutics and is an important tool for discovery efforts in cutaneous biology. Recently, emerging technologies support efforts toward skin-targeted biocargo delivery for local and systemic therapeutic benefit. Effective targeting of bioactive molecules, including large (molecular weight > 500 Da) or complex (hydrophilic and charged) molecules, to defined cutaneous microenvironments is intrinsically challenging owing to the protective barrier function of the skin. Dissolvable microneedle arrays (MNAs) have proven to be a promising technology to address the unmet need for controlled, minimally invasive, and reliable delivery of a wide range of biocargos to the skin. In this paper, we describe the unique properties of the skin that make it an attractive target for vaccine delivery, for immune-modulating therapies, and for systemic drug delivery and the structural characteristics of the skin that present obstacles to efficient intracutaneous and transdermal delivery of bioactive molecules. We provide an overview of MNA fabrication and the characteristics and mechanisms of dissolvable MNA cargo delivery to the cutaneous microenvironment. We present a representative example of a clinical application of MNAs and discuss future directions for MNA development and applications.
Collapse
Affiliation(s)
- Stephen C Balmert
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Cara Donahue Carey
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg E Akilov
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emrullah Korkmaz
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Louis D Falo
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; The UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
17
|
Mdanda S, Ubanako P, Kondiah PPD, Kumar P, Choonara YE. Recent Advances in Microneedle Platforms for Transdermal Drug Delivery Technologies. Polymers (Basel) 2021; 13:polym13152405. [PMID: 34372008 PMCID: PMC8348894 DOI: 10.3390/polym13152405] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
In many clinical applications, the transdermal route is used as an alternative approach to avoid the significant limitations associated with oral drug delivery. There is a long history for drug delivery through the skin utilizing transdermal microneedle arrays. Microneedles are reported to be versatile and very efficient devices. This technique has spurred both industrial and scientific curiosity, due to its outstanding characteristics such as painless penetration, affordability, excellent medicinal efficiency, and relative protection. Microneedles possess outstanding properties for diverse biomedical uses such as the delivery of very large substances with ionic and hydrophilic physicochemical properties. Importantly, microneedles are applicable in numerous biomedical fields such as therapy, diagnosis, and vaccine administration. Microneedles are emerging tools that have shown profound potential for biomedical applications. Transdermal microneedle technologies are likely to become a preferred route of therapeutic substances administration in the future since they are effective, painless, and affordable. In this review, we summarize recent advances in microneedles for therapeutic applications. We explore their constituent materials and fabrication methods that improve the delivery of critical therapeutic substances through the skin. We further discuss the practicality of advanced microneedles used as drug delivery tools.
Collapse
|
18
|
Ogunjimi AT, Lawson C, Carr J, Patel KK, Ferguson N, Brogden NK. Micropore Closure Rates following Microneedle Application at Various Anatomical Sites in Healthy Human Subjects. Skin Pharmacol Physiol 2021; 34:214-228. [PMID: 33910205 DOI: 10.1159/000515454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The continuous availability of open micropores is crucial for a successful microneedle (MN) drug delivery strategy. However, micropore lifetime depends on intrinsic skin functional and anatomical characteristics, which vary significantly at different anatomical sites. OBJECTIVE This pilot study explored if differences exist in micropore closure timeframes at 3 anatomical sites - upper arm, volar forearm, and abdomen. METHODS Healthy subjects (n = 35) self-identifying as Asian (n = 9), Bi-/multiracial (n = 2), Black (n = 9), Latino (n = 6), and White (n = 9) completed the study. The upper arm, volar forearm, and abdomen were treated with MNs; skin impedance and transepidermal water loss (TEWL) were measured at baseline and post-MN to confirm micropore formation. Impedance was measured for 3 days to evaluate micropore lifetime. Measurements of L*, which quantifies the skin lightness/darkness, were made using a tristimulus colorimeter. Micropore lifetime was determined by comparing baseline and post-MN impedance measurements, and micropore closure half-life was predicted using mathematical modeling. RESULTS Post-MN increase in TEWL and decrease in impedance were significant (p < 0.05), confirming successful micropore formation at all anatomical sites. When data were analyzed according to subject self-identified racial/ethnic groups, the mean micropore closure time at the abdomen (63.09 ± 13.13 h) was longer than the upper arm (60.34 ± 14.69 h) and volar forearm (58.29 ± 16.76 h). The predicted micropore closure half-life at anatomical sites was the abdomen (25.86 ± 14.96 h) ≈ upper arm (23.69 ± 13.67 h) > volar forearm (20.2 ± 11.99 h). Differences were not statistically significant between groups. Objective categorization by L* showed that the darker skin may be associated with longer micropore closure time at the abdomen site. CONCLUSIONS Our results suggest that anatomical site of application may not be a source of significant variability in micropore closure time. These findings may help reduce the number of physiological parameters that need to be explicitly considered when developing drug products to support MN-assisted drug delivery strategies.
Collapse
Affiliation(s)
- Abayomi Tolulope Ogunjimi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa, USA
| | - Christine Lawson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa, USA
| | - Jamie Carr
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa, USA
| | - Krishna Kumar Patel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa, USA
| | - Nkanyezi Ferguson
- Department of Dermatology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicole K Brogden
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa, USA.,Department of Dermatology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Tobin KV, Fiegel J, Brogden NK. Thermosensitive Gels Used to Improve Microneedle-Assisted Transdermal Delivery of Naltrexone. Polymers (Basel) 2021; 13:polym13060933. [PMID: 33803552 PMCID: PMC8002892 DOI: 10.3390/polym13060933] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
Transdermal delivery of naltrexone (NTX) can be enhanced using microneedles, although micropores generated this way can reseal by 48 h in humans, which prevents further drug delivery from a formulation. Poloxamer 407 (P407) is a thermosensitive polymer that may extend microneedle-assisted NTX delivery time by creating an in situ gel depot in the skin. We characterized gelation temperature, drug release, and permeation of P407 gels containing 7% NTX-HCl. To investigate microneedle effects on NTX-HCl permeation, porcine skin was treated with microneedles (600 or 750 μm length), creating 50 or 100 micropores. The formulations were removed from the skin at 48 h to simulate the effect of micropores resealing in vivo, when drug delivery is blunted. Gelation temperature increased slightly with addition of NTX-HCl. In vitro NTX-HCl release from P407 formulations demonstrated first order release kinetics. Microneedle treatment enhanced NTX-HCl permeation both from aqueous solution controls and P407 gels. Steady-state flux was overall lower in the P407 conditions compared to the aqueous solution, though ratios of AUCs before and after gel removal demonstrate that P407 gels provide more sustained release even after gel removal. This may be beneficial for reducing the required application frequency of microneedles for ongoing treatment.
Collapse
Affiliation(s)
- Kevin V. Tobin
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA 52242, USA;
| | - Jennifer Fiegel
- Department of Chemical and Biochemical Engineering, University of Iowa College of Engineering, Iowa City, IA 52242, USA;
| | - Nicole K. Brogden
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA 52242, USA;
- Department of Dermatology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
20
|
Alimardani V, Abolmaali SS, Yousefi G, Rahiminezhad Z, Abedi M, Tamaddon A, Ahadian S. Microneedle Arrays Combined with Nanomedicine Approaches for Transdermal Delivery of Therapeutics. J Clin Med 2021; 10:E181. [PMID: 33419118 PMCID: PMC7825522 DOI: 10.3390/jcm10020181] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Organic and inorganic nanoparticles (NPs) have shown promising outcomes in transdermal drug delivery. NPs can not only enhance the skin penetration of small/biomacromolecule therapeutic agents but can also impart control over drug release or target impaired tissue. Thanks to their unique optical, photothermal, and superparamagnetic features, NPs have been also utilized for the treatment of skin disorders, imaging, and biosensing applications. Despite the widespread transdermal applications of NPs, their delivery across the stratum corneum, which is the main skin barrier, has remained challenging. Microneedle array (MN) technology has recently revealed promising outcomes in the delivery of various formulations, especially NPs to deliver both hydrophilic and hydrophobic therapeutic agents. The present work reviews the advancements in the application of MNs and NPs for an effective transdermal delivery of a wide range of therapeutics in cancer chemotherapy and immunotherapy, photothermal and photodynamic therapy, peptide/protein vaccination, and the gene therapy of various diseases. In addition, this paper provides an overall insight on MNs' challenges and summarizes the recent achievements in clinical trials with future outlooks on the transdermal delivery of a wide range of nanomedicines.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Gholamhossein Yousefi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
| | - Alimohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; (V.A.); (Z.R.); (M.A.); (A.T.)
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| |
Collapse
|