1
|
Wu J, Lu J, Pan MZ, Gu XC, Dai L, Wang Y, Shen B, Zhang XB. Update on the roles and applications of extracellular vesicles in depression. World J Psychiatry 2025; 15:102643. [PMID: 40110012 PMCID: PMC11886331 DOI: 10.5498/wjp.v15.i3.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Depression is a prevalent mental disorder that affects numerous individuals, manifesting as persistent anhedonia, sadness, and hopelessness. Despite extensive research, the exact causes and optimal treatment approaches for depression remain unclear. Extracellular vesicles (EVs), which carry biological molecules such as proteins, lipids, nucleic acids, and metabolites, have emerged as crucial players in both pathological and physiological processes. EVs derived from various sources exert distinct effects on depression. Specifically, EVs released by neurons, astrocytes, microglia, oligodendrocytes, immune cells, stem cells, and even bacteria contribute to the pathogenesis of depression. Moreover, there is growing interest in potential of EVs as diagnostic and therapeutic tools for depression. This review provides a comprehensive overview of recent research on EVs from different sources, their roles in depression, and their potential clinical applications.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Jian Lu
- Laboratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Ming-Zhi Pan
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Chu Gu
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Lu Dai
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Yun Wang
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Bin Shen
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Bin Zhang
- Department of Psychiatry, Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| |
Collapse
|
2
|
Tunset ME, Haslene-Hox H, Larsen JB, Kondziella D, Nygård M, Pedersen SA, Vaaler A, Llorente A. Clinical studies of blood-borne Extracellular vesicles in psychiatry: A systematic review. J Psychiatr Res 2025; 182:373-390. [PMID: 39862765 DOI: 10.1016/j.jpsychires.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Biomarkers for the diagnosis and clinical management of psychiatric disorders are currently lacking. Extracellular vesicles (EVs), lipid membrane-encapsulated vesicles released by cells, hold promise as a source of biomarkers due to their ability to carry molecules that reflect the status of their donor cells and their ubiquitous presence in biofluids. This review examines the literature on EVs in biofluids from psychiatric disorder patients, and discuss how the published studies contribute to our understanding of the pathophysiology of these conditions and to the discovery of potential biomarkers. We analyzed 46 studies on blood-borne EVs; no investigations on cerebrospinal fluid-derived EVs were found. A significant number of studies lacked optimal description of the methodology and/or characterization of the isolated EVs. Moreover, many studies aimed to capture brain-derived EVs, but often capture-proteins with low brain specificity were used. Considering biomarkers, miRNAs were the most investigated molecular type, but based on the studies analyzed it was not possible to identify robust biomarker candidates for the investigated disorders. Additionally, we describe the contribution of EV studies in illuminating the pathophysiology of psychiatric disorders, including research on insulin resistance, inflammation, mitochondrial dysfunction, and the microbiota. We conclude that there is a shortage of studies with detailed methodology description and EV sample characterization in psychiatric research. To exploit the potential of EVs to investigate psychiatric disorders and identify biomarkers more studies and validated protocols using capture proteins with high specificity to brain cells are needed. The review protocol was pre-registered in the PROSPERO database under the registration number CRD42021277534.
Collapse
Affiliation(s)
- Mette Elise Tunset
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway; Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Hanne Haslene-Hox
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Jeanette Brun Larsen
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mona Nygård
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway; Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Arne Vaaler
- Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Acute Psychiatry, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
3
|
Li K, Wang K, Xu SX, Xie XH, Tang Y, Zhang L, Liu Z. In vivo evidence of increased vascular endothelial growth factor in patients with major depressive disorder. J Affect Disord 2025; 368:151-159. [PMID: 39278472 DOI: 10.1016/j.jad.2024.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is a candidate mediator of blood-brain barrier (BBB) disruption in depression. However, previous studies have mainly focused on peripheral blood VEGF levels, and the results are heterogeneous. Here we use astrocyte-derived extracellular vesicles (ADEVs) isolated from plasma to explore the in vivo changes of VEGF levels in patients with major depressive disorder (MDD). METHODS Thirty-five unmedicated patients with MDD and 35 healthy controls (HCs) were enrolled, and plasma ADEVs were isolated from each participant. VEGF levels in ADEVs and glial fibrillary acidic protein (GFAP) in plasma were measured. Additionally, Alix and CD81, two established extracellular vesicle markers, were quantified in ADEVs. RESULTS At baseline, MDD patients exhibited significantly increased levels of VEGF in ADEVs and GFAP in plasma. Following four weeks of selective serotonin reuptake inhibitor treatment, these target protein levels did not significantly change. ROC curve analysis revealed an AUC of 0.711 for VEGF in ADEVs. In exploratory analysis, VEGF levels in ADEVs were positively correlated with Alix and CD81. LIMITATIONS Multiple factors regulate BBB permeability. This study focused solely on VEGF and the sample size for longitudinal analysis was relatively small. CONCLUSION Our study is the first to confirm increased ADEV-derived VEGF levels in patients with MDD, thereby providing preliminary evidence supporting the hypothesis that the BBB is disrupted in depression.
Collapse
Affiliation(s)
- Kun Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Kun Wang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Tang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Lihong Zhang
- Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Jy Kang M, Grewal J, Eratne D, Malpas C, Chiu WH, Katisko K, Solje E, Santillo AF, Mitchell PB, Hopwood M, Velakoulis D. Neurofilament light and glial fibrillary acidic protein in mood and anxiety disorders: A systematic review and meta-analysis. Brain Behav Immun 2025; 123:1091-1102. [PMID: 39510417 DOI: 10.1016/j.bbi.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are biomarkers of neuronal injury measurable in cerebrospinal fluid (CSF) and blood. Despite their potential as diagnostic tests for neurodegenerative disorders, it is unclear how they behave in mood and anxiety disorders. We conducted a systematic review and meta-analysis to investigate whether NfL and GFAP concentrations were altered in adults with mood and anxiety disorders compared to healthy controls. We searched PubMed, Web of Science, PsycINFO, MEDLINE and Embase through August 20, 2024, and assessed relevant studies and their risk of bias. The primary outcome was the standardised mean difference (SMD) and 95 % confidence interval (95 % CI) of NfL and GFAP concentrations. Twenty-nine studies comprising 2,962 individuals (927majordepression,804bipolardisorder,and1,231controls). When we compared individuals with major depression and healthy controls, there was no difference in NfL nor GFAP levels. In individuals with bipolar disorder, NfL was significantly elevated compared to controls (SMD = 0.53; 95 % CI: 0.20, 0.85; p = 0.005). Only one study reported on NfL levels anxiety disorders. Our study informs clinicians about how to interpret these emerging biomarkers in determining whether a person's symptoms are caused by a neurodegenerative or mood disorder. The mild elevation of NfL in bipolar disorder may suggest underlying neuroaxonal injury, warranting further research into its clinical and prognostic significance.
Collapse
Affiliation(s)
- Matthew Jy Kang
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia.
| | - Jasleen Grewal
- Alfred Mental and Addiction Health, Alfred Health, Melbourne, Australia.
| | - Dhamidhu Eratne
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia.
| | - Charles Malpas
- Department of Medicine, Royal Melbourne Hospital, Melbourne, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia.
| | - Wei-Hsuan Chiu
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia.
| | - Kasper Katisko
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland; Neuro Center - Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Alexander F Santillo
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Malmö, Sweden.
| | - Philip B Mitchell
- Discipline of Psychiatry & Mental Health, Faculty of Medicine and Health, UNSW, Sydney, Australia.
| | - Malcolm Hopwood
- Department of Psychiatry, University of Melbourne, Melbourne, Australia.
| | - Dennis Velakoulis
- Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
5
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024; 61:10398-10447. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
6
|
Uddin MN, Singh MV, Faiyaz A, Szczepankiewicz F, Nilsson M, Boodoo ZD, Sutton KR, Tivarus ME, Zhong J, Wang L, Qiu X, Weber MT, Schifitto G. Tensor-valued diffusion MRI detects brain microstructural abnormalities in HIV infected individuals with cognitive impairment. Sci Rep 2024; 14:28839. [PMID: 39572727 PMCID: PMC11582667 DOI: 10.1038/s41598-024-80372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Despite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes. In this study, we hypothesized that tensor-valued diffusion encoding metrics would provide greater sensitivity than conventional diffusion tensor imaging (DTI) metrics in detecting HIV-associated brain microstructural injury. We further hypothesized that tensor-valued metrics would exhibit stronger associations with blood markers of neuronal and glial injury, such as neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP), as well as with cognitive performance. Using MRI at 3T, 24 PWH and 31 healthy controls underwent cross-sectional examination. The results revealed significant variations in tensor-valued diffusion encoding metrics across white matter regions, with associations observed between these metrics, cognitive performance, NFL and GFAP. Moreover, a significant interaction between HIV status and imaging metrics in gray and white matter was observed, particularly impacting total cognitive scores. Of interest, DTI metrics were less likely to be associated with HIV status than tensor-valued diffusion metrics. These findings suggest that tensor-valued diffusion encoding metrics offer heightened sensitivity in detecting subtle changes associated with axonal injury in HIV infection. Longitudinal studies are needed to further evaluate responsiveness of tensor-valued diffusion b-tensor encoding metrics in the contest HIV-associate mild chronic neuroinflammation.
Collapse
Affiliation(s)
- Md Nasir Uddin
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA.
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA.
| | - Meera V Singh
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Abrar Faiyaz
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | | | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| | - Zachary D Boodoo
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Karli R Sutton
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Miriam T Weber
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
7
|
Costanza A, Amerio A, Aguglia A, Rossi M, Parise A, Magnani L, Serafini G, Amore M, Martins D, Nguyen KD. Reactive Astrocytosis-A Potential Contributor to Increased Suicide in Long COVID-19 Patients? Brain Sci 2024; 14:973. [PMID: 39451987 PMCID: PMC11505806 DOI: 10.3390/brainsci14100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Long COVID-19 is an emerging chronic illness of significant public health concern due to a myriad of neuropsychiatric sequelae, including increased suicidal ideation (SI) and behavior (SB). METHODS This review provides a concise synthesis of clinical evidence that points toward the dysfunction of astrocytes, the most abundant glial cell type in the central nervous system, as a potential shared pathology between SI/SB and COVID-19. RESULTS Depression, a suicide risk factor, and SI/SB were both associated with reduced frequencies of various astrocyte subsets and complex proteomic/transcriptional changes of astrocyte-related markers in a brain-region-specific manner. Astrocyte-related circulating markers were increased in depressed subjects and, to a less consistent extent, in COVID-19 patients. Furthermore, reactive astrocytosis was observed in subjects with SI/SB and those with COVID-19. CONCLUSIONS Astrocyte dysfunctions occurred in depression, SI/SB, and COVID-19. Reactive-astrocyte-mediated loss of the blood-brain barrier (BBB) integrity and subsequent neuroinflammation-a factor previously linked to SI/SB development-might contribute to increased suicide in individuals with long COVID-19. As such, the formulation of new therapeutic strategies to restore astrocyte homeostasis, enhance BBB integrity, and mitigate neuroinflammation may reduce SI/SB-associated neuropsychiatric manifestations among long COVID-19 patients.
Collapse
Affiliation(s)
- Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), 24 Rue du Général-Dufour, 1211 Geneva, Switzerland
- Department of Psychiatry, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
- Department of Psychiatry, Adult Psychiatry Service, University Hospitals of Geneva (HUG), Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
- “Nel Chiostro”, Medical and Study Center, Via Camillo Leone 29, 13100 Vercelli, Italy
| | - Andrea Amerio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Andrea Aguglia
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Martina Rossi
- “Nel Chiostro”, Medical and Study Center, Via Camillo Leone 29, 13100 Vercelli, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, University Hospital of Parma, 43126 Parma, Italy;
| | - Luca Magnani
- Department of Psychiatry, San Maurizio Hospital of Bolzano, Via Lorenz Böhler, 5, 39100 Bolzano, Italy;
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Via Balbi, 5, 16132 Genoa, Italy; (A.A.); (A.A.); (G.S.); (M.A.)
- IRCCS Polyclinic Hospital San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)—King’s College London (KCL), Strand Campus, London WC2R 2LS, UK;
- NIHR Maudesley BRC, 16 De Crespigny Park, SE5 8AF South London and Maudesley NHS Trust, Denmark Hill, London SE5 8AZ, UK
| | - Khoa D. Nguyen
- Program in Immunology, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA;
- Department of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Li K, Wang K, Xu SX, Xie XH, Tang Y, Zhang L, Liu Z. Investigating Neuroplasticity Changes Reflected by BDNF Levels in Astrocyte-Derived Extracellular Vesicles in Patients with Depression. Int J Nanomedicine 2024; 19:8971-8985. [PMID: 39246428 PMCID: PMC11379030 DOI: 10.2147/ijn.s477482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose To investigate the neuroplasticity hypothesis of depression by measuring brain-derived neurotrophic factor (BDNF) levels in plasma astrocyte-derived extracellular vesicles (ADEVs) and to evaluate their potential as biomarkers for depression compared with plasma BDNF levels. Patients and Methods Thirty-five patients with major depressive disorder (MDD) and 35 matched healthy controls (HCs) were enrolled. Plasma ADEVs were isolated using a combination of ultracentrifugation and immunoaffinity capture. Isolated ADEVs were validated using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. BDNF levels were quantified in both ADEVs and plasma. ALG-2-interacting protein X (Alix) and cluster of differentiation 81 (CD81) levels, two established extracellular vesicle markers, were measured in ADEVs. Results After false discovery rate correction, patients with MDD exhibited higher CD81 levels (P FDR = 0.040) and lower BDNF levels (P FDR = 0.043) in ADEVs than HCs at baseline. BDNF levels in ADEVs normalized to CD81 (P FDR = 0.002) and Alix (P FDR = 0.040) remained consistent with this finding. Following four weeks of selective serotonin reuptake inhibitor treatment (n=10), CD81 levels in ADEVs decreased (P FDR = 0.046), while BDNF levels normalized to CD81 increased (P FDR = 0.022). BDNF levels in ADEVs were more stable than in plasma. Exploratory analysis revealed no correlation between BDNF levels in ADEVs and plasma (ρ=0.117, P = 0.334). Conclusion This study provides human in vivo evidence supporting the neuroplasticity hypothesis of depression by demonstrating altered BDNF levels in ADEVs. ADEVs may be more suitable for developing biomarkers of depression than plasma-derived biomarkers.
Collapse
Affiliation(s)
- Kun Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, People's Republic of China
| | - Kun Wang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, People's Republic of China
| | - Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yan Tang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, People's Republic of China
| | - Lihong Zhang
- Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, People's Republic of China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
9
|
Hansson C, Hadžibajramović E, Svensson PA, Jonsdottir IH. Increased plasma levels of neuro-related proteins in patients with stress-related exhaustion: A longitudinal study. Psychoneuroendocrinology 2024; 167:107091. [PMID: 38964018 DOI: 10.1016/j.psyneuen.2024.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Exhaustion disorder (ED) is a stress-related disorder characterized by physical and mental symptoms of exhaustion. Recent data suggest that pathophysiological processes in the central nervous system are involved in the biological mechanisms underlying ED. The aims of this study were to investigate if plasma levels of neuro-related proteins differ between patients with ED and healthy controls, and, if so, to investigate if these differences persist over time. Using the Olink Neuro Exploratory panel, we quantified the plasma levels of 92 neuro-related proteins in 163 ED patients at the time of diagnosis (baseline), 149 patients at long-term follow-up (7-12 years later, median follow-up time 9 years and 5 months), and 100 healthy controls. We found that the plasma levels of 40 proteins were significantly higher in the ED group at baseline compared with the control group. Out of these, the plasma levels of 36 proteins were significantly lower in the ED group at follow-up compared with the same group at baseline and the plasma levels of four proteins did not significantly differ between the groups. At follow-up, the plasma levels of two proteins were significantly lower in the ED group compared with the control group. These data support the hypothesis that pathophysiological processes in the central nervous system are involved in the biological mechanisms underlying ED.
Collapse
Affiliation(s)
- Caroline Hansson
- The Institute of Stress Medicine, Region Västra Götaland, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Emina Hadžibajramović
- The Institute of Stress Medicine, Region Västra Götaland, Gothenburg, Sweden; School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per-Arne Svensson
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingibjörg H Jonsdottir
- The Institute of Stress Medicine, Region Västra Götaland, Gothenburg, Sweden; School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Kajitani GS, Xavier G, Villena-Rueda BE, Karia BTR, Santoro ML. Extracellular vesicles in neurodegenerative, mental, and other neurological disorders: Perspectives into mechanisms, biomarker potential, and therapeutic implications. CURRENT TOPICS IN MEMBRANES 2024; 94:299-336. [PMID: 39370211 DOI: 10.1016/bs.ctm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Extracellular vesicles (EVs) are produced, secreted, and targeted by most human cells, including cells that compose nervous system tissues. EVs carry several types of biomolecules, such as lipids, proteins and microRNA, and can function as signaling agents in physiological and pathological processes. In this chapter, we will focus on EVs and their cargo secreted by brain cells, especially neurons and glia, and how these aspects are affected in pathological conditions. The chapter covers neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, as well as several psychiatric disorders, namely schizophrenia, autism spectrum disorder and major depressive disorder. This chapter also addresses other types of neurological dysfunctions, epilepsy and traumatic brain injury. EVs can cross the blood brain barrier, and thus brain EVs may be detected in more accessible peripheral tissue, such as circulating blood. Alterations in EV composition and contents can therefore impart valuable clues into the molecular etiology of these disorders, and serve biomarkers regarding disease prevalence, progression and treatment. EVs can also be used to carry drugs and biomolecules into brain tissue, considered as a promising drug delivery agent for neurological diseases. Therefore, although this area of research is still in its early development, it offers great potential in further elucidating and in treating neurological disorders.
Collapse
Affiliation(s)
- Gustavo Satoru Kajitani
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Brazil; Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil
| | - Gabriela Xavier
- Center for Genomic Medicine, Massachusetts General Hospital, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, United States
| | - Beatriz Enguidanos Villena-Rueda
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Brazil; Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil
| | - Bruno Takao Real Karia
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil; Department of Biochemistry, Universidade Federal de São Paulo, Brazil
| | - Marcos Leite Santoro
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil; Department of Biochemistry, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
11
|
Uddin MN, Singh MV, Faiyaz A, Szczepankiewicz F, Nilsson M, Boodoo ZD, Sutton KR, Tivarus ME, Zhong J, Wang L, Qiu X, Weber MT, Schifitto G. Tensor-valued diffusion MRI detects brain microstructure changes in HIV infected individuals with cognitive impairment. RESEARCH SQUARE 2024:rs.3.rs-4482269. [PMID: 38946952 PMCID: PMC11213220 DOI: 10.21203/rs.3.rs-4482269/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Despite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes. This study aimed to investigate the sensitivity of tensor-valued diffusion encoding in detecting such changes in brain microstructural integrity in cART-treated PWH. Additionally, it explored relationships between these metrics, neurocognitive scores, and plasma levels of neurofilament light (NFL) chain and glial fibrillary acidic protein (GFAP). Using MRI at 3T, 24 PWH and 31 healthy controls underwent cross-sectional examination. The results revealed significant variations in b-tensor encoding metrics across white matter regions, with associations observed between these metrics, cognitive performance, and blood markers of neuronal and glial injury (NFL and GFAP). Moreover, a significant interaction between HIV status and imaging metrics was observed, particularly impacting total cognitive scores in both gray and white matter. These findings suggest that b-tensor encoding metrics offer heightened sensitivity in detecting subtle changes associated with axonal injury in HIV infection, underscoring their potential clinical relevance in understanding neurocognitive impairment in PWH.
Collapse
|
12
|
van de Leur JC, Johansson F, McCracken LM, Åhs F, Brodda Jansen G, Buhrman M. Mediators during a Multimodal intervention for stress-induced exhaustion disorder. Cogn Behav Ther 2024; 53:235-253. [PMID: 38130175 DOI: 10.1080/16506073.2023.2295217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Our understanding of the underlying psychological processes of development, maintenance, and treatments for stress-induced exhaustion disorder (ED) remains limited. Therefore, the current study aimed to explore whether sleep concerns, pathological worry, perfectionistic concerns, and psychological flexibility mediate change in exhaustion symptoms during a Multimodal intervention for ED based on Cognitive behavioral therapy principles. Participants (N = 913) were assessed at three time points, and mediation was explored using a two-criteria analytical model with linear mixed-effects models (criterion one) and random intercepts cross-lagged panel modeling (criterion 2). Criterion one for mediation was successfully met, as the findings indicated significant associations between time in treatment, with all suggested mediators, and exhaustion symptoms (significant ab-products). However, criterion two was not satisfied as changes in the mediators did not precede changes in exhaustion symptoms. Therefore, mediation could not be established. Instead, changes in the suggested mediators appeared to result from changes in exhaustion symptoms. Consequently, sleep concerns, pathological worry, perfectionistic concerns, and psychological flexibility appear to improve in conjunction with exhaustion symptoms during treatment, where improvement in exhaustion is indicated as the main driving factor, based on this exploratory analysis. The implications of these findings are contextualized within a broader framework of process-based therapy.
Collapse
Affiliation(s)
| | - Fred Johansson
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| | | | - Fredrik Åhs
- Department of Psychology and Social Work, Mid Sweden University, Östersund, Sweden
| | - Gunilla Brodda Jansen
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet Danderyds University Hospital, Stockholm, Sweden
| | - Monica Buhrman
- Department of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Berntson L, Elfving A, Samuelsson AG, Öman A, Mobarrez F. Blood brain barrier permeability and astrocyte-derived extracellular vesicles in children with juvenile idiopathic arthritis: a cross-sectional study. Pediatr Rheumatol Online J 2024; 22:47. [PMID: 38671467 PMCID: PMC11046815 DOI: 10.1186/s12969-024-00984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is the most prevalent rheumatic disease in children, and the inflammatory process is widely studied, primarily characterized by its impact on joint health. Emerging evidence suggests that JIA may also affect the central nervous system (CNS). This study investigates the potential CNS involvement in JIA by analyzing the presence of astrocyte-derived extracellular vesicles (EVs) and the S100B protein in plasma, both of which are indicative of astrocyte activity and blood-brain barrier (BBB) integrity. METHODS EDTA plasma from 90 children diagnosed with JIA and 10 healthy controls, matched by age and gender, was analyzed for extracellular vesicles by flow cytometric measurement. Astrocyte-derived EVs were identified using flow cytometry with markers for aquaporin 4 (AQP-4) and glial fibrillary acidic protein (GFAP). Levels of the S100B protein were measured using a commercial ELISA. Disease activity was assessed using the Juvenile Arthritis Disease Activity Score (JADAS27, 0-57), and pain levels were measured using a visual analogue scale (VAS, 0-10 cm). RESULTS Our analyses revealed a significantly higher concentration of astrocyte-derived EVs in the plasma of children with JIA compared with healthy controls. Furthermore, children with JADAS27 scores of 1 or higher exhibited notably higher levels of these EVs. The S100B protein was detectable exclusively in the JIA group. CONCLUSION The elevated levels of astrocyte-derived EVs and the presence of S100B in children with JIA provide evidence of BBB disruption and CNS involvement, particularly in those with higher disease activity. These findings underscore the importance of considering CNS health in the comprehensive management of JIA. Further research is required to elucidate the mechanisms behind CNS engagement in JIA and to develop treatments that address both joint and CNS manifestations of the disease.
Collapse
Affiliation(s)
- Lillemor Berntson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Andreas Elfving
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | - Anders Öman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Fariborz Mobarrez
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Kaurani L. Clinical Insights into MicroRNAs in Depression: Bridging Molecular Discoveries and Therapeutic Potential. Int J Mol Sci 2024; 25:2866. [PMID: 38474112 PMCID: PMC10931847 DOI: 10.3390/ijms25052866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Depression is a major contributor to the overall global burden of disease. The discovery of biomarkers for diagnosis or prediction of treatment responses and as therapeutic agents is a current priority. Previous studies have demonstrated the importance of short RNA molecules in the etiology of depression. The most extensively researched of these are microRNAs, a major component of cellular gene regulation and function. MicroRNAs function in a temporal and tissue-specific manner to regulate and modify the post-transcriptional expression of target mRNAs. They can also be shuttled as cargo of extracellular vesicles between the brain and the blood, thus informing about relevant mechanisms in the CNS through the periphery. In fact, studies have already shown that microRNAs identified peripherally are dysregulated in the pathological phenotypes seen in depression. Our article aims to review the existing evidence on microRNA dysregulation in depression and to summarize and evaluate the growing body of evidence for the use of microRNAs as a target for diagnostics and RNA-based therapies.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
15
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling. Int J Cell Biol 2024; 2024:5524487. [PMID: 38439918 PMCID: PMC10911912 DOI: 10.1155/2024/5524487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Astrocytes maintain CNS homeostasis but also critically contribute to neurological and psychiatric disorders. Such functional diversity implies an extensive signaling repertoire including extracellular vesicles (EVs) and nanotubes (NTs) that could be involved in protection or damage, as widely shown in various experimental paradigms. However, there is no information associating primary damage to the astrocyte genome, the DNA damage response (DDR), and the EV and NT repertoire. Furthermore, similar studies were not performed on hippocampal astrocytes despite their involvement in memory and learning processes, as well as in the development and maintenance of alcohol addiction. By exposing murine hippocampal astrocytes to 400 mM ethanol (EtOH) and/or 1 μM corticosterone (CTS) for 1 h, we tested whether the induced DNA damage and DDR could elicit significant changes in NTs and surface-attached EVs. Genetic damage and initial DDR were assessed by immunolabeling against the phosphorylated histone variant H2AX (γH2AX), DDR-dependent apoptosis by BAX immunoreactivity, and astrocyte activation by the glial acidic fibrillary protein (GFAP) and phalloidin staining. Surface-attached EVs and NTs were examined via scanning electron microscopy, and labeled proteins were analyzed via confocal microscopy. Relative to controls, astrocytes exposed to EtOH, CTS, or EtOH+CTS showed significant increases in nuclear γlH2AX foci, nuclear and cytoplasmic BAX signals, and EV frequency at the expense of the NT amount, mainly upon EtOH, without detectable signs of morphological reactivity. Furthermore, the largest and most complex EVs originated only in DNA-damaged astrocytes. Obtained results revealed that astrocytes exposed to acute EtOH and/or CTS preserved their typical morphology but presented severe DNA damage, triggered canonical DDR pathways, and early changes in the cell signaling mediated by EVs and NTs. Further deepening of this initial morphological and quantitative analysis is necessary to identify the mechanistic links between genetic damage, DDR, cell-cell communication, and their possible impact on hippocampal neural cells.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
16
|
Filannino FM, Panaro MA, Benameur T, Pizzolorusso I, Porro C. Extracellular Vesicles in the Central Nervous System: A Novel Mechanism of Neuronal Cell Communication. Int J Mol Sci 2024; 25:1629. [PMID: 38338906 PMCID: PMC10855168 DOI: 10.3390/ijms25031629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Cell-to-cell communication is essential for the appropriate development and maintenance of homeostatic conditions in the central nervous system. Extracellular vesicles have recently come to the forefront of neuroscience as novel vehicles for the transfer of complex signals between neuronal cells. Extracellular vesicles are membrane-bound carriers packed with proteins, metabolites, and nucleic acids (including DNA, mRNA, and microRNAs) that contain the elements present in the cell they originate from. Since their discovery, extracellular vesicles have been studied extensively and have opened up new understanding of cell-cell communication; they may cross the blood-brain barrier in a bidirectional way from the bloodstream to the brain parenchyma and vice versa, and play a key role in brain-periphery communication in physiology as well as pathology. Neurons and glial cells in the central nervous system release extracellular vesicles to the interstitial fluid of the brain and spinal cord parenchyma. Extracellular vesicles contain proteins, nucleic acids, lipids, carbohydrates, and primary and secondary metabolites. that can be taken up by and modulate the behaviour of neighbouring recipient cells. The functions of extracellular vesicles have been extensively studied in the context of neurodegenerative diseases. The purpose of this review is to analyse the role extracellular vesicles extracellular vesicles in central nervous system cell communication, with particular emphasis on the contribution of extracellular vesicles from different central nervous system cell types in maintaining or altering central nervous system homeostasis.
Collapse
Affiliation(s)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy;
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Ilaria Pizzolorusso
- Child and Adolescent Neuropsychiatry Unit, Department of Mental Health, ASL Foggia, 71121 Foggia, Italy;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| |
Collapse
|
17
|
Ashique S, Pal R, Sharma H, Mishra N, Garg A. Unraveling the Emerging Niche Role of Extracellular Vesicles (EVs) in Traumatic Brain Injury (TBI). CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1357-1370. [PMID: 38351688 DOI: 10.2174/0118715273288155240201065041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 09/12/2024]
Abstract
Extracellular vesicles or exosomes, often known as EVs, have acquired significant attention in the investigations of traumatic brain injury (TBI) and have a distinct advantage in actively researching the fundamental mechanisms underlying various clinical symptoms and diagnosing the wide range of traumatic brain injury cases. The mesenchymal stem cells (MSCs) can produce and release exosomes, which offer therapeutic benefits. Exosomes are tiny membranous vesicles produced by various cellular entities originating from endosomes. Several studies have reported that administering MSC-derived exosomes through intravenous infusions improves neurological recovery and promotes neuroplasticity in rats with traumatic brain damage. The therapeutic advantages of exosomes can be attributed to the microRNAs (miRNAs), which are small non-coding regulatory RNAs that significantly impact the regulation of posttranscriptional genes. Exosome-based therapies, which do not involve cells, have lately gained interest as a potential breakthrough in enhancing neuroplasticity and accelerating neurological recovery for various brain injuries and neurodegenerative diseases. This article explores the benefits and drawbacks of exosome treatment for traumatic brain injury while emphasizing the latest advancements in this field with clinical significance.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Science, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Radheshyam Pal
- Department of Pharmaceutical Science, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP) 244001, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Gwalior 474005, Madhya Pradesh, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, M.P. 483001, India
| |
Collapse
|
18
|
Xu SX, Xie XH, Yao L, Wang W, Zhang H, Chen MM, Sun S, Nie ZW, Nagy C, Liu Z. Human in vivo evidence of reduced astrocyte activation and neuroinflammation in patients with treatment-resistant depression following electroconvulsive therapy. Psychiatry Clin Neurosci 2023; 77:653-664. [PMID: 37675893 DOI: 10.1111/pcn.13596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
AIM The current study aimed to investigate the neuroinflammatory hypothesis of depression and the potential anti-inflammatory effect of electroconvulsive therapy (ECT) in vivo, utilizing astrocyte-derived extracellular vesicles (ADEVs) isolated from plasma. METHODS A total of 40 patients with treatment-resistant depression (TRD) and 35 matched healthy controls were recruited at baseline, and 34 patients with TRD completed the post-ECT visits. Blood samples were collected at baseline and post-ECT. Plasma ADEVs were isolated and confirmed, and the concentrations of two astrocyte markers (glial fibrillary acidic protein [GFAP] and S100β), an extracellular vesicle marker cluster of differentiation 81 (CD81), and nine inflammatory markers in ADEVs were measured as main analyses. In addition, correlation analysis was conducted between clinical features and ADEV protein levels as exploratory analysis. RESULTS At baseline, the TRD group exhibited significantly higher levels of two astrocyte markers GFAP and S100β, as well as CD81 compared with the healthy controls. Inflammatory markers interferon γ (IFN-γ), interleukin (IL) 1β, IL-4, IL-6, tumor necrosis factor α, IL-10, and IL-17A were also significantly higher in the TRD group. After ECT, there was a significant reduction in the levels of GFAP, S100β, and CD81, along with a significant decrease in the levels of IFN-γ and IL-4. Furthermore, higher levels of GFAP, S100β, CD81, and inflammatory cytokines were associated with more severe depressive symptoms and poorer cognitive function. CONCLUSION This study provides direct insight supporting the astrocyte activation and neuroinflammatory hypothesis of depression using ADEVs. ECT may exert an anti-inflammatory effect through inhibition of such activation of astrocytes.
Collapse
Affiliation(s)
- Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhao-Wen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Corina Nagy
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Wallensten J, Ljunggren G, Nager A, Wachtler C, Bogdanovic N, Petrovic P, Carlsson AC. Stress, depression, and risk of dementia - a cohort study in the total population between 18 and 65 years old in Region Stockholm. Alzheimers Res Ther 2023; 15:161. [PMID: 37779209 PMCID: PMC10544453 DOI: 10.1186/s13195-023-01308-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Chronic stress and depression are potential risk factors for mild cognitive impairment and dementia, including Alzheimer disease. The aim was to investigate whether any such risk is additive. METHODS Cohort study including 1 362 548 people (665 997 women, 696 551 men) with records in the Region Stockholm administrative healthcare database (VAL). Exposure was a recorded ICD-10 diagnosis of chronic stress, depression, or both, recorded in 2012 or 2013. Outcome was a diagnosis of Alzheimer disease, other dementia, or mild cognitive impairment recorded from 2014 through 2022. Odds ratios with 99% confidence intervals (CI) adjusted for age, sex, neighborhood socioeconomic status, diabetes, and cardiovascular disorders were calculated. RESULTS During the exposure period, 4 346 patients were diagnosed with chronic stress, 40 101 with depression, and 1 898 with both. The average age at baseline was around 40 years in all groups. In the fully adjusted model, the odds ratio of Alzheimer disease was 2.45 (99% CI 1.22-4.91) in patients with chronic stress, 2.32 (99% CI 1.85-2.90) in patients with depression, and 4.00 (99% CI 1.67-9.58) in patients with chronic stress and depression. The odds ratio of mild cognitive impairment was 1.87 (99% CI 1.20-2.91) in patients with chronic stress, 2.85 (99% CI 2.53-3.22) in patients with depression, and 3.87 (99% CI 2.39-6.27) in patients with both. When other dementia was analyzed, the odds ratio was significant only in patients with depression, 2.39 (99% CI 1.92-2.96). CONCLUSIONS Documented chronic stress increased the risk of mild cognitive impairment and Alzheimer disease. The same was seen with depression. The novel finding is the potential additive effect of chronic stress to depression, on risk of MCI and AD.
Collapse
Affiliation(s)
- Johanna Wallensten
- Department of Clinical Sciences, Danderyd Hospital, 18288, Stockholm, Sweden.
- Academic Primary Health Care Centre, Solnavägen 1E, 104 31, Stockholm, Sweden.
| | - Gunnar Ljunggren
- Academic Primary Health Care Centre, Solnavägen 1E, 104 31, Stockholm, Sweden
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Anna Nager
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Caroline Wachtler
- Academic Primary Health Care Centre, Solnavägen 1E, 104 31, Stockholm, Sweden
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Nenad Bogdanovic
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Predrag Petrovic
- Center for Cognitive Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Cognitive and Computational Neurosceince (CCNP), Karolinska Institutet, Stockholm, Sweden
| | - Axel C Carlsson
- Academic Primary Health Care Centre, Solnavägen 1E, 104 31, Stockholm, Sweden
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177, Stockholm, Sweden
| |
Collapse
|
20
|
Oraki Kohshour M, Papiol S, Delalle I, Rossner MJ, Schulze TG. Extracellular vesicle approach to major psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 2023; 273:1279-1293. [PMID: 36302978 PMCID: PMC10450008 DOI: 10.1007/s00406-022-01497-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
Over the last few years, extracellular vesicles (EVs) have received increasing attention as potential non-invasive diagnostic and therapeutic biomarkers for various diseases. The interest in EVs is related to their structure and content, as well as to their changing cargo in response to different stimuli. One of the potential areas of use of EVs as biomarkers is the central nervous system (CNS), in particular the brain, because EVs can cross the blood-brain barrier, exist also in peripheral tissues and have a diverse cargo. Thus, they may represent "liquid biopsies" of the CNS that can reflect brain pathophysiology without the need for invasive surgical procedures. Overall, few studies to date have examined EVs in neuropsychiatric disorders, and the present evidence appears to lack reproducibility. This situation might be due to a variety of technical obstacles related to working with EVs, such as the use of different isolation strategies, which results in non-uniform vesicular and molecular outputs. Multi-omics approaches and improvements in the standardization of isolation procedures will allow highly pure EV fractions to be obtained in which the molecular cargo, particularly microRNAs and proteins, can be identified and accurately quantified. Eventually, these advances will enable researchers to decipher disease-relevant molecular signatures of the brain-derived EVs involved in synaptic plasticity, neuronal development, neuro-immune communication, and other related pathways. This narrative review summarizes the findings of studies on EVs in major psychiatric disorders, particularly in the field of biomarkers, and discusses the respective therapeutic potential of EVs.
Collapse
Affiliation(s)
- Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336, Munich, Germany
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Neuropathology Service, Rhode Island Hospital, Lifespan Academic Medical Center, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA, 02118, USA
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336, Munich, Germany.
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Luarte A, Nardocci G, Chakraborty A, Batiz LF, Pino-Lagos K, Wyneken Ú. Astrocyte-derived extracellular vesicles in stress-associated mood disorders. Does the immune system get astrocytic? Pharmacol Res 2023; 194:106833. [PMID: 37348692 DOI: 10.1016/j.phrs.2023.106833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Life stressors can wreak havoc on our health, contributing to mood disorders like major depressive disorder (MDD), a widespread and debilitating condition. Unfortunately, current treatments and diagnostic strategies fall short of addressing these disorders, highlighting the need for new approaches. In this regard, the relationship between MDD, brain inflammation (neuroinflammation), and systemic inflammation in the body may offer novel insights. Recent research has uncovered the crucial role of astrocytes in coordinating the inflammatory response through the release of extracellular vesicles (ADEVs) during different neuroinflammatory conditions. While the contribution of ADEVs to stress and MDD remains largely unexplored, their potential to modulate immune cells and contribute to MDD pathogenesis is significant. In this article, we delve into the immunomodulatory role of ADEVs, their potential impact on peripheral immune cells, and how their microRNA (miRNA) landscape may hold the key to controlling immune cell activity. Together, these mechanisms may constitute an opportunity to develop novel therapeutic pharmacological approaches to tackle mood disorders.
Collapse
Affiliation(s)
- Alejandro Luarte
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile.
| | - Gino Nardocci
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile
| | - Ankush Chakraborty
- Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Luis Federico Batiz
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile
| | - Karina Pino-Lagos
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Immunology, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Úrsula Wyneken
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile.
| |
Collapse
|
22
|
Colniță A, Toma VA, Brezeștean IA, Tahir MA, Dina NE. A Review on Integrated ZnO-Based SERS Biosensors and Their Potential in Detecting Biomarkers of Neurodegenerative Diseases. BIOSENSORS 2023; 13:bios13050499. [PMID: 37232860 DOI: 10.3390/bios13050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) applications in clinical diagnosis and spectral pathology are increasing due to the potential of the technique to bio-barcode incipient and differential diseases via real-time monitoring of biomarkers in fluids and in real-time via biomolecular fingerprinting. Additionally, the rapid advancements in micro/nanotechnology have a visible influence in all aspects of science and life. The miniaturization and enhanced properties of materials at the micro/nanoscale transcended the confines of the laboratory and are revolutionizing domains such as electronics, optics, medicine, and environmental science. The societal and technological impact of SERS biosensing by using semiconductor-based nanostructured smart substrates will be huge once minor technical pitfalls are solved. Herein, challenges in clinical routine testing are addressed in order to understand the context of how SERS can perform in real, in vivo sampling and bioassays for early neurodegenerative disease (ND) diagnosis. The main interest in translating SERS into clinical practice is reinforced by the practical advantages: portability of the designed setups, versatility in using nanomaterials of various matter and costs, readiness, and reliability. As we will present in this review, in the frame of technology readiness levels (TRL), the current maturity reached by semiconductor-based SERS biosensors, in particular that of zinc oxide (ZnO)-based hybrid SERS substrates, is situated at the development level TRL 6 (out of 9 levels). Three-dimensional, multilayered SERS substrates that provide additional plasmonic hot spots in the z-axis are of key importance in designing highly performant SERS biosensors for the detection of ND biomarkers.
Collapse
Affiliation(s)
- Alia Colniță
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor, 400006 Cluj-Napoca, Romania
- Institute of Biological Research, Department of Biochemistry and Experimental Biology, 48 Republicii, Branch of NIRDBS Bucharest, 400015 Cluj-Napoca, Romania
| | - Ioana Andreea Brezeștean
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Nicoleta Elena Dina
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Dutta S, Hornung S, Taha HB, Bitan G. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges. Acta Neuropathol 2023; 145:515-540. [PMID: 37012443 PMCID: PMC10071251 DOI: 10.1007/s00401-023-02557-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-originating EVs can cross the blood-brain barrier into the bloodstream and may be found in other body fluids, including saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson's disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical challenges, and propose strategies for overcoming them.
Collapse
Affiliation(s)
- Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, India
| | - Simon Hornung
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Li Y, Gui Y, Zhao M, Chen X, Li H, Tian C, Zhao H, Jiang C, Xu P, Zhang S, Ye S, Huang M. The roles of extracellular vesicles in major depressive disorder. Front Psychiatry 2023; 14:1138110. [PMID: 36970289 PMCID: PMC10033661 DOI: 10.3389/fpsyt.2023.1138110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental disease characterized by depressed mood, loss of interest and suicidal ideation. Its rising prevalence has rendered MDD one of the largest contributors to the global disease burden. However, its pathophysiological mechanism is still unclear, and reliable biomarkers are lacking. Extracellular vesicles (EVs) are widely considered important mediators of intercellular communication, playing an important role in many physiological and pathological processes. Most preclinical studies focus on the related proteins and microRNAs in EVs, which can regulate energy metabolism, neurogenesis, neuro-inflammation and other pathophysiological processes in the development of MDD. The purpose of this review is to describe the current research progress of EVs in MDD and highlight their potential roles as biomarkers, therapeutic indicators and drug delivery carriers for the treatment of MDD.
Collapse
Affiliation(s)
- Ying Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Yan Gui
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Mental Health Center of Zhejiang Province, Hangzhou, China
| | - Miaomiao Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Xuanqiang Chen
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Haimei Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Chen Tian
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Pengfeng Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shiyi Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shaoyong Ye
- Henan University School of Medicine, Henan University, Kaifeng, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
- *Correspondence: Manli Huang,
| |
Collapse
|
25
|
Understanding ayahuasca effects in major depressive disorder treatment through in vitro metabolomics and bioinformatics. Anal Bioanal Chem 2023:10.1007/s00216-023-04556-3. [PMID: 36717401 DOI: 10.1007/s00216-023-04556-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Emerging insights from metabolomic-based studies of major depression disorder (MDD) are mainly related to biochemical processes such as energy or oxidative stress, in addition to neurotransmission linked to specific metabolite intermediates. Hub metabolites represent nodes in the biochemical network playing a critical role in integrating the information flow in cells between metabolism and signaling pathways. Limited technical-scientific studies have been conducted to understand the effects of ayahuasca (Aya) administration in the metabolism considering MDD molecular context. Therefore, this work aims to investigate an in vitro primary astrocyte model by untargeted metabolomics of two cellular subfractions: secretome and intracellular content after pre-defined Aya treatments, based on DMT concentration. Mass spectrometry (MS)-based metabolomics data revealed significant hub metabolites, which were used to predict biochemical pathway alterations. Branched-chain amino acid (BCAA) metabolism, and vitamin B6 and B3 metabolism were associated to Aya treatment, as "housekeeping" pathways. Dopamine synthesis was overrepresented in the network results when considering the lowest tested DMT concentration (1 µmol L-1). Building reaction networks containing significant and differential metabolites, such as nicotinamide, L-DOPA, and L-leucine, is a useful approach to guide on dose decision and pathway selection in further analytical and molecular studies.
Collapse
|
26
|
Hansson C, Zetterberg H, Snellman A, Blennow K, Jonsdottir IH. Biomarkers of brain injury in patients with stress-related exhaustion: A longitudinal study. Psychoneuroendocrinology 2022; 146:105929. [PMID: 36174450 DOI: 10.1016/j.psyneuen.2022.105929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Exhaustion Disorder (ED) is a stress-induced disorder, characterized by extreme fatigue, cognitive impairments, and intolerance to stress. These symptoms can be long-lasting, suggesting that the long-term stress may have initiated pathophysiological processes in the brains of patients with ED. The aims of the study were I) to investigate if plasma levels of neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and phosphorylated tau (p-tau181) differ between patients with ED and healthy controls, and II) to investigate if these differences persist over time. METHOD Plasma NfL, GFAP and p-tau181 were quantified in 150 patients with ED at the time of diagnosis (baseline), 149 patients at long-term follow-up (7-12 years later, median follow-up time 9 years and 5 months), and 100 healthy controls. RESULTS Plasma levels of NfL and GFAP were significantly higher in the ED group at baseline compared with controls (mean difference of NfL 0.167, 95 % CI 0.055-0.279; mean difference of GFAP 0.132, 95 % CI 0.008-0.257), while p-tau181 did not differ between the groups. Plasma levels of NfL were significantly lower in the ED group at follow-up than in the same group at baseline (mean difference -0.115, 95 % CI -0.186-(-0.045)), while plasma levels of GFAP did not differ between the groups, and plasma levels of p-tau181 were significantly higher in the ED group at follow-up than in the same group at baseline (mean difference 0.083, 95 % CI 0.016-0.151). At follow-up, there were no significant differences between the ED group and the control group for any of the proteins. CONCLUSION Plasma levels of NfL and GFAP were increased in patients with ED during the first months of the disease, indicative of axonal and glial pathophysiological processes, but had normalized at long-term follow-up.
Collapse
Affiliation(s)
- Caroline Hansson
- The Institute of Stress Medicine, Region Västra Götaland, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK; UK Dementia Research Institute, University College London, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingibjörg H Jonsdottir
- The Institute of Stress Medicine, Region Västra Götaland, Gothenburg, Sweden; School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Gu S, Li Y, Jiang Y, Huang JH, Wang F. Glymphatic Dysfunction Induced Oxidative Stress and Neuro-Inflammation in Major Depression Disorders. Antioxidants (Basel) 2022; 11:2296. [PMID: 36421482 PMCID: PMC9687220 DOI: 10.3390/antiox11112296] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
Major Depression disorder (MDD) is a potentially life-threatening mental illness, however, many patients have a poor response to current treatments. Recent studies have suggested that stress- or trauma-induced oxidative stress and inflammation could be important factors involved in the development of MDD, but the mechanisms remain unclear. We showed that the glymphatic system is a recently discovered structure in the brain that may be involved in the clearance of large molecular and cell debris in extracellular space. In addition, the glymphatic system can help with the removal of reactive oxygen species (ROS) and cytokines such as IL-1β and HIF-1α. Glymphatic impairment can lead to ROS accumulation in the microenvironment, inducing cellular injury signaling and activating NLRP3 in microglia to induce inflammation and, thus, many brain diseases, including psychiatric disorders. Therefore, trauma-induced glymphatic impairment could induce oxidative stress and inflammation, and thus MDD. This paper will review recent advances with regard to stress-induced glymphatic system impairment and ROS-mediated inflammation in MDD.
Collapse
Affiliation(s)
- Simeng Gu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang 210023, China
| | - Yumeng Li
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang 210023, China
| | - Yao Jiang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 79409, USA
- Department of Surgery, College of Medicine, Texas A & M University, Temple, TX 79409, USA
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
28
|
López-Cepeda L, Castro JD, Aristizábal-Pachón AF, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, González J. Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery. Life (Basel) 2022; 12:1720. [PMID: 36362875 PMCID: PMC9696502 DOI: 10.3390/life12111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 04/04/2024] Open
Abstract
Diagnosis of neurodegenerative disease (NDD) is complex, therefore simpler, less invasive, more accurate biomarkers are needed. small non-coding RNA (sncRNA) dysregulates in NDDs and sncRNA signatures have been explored for the diagnosis of NDDs, however, the performance of previous biomarkers is still better. Astrocyte dysfunction promotes neurodegeneration and thus derived scnRNA signatures could provide a more precise way to identify of changes related to NDD course and pathogenesis, and it could be useful for the dissection of mechanistic insights operating in NDD. Often sncRNA are transported outside the cell by the action of secreted particles such as extracellular vesicles (EV), which protect sncRNA from degradation. Furthermore, EV associated sncRNA can cross the BBB to be found in easier to obtain peripheral samples, EVs also inherit cell-specific surface markers that can be used for the identification of Astrocyte Derived Extracellular Vesicles (ADEVs) in a peripheral sample. By the study of the sncRNA transported in ADEVs it is possible to identify astrocyte specific sncRNA signatures that could show astrocyte dysfunction in a more simpler manner than previous methods. However, sncRNA signatures in ADEV are not a copy of intracellular transcriptome and methodological aspects such as the yield of sncRNA produced in ADEV or the variable amount of ADEV captured after separation protocols must be considered. Here we review the role as signaling molecules of ADEV derived sncRNA dysregulated in conditions associated with risk of neurodegeneration, providing an explanation of why to choose ADEV for the identification of astrocyte-specific transcriptome. Finally, we discuss possible limitations of this approach and the need to improve the detection limits of sncRNA for the use of ADEV derived sncRNA signatures.
Collapse
Affiliation(s)
- Leonardo López-Cepeda
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Juan David Castro
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
29
|
Lindsäter E, Svärdman F, Wallert J, Ivanova E, Söderholm A, Fondberg R, Nilsonne G, Cervenka S, Lekander M, Rück C. Exhaustion disorder: scoping review of research on a recently introduced stress-related diagnosis. BJPsych Open 2022; 8:e159. [PMID: 36458830 PMCID: PMC9438479 DOI: 10.1192/bjo.2022.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Symptoms related to chronic stress are prevalent and entail high societal costs, yet there is a lack of international consensus regarding diagnostics and treatment. A new stress-related diagnosis, exhaustion disorder, was introduced into the Swedish version of ICD-10 in 2005. Since then, use of the diagnosis has increased rapidly. AIMS To create the first comprehensive synthesis of research on exhaustion disorder to report on the current state of knowledge. Preregistration: Open Science Framework (http://www.w3.org/1999/xlink">osf.io), doi 10.17605/OSF.IO/VFDKW. METHOD A PRISMA-guided scoping review of all empirical studies of exhaustion disorder was conducted. Searches were run in the MEDLINE, PsycInfo and Web of Science databases. Data were systematically charted and thematically categorised based on primary area of investigation. RESULTS Eighty-nine included studies were sorted into six themes relating to lived experience of exhaustion disorder (n = 9), symptom presentation and course (n = 13), cognitive functioning (n = 10), biological measures (n = 24), symptom measurement scales (n = 4) and treatment (n = 29). Several studies indicated that individuals with exhaustion disorder experience a range of psychiatric and somatic symptoms beyond fatigue, but robust findings within most thematic categories were scarce. The limited number of studies, lack of replication of findings and methodological limitations (e.g. small samples and scarcity of specified primary outcomes) preclude firm conclusions about the diagnostic construct. CONCLUSIONS More research is needed to build a solid knowledge base for exhaustion disorder. International collaboration regarding the conceptualisation of chronic stress and fatigue is warranted to accelerate the growth of evidence.
Collapse
Affiliation(s)
- Elin Lindsäter
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm, Sweden; and Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Frank Svärdman
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; and Stockholm Health Care Services, Stockholm, Sweden
| | - John Wallert
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; and Stockholm Health Care Services, Stockholm, Sweden
| | - Ekaterina Ivanova
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; and Stockholm Health Care Services, Stockholm, Sweden
| | - Anna Söderholm
- Department of Psychology, Umeå Universitet, Umeå, Sweden
| | - Robin Fondberg
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; and Stockholm Health Care Services, Stockholm, Sweden
| | - Gustav Nilsonne
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; and Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Simon Cervenka
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm, Sweden; and Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Mats Lekander
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Department of Psychology, Stockholm University, Sweden; and Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Christian Rück
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; and Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
30
|
Rana T, Behl T, Shamsuzzaman M, Singh S, Sharma N, Sehgal A, Alshahrani AM, Aldahish A, Chidambaram K, Dailah HG, Bhatia S, Bungau S. Exploring the role of astrocytic dysfunction and AQP4 in depression. Cell Signal 2022; 96:110359. [PMID: 35597427 DOI: 10.1016/j.cellsig.2022.110359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022]
Abstract
Aquaporin-4 (AQP4) is the water regulating channel found in the terminal processes of astrocytes in the brain and is implicated in regulating the astrocyte functions, whereas in neuropathologies, AQP4 performs an important role in astrocytosis and release of proinflammatory cytokines. However, several findings have revealed the modulation of the AQP4 water channel in the etiopathogenesis of various neuropsychiatric diseases. In the current article, we have summarized the recent studies and highlighted the implication of astrocytic dysfunction and AQP4 in the etiopathogenesis of depressive disorder. Most of the studies have measured the AQP4 gene or protein expression in the brain regions, particularly the locus coeruleus, choroid plexus, prefrontal cortex, and hippocampus, and found that in these brain regions, AQP4 gene expression decreased on exposure to chronic mild stress. Few studies also measured the peripheral AQP4 mRNA expression in the blood and AQP4 autoantibodies in the blood serum and revealed no change in the depressed patients in comparison with normal individuals.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Md Shamsuzzaman
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Saudi Arabia
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
31
|
Zhu X, Hollinger KR, Huang Y, Borjabad A, Kim BH, Arab T, Thomas AG, Moniruzzaman M, Lovell L, Turchinovich A, Witwer KW, Volsky DJ, Haughey NJ, Slusher BS. Neutral sphingomyelinase 2 inhibition attenuates extracellular vesicle release and improves neurobehavioral deficits in murine HIV. Neurobiol Dis 2022; 169:105734. [PMID: 35462006 PMCID: PMC9202342 DOI: 10.1016/j.nbd.2022.105734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 01/11/2023] Open
Abstract
People living with HIV (PLH) have significantly higher rates of cognitive impairment (CI) and major depressive disorder (MDD) versus the general population. The enzyme neutral sphingomyelinase 2 (nSMase2) is involved in the biogenesis of ceramide and extracellular vesicles (EVs), both of which are dysregulated in PLH, CI, and MDD. Here we evaluated EcoHIV-infected mice for behavioral abnormalities relevant to depression and cognition deficits, and assessed the behavioral and biochemical effects of nSMase2 inhibition. Mice were infected with EcoHIV and daily treatment with either vehicle or the nSMase2 inhibitor (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)-carbamate (PDDC) began 3 weeks post-infection. After 2 weeks of treatment, mice were subjected to behavior tests. EcoHIV-infected mice exhibited behavioral abnormalities relevant to MDD and CI that were reversed by PDDC treatment. EcoHIV infection significantly increased cortical brain nSMase2 activity, resulting in trend changes in sphingomyelin and ceramide levels that were normalized by PDDC treatment. EcoHIV-infected mice also exhibited increased levels of brain-derived EVs and altered microRNA cargo, including miR-183-5p, miR-200c-3p, miR-200b-3p, and miR-429-3p, known to be associated with MDD and CI; all were normalized by PDDC. In conclusion, inhibition of nSMase2 represents a possible new therapeutic strategy for the treatment of HIV-associated CI and MDD.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen R Hollinger
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alejandra Borjabad
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Boe-Hyun Kim
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Tanina Arab
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammed Moniruzzaman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyndah Lovell
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrey Turchinovich
- Heidelberg Biolabs GmbH, Heidelberg, Germany; Division of Cancer Genome Research, German Cancer Research Center, Heidelberg, Germany
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Volsky
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Af Winklerfelt Hammarberg S, Westman J, Hange D, Finnes A, Björkelund C, Hällgren J, Skoglund I, Nager A. Outcomes of psychiatric interviews and self-rated symptom scales in people on sick leave for common mental disorders: an observational study. BMJ Open 2022; 12:e057745. [PMID: 35732382 PMCID: PMC9226864 DOI: 10.1136/bmjopen-2021-057745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To investigate the correspondence between diagnoses on sick leave certificates and diagnoses made in structured psychiatric interviews. Secondary aims were to investigate length of sick leave by diagnoses on sick leave certificates, diagnoses made in structured interviews and symptom severity. DESIGN Observational study consisting of a secondary analysis of data from a randomised controlled trial and an observational study. SETTING The regions of Stockholm and Västra Götaland, Sweden. PARTICIPANTS 480 people on sick leave for common mental disorders. INTERVENTIONS Participants were examined with structured psychiatric interviews and self-rated symptom severity scales. OUTCOME MEASURES (1) Sick leave certificate diagnoses, (2) diagnoses from the Mini International Neuropsychiatric Interview and the Self-rated Stress-Induced Exhaustion Disorder (SED) Instrument (s-ED), (3) symptom severity (Montgomery-Asberg Depression Rating Scale-self-rating version and the Karolinska Exhaustion Disorder Scale) and (4) number of sick leave days. RESULTS There was little correspondence between diagnoses on sick leave certificates and diagnoses made in structured psychiatric interviews. Many participants on sick leave for SED, anxiety disorder or depression fulfilled criteria for other mental disorders. Most on sick leave for SED (76%) and anxiety disorder (67%) had depression (p=0.041). Length of sick leave did not differ by certificate diagnoses. Participants with SED (s-ED) had longer sick leave than participants without SED (144 vs 84 days; 1.72 (1.37-2.16); p<0.001). More severe symptoms were associated with longer sick leave. CONCLUSION Diagnoses on sick leave certificates did not reflect the complex and overlapping nature of the diagnoses found in the structured psychiatric interviews. This finding is relevant to the interpretation of information from health data registers, including studies and guidelines based on these data. A result of clinical interest was that more severe symptoms predicted long-term sick leave better than actual diagnoses.
Collapse
Affiliation(s)
- Sandra Af Winklerfelt Hammarberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Region of Stockholm, Academic Primary Care Centre, Stockholm, Sweden
| | - Jeanette Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Region of Stockholm, Academic Primary Care Centre, Stockholm, Sweden
- Division of Nursing, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Dominique Hange
- Primary Health Care, School of Public Health and Community Medicine, Institutet of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden, Gothenburg, Sweden
- Region Västra Götaland, Närhälsan Research and Development Primary Health Care, Gothenburg, Sweden
| | - Anna Finnes
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Björkelund
- Primary Health Care, School of Public Health and Community Medicine, Institutet of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden, Gothenburg, Sweden
| | - Jonas Hällgren
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ingmarie Skoglund
- Primary Health Care, School of Public Health and Community Medicine, Institutet of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden, Gothenburg, Sweden
- Region Västra Götaland, Närhälsan Research and Development Primary Health Care, Gothenburg, Sweden
| | - Anna Nager
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Plasma levels of S100B and neurofilament light chain protein in stress-related mental disorders. Sci Rep 2022; 12:8339. [PMID: 35585111 PMCID: PMC9117317 DOI: 10.1038/s41598-022-12287-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
The pathophysiological changes underlying stress-related mental disorders remain unclear. However, research suggests that alterations in astrocytes and neurons may be involved. This study examined potential peripheral markers of such alterations, including S100B and neurofilament light chain (NF-L). We compared plasma levels of S100B and NF-L in patients with chronic stress-induced exhaustion disorder (SED), patients with major depressive disorder (MDD), and healthy controls. We also investigated whether levels of S100B and NF-L correlated with levels of astrocyte-derived extracellular vesicles (EVs that indicate astrocyte activation or apoptosis) and with symptom severity. Only women had measurable levels of S100B. Women with SED had higher plasma levels of S100B than women with MDD (P < 0.001) and healthy controls (P < 0.001). Self-rated symptoms of cognitive failures were positively correlated with levels of S100B (rs = 0.434, P = 0.005) as were depressive symptoms (rs = 0.319, P < 0.001). Plasma levels of astrocyte-derived EVs were correlated with levels of S100B (rs = 0.464, P < 0.001). Plasma levels of NF-L did not differ between the groups and were not correlated with symptom severity or EV levels. Thus, long-term stress without sufficient recovery and SED may be associated with raised plasma levels of S100B, which may be evidence of pathophysiological changes in astrocytes. The findings also support the hypothesis that plasma levels of S100B are associated with cognitive dysfunction.
Collapse
|
34
|
Wu Q, Duan WZ, Chen JB, Zhao XP, Li XJ, Liu YY, Ma QY, Xue Z, Chen JX. Extracellular Vesicles: Emerging Roles in Developing Therapeutic Approach and Delivery Tool of Chinese Herbal Medicine for the Treatment of Depressive Disorder. Front Pharmacol 2022; 13:843412. [PMID: 35401216 PMCID: PMC8988068 DOI: 10.3389/fphar.2022.843412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/28/2022] [Indexed: 01/29/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells, which play an essential role in intercellular communication by delivering cellular components including DNA, RNA, lipids, metabolites, cytoplasm, and cell surface proteins into recipient cells. EVs play a vital role in the pathogenesis of depression by transporting miRNA and effector molecules such as BDNF, IL34. Considering that some herbal therapies exhibit antidepressant effects, EVs might be a practical delivery approach for herbal medicine. Since EVs can cross the blood-brain barrier (BBB), one of the advantages of EV-mediated herbal drug delivery for treating depression with Chinese herbal medicine (CHM) is that EVs can transfer herbal medicine into the brain cells. This review focuses on discussing the roles of EVs in the pathophysiology of depression and outlines the emerging application of EVs in delivering CHM for the treatment of depression.
Collapse
Affiliation(s)
- Qian Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wen-Zhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jian-Bei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Peng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Yu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
35
|
Hung CY, Chang CH, Lin TJ, Yi HH, Tsai NZ, Chen YR, Chen YT. AQP4 Attenuated TRAF6/NFκB Activation in Acrylamide-Induced Neurotoxicity. Molecules 2022; 27:1066. [PMID: 35164330 PMCID: PMC8838058 DOI: 10.3390/molecules27031066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Acrylamide (ACR) is present in high-temperature-processed high-carbohydrate foods, cigarette smoke, and industrial pollution. Chronic exposure to ACR may induce neurotoxicity from reactive oxygen species (ROS); however, the mechanisms underlying ACR-induced neurotoxicity remain unclear. We studied 28-day subacute ACR toxicity by repeatedly feeding ACR (0, 15, or 30 mg/kg) to rats. We conducted RNA sequencing and Western blot analyses to identify differences in mRNA expression in the blood and in protein expression in the brain tissues, respectively, of the rats. AQP4 transient transfection was performed to identify potential associations with protein regulation. The rats treated with 30 mg/kg ACR exhibited hind-limb muscle weakness. Matrix metalloproteinase (MMP9) expression was higher in the ACR-treated group than in the control group. ACR induced MMP-9 and AQP4 protein expression in the brain tissues of the rats, which subsequently presented with neurotoxicity. In the in vitro study, Neuro-2a cells were transiently transfected with AQP4, which inhibited MMP-9 and TNF receptor-associated factor 6 (TRAF6) expression, and inhibited ACR induced expression of TRAF6, IκBα, and nuclear factor κB (NFκB). Using a combination of in vivo and in vitro experiments, this study revealed that depressive symptoms associated with ACR-induced neurotoxicity are associated with downregulation of AQP4 and induction of the TRAF6 pathway.
Collapse
Affiliation(s)
- Chia-Yu Hung
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan; (C.-Y.H.); (T.-J.L.); (H.-H.Y.); (N.-Z.T.); (Y.-R.C.)
| | - Chih-Han Chang
- Bachelor Program of Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan;
| | - Tzu-Jung Lin
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan; (C.-Y.H.); (T.-J.L.); (H.-H.Y.); (N.-Z.T.); (Y.-R.C.)
| | - Hsin-Hui Yi
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan; (C.-Y.H.); (T.-J.L.); (H.-H.Y.); (N.-Z.T.); (Y.-R.C.)
| | - Nian-Zhen Tsai
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan; (C.-Y.H.); (T.-J.L.); (H.-H.Y.); (N.-Z.T.); (Y.-R.C.)
| | - Yu-Ru Chen
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan; (C.-Y.H.); (T.-J.L.); (H.-H.Y.); (N.-Z.T.); (Y.-R.C.)
| | - Yng-Tay Chen
- Graduate Institute of Food Safety, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan; (C.-Y.H.); (T.-J.L.); (H.-H.Y.); (N.-Z.T.); (Y.-R.C.)
| |
Collapse
|
36
|
Genel O, Pariante CM, Borsini A. The role of AQP4 in the pathogenesis of depression, and possible related mechanisms. Brain Behav Immun 2021; 98:366-377. [PMID: 34474133 DOI: 10.1016/j.bbi.2021.08.232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Modulation of the aquaporin 4 (AQP4) water-regulatory channel or production of autoantibodies against this protein have been implicated in a variety of neuropsychiatric conditions, and possible mechanisms have been proposed. However, the nature of the interaction between AQP4 expression and its implications in depression remain elusive. To our knowledge, this is the first review summarising data for the involvement of AQP4 in the context of depression and related mechanisms across a wide range of experimental studies: pre-clinical (KO and wild-type), post-mortem, ex vivo, and clinical studies in depression. Overall, preclinical AQP4 wild-type studies showed that exposure to stress or inflammation, used as models of depression, decreased AQP4 protein and gene expression in various brain regions, including prefrontal cortex (PFC), choroid plexus and, especially, hippocampus. In preclinical AQP4 KO studies, AQP4 expression is necessary to prevent the effect of stress and inflammation on reduced neurogenesis and gliogenesis, and increased apoptosis and depressive-like behaviours. While in post-mortem and ex vivo studies of depression AQP4 expression was usually decreased in the hippocampus, prefrontal cortex and locus coeruleus, in clinical studies, where mRNA AQP4 expression or serum AQP4 autoantibodies were measured, there were no differences in depressed patients when compared with controls. In the future, studies should further investigate the mechanisms underlying the action of AQP4, and continue exploring if AQP4 autoantibodies are either contributing or underlying mechanisms of depression, or whether they are simply a mechanism underlying other autoimmune conditions where depression is present.
Collapse
Affiliation(s)
- Oktay Genel
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; School of Medicine, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| |
Collapse
|
37
|
Wallensten J, Mobarrez F, Åsberg M, Borg K, Beser A, Wilczek A, Nager A. Isoforms of soluble vascular endothelial growth factor in stress-related mental disorders: a cross-sectional study. Sci Rep 2021; 11:16693. [PMID: 34404878 PMCID: PMC8370974 DOI: 10.1038/s41598-021-96313-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) has been implicated in the pathophysiology of stress-related mental disorders. However, VEGF levels have seldom been compared across mental disorders and never by isoforms. Pathophysiological processes involving leakage of astrocyte-derived extracellular vesicles (EVs) across the blood–brain barrier could be associated with VEGF levels in patients with stress-related mental disorders. This cross-sectional study compared plasma levels of VEGF121, VEGF165, and VEGF121 + VEGF165 (VEGFtotal) in patients with stress-induced exhaustion disorder (SED) (n = 31), patients with major depressive disorder (MDD) (n = 31), and healthy controls (n = 61). It also analyzed the correlation between VEGF and astrocyte-derived EVs in plasma. An enzyme-linked immunosorbent assay (ELISA) was used to measure VEGF121 and VEGF165 in citrate plasma, and flow cytometry was used to measure astrocyte-derived EVs in plasma. The mean concentration of soluble VEGF121 (sVEGF121) was significantly higher in patients with SED than healthy controls (P = 0.043). Mean sVEGF165 was significantly lower in patients with MDD than patients with SED (P = 0.004) or healthy controls (P = 0.037). Mean sVEGFtotal was significantly higher in patients with SED than in patients with MDD (P = 0.021) and also higher in patients with SED than healthy controls (P = 0.040). Levels of sVEGF121 were positively correlated with levels of astrocyte-derived EVs only in patients with SED (P = 0.0128). The same was true of levels of sVEGFtotal and astrocyte-derived EVs (P = 0.0046). Differing levels of VEGF isoforms may reflect different pathophysiological mechanisms in SED and MDD. Further research is needed to better understand the potential roles of VEGF isoforms and astrocyte-derived EVs in mental disorders.
Collapse
Affiliation(s)
- Johanna Wallensten
- Academic Primary Health Care Centre, Region Stockholm, Solnavägen 1E, Box 45436, 104 31, Stockholm, Sweden. .,Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, 18288, Stockholm, Sweden.
| | - Fariborz Mobarrez
- Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Marie Åsberg
- Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, 18288, Stockholm, Sweden
| | - Kristian Borg
- Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, 18288, Stockholm, Sweden
| | - Aniella Beser
- Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, 18288, Stockholm, Sweden
| | - Alexander Wilczek
- Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, 18288, Stockholm, Sweden
| | - Anna Nager
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177, Stockholm, Sweden
| |
Collapse
|