1
|
Firestone E, Uda H, Kuroda N, Sakakura K, Sonoda M, Ueda R, Kitazawa Y, Lee MH, Jeong JW, Luat AF, Cools MJ, Sood S, Asano E. Normative high-frequency oscillation phase-amplitude coupling and effective connectivity under sevoflurane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644050. [PMID: 40166237 PMCID: PMC11956958 DOI: 10.1101/2025.03.18.644050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Resective surgery for pediatric drug-resistant focal epilepsy often requires extraoperative intracranial electroencephalography recording to accurately localize the epileptogenic zone. This procedure entails multiple neurosurgeries, intracranial electrode implantation and explantation, and days of invasive inpatient evaluation. There is a need for methods to reduce diagnostic burden and introduce objective epilepsy biomarkers. Our preliminary studies aimed to address these issues by using sevoflurane anesthesia to rapidly and reversibly activate intraoperative phase-amplitude coupling between delta and high-frequency activities, as well as high-frequency activity-based effective connectivity. Phase-amplitude coupling can serve as a proxy for spike-and-wave discharges, and effective connectivity describes the spatiotemporal dynamics of neural information flow among regions. Notably, sevoflurane activated these interictal electrocorticography biomarkers most robustly in areas whose resection led to seizure freedom. However, they were also increased in normative brain regions that did not require removal for seizure control. Before using these electrocorticography biomarkers prospectively to guide resection, we should understand their endogenous distribution and propagation pathways, at different anesthetic stages. In the current study, we highlighted the normative distribution of delta and high-frequency activity phase-amplitude coupling and effective connectivity under sevoflurane. Normative data was derived from nineteen patients, whose ages ranged from four to eighteen years and included eleven males. All achieved seizure control following focal resection. Electrocorticography was recorded at an isoflurane baseline, during stepwise increases in sevoflurane concentration, and also during extraoperative slow-wave sleep without anesthesia. Normative electrode sites were then mapped onto a standard cortical surface for anatomical visualization. Dynamic tractography traced white matter pathways that connected sites with significantly augmented biomarkers. Finally, we analyzed all sites -regardless of normal or abnormal status - to determine whether sevoflurane-enhanced biomarker values could intraoperatively localize the epileptogenic sites. We found that normative electrocorticography biomarkers increased as a function of sevoflurane concentration, especially in bilateral frontal and parietal lobe regions (Bonferroni-corrected p-values <0.05). Callosal fibers directly connected homotopic Rolandic regions exhibiting elevated phase-amplitude coupling. The superior longitudinal fasciculus linked frontal and parietal association cortices showing augmented effective connectivity. Higher biomarker values, particularly at three to four volume percent sevoflurane, characterized epileptogenicity and seizure-onset zone status (Bonferroni-corrected p-values <0.05). Supplementary analysis showed that epileptogenic sites exhibited less augmentation in delta-based effective connectivity. This study helps clarify the normative distribution of, and plausible propagation pathways supporting, sevoflurane enhanced electrocorticographic biomarkers. Future work should confirm that sevoflurane-activated electrocorticography biomarkers can predict postoperative seizure outcomes in larger cohorts, to establish their clinical utility.
Collapse
|
2
|
Lai X, Liu S, Wang D, Chi Y, Su X, Guo L, Zhang Z, Xie H. Effect of combination of remimazolam and sevoflurane on elderly patients' recovery quality from general anesthesia after laparoscopic abdominal surgery: a randomized controlled trial. Perioper Med (Lond) 2025; 14:20. [PMID: 39948637 PMCID: PMC11823161 DOI: 10.1186/s13741-025-00501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
PURPOSE Remimazolam toluene sulfonic acid is a short-acting benzodiazepine primarily studied for intravenous anesthesia. To date, few studies have focused on the effects of the combination of remimazolam and inhalation anesthesia or its impact on postoperative recovery. Our study aims to investigate the influence of remimazolam combined with sevoflurane for general anesthesia maintenance on postoperative recovery quality in elderly patients undergoing laparoscopic abdominal surgery. METHODS A total of 109 patients, aged 60 to 80 years old, scheduled for laparoscopic gallbladder or hernia surgery were randomly divided into two groups: remimazolam group (Group R) and remimazolam-sevoflurane combination group (Group S). Group R had remimazolam for anesthesia maintenance, while Group S received remimazolam and sevoflurane. Both groups followed the same induction protocol, with bispectral index (BIS) maintained between 40 and 60 during surgery. The primary outcome was assessed with the Quality of Recovery (QoR)-15 score. The secondary outcomes included loss of consciousness (LoC), perioperative hemodynamic variables, extubation time, and the incidence of postoperative adverse events. During the study, 7 patients were lost to follow-up, and finally, 102 patients were included in the statistical analysis. The data will be analyzed in a modified full analysis set. RESULTS Group S had higher QoR-15 and physical comfort scores on postoperative day (POD) 1 and POD3 compared to Group R (135.0[8.0] vs. 132.0[11.0], P = 0.004; 143.0[6.0] vs. 141.0[7.0], P = 0.007). Despite using less remifentanil (P = 0.021), Group S had a significantly longer extubation time (P = 0.048). There were no significant differences in induction time, perioperative hemodynamic variables, or postoperative adverse events between the groups. CONCLUSION Combining remimazolam with sevoflurane improves postoperative recovery quality in elderly patients undergoing laparoscopic abdominal surgery. This approach ensures optimal anesthesia depth and sedation while minimizing adverse events and complications. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2200065332. Date of registration: 02/11/2022.
Collapse
Affiliation(s)
- Xiawei Lai
- Department of Anesthesiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, 518033, China
- Southern Medical University, No. 1023, South Sha Tai Road, Jingxi Street, Baiyun District, Guangzhou, 510000, China
| | - Shuxian Liu
- Department of Anesthesiology, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523000, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, Zhanjiang, 524000, China
| | - Di Wang
- Department of Anesthesiology, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523000, China
- Guangdong Medical University, No. 2 East Wenming Road, Xiashan District, Zhanjiang, 524000, China
| | - Yuqing Chi
- Department of Anesthesiology, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523000, China
- Southern Medical University, No. 1023, South Sha Tai Road, Jingxi Street, Baiyun District, Guangzhou, 510000, China
| | - Xiaoqun Su
- Department of Anesthesiology, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523000, China
- Southern Medical University, No. 1023, South Sha Tai Road, Jingxi Street, Baiyun District, Guangzhou, 510000, China
| | - Lideng Guo
- Department of Anesthesiology, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523000, China
- Department of Anesthesiology, Nanhai District People's Hospital of Foshan, The Sixth College of Clinical Medicine, South China University of Technology, Foshan, 528000, China
| | - Zhijing Zhang
- Department of Anesthesiology, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523000, China.
- Dongguan Key Laboratory of Anesthesia and Organ Protection, Dongguan, China.
| | - Haihui Xie
- Department of Anesthesiology, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523000, China.
- Dongguan Key Laboratory of Anesthesia and Organ Protection, Dongguan, China.
| |
Collapse
|
3
|
Kojima T, Nakahari H, Ikeda M, Kurimoto M. Impact of low-dose sevoflurane with propofol-based anesthesia on motor-evoked potentials in infants: a single-arm crossover pilot study. J Anesth 2025; 39:93-100. [PMID: 39616586 PMCID: PMC11782304 DOI: 10.1007/s00540-024-03436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/20/2024] [Indexed: 01/31/2025]
Abstract
PURPOSE The influence of anesthetic interactions on motor-evoked potentials in infants has rarely been reported. In infants, adding a small dose of sevoflurane to propofol-based total intravenous anesthesia is reasonable for reducing propofol administration. We collected preliminary data regarding the effect of low-dose sevoflurane in propofol-based total intravenous anesthesia on motor-evoked potentials in infants. METHODS This pilot interventional study included 10 consecutive infants requiring motor-evoked potentials between January 2023 and March 2024. The motor-evoked potential amplitudes in the upper and lower extremities were recorded twice when general anesthesia was maintained using (1) propofol-based total intravenous anesthesia and (2) 0.1-0.15 age-adjusted minimum alveolar concentration sevoflurane + propofol-based total intravenous anesthesia. RESULTS The motor-evoked potential amplitude in the right upper extremity was not significantly different after the addition of a small dose of sevoflurane [192 (75.3-398) μV, 121 (57.7-304) μV, P = 0.19]. All the motor-evoked potential amplitudes in the right lower extremity (quadriceps femoris, anterior tibialis, and gastrocnemius muscles) were significantly attenuated by adding a small dose of sevoflurane (median [interquartile range]: 47.9 [35.4-200] μV, 25.2 [12.4-55.3] μV, P = 0.014; 74.2 [51.9-232] μV, 31.2 [2.7-64] μV, P = 0.0039; 29.8 [20-194] μV, 9.9 [3.8-92.4] μV, P = 0.0039, respectively). Similar results were observed in the left lower extremities. CONCLUSION Adding even 0.1-0.15 age-adjusted minimum alveolar concentration sevoflurane to propofol-based total intravenous anesthesia attenuated the motor-evoked potential amplitudes in the lower extremities. A further prospective interventional study with an appropriate sample size is required to investigate the study hypothesis.
Collapse
Affiliation(s)
- Taiki Kojima
- Department of Anesthesiology, Aichi Children's Health and Medical Center, 7-426 Morioka-cho, Obu, Aichi, 474-8710, Japan.
- Division of Comprehensive Pediatric Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hirofumi Nakahari
- Department of Anesthesia, St. Luke's International Hospital, Tokyo, Japan
| | - Makoto Ikeda
- Department of Clinical Engineering, Aichi Children's Health and Medical Center, Obu, Japan
| | - Michihiro Kurimoto
- Department of Neurosurgery, Aichi Children's Health and Medical Center, Obu, Japan
| |
Collapse
|
4
|
Guo F, Zhang B, Shen F, Li Q, Song Y, Li T, Zhang Y, Du W, Li Y, Liu W, Cao H, Zhou X, Zheng Y, Zhu S, Li Y, Liu Z. Sevoflurane acts as an antidepressant by suppression of GluN2D-containing NMDA receptors on interneurons. Br J Pharmacol 2024; 181:3483-3502. [PMID: 38779864 DOI: 10.1111/bph.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Sevoflurane, a commonly used inhaled anaesthetic known for its favourable safety profile and rapid onset and offset, has not been thoroughly investigated as a potential treatment for depression. In this study, we reveal the mechanism through which sevoflurane delivers enduring antidepressant effects. EXPERIMENTAL APPROACH To assess the antidepressant effects of sevoflurane, behavioural tests were conducted, along with in vitro and ex vivo whole-cell patch-clamp recordings, to examine the effects on GluN1-GluN2 incorporated N-methyl-d-aspartate (NMDA) receptors (NMDARs) and neuronal circuitry in the medial prefrontal cortex (mPFC). Multiple-channel electrophysiology in freely moving mice was performed to evaluate sevoflurane's effects on neuronal activity, and GluN2D knockout (grin2d-/-) mice were used to confirm the requirement of GluN2D for the antidepressant effects. KEY RESULTS Repeated exposure to subanaesthetic doses of sevoflurane produced sustained antidepressant effects lasting up to 2 weeks. Sevoflurane preferentially inhibited GluN2C- and GluN2D-containing NMDARs, causing a reduction in interneuron activity. In contrast, sevoflurane increased action potentials (AP) firing and decreased spontaneous inhibitory postsynaptic current (sIPSC) in mPFC pyramidal neurons, demonstrating a disinhibitory effect. These effects were absent in grin2d-/- mice, and both pharmacological blockade and genetic knockout of GluN2D abolished sevoflurane's antidepressant actions, suggesting that GluN2D is essential for its antidepressant effect. CONCLUSION AND IMPLICATIONS Sevoflurane directly targets GluN2D, leading to a specific decrease in interneuron activity and subsequent disinhibition of pyramidal neurons, which may underpin its antidepressant effects. Targeting the GluN2D subunit could hold promise as a potential therapeutic strategy for treating depression.
Collapse
Affiliation(s)
- Fei Guo
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuyi Shen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingcai Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyu Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongmei Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Weijia Du
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanxi Li
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| | - Wei Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hang Cao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianjin Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinli Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- Anesthesia and Brain Function Research Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Jia Q, Duan Y, Liu Y, Liu J, Luo J, Song Y, Xu Z, Zhang K, Shan J, Mo F, Wang M, Wang Y, Cai X. High-Performance Bidirectional Microelectrode Array for Assessing Sevoflurane Anesthesia Effects and In Situ Electrical Stimulation in Deep Brain Regions. ACS Sens 2024; 9:2877-2887. [PMID: 38779969 DOI: 10.1021/acssensors.3c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Precise assessment of wakefulness states during sevoflurane anesthesia and timely arousal are of paramount importance to refine the control of anesthesia. To tackle this issue, a bidirectional implantable microelectrode array (MEA) is designed with the capability to detect electrophysiological signal and perform in situ deep brain stimulation (DBS) within the dorsomedial hypothalamus (DMH) of mice. The MEA, modified with platinum nanoparticles/IrOx nanocomposites, exhibits exceptional characteristics, featuring low impedance, minimal phase delay, substantial charge storage capacity, high double-layer capacitance, and longer in vivo lifetime, thereby enhancing the sensitivity of spike firing detection and electrical stimulation (ES) effectiveness. Using this MEA, sevoflurane-inhibited neurons and sevoflurane-excited neurons, together with changes in the oscillation characteristics of the local field potential within the DMH, are revealed as indicative markers of arousal states. During the arousal period, varying-frequency ESs are applied to the DMH, eliciting distinct arousal effects. Through in situ detection and stimulation, the disparity between these outcomes can be attributed to the influence of DBS on different neurons. These advancements may further our understanding of neural circuits and their potential applications in clinical contexts.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yiming Duan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jin Shan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
6
|
Krnić J, Madirazza K, Pecotić R, Benzon B, Carev M, Đogaš Z. The Effects of Volatile Anesthetics on Renal Sympathetic and Phrenic Nerve Activity during Acute Intermittent Hypoxia in Rats. Biomedicines 2024; 12:910. [PMID: 38672264 PMCID: PMC11048470 DOI: 10.3390/biomedicines12040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Coordinated activation of sympathetic and respiratory nervous systems is crucial in responses to noxious stimuli such as intermittent hypoxia. Acute intermittent hypoxia (AIH) is a valuable model for studying obstructive sleep apnea (OSA) pathophysiology, and stimulation of breathing during AIH is known to elicit long-term changes in respiratory and sympathetic functions. The aim of this study was to record the renal sympathetic nerve activity (RSNA) and phrenic nerve activity (PNA) during the AIH protocol in rats exposed to monoanesthesia with sevoflurane or isoflurane. Adult male Sprague-Dawley rats (n = 24; weight: 280-360 g) were selected and randomly divided into three groups: two experimental groups (sevoflurane group, n = 6; isoflurane group, n = 6) and a control group (urethane group, n = 12). The AIH protocol was identical in all studied groups and consisted in delivering five 3 min-long hypoxic episodes (fraction of inspired oxygen, FiO2 = 0.09), separated by 3 min recovery intervals at FiO2 = 0.5. Volatile anesthetics, isoflurane and sevoflurane, blunted the RSNA response to AIH in comparison to urethane anesthesia. Additionally, the PNA response to acute intermittent hypoxia was preserved, indicating that the respiratory system might be more robust than the sympathetic system response during exposure to acute intermittent hypoxia.
Collapse
Affiliation(s)
- Josip Krnić
- Department of Emergency Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Katarina Madirazza
- Department of Neuroscience, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Renata Pecotić
- Department of Neuroscience, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Mladen Carev
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Zoran Đogaš
- Department of Neuroscience, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| |
Collapse
|
7
|
Hönigsperger C, Storm JF, Arena A. Laminar evoked responses in mouse somatosensory cortex suggest a special role for deep layers in cortical complexity. Eur J Neurosci 2024; 59:752-770. [PMID: 37586411 DOI: 10.1111/ejn.16108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
It has been suggested that consciousness is closely related to the complexity of the brain. The perturbational complexity index (PCI) has been used in humans and rodents to distinguish conscious from unconscious states based on the global cortical responses (recorded by electroencephalography, EEG) to local cortical stimulation (CS). However, it is unclear how different cortical layers respond to CS and contribute to the resulting intra- and inter-areal cortical connectivity and PCI. A detailed investigation of the local dynamics is needed to understand the basis for PCI. We hypothesized that the complexity level of global cortical responses (PCI) correlates with layer-specific activity and connectivity. We tested this idea by measuring global cortical dynamics and layer-specific activity in the somatosensory cortex (S1) of mice, combining cortical electrical stimulation in deep motor cortex, global electrocorticography (ECoG) and local laminar recordings from layers 1-6 in S1, during wakefulness and general anaesthesia (sevoflurane). We found that the transition from wake to sevoflurane anaesthesia correlated with a drop in both the global and local PCI (PCIst ) values (complexity). This was accompanied by a local decrease in neural firing rate, spike-field coherence and long-range functional connectivity specific to deep layers (L5, L6). Our results suggest that deep cortical layers are mechanistically important for changes in PCI and thereby for changes in the state of consciousness.
Collapse
Affiliation(s)
| | - Johan F Storm
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Alessandro Arena
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Hasson KJ. Stability study and development of the validated infrared spectrometric method for quantitative analysis of sevoflurane compared with the gas chromatographic method. J Adv Pharm Technol Res 2024; 15:19-24. [PMID: 38389970 PMCID: PMC10880916 DOI: 10.4103/japtr.japtr_377_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 02/24/2024] Open
Abstract
Sevoflurane, also called fluoromethyl ether, is an inhalation anesthetic agent used to initiate and maintain general anesthesia for adults and pediatric patients during surgical procedures. Several analytical methods have previously been applied to follow the properties and quality of sevoflurane, including mass spectrometry and gas chromatography methods. These methods are practically tedious and need sophisticated apparatus. In the present work, an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometric method was used for the quantitative determination of sevoflurane which is characterized as a fast, accurate, and available technique for most pharmaceutical laboratories, besides the gas chromatographic method which is the most suitable for the detection of impurities. Sevoflurane is a liquid and it is applied directly on the glass top of the ATR-FTIR either as a concentrated solution or diluted with hexane as a diluent, which did not interfere with sample determination within the specified wavelength range of the IR spectrum, particularly the wavelength of the ethereal group at 1200 cm-1. This method can be applied to the identification test and quantitative assay of sevoflurane since it is validated for the precision, accuracy, reproducibility, and specificity in the analysis of sevoflurane as a pharmaceutical product. However, still, there is a need for a gas chromatographic method to detect the impurities and degradation products during the stability study of sevoflurane.
Collapse
Affiliation(s)
- Kahtan Jassim Hasson
- Department of Pharmaceutical, College of Pharmacy, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
9
|
Truglia B, Carbone N, Ghadre I, Vallero S, Zito M, Zizzi EA, Deriu MA, Tuszynski JA. An In Silico Investigation of the Molecular Interactions between Volatile Anesthetics and Actin. Pharmaceuticals (Basel) 2023; 17:37. [PMID: 38256871 PMCID: PMC10819646 DOI: 10.3390/ph17010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Volatile anesthetics (VAs) are medicinal chemistry compounds commonly used to enable surgical procedures for patients who undergo painful treatments and can be partially or fully sedated, remaining in an unconscious state during the operation. The specific molecular mechanism of anesthesia is still an open issue, but scientific evidence supports the hypothesis of the involvement of both putative hydrophobic cavities in membrane receptors as binding pockets and interactions between anesthetics and cytoplasmic proteins. Previous studies demonstrated the binding of VAs to tubulin. Since actin is the other major component of the cytoskeleton, this study involves an investigation of its interactions with four major anesthetics: halothane, isoflurane, sevoflurane, and desflurane. Molecular docking was implemented using the Molecular Operating Environment (MOE) software (version 2022.02) and applied to a G-actin monomer, extrapolating the relative binding affinities and root-mean-square deviation (RMSD) values. A comparison with the F-actin was also made to assess if the generally accepted idea about the enhanced F-to-G-actin transformation during anesthesia is warranted. Overall, our results confirm the solvent-like behavior of anesthetics, as evidenced by Van der Waals interactions as well as the relevant hydrogen bonds formed in the case of isoflurane and sevoflurane. Also, a comparison of the interactions of anesthetics with tubulin was made. Finally, the short- and long-term effects of anesthetics are discussed for their possible impact on the occurrence of mental disorders.
Collapse
Affiliation(s)
| | | | | | - Sara Vallero
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | | | | | | | - J. A. Tuszynski
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
10
|
Hung YC, Wu YJ, Chien ME, Lin YT, Tsai CF, Hsu KS. Loss of oxytocin receptors in hilar mossy cells impairs social discrimination. Neurobiol Dis 2023; 187:106311. [PMID: 37769745 DOI: 10.1016/j.nbd.2023.106311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Hippocampal oxytocin receptor (OXTR) signaling is crucial for discrimination of social stimuli to guide social recognition, but circuit mechanisms and cell types involved remain incompletely understood. Here, we report a role for OXTR-expressing hilar mossy cells (MCs) of the dentate gyrus in social stimulus discrimination by regulating granule cell (GC) activity. Using a Cre-loxP recombination approach, we found that ablation of Oxtr from MCs impairs discrimination of social, but not object, stimuli in adult male mice. Ablation of MC Oxtr increases spontaneous firing rate of GCs, synaptic excitation to inhibition ratio of MC-to-GC circuit, and GC firing when temporally associated with the lateral perforant path inputs. Using mouse hippocampal slices, we found that bath application of OXTR agonist [Thr4,Gly7]-oxytocin causes membrane depolarization and increases MC firing activity. Optogenetic activation of MC-to-GC circuit ameliorates social discrimination deficit in MC OXTR deficient mice. Together, our results uncover a previously unknown role of MC OXTR signaling for discrimination of social stimuli and delineate a MC-to-GC circuit responsible for social information processing.
Collapse
Affiliation(s)
- Yu-Chieh Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Jen Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan; Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Miao-Er Chien
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan
| | - Yu-Ting Lin
- Institute of Systems Neuroscience, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Fang Tsai
- Department of Physical Medicine and Rehabilitation, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
11
|
Firestone E, Sonoda M, Kuroda N, Sakakura K, Jeong JW, Lee MH, Wada K, Takayama Y, Iijima K, Iwasaki M, Miyazaki T, Asano E. Sevoflurane-induced high-frequency oscillations, effective connectivity and intraoperative classification of epileptic brain areas. Clin Neurophysiol 2023; 150:17-30. [PMID: 36989866 PMCID: PMC10192072 DOI: 10.1016/j.clinph.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE To determine how sevoflurane anesthesia modulates intraoperative epilepsy biomarkers on electrocorticography, including high-frequency oscillation (HFO) effective connectivity (EC), and to investigate their relation to epileptogenicity and anatomical white matter. METHODS We studied eight pediatric drug-resistant focal epilepsy patients who achieved seizure control after invasive monitoring and resective surgery. We visualized spatial distributions of the electrocorticography biomarkers at an oxygen baseline, three time-points while sevoflurane was increasing, and at a plateau of 2 minimum alveolar concentration (MAC) sevoflurane. HFO EC was combined with diffusion-weighted imaging, in dynamic tractography. RESULTS Intraoperative HFO EC diffusely increased as a function of sevoflurane concentration, although most in epileptogenic sites (defined as those included in the resection); their ability to classify epileptogenicity was optimized at sevoflurane 2 MAC. HFO EC could be visualized on major white matter tracts, as a function of sevoflurane level. CONCLUSIONS The results strengthened the hypothesis that sevoflurane-activated HFO biomarkers may help intraoperatively localize the epileptogenic zone. SIGNIFICANCE Our results help characterize how HFOs at non-epileptogenic and epileptogenic networks respond to sevoflurane. It may be warranted to establish a normative HFO atlas incorporating the modifying effects of sevoflurane and major white matter pathways, as critical reference in epilepsy presurgical evaluation.
Collapse
Affiliation(s)
- Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Min-Hee Lee
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA
| | - Keiko Wada
- Department of Anesthesiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan; Department of Anesthesiology and Critical Care, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan; Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Tomoyuki Miyazaki
- Department of Anesthesiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan; Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
12
|
Spatial and temporal alterations of developing oligodendrocytes induced by repeated sevoflurane exposure in neonatal mice. Biochem Biophys Res Commun 2023; 640:12-20. [PMID: 36495605 DOI: 10.1016/j.bbrc.2022.11.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
The general anesthesia associated with long-term cognitive impairment has been causing the concern of the whole society. In particular, repeated anesthetic exposures may affect executive function, processing speed, and fine motor skills, which all directly depended on the functions of oligodendrocytes, myelin, and axons. However, the underlying mechanisms are still largely unknown. To investigate the spatial and temporal alterations in oligodendrocytes in the corpus callosum (CC) and hippocampus following repeated sevoflurane exposures (3%, for 2 h) from postnatal day 6 (P6) to P8, we used immunofluorescence, Western blot, and a battery of behavioral tests. As previously stated, we confirmed that early anesthetic exposures hampered both cognitive and motor performance during puberty in the rotarod and banes tests. Intriguingly, we discovered that the proliferation of oligodendrocyte progenitor cells (OPCs) was immediately enhanced after general anesthesia in the CC and hippocampus from P8 to P32. From P8 through P15, the overall oligodendrocyte population remained constant. However, along with the structural myelin abnormalities, the matured oligodendrocytes statistically reduced in the CC (from P15) and hippocampus (from P32). Administration of clemastine, which could induce OPC differentiation and myelin formation, significantly increased matured oligodendrocytes and promoted myelination and cognition. Collectively, we first demonstrated the bi-directional influence of early sevoflurane exposures on oligodendrocyte maturation and proliferation, which contributes to the cognitive impairment induced by general anesthesia. These findings illustrated the dynamic changes in oligodendrocytes in the developing brain following anesthetic exposures, as well as possible therapeutic strategies for multiple general anesthesia associated cognitive impairment.
Collapse
|
13
|
Mapelli J, Boiani GM, D’Angelo E, Bigiani A, Gandolfi D. Long-Term Synaptic Plasticity Tunes the Gain of Information Channels through the Cerebellum Granular Layer. Biomedicines 2022; 10:biomedicines10123185. [PMID: 36551941 PMCID: PMC9775043 DOI: 10.3390/biomedicines10123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
A central hypothesis on brain functioning is that long-term potentiation (LTP) and depression (LTD) regulate the signals transfer function by modifying the efficacy of synaptic transmission. In the cerebellum, granule cells have been shown to control the gain of signals transmitted through the mossy fiber pathway by exploiting synaptic inhibition in the glomeruli. However, the way LTP and LTD control signal transformation at the single-cell level in the space, time and frequency domains remains unclear. Here, the impact of LTP and LTD on incoming activity patterns was analyzed by combining patch-clamp recordings in acute cerebellar slices and mathematical modeling. LTP reduced the delay, increased the gain and broadened the frequency bandwidth of mossy fiber burst transmission, while LTD caused opposite changes. These properties, by exploiting NMDA subthreshold integration, emerged from microscopic changes in spike generation in individual granule cells such that LTP anticipated the emission of spikes and increased their number and precision, while LTD sorted the opposite effects. Thus, akin with the expansion recoding process theoretically attributed to the cerebellum granular layer, LTP and LTD could implement selective filtering lines channeling information toward the molecular and Purkinje cell layers for further processing.
Collapse
Affiliation(s)
- Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (J.M.); (D.G.)
| | - Giulia Maria Boiani
- Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, Neurophysiology Unit, Via Forlanini 6, 27100 Pavia, Italy
- Brain Connectivity Center (BCC), IRCCS C. Mondino, Via Mondino 2, 27100 Pavia, Italy
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Brain and Behavioral Sciences, Neurophysiology Unit, Via Forlanini 6, 27100 Pavia, Italy
- Correspondence: (J.M.); (D.G.)
| |
Collapse
|
14
|
Integrated Excitatory/Inhibitory Imbalance and Transcriptomic Analysis Reveals the Association between Dysregulated Synaptic Genes and Anesthetic-Induced Cognitive Dysfunction. Cells 2022; 11:cells11162497. [PMID: 36010580 PMCID: PMC9406780 DOI: 10.3390/cells11162497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Emerging evidence from human epidemiologic and animal studies has demonstrated that developmental anesthesia neurotoxicity could cause long-term cognitive deficits and behavioral problems. However, the underlying mechanisms remain largely unknown. We conducted an electrophysiological analysis of synapse activity and a transcriptomic assay of 24,881 mRNA expression on hippocampal tissues from postnatal day 60 (P60) mice receiving propofol exposure at postnatal day 7 (P7). We found that developmentally propofol-exposed P60 mouse hippocampal neurons displayed an E/I imbalance, compared with control mice as evidenced by the decreased excitation and increased inhibition. We found that propofol exposure at P7 led to the abnormal expression of 317 mRNAs in the hippocampus of P60 mice, including 23 synapse-related genes. Various bioinformatic analyses revealed that these abnormally expressed synaptic genes were associated with the function and development of synapse activity and plasticity, E/I balance, behavior, and cognitive impairment. Our findings suggest that the altered E/I balance may constitute a mechanism for propofol-induced long-term impaired learning and memory in mice. The transcriptomic and bioinformatic analysis of these dysregulated genes related to synaptic function paves the way for development of therapeutic strategies against anesthetic neurodegeneration through the restoration of E/I balance and the modification of synaptic gene expression.
Collapse
|
15
|
Eniwaye BP, Booth V, Hudetz AG, Zochowski M. Modeling cortical synaptic effects of anesthesia and their cholinergic reversal. PLoS Comput Biol 2022; 18:e1009743. [PMID: 35737717 PMCID: PMC9258872 DOI: 10.1371/journal.pcbi.1009743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 07/06/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023] Open
Abstract
General anesthetics work through a variety of molecular mechanisms while resulting in the common end point of sedation and loss of consciousness. Generally, the administration of common anesthetics induces reduction in synaptic excitation while promoting synaptic inhibition. Exogenous modulation of the anesthetics' synaptic effects can help determine the neuronal pathways involved in anesthesia. For example, both animal and human studies have shown that exogenously induced increases in acetylcholine in the brain can elicit wakeful-like behavior despite the continued presence of the anesthetic. However, the underlying mechanisms of anesthesia reversal at the cellular level have not been investigated. Here we apply a computational model of a network of excitatory and inhibitory neurons to simulate the network-wide effects of anesthesia, due to changes in synaptic inhibition and excitation, and their reversal by cholinergic activation through muscarinic receptors. We use a differential evolution algorithm to fit model parameters to match measures of spiking activity, neuronal connectivity, and network dynamics recorded in the visual cortex of rodents during anesthesia with desflurane in vivo. We find that facilitating muscarinic receptor effects of acetylcholine on top of anesthetic-induced synaptic changes predicts the reversal of anesthetic suppression of neurons' spiking activity, functional connectivity, as well as pairwise and population interactions. Thus, our model predicts a specific neuronal mechanism for the cholinergic reversal of anesthesia consistent with experimental behavioral observations.
Collapse
Affiliation(s)
- Bolaji P. Eniwaye
- Department of Applied Physics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Victoria Booth
- Department of Mathematics and Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (VB); (AGH); (MZ)
| | - Anthony G. Hudetz
- Department of Applied Physics, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (VB); (AGH); (MZ)
| | - Michal Zochowski
- Department of Applied Physics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Physics and Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (VB); (AGH); (MZ)
| |
Collapse
|
16
|
Chen CJ, Jiang C, Yuan J, Chen M, Cuyler J, Xie XQ, Feng Z. How Do Modulators Affect the Orthosteric and Allosteric Binding Pockets? ACS Chem Neurosci 2022; 13:959-977. [PMID: 35298129 PMCID: PMC10496248 DOI: 10.1021/acschemneuro.1c00749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Allosteric modulators (AMs) that bind allosteric sites can exhibit greater selectivity than the orthosteric ligands and can either enhance agonist-induced receptor activity (termed positive allosteric modulator or PAM), inhibit agonist-induced activity (negative AM or NAM), or have no effect on activity (silent AM or SAM). Until now, it is not clear what the exact effects of AMs are on the orthosteric active site or the allosteric binding pocket(s). In the present work, we collected both the three-dimensional (3D) structures of receptor-orthosteric ligand and receptor-orthosteric ligand-AM complexes of a specific target protein. Using our novel algorithm toolset, molecular complex characterizing system (MCCS), we were able to quantify the key residues in both the orthosteric and allosteric binding sites along with potential changes of the binding pockets. After analyzing 21 pairs of 3D crystal or cryo-electron microscopy (cryo-EM) complexes, including 4 pairs of GPCRs, 5 pairs of ion channels, 11 pairs of enzymes, and 1 pair of transcription factors, we found that the binding of AMs had little impact on both the orthosteric and allosteric binding pockets. In return, given the accurately predicted allosteric binding pocket(s) of a drug target of medicinal interest, we can confidently conduct the virtual screening or lead optimization without concern that the huge conformational change of the pocket could lead to the low accuracy of virtual screening.
Collapse
Affiliation(s)
- Chih-Jung Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Chen Jiang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jiayi Yuan
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Maozi Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jacob Cuyler
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
17
|
Briguglio M, Crespi T, Langella F, Riso P, Porrini M, Scaramuzzo L, Bassani R, Brayda-Bruno M, Berjano P. Perioperative Anesthesia and Acute Smell Alterations in Spine Surgery: A "Sniffing Impairment" Influencing Refeeding? Front Surg 2022; 9:785676. [PMID: 35372489 PMCID: PMC8965841 DOI: 10.3389/fsurg.2022.785676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Medications for general anesthesia can cause smell alterations after surgery, with inhalation anesthetics being the most acknowledged drugs. However, spine patients have been poorly studied in past investigations and whether these alterations could influence the refeeding remains unclear. This research aims to observe detectable dysosmias after spine surgery, to explore any amplified affection of halogenates (DESflurane and SEVoflurane) against total intravenous anesthesia (TIVA), and to spot potential repercussions on the refeeding. Fifty patients between 50 and 85 years old were recruited before elective spine procedure and tested for odor acuity and discrimination using the Sniffin' Sticks test. The odor abilities were re-assessed within the first 15 h after surgery together with the monitoring of food intakes. The threshold reduced from 4.92 ± 1.61 to 4.81 ± 1.64 (p = 0.237) and the discrimination ability reduced from 10.50 ± 1.83 to 9.52 ± 1.98 (p = 0.0005). Anesthetic-specific analysis showed a significant reduction of both threshold (p = 0.004) and discrimination (p = 0.004) in the SEV group, and a significant reduction of discrimination abilities (p = 0.016) in the DES group. No dysosmias were observed in TIVA patients after surgery. Food intakes were lower in the TIVA group compared to both DES (p = 0.026) and SEV (p = 0.017). The food consumed was not associated with the sniffing impairment but appeared to be inversely associated with the surgical time. These results confirmed the evidence on inhalation anesthetics to cause smell alterations in spine patients. Furthermore, the poor early oral intake after complex procedures suggests that spinal deformity surgery could be a practical challenge to early oral nutrition.
Collapse
Affiliation(s)
- Matteo Briguglio
- IRCCS Orthopedic Institute Galeazzi, Scientific Direction, Milan, Italy
| | - Tiziano Crespi
- IRCCS Orthopedic Institute Galeazzi, Intensive Care Unit, Milan, Italy
| | | | - Patrizia Riso
- University of Milan, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Marisa Porrini
- University of Milan, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | | | - Roberto Bassani
- IRCCS Orthopedic Institute Galeazzi, Spine Unit 2, Milan, Italy
| | | | - Pedro Berjano
- IRCCS Orthopedic Institute Galeazzi, GSpine 4, Milan, Italy
| |
Collapse
|