1
|
Jahan I, Harun-Ur-Rashid M, Almuhayawi MS, Al Jaouni SK, Selim S. Emerging ultrafast technologies in biotechnology. 3 Biotech 2025; 15:142. [PMID: 40292246 PMCID: PMC12021753 DOI: 10.1007/s13205-025-04309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 04/05/2025] [Indexed: 04/30/2025] Open
Abstract
This review highlights the transformative applications of ultrafast technologies in biotechnology, focusing on their ability to provide real-time visualization and precise manipulation of biomolecular processes. Femtosecond lasers have enhanced precision in gene editing, minimizing off-target effects, while ultrafast spectroscopy has advanced understanding of protein folding pathways, enzymatic activity, and energy transfer mechanisms. Notable findings include the identification of protein folding intermediates linked to misfolding diseases, improved insights into enzymatic catalysis through hydration studies, and the development of real-time monitoring systems for CRISPR gene editing. Imaging innovations such as pump-probe microscopy and Coherent Anti-Stokes Raman Scattering (CARS) enable high-resolution observation of cellular dynamics, intracellular signaling, and neural activity. Furthermore, attosecond spectroscopy has provided unprecedented insights into ultrafast electron dynamics and charge migration. Integrating ultrafast technologies with AI and nanotechnology has accelerated advances in diagnostics, personalized medicine, and synthetic biology, driving breakthroughs in drug discovery, targeted therapeutics, and regenerative medicine. Despite challenges such as photodamage, integration with complex biological systems, and ethical considerations, ongoing advancements in ultrafast technologies are set to revolutionize biotechnology. These innovations hold immense potential for addressing critical challenges in healthcare and life sciences, enabling transformative progress in understanding and treating complex diseases.
Collapse
Affiliation(s)
- Israt Jahan
- Air Quality and Environmental Pollution Research Laboratory (AQEPRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, 1000, Dhaka, Bangladesh
| | - Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT), Dhaka, 1230 Bangladesh
| | - Mohammed S. Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences,, Jouf University, 72388 Sakaka, Saudi Arabia
| |
Collapse
|
2
|
Schafer CT, Pauszek RF, Gustavsson M, Handel TM, Millar DP. Distinct activation mechanisms of CXCR4 and ACKR3 revealed by single-molecule analysis of their conformational landscapes. eLife 2025; 13:RP100098. [PMID: 40232828 PMCID: PMC11999697 DOI: 10.7554/elife.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G-protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.
Collapse
Affiliation(s)
- Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San DiegoLa JollaUnited States
| | - Raymond F Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San DiegoLa JollaUnited States
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San DiegoLa JollaUnited States
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
3
|
Lamichhane R. Single-Molecule Insights into GPCR Conformational Landscapes. J Membr Biol 2025; 258:113-120. [PMID: 39960496 DOI: 10.1007/s00232-025-00338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 03/11/2025]
Affiliation(s)
- Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37932, USA.
| |
Collapse
|
4
|
Yin L, Ni K, Mao T, Tian S, Liu C, Chen J, Zhou M, Li H, Hu Q. Attributes novel drug candidate: Constitutive GPCR signal bias mediated by purinergic receptors. Pharmacol Ther 2025; 267:108802. [PMID: 39862926 DOI: 10.1016/j.pharmthera.2025.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects. As a class of GPCRs located on the surface of cell membranes, the discovery and clinical implementation of adenosine and P2Y receptors purinergic signaling modulators have progressed dramatically. However, many preclinical drug candidates targeting purinergic receptors have failed in clinical trials due to limited efficacy and/or severe on-target undesired effects. To overcome the key barriers typically encountered when transitioning ligands into the clinic, the renewed impetus has focused on the modulation of purinergic receptor function by exogenous agonists/antagonists and allosteric modulators to exploit biased agonism. This article provides a brief overview of the research progress on the mechanism of purinergic biased signal transduction from the conformational changes of purinergic GPCRs and biased ligands primarily, and highlights therapeutically relevant biased agonism at purinergic receptors.
Collapse
Affiliation(s)
- Li Yin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Chunxiao Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiayao Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Schafer CT, Pauszek RF, Gustavsson M, Handel TM, Millar DP. Distinct Activation Mechanisms of CXCR4 and ACKR3 Revealed by Single-Molecule Analysis of their Conformational Landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.31.564925. [PMID: 37961571 PMCID: PMC10635023 DOI: 10.1101/2023.10.31.564925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different effector responses to regulate cell migration. While CXCR4 couples to G proteins and directly promotes cell migration, ACKR3 is G protein-independent and scavenges CXCL12 to regulate extracellular chemokine levels and maintain CXCR4 responsiveness, thereby indirectly influencing migration. The receptors also have distinct activation requirements. CXCR4 only responds to wild-type CXCL12 and is sensitive to mutation of the chemokine. By contrast, ACKR3 recruits GPCR kinases (GRKs) and β-arrestins and promiscuously responds to CXCL12, CXCL12 variants, other peptides and proteins, and is relatively insensitive to mutation. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we employed single-molecule FRET to track discrete conformational states of the receptors in real-time. The data revealed that apo-CXCR4 preferentially populates a high-FRET inactive state, while apo-ACKR3 shows little conformational preference and high transition probabilities among multiple inactive, intermediate and active conformations, consistent with its propensity for activation. Multiple active-like ACKR3 conformations are populated in response to agonists, compared to the single CXCR4 active-state. This and the markedly different conformational landscapes of the receptors suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. Much of the conformational heterogeneity of ACKR3 is linked to a single residue that differs between ACKR3 and CXCR4. The dynamic properties of ACKR3 may underly its inability to form productive interactions with G proteins that would drive canonical GPCR signaling.
Collapse
Affiliation(s)
- Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San Diego, La Jolla, CA 92037
| | - Raymond F. Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San Diego, La Jolla, CA 92037
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San Diego, La Jolla, CA 92037
| | - David P. Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
6
|
D’Amore VM, Conflitti P, Marinelli L, Limongelli V. Minute-timescale free-energy calculations reveal a pseudo-active state in the adenosine A 2A receptor activation mechanism. Chem 2024; 10:3678-3698. [PMID: 40191447 PMCID: PMC11965979 DOI: 10.1016/j.chempr.2024.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 04/09/2025]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins targeted by over one-third of marketed drugs. Understanding their activation mechanism is essential for precise regulation of drug pharmacological response. In this work, we elucidate the conformational landscape of the adenosine A2A receptor (A2AR) activation mechanism in its basal apo form and under different ligand-bound conditions through minute-timescale free-energy calculations. We identified a pseudo-active state (pAs) of the A2AR apo form, stabilized by specific "microswitch" residues, including a salt bridge established between the conserved residues R5.66 and E6.30. The pAs enables A2AR to couple with Gs protein upon rearrangement of the intracellular end of transmembrane helix 6, providing unprecedented structural insights into receptor function and signaling dynamics. Our simulation protocol is versatile and can be adapted to study the activation of any GPCRs, potentially making it a valuable tool for drug design and "biased signaling" studies.
Collapse
Affiliation(s)
- Vincenzo Maria D’Amore
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via G. Buffi 13, CH-6900 Lugano, Switzerland
| |
Collapse
|
7
|
Wu Q, Li L, Zhang Y, Ming X, Feng N. Measurement methods, influencing factors and applications of intercellular receptor-ligand binding kinetics in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:43-54. [PMID: 39491758 DOI: 10.1016/j.pbiomolbio.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Receptor-ligand binding on contacting cells dictates the extent of transmembrane signaling through membrane receptors during cell communication, influencing both the physiological and pathological activities of cells. This process is integral to fundamental biological mechanisms including signal transduction, cancer metastasis, immune responses, and inflammatory cascades, all of which are profoundly influenced by the cell microenvironment. This article provides an overview of the kinetic theory of receptor-ligand binding and examines methods for measuring this interaction, along with their respective advantages and disadvantages. Furthermore, it comprehensively explores the factors that impact receptor-ligand binding, encompassing protein-membrane interactions, the bioelectric microenvironment, auxiliary factors, hydrogen bond strength, pH levels, cis and trans interactions between ligands and receptors. The application of receptor-ligand binding kinetics in various diseases such as immunity, cancer, and inflammation are also discussed. Additionally, the investigation into how functional substances alter receptor-ligand binding dynamics within specific cellular microenvironments presents a promising new approach to treating related diseases.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Liangchao Li
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Yuyan Zhang
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Xiaozhi Ming
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Nianjie Feng
- Hubei Key Laboratoy of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| |
Collapse
|
8
|
Belousov A, Maslov I, Orekhov P, Khorn P, Kuzmichev P, Baleeva N, Motov V, Bogorodskiy A, Krasnova S, Mineev K, Zinchenko D, Zernii E, Ivanovich V, Permyakov S, Hofkens J, Hendrix J, Cherezov V, Gensch T, Mishin A, Baranov M, Mishin A, Borshchevskiy V. Monitoring GPCR conformation with GFP-inspired dyes. iScience 2024; 27:110466. [PMID: 39156645 PMCID: PMC11326922 DOI: 10.1016/j.isci.2024.110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Solvatochromic compounds have emerged as valuable environment-sensitive probes for biological research. Here we used thiol-reactive solvatochromic analogs of the green fluorescent protein (GFP) chromophore to track conformational changes in two proteins, recoverin and the A2A adenosine receptor (A2AAR). Two dyes showed Ca2+-induced fluorescence changes when attached to recoverin. Our best-performing dye, DyeC, exhibited agonist-induced changes in both intensity and shape of its fluorescence spectrum when attached to A2AAR; none of these effects were observed with other common environment-sensitive dyes. Molecular dynamics simulations showed that activation of the A2AAR led to a more confined and hydrophilic environment for DyeC. Additionally, an allosteric modulator of A2AAR induced distinct fluorescence changes in the DyeC spectrum, indicating a unique receptor conformation. Our study demonstrated that GFP-inspired dyes are effective for detecting structural changes in G protein-coupled receptors (GPCRs), offering advantages such as intensity-based and ratiometric tracking, redshifted fluorescence spectra, and sensitivity to allosteric modulation.
Collapse
Affiliation(s)
- Anatoliy Belousov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ivan Maslov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Philipp Orekhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Sechenov University, Moscow 119146, Russia
| | - Polina Khorn
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Pavel Kuzmichev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Nadezhda Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladislav Motov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | - Svetlana Krasnova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- National Research University Higher School of Economics, Moscow 101000, Russia
| | - Konstantin Mineev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry Zinchenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Evgeni Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | - Sergei Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino 142292, Russia
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Plank Institute for Polymer Research, Mainz, Germany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Vadim Cherezov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Thomas Gensch
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Alexander Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Mikhail Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexey Mishin
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin Borshchevskiy
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| |
Collapse
|
9
|
Agyemang E, Gonneville AN, Tiruvadi-Krishnan S, Lamichhane R. Exploring GPCR conformational dynamics using single-molecule fluorescence. Methods 2024; 226:35-48. [PMID: 38604413 PMCID: PMC11098685 DOI: 10.1016/j.ymeth.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that transmit specific external stimuli into cells by changing their conformation. This conformational change allows them to couple and activate G-proteins to initiate signal transduction. A critical challenge in studying and inferring these structural dynamics arises from the complexity of the cellular environment, including the presence of various endogenous factors. Due to the recent advances in cell-expression systems, membrane-protein purification techniques, and labeling approaches, it is now possible to study the structural dynamics of GPCRs at a single-molecule level both in vitro and in live cells. In this review, we discuss state-of-the-art techniques and strategies for expressing, purifying, and labeling GPCRs in the context of single-molecule research. We also highlight four recent studies that demonstrate the applications of single-molecule microscopy in revealing the dynamics of GPCRs. These techniques are also useful as complementary methods to verify the results obtained from other structural biology tools like cryo-electron microscopy and x-ray crystallography.
Collapse
Affiliation(s)
- Eugene Agyemang
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Alyssa N Gonneville
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sriram Tiruvadi-Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rajan Lamichhane
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
10
|
Claff T, Mahardhika AB, Vaaßen VJ, Schlegel J, Vielmuth C, Weiße RH, Sträter N, Müller CE. Structural Insights into Partial Activation of the Prototypic G Protein-Coupled Adenosine A 2A Receptor. ACS Pharmacol Transl Sci 2024; 7:1415-1425. [PMID: 38751633 PMCID: PMC11091970 DOI: 10.1021/acsptsci.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/18/2024]
Abstract
The adenosine A2A receptor (A2AAR) belongs to the rhodopsin-like G protein-coupled receptor (GPCR) family, which constitutes the largest class of GPCRs. Partial agonists show reduced efficacy as compared to physiological agonists and can even act as antagonists in the presence of a full agonist. Here, we determined an X-ray crystal structure of the partial A2AAR agonist 2-amino-6-[(1H-imidazol-2-ylmethyl)sulfanyl]-4-p-hydroxyphenyl-3,5-pyridinedicarbonitrile (LUF5834) in complex with the A2AAR construct A2A-PSB2-bRIL, stabilized in its inactive conformation and being devoid of any mutations in the ligand binding pocket. The determined high-resolution structure (2.43 Å) resolved water networks and crucial binding pocket interactions. A direct hydrogen bond of the p-hydroxy group of LUF5834 with T883.36 was observed, an amino acid that was mutated to alanine in the most frequently used A2AAR crystallization constructs thus preventing the discovery of its interactions in most of the previous A2AAR co-crystal structures. G protein dissociation studies confirmed partial agonistic activity of LUF5834 as compared to that of the full agonist N-ethylcarboxamidoadenosine (NECA). In contrast to NECA, the partial agonist was still able to bind to the receptor construct locked in its inactive conformation by an S913.39K mutation, although with an affinity lower than that at the native receptor. This could explain the compound's partial agonistic activity: while full A2AAR agonists bind exclusively to the active conformation, likely following conformational selection, partial agonists bind to active as well as inactive conformations, showing higher affinity for the active conformation. This might be a general mechanism of partial agonism also applicable to other GPCRs.
Collapse
Affiliation(s)
- Tobias Claff
- PharmaCenter
Bonn & Pharmaceutical Institute, Department of Pharmaceutical
& Medicinal Chemistry, University of
Bonn, Bonn 53113, Germany
| | - Andhika B. Mahardhika
- PharmaCenter
Bonn & Pharmaceutical Institute, Department of Pharmaceutical
& Medicinal Chemistry, University of
Bonn, Bonn 53113, Germany
- Research
Training Group 2873, University of Bonn, Bonn 53121, Germany
| | - Victoria J. Vaaßen
- PharmaCenter
Bonn & Pharmaceutical Institute, Department of Pharmaceutical
& Medicinal Chemistry, University of
Bonn, Bonn 53113, Germany
| | - Jonathan
G. Schlegel
- PharmaCenter
Bonn & Pharmaceutical Institute, Department of Pharmaceutical
& Medicinal Chemistry, University of
Bonn, Bonn 53113, Germany
| | - Christin Vielmuth
- PharmaCenter
Bonn & Pharmaceutical Institute, Department of Pharmaceutical
& Medicinal Chemistry, University of
Bonn, Bonn 53113, Germany
| | - Renato H. Weiße
- Institute
of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig 04103, Germany
| | - Norbert Sträter
- Institute
of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig 04103, Germany
| | - Christa E. Müller
- PharmaCenter
Bonn & Pharmaceutical Institute, Department of Pharmaceutical
& Medicinal Chemistry, University of
Bonn, Bonn 53113, Germany
- Research
Training Group 2873, University of Bonn, Bonn 53121, Germany
| |
Collapse
|
11
|
Pei X, Liu L, Wang J, Guo C, Li Q, Li J, Ren Q, Ma R, Zheng Y, Zhang Y, Liu L, Zheng D, Wang P, Jiang P, Feng X, Jiang E, Wang Y, Feng S. Exosomal secreted SCIMP regulates communication between macrophages and neutrophils in pneumonia. Nat Commun 2024; 15:691. [PMID: 38263143 PMCID: PMC10805922 DOI: 10.1038/s41467-024-44714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
In pneumonia, the deficient or delayed pathogen clearance can lead to pathogen proliferation and subsequent overactive immune responses, inducing acute lung injury (ALI). While screening human genome coding genes using our peripheral blood cell chemotactic platform, we unexpectedly find SLP adaptor and CSK interacting membrane protein (SCIMP), a protein with neutrophil chemotactic activity secreted during ALI. However, the specific role of SCIMP in ALI remains unclear. In this study, we investigate the secretion of SCIMP in exosomes (SCIMPexo) by macrophages after bacterial stimulation, both in vitro and in vivo. We observe a significant increase in the levels of SCIMPexo in bronchoalveolar lavage fluid and serum of pneumonia patients. We also find that bronchial perfusion with SCIMPexo or SCIMP N-terminal peptides increases the survival rate of the ALI model. This occurs due to the chemoattraction and activation of peripheral neutrophils dependent on formyl peptide receptor 1/2 (FPR1/2). Conversely, exosome suppressors and FPR1/2 antagonists decrease the survival rate in the lethal ALI model. Scimp-deficient and Fpr1/2-deficient mice also have lower survival rates and shorter survival times than wild-type mice. However, bronchial perfusion of SCIMP rescues Scimp-deficient mice but not Fpr1/2-deficient mice. Collectively, our findings suggest that the macrophage-SCIMP-FPRs-neutrophil axis plays a vital role in the innate immune process underlying ALI.
Collapse
Affiliation(s)
- Xiaolei Pei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, P. R. China.
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China.
| | - Li Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, P. R. China
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China
| | - Jieru Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, P. R. China
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China
| | - Changyuan Guo
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Qingqing Li
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Jia Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, P. R. China
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, P. R. China
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China
| | - Runzhi Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, P. R. China
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China
| | - Yi Zheng
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Yan Zhang
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Li Liu
- Tianjin First Central Hospital, Tianjin Medical University, Tianjin, 300192, P. R. China
| | - Danfeng Zheng
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China
| | - Ping Jiang
- Tianjin First Central Hospital, Tianjin Medical University, Tianjin, 300192, P. R. China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, P. R. China
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, P. R. China
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, P. R. China.
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, P. R. China.
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China.
| |
Collapse
|
12
|
Fessl T, Majellaro M, Bondar A. Microscopy and spectroscopy approaches to study GPCR structure and function. Br J Pharmacol 2023. [PMID: 38087925 DOI: 10.1111/bph.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
The GPCR signalling cascade is a key pathway responsible for the signal transduction of a multitude of physical and chemical stimuli, including light, odorants, neurotransmitters and hormones. Understanding the structural and functional properties of the GPCR cascade requires direct observation of signalling processes in high spatial and temporal resolution, with minimal perturbation to endogenous systems. Optical microscopy and spectroscopy techniques are uniquely suited to this purpose because they excel at multiple spatial and temporal scales and can be used in living objects. Here, we review recent developments in microscopy and spectroscopy technologies which enable new insights into GPCR signalling. We focus on advanced techniques with high spatial and temporal resolution, single-molecule methods, labelling strategies and approaches suitable for endogenous systems and large living objects. This review aims to assist researchers in choosing appropriate microscopy and spectroscopy approaches for a variety of applications in the study of cellular signalling.
Collapse
Affiliation(s)
- Tomáš Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Alexey Bondar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Laboratory of Microscopy and Histology, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
13
|
Luginina A, Maslov I, Khorn P, Volkov O, Khnykin A, Kuzmichev P, Shevtsov M, Belousov A, Kapranov I, Dashevskii D, Kornilov D, Bestsennaia E, Hofkens J, Hendrix J, Gensch T, Cherezov V, Ivanovich V, Mishin A, Borshchevskiy V. Functional GPCR Expression in Eukaryotic LEXSY System. J Mol Biol 2023; 435:168310. [PMID: 37806553 DOI: 10.1016/j.jmb.2023.168310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
G protein-coupled receptors (GPCRs) form the largest superfamily of membrane proteins in the human genome, and represent one of the most important classes of drug targets. Their structural studies facilitate rational drug discovery. However, atomic structures of only about 20% of human GPCRs have been solved to date. Recombinant production of GPCRs for structural studies at a large scale is challenging due to their low expression levels and stability. Therefore, in this study, we explored the efficacy of the eukaryotic system LEXSY (Leishmania tarentolae) for GPCR production. We selected the human A2A adenosine receptor (A2AAR), as a model protein, expressed it in LEXSY, purified it, and compared with the same receptor produced in insect cells, which is the most popular expression system for structural studies of GPCRs. The A2AAR purified from both expression systems showed similar purity, stability, ligand-induced conformational changes and structural dynamics, with a remarkably higher protein yield in the case of LEXSY expression. Overall, our results suggest that LEXSY is a promising platform for large-scale production of GPCRs for structural studies.
Collapse
Affiliation(s)
- Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium; Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Polina Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | | | - Andrey Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Pavel Kuzmichev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Mikhail Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Anatoliy Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Ivan Kapranov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Dmitrii Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Daniil Kornilov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Ekaterina Bestsennaia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium; Max Planck Institute for Polymer Research, Mainz, Germany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium; Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Thomas Gensch
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Valentin Ivanovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; Joint Institute for Nuclear Research, Dubna, Russia.
| |
Collapse
|
14
|
Wei S, Pour NG, Tiruvadi-Krishnan S, Ray AP, Thakur N, Eddy MT, Lamichhane R. Single-molecule visualization of human A 2A adenosine receptor activation by a G protein and constitutively activating mutations. Commun Biol 2023; 6:1218. [PMID: 38036689 PMCID: PMC10689853 DOI: 10.1038/s42003-023-05603-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Mutations that constitutively activate G protein-coupled receptors (GPCRs), known as constitutively activating mutations (CAMs), modify cell signaling and interfere with drugs, resulting in diseases with limited treatment options. We utilize fluorescence imaging at the single-molecule level to visualize the dynamic process of CAM-mediated activation of the human A2A adenosine receptor (A2AAR) in real time. We observe an active-state population for all CAMs without agonist stimulation. Importantly, activating mutations significantly increase the population of an intermediate state crucial for receptor activation, notably distinct from the addition of a partner G protein. Activation kinetics show that while CAMs increase the frequency of transitions to the intermediate state, mutations altering sodium sensitivity increase transitions away from it. These findings indicate changes in GPCR function caused by mutations may be predicted based on whether they favor or disfavor formation of an intermediate state, providing a framework for designing receptors with altered functions or therapies that target intermediate states.
Collapse
Affiliation(s)
- Shushu Wei
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, Knoxville, TN, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Sriram Tiruvadi-Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, Knoxville, TN, USA
| | - Arka Prabha Ray
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Naveen Thakur
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA.
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
15
|
Das AK, Mandal AK, Mondal T. Probing Single-molecule Interfacial Electron Transfer Inside a Single Lipid Vesicle. J Fluoresc 2023; 33:2229-2239. [PMID: 37004622 DOI: 10.1007/s10895-023-03211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023]
Abstract
Inhomogeneity in single molecule electron transfer at the surface of lipid in a single vesicle has been explored by single molecule spectroscopic technique. In our study we took Di-methyl aniline (DMA), as the electron donor (D) and three different organic dyes as acceptor. These dyes are C153, C480 and C152 and they reside in different regions in the vesicle depending upon their preference of residence. For each probe, we found fluctuations in the single-molecule fluorescence decay, which are attributed to the variation in the reactivity of interfacial electron transfer. We found a non-exponential auto-correlation fluctuation of the intensity of the probe, which is ascribed to the kinetic disorder in the rate of electron transfer. We have also shown the power law distribution of the dark state (off time), which obeys the levy's statistics. We found a shift in lifetime distribution for the probe (C153) from 3.9 ns to 3.5 ns. This observed quenching is due to the dynamic electron transfer. We observed the kinetic disorderness in the electron transfer reaction for each dye. This source of fluctuation in electron transfer rate may be ascribed to the inherent fluctuation, occurring on the time scale of ~ 1.1 ms (for C153) of the vesicle, containing lipids.
Collapse
Affiliation(s)
- Atanu Kumar Das
- Department of Physics, Kandi Raj College, Murshidabad, West Bengal, 742137, India
| | - Amit Kumar Mandal
- Department of Chemistry, Bankura University, Bankura, West Bengal, 722155, India
| | - Tridib Mondal
- Department of Chemistry, Sukanta Mahavidyalaya, Jalpaiguri, West Bengal, 735210, India.
| |
Collapse
|
16
|
Maslov I, Volkov O, Khorn P, Orekhov P, Gusach A, Kuzmichev P, Gerasimov A, Luginina A, Coucke Q, Bogorodskiy A, Gordeliy V, Wanninger S, Barth A, Mishin A, Hofkens J, Cherezov V, Gensch T, Hendrix J, Borshchevskiy V. Sub-millisecond conformational dynamics of the A 2A adenosine receptor revealed by single-molecule FRET. Commun Biol 2023; 6:362. [PMID: 37012383 PMCID: PMC10070357 DOI: 10.1038/s42003-023-04727-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
The complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor's constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.
Collapse
Affiliation(s)
- Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | - Polina Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Philipp Orekhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Anastasiia Gusach
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Pavel Kuzmichev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Andrey Gerasimov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Vyatka State University, Kirov, Russia
| | - Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Quinten Coucke
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Simon Wanninger
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anders Barth
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, HZ, Delft, The Netherlands
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
- Max Plank Institute for Polymer Research, Mainz, Germany
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Thomas Gensch
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium.
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium.
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
- Joint Institute for Nuclear Research, Dubna, Russian Federation.
| |
Collapse
|
17
|
Polymorphisms in common antihypertensive targets: Pharmacogenomic implications for the treatment of cardiovascular disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:141-182. [PMID: 35659371 DOI: 10.1016/bs.apha.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The idea of personalized medicine came to fruition with sequencing the human genome; however, aside from a few cases, the genetic revolution has yet to materialize. Cardiovascular diseases are the leading cause of death globally, and hypertension is a common prelude to nearly all cardiovascular diseases. Thus, hypertension is an ideal candidate disease to apply tenants of personalized medicine to lessen cardiovascular disease. Herein is a survey that visually depicts the polymorphisms in the top eight antihypertensive targets. Although there are numerous genome-wide association studies regarding cardiovascular disease, few studies look at the effects of receptor polymorphisms on drug treatment. With 17,000+ polymorphisms in the combined target proteins examined, it is expected that some of the clinical variability in the treatment of hypertension is due to polymorphisms in the drug targets. Recent advances in techniques and technology, such as high throughput examination of single mutations, structure prediction, computational power for modeling, and CRISPR models of point mutations, allow for a relatively rapid and comprehensive examination of the effects of known and future polymorphisms on drug affinity and effects. As hypertension is easy to measure and has a plethora of clinically viable ligands, hypertension makes an excellent disease to study pharmacogenomics in the lab and the clinic. If the promises of personalized medicine are to materialize, a concerted effort to examine the effects polymorphisms have on drugs is required. A clinician with the knowledge of a patient's genotype can then prescribe drugs that are optimal for treating that specific patient.
Collapse
|
18
|
Marchetti L, Porciani D, Mitola S, Giacomelli C. Editorial: Molecular Insights Into Ligand-Receptor Interactions on the Cell Surface. Front Mol Biosci 2022; 9:921677. [PMID: 35647034 PMCID: PMC9140802 DOI: 10.3389/fmolb.2022.921677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - David Porciani
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- *Correspondence: Chiara Giacomelli,
| |
Collapse
|
19
|
Wei S, Thakur N, Ray AP, Jin B, Obeng S, McCurdy CR, McMahon LR, Gutiérrez-de-Terán H, Eddy MT, Lamichhane R. Slow conformational dynamics of the human A 2A adenosine receptor are temporally ordered. Structure 2022; 30:329-337.e5. [PMID: 34895472 PMCID: PMC8897252 DOI: 10.1016/j.str.2021.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/26/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023]
Abstract
A more complete depiction of protein energy landscapes includes the identification of different function-related conformational states and the determination of the pathways connecting them. We used total internal reflection fluorescence (TIRF) imaging to investigate the conformational dynamics of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), at the single-molecule level. Slow, reversible conformational exchange was observed among three different fluorescence emission states populated for agonist-bound A2AAR. Transitions among these states predominantly occurred in a specific order, and exchange between inactive and active-like conformations proceeded through an intermediate state. Models derived from molecular dynamics simulations with available A2AAR structures rationalized the relative fluorescence emission intensities for the highest and lowest emission states but not the transition state. This suggests that the functionally critical intermediate state required to achieve activation is not currently visualized among available A2AAR structures.
Collapse
Affiliation(s)
- Shushu Wei
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37932, USA
| | - Naveen Thakur
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Arka P Ray
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Beining Jin
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Samuel Obeng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, B.M.C., Box 596, Uppsala 751 24, Sweden
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37932, USA.
| |
Collapse
|
20
|
Huang SK, Prosser RS. Dynamics and Mechanistic Underpinnings to Pharmacology of Class A GPCRs - An NMR Perspective. Am J Physiol Cell Physiol 2022; 322:C739-C753. [PMID: 35235425 DOI: 10.1152/ajpcell.00044.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One-third of current pharmaceuticals target G protein-coupled receptors (GPCRs), the largest receptor superfamily in humans and mediators of diverse physiological processes. This review summarizes the recent progress in GPCR structural dynamics, focusing on class A receptors and insights derived from nuclear magnetic resonance (NMR) and other spectroscopic techniques. We describe the structural aspects of GPCR activation and the various pharmacological models that capture aspects of receptor signaling behaviour. Spectroscopic studies revealed that receptors and their signaling complexes are dynamic allosteric systems that sample multiple functional states under basal conditions. The distribution of states within the conformational ensemble and the kinetics of transitions between states are regulated through the binding of ligands, allosteric modulators, and the membrane environment. This ensemble view of GPCRs provides a mechanistic framework for understanding many of the pharmacological phenomena associated with receptor signaling, such as basal activity, efficacy, and functional bias.
Collapse
Affiliation(s)
- Shuya Kate Huang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - R Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Abrol R, Serrano E, Santiago LJ. Development of enhanced conformational sampling methods to probe the activation landscape of GPCRs. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:325-359. [PMID: 35034722 PMCID: PMC11476118 DOI: 10.1016/bs.apcsb.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
G protein-coupled receptors (GPCRs) make up the largest superfamily of integral membrane proteins and play critical signal transduction roles in many physiological processes. Developments in molecular biology, biophysical, biochemical, pharmacological, and computational techniques aimed at these important therapeutic targets are beginning to provide unprecedented details on the structural as well as functional basis of their pleiotropic signaling mediated by G proteins, β arrestins, and other transducers. This pleiotropy presents a pharmacological challenge as the same ligand-receptor interaction can cause a therapeutic effect as well as an undesirable on-target side-effect through different downstream pathways. GPCRs don't function as simple binary on-off switches but as finely tuned shape-shifting machines described by conformational ensembles, where unique subsets of conformations may be responsible for specific signaling cascades. X-ray crystallography and more recently cryo-electron microscopy are providing snapshots of some of these functionally-important receptor conformations bound to ligands and/or transducers, which are being utilized by computational methods to describe the dynamic conformational energy landscape of GPCRs. In this chapter, we review the progress in computational conformational sampling methods based on molecular dynamics and discrete sampling approaches that have been successful in complementing biophysical and biochemical studies on these receptors in terms of their activation mechanisms, allosteric effects, actions of biased ligands, and effects of pathological mutations. Some of the sampled simulation time scales are beginning to approach receptor activation time scales. The list of conformational sampling methods and example uses discussed is not exhaustive but includes representative examples that have pushed the limits of classical molecular dynamics and discrete sampling methods to describe the activation energy landscape of GPCRs.
Collapse
Affiliation(s)
- Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States.
| | - Erik Serrano
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States
| | - Luis Jaimes Santiago
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States
| |
Collapse
|
22
|
The use of fluorescence correlation spectroscopy to characterise the molecular mobility of G protein-coupled receptors in membrane microdomains: an update. Biochem Soc Trans 2021; 49:1547-1554. [PMID: 34436556 DOI: 10.1042/bst20201001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
It has become increasingly apparent that some G protein-coupled receptors (GPCRs) are not homogeneously expressed within the plasma membrane but may instead be organised within distinct signalling microdomains. These microdomains localise GPCRs in close proximity with other membrane proteins and intracellular signalling partners and could have profound implications for the spatial and temporal control of downstream signalling. In order to probe the molecular mechanisms that govern GPCR pharmacology within these domains, fluorescence techniques with effective single receptor sensitivity are required. Of these, fluorescence correlation spectroscopy (FCS) is a technique that meets this sensitivity threshold. This short review will provide an update of the recent uses of FCS based techniques in conjunction with GPCR subtype selective fluorescent ligands to characterise dynamic ligand-receptor interactions in whole cells and using purified GPCRs.
Collapse
|
23
|
Ghosh A, Enderlein J. Advanced fluorescence correlation spectroscopy for studying biomolecular conformation. Curr Opin Struct Biol 2021; 70:123-131. [PMID: 34371261 DOI: 10.1016/j.sbi.2021.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
We present the recent developments and advances in fluorescence correlation spectroscopy (FCS) and their application to the investigation of biomolecular conformations. In particular, we present and discuss three techniques: multichannel nanosecond FCS, photo-induced electron transfer FCS, and fluorescence lifetime correlation spectroscopy. We briefly describe each method and discuss recent applications to diverse biophysical studies of biomolecular conformation.
Collapse
Affiliation(s)
- Arindam Ghosh
- Third Institute of Physics, Biophysics, University of Göttingen, Friedrich Hund Platz 1 Göttingen, 37077, Germany
| | - Jörg Enderlein
- Third Institute of Physics, Biophysics, University of Göttingen, Friedrich Hund Platz 1 Göttingen, 37077, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Göttingen, 37077, Germany.
| |
Collapse
|