1
|
Navarro MA, Navarro C, Hernández LE, Garnica M, Franco-Zorrilla JM, Burko Y, González-Serrano S, García-Mina JM, Pruneda-Paz J, Chory J, Leyva A. GLABRA2 transcription factor integrates arsenic tolerance with epidermal cell fate determination. THE NEW PHYTOLOGIST 2024; 244:1882-1900. [PMID: 39238145 DOI: 10.1111/nph.20099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024]
Abstract
Arsenic poses a global threat to living organisms, compromising crop security and yield. Limited understanding of the transcriptional network integrating arsenic-tolerance mechanisms with plant developmental responses hinders the development of strategies against this toxic metalloid. Here, we conducted a high-throughput yeast one-hybrid assay using as baits the promoter region from the arsenic-inducible genes ARQ1 and ASK18 from Arabidopsis thaliana, coupled with a transcriptomic analysis, to uncover novel transcriptional regulators of the arsenic response. We identified the GLABRA2 (GL2) transcription factor as a novel regulator of arsenic tolerance, revealing a wider regulatory role beyond its established function as a repressor of root hair formation. Furthermore, we found that ANTHOCYANINLESS2 (ANL2), a GL2 subfamily member, acts redundantly with this transcription factor in the regulation of arsenic signaling. Both transcription factors act as repressors of arsenic response. gl2 and anl2 mutants exhibit enhanced tolerance and reduced arsenic accumulation. Transcriptional analysis in the gl2 mutant unveils potential regulators of arsenic tolerance. These findings highlight GL2 and ANL2 as novel integrators of the arsenic response with developmental outcomes, offering insights for developing safer crops with reduced arsenic content and increased tolerance to this hazardous metalloid.
Collapse
Affiliation(s)
- Micaela Andrea Navarro
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), CSIC, Campus University Autónoma, 28049, Madrid, Spain
| | - Cristina Navarro
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), CSIC, Campus University Autónoma, 28049, Madrid, Spain
| | - Luis Eduardo Hernández
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Garnica
- Department of Environmental Biology, University of Navarra, 31008, Navarra, Spain
| | - José Manuel Franco-Zorrilla
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), CSIC, Campus University Autónoma, 28049, Madrid, Spain
| | - Yogev Burko
- Institute of Plant Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion, 7505101, Israel
| | - Sara González-Serrano
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), CSIC, Campus University Autónoma, 28049, Madrid, Spain
| | - José M García-Mina
- Department of Environmental Biology, University of Navarra, 31008, Navarra, Spain
| | - José Pruneda-Paz
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0116, USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Antonio Leyva
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), CSIC, Campus University Autónoma, 28049, Madrid, Spain
| |
Collapse
|
2
|
Xu Y, Li Y, Zhou Z, Jiao J, Zhang H, Li H, Hu F, Xu L. Arabidopsis thaliana YUC1 reduced fluoranthene accumulation by modulating IAA content and antioxidant enzyme activities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116992. [PMID: 39244882 DOI: 10.1016/j.ecoenv.2024.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Indole-3-acetic acid (IAA) can regulate plant growth and thus modulate the accumulation of polycyclic aromatic hydrocarbons (PAHs). However, the effect of endogenous IAA on PAHs accumulation and its influencing factors remains unclear. To unravel this, two different IAA expression genotypes of Arabidopsis thaliana, i.e., IAA-underproducing yucca1D [YUC1] mutant and wild type [WT]) were selected and treated with different fluoranthene (Flu) concentrations (0 mg/L [CK], 5 mg/L [Flu5], and 20 mg/L [Flu20]) to reveal the impact mechanism of endogenous IAA on Flu uptake by plants. The results indicated that under Flu5 treatment, the bioconcentration factors (BCF) and translocation factors (TF) of Flu in WT were 41.4 % and 14.3 % higher than those in YUC1. Similarly, under Flu20 treatment, the BCF and TF of Flu in WT were also 42.2 % and 8.2 % higher than those in YUC1. In addition, the BCF and TF were 72.5 % and 35.8 % higher under Flu5 treatment compared to Flu20 treatment for WT, and 73.4 % and 28.6 % higher respectively for YUC1. Moreover, WT exhibited higher plant growth (biomass, root morphology indicators [root length, root area and number of tips]) and IAA content compared to YUC1 under identical Flu treatments. Plant growth and IAA content declined with the increase of Flu concentration in both YUC1 and WT leaves compared with CK treatment. Conversely, in WT roots, root biomass and morphology indicators promoted followed by a decrease as the concentration of Flu increased. Additionally, the antioxidant enzyme activities (SOD, POD, and CAT) of WT were 11.1 %, 16.7 %, and 28.9 % higher than those of YUC1 under Flu5 treatment, and 13.6 %, 12.9 %, and 26.5 % higher under Flu20 treatment. Compared with CK treatment, SOD and POD activities promoted with increasing Flu concentration, whereas CAT activities decreased. Variability separation analysis revealed that level of IAA primarily influenced Flu accumulation in WT or under Flu5 treatments, whereas antioxidant enzyme activity primarily affected Flu accumulation in YUC1 or under Flu20 treatments. Exploring the relationship between the IAA synthesis gene YUCCA and IAA levels, alongside Flu accumulation, could yield novel insights into the regulation of PAH accumulation in plants.
Collapse
Affiliation(s)
- Yuanzhou Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yunyun Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhiguo Zhou
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huijuan Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China; Sanya Institute of Nanjing Agricultural University, Sanya, People's Republic of China.
| |
Collapse
|
3
|
Talarico E, Zambelli A, Araniti F, Greco E, Chiappetta A, Bruno L. Unravelling the Epigenetic Code: DNA Methylation in Plants and Its Role in Stress Response. EPIGENOMES 2024; 8:30. [PMID: 39189256 PMCID: PMC11348131 DOI: 10.3390/epigenomes8030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Environmental stress significantly affects plant growth, development, and survival. Plants respond to stressors such as temperature fluctuations, water scarcity, nutrient deficiencies, and pathogen attacks through intricate molecular and physiological adaptations. Epigenetic mechanisms are crucial in regulating gene expression in response to environmental stress. This review explores the current understanding of epigenetic modifications, including DNA methylation, and their roles in modulating gene expression patterns under environmental stress conditions. The dynamic nature of epigenetic modifications, their crosstalk with stress-responsive pathways, and their potential implications for plant adaptation and crop improvement are highlighted in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Emanuela Talarico
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Alice Zambelli
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy; (A.Z.); (F.A.)
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy; (A.Z.); (F.A.)
| | - Eleonora Greco
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Adriana Chiappetta
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| |
Collapse
|
4
|
Zhao L, Zhao X, Huang L, Liu X, Wang P. Transcriptome analysis of Pennisetum americanum × Pennisetum purpureum and Pennisetum americanum leaves in response to high-phosphorus stress. BMC PLANT BIOLOGY 2024; 24:635. [PMID: 38971717 PMCID: PMC11227232 DOI: 10.1186/s12870-024-05339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Excessive phosphorus (P) levels can disrupt nutrient balance in plants, adversely affecting growth. The molecular responses of Pennisetum species to high phosphorus stress remain poorly understood. This study examined two Pennisetum species, Pennisetum americanum × Pennisetum purpureum and Pennisetum americanum, under varying P concentrations (200, 600 and 1000 µmol·L- 1 KH2PO4) to elucidate transcriptomic alterations under high-P conditions. Our findings revealed that P. americanum exhibited stronger adaption to high-P stress compared to P. americanum× P. purpureum. Both species showed an increase in plant height and leaf P content under elevated P levels, with P. americanum demonstrating greater height and higher P content than P. americanum× P. purpureum. Transcriptomic analysis identified significant up- and down-regulation of key genes (e.g. SAUR, GH3, AHP, PIF4, PYL, GST, GPX, GSR, CAT, SOD1, CHS, ANR, P5CS and PsbO) involved in plant hormone signal transduction, glutathione metabolism, peroxisomes, flavonoid biosynthesis, amino acid biosynthesis and photosynthesis pathways. Compared with P. americanum× P. purpureum, P. americanum has more key genes in the KEGG pathway, and some genes have higher expression levels. These results contribute valuable insights into the molecular mechanisms governing high-P stress in Pennisetum species and offer implications for broader plant stress research.
Collapse
Affiliation(s)
- Lili Zhao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xin Zhao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Lei Huang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xiaoyan Liu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
5
|
Wang J, Liu X, Chen Y, Zhu FL, Sheng J, Diao Y. Physiological and transcriptomic analyses reveal the cadmium tolerance mechanism of Miscanthus lutarioriparia. PLoS One 2024; 19:e0302940. [PMID: 38748679 PMCID: PMC11095687 DOI: 10.1371/journal.pone.0302940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
Miscanthus lutarioriparia is a promising energy crop that is used for abandoned mine soil phytoremediation because of its high biomass yield and strong tolerance to heavy metals. However, the biological mechanism of heavy metal resistance is limited, especially for applications in the soil restoration of mining areas. Here, through the investigation of soil cadmium(Cd) in different mining areas and soil potted under Cd stress, the adsorption capacity of Miscanthus lutarioriparia was analyzed. The physiological and transcriptional effects of Cd stress on M. lutarioriparia leaves and roots under hydroponic conditions were analyzed. The results showed that M. lutarioriparia could reduce the Cd content in mining soil by 29.82%. Moreover, different Cd varieties have different Cd adsorption capacities in soils with higher Cd concentration. The highest cadmium concentrations in the aboveground and belowground parts of the plants were 185.65 mg/kg and 186.8 mg/kg, respectively. The total chlorophyll content, superoxide dismutase and catalase activities all showed a trend of increasing first and then decreasing. In total, 24,372 differentially expressed genes were obtained, including 7735 unique to leaves, 7725 unique to roots, and 8912 unique to leaves and roots, which showed differences in gene expression between leaves and roots. These genes were predominantly involved in plant hormone signal transduction, glutathione metabolism, flavonoid biosynthesis, ABC transporters, photosynthesis and the metal ion transport pathway. In addition, the number of upregulated genes was greater than the number of downregulated genes at different stress intervals, which indicated that M. lutarioriparia adapted to Cd stress mainly through positive regulation. These results lay a solid foundation for breeding excellent Cd resistant M. lutarioriparia and other plants. The results also have an important theoretical significance for further understanding the detoxification mechanism of Cd stress and the remediation of heavy metal pollution in mining soil.
Collapse
Affiliation(s)
- Jia Wang
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430023, P. R. China
| | - Xinyu Liu
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yiran Chen
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Feng lin Zhu
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jiajing Sheng
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430023, P. R. China
| | - Ying Diao
- School of life science and technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
6
|
Moeen-Ud-Din M, Yang S, Wang J. Auxin homeostasis in plant responses to heavy metal stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108210. [PMID: 38006792 DOI: 10.1016/j.plaphy.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Expeditious industrialization and anthropogenic activities have resulted in large amounts of heavy metals (HMs) being released into the environment. These HMs affect crop yields and directly threaten global food security. Therefore, significant efforts have been made to control the toxic effects of HMs on crops. When HMs are taken up by plants, various mechanisms are stimulated to alleviate HM stress, including the biosynthesis and transport of auxin in the plant. Interestingly, researchers have noted the significant potential of auxin in mediating resistance to HM stress, primarily by reducing uptake of metals, promoting chelation and sequestration in plant tissues, and mitigating oxidative damage. Both exogenous administration of auxin and manipulation of intrinsic auxin status are effective strategies to protect plants from the negative consequences of HMs stress. Regulation of genes and transcription factors related to auxin homeostasis has been shown to be related to varying degrees to the type and concentration of HMs. Therefore, to derive the maximum benefit from auxin-mediated mechanisms to attenuate HM toxicities, it is essential to gain a comprehensive understanding of signaling pathways involved in regulatory actions. This review primarily emphases on the auxin-mediated mechanisms participating in the injurious effects of HMs in plants. Thus, it will pave the way to understanding the mechanism of auxin homeostasis in regulating HM tolerance in plants and become a tool for developing sustainable strategies for agricultural growth in the future.
Collapse
Affiliation(s)
- Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
Xu Y, Li Y, Li Y, Zhai C, Zhang K. Transcriptome Analysis Reveals the Stress Tolerance Mechanisms of Cadmium in Zoysia japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:3833. [PMID: 38005730 PMCID: PMC10674853 DOI: 10.3390/plants12223833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Cadmium (Cd) is a severe heavy metal pollutant globally. Zoysia japonica is an important perennial warm-season turf grass that potentially plays a role in phytoremediation in Cd-polluted soil areas; however, the molecular mechanisms underlying its Cd stress response are unknown. To further investigate the early gene response pattern in Z. japonica under Cd stress, plant leaves were harvested 0, 6, 12, and 24 h after Cd stress (400 μM CdCl2) treatment and used for a time-course RNA-sequencing analysis. Twelve cDNA libraries were constructed and sequenced, and high-quality data were obtained, whose mapped rates were all higher than 94%, and more than 601 million bp of sequence were generated. A total of 5321, 6526, and 4016 differentially expressed genes were identified 6, 12, and 24 h after Cd stress treatment, respectively. A total of 1660 genes were differentially expressed at the three time points, and their gene expression profiles over time were elucidated. Based on the analysis of these genes, the important mechanisms for the Cd stress response in Z. japonica were identified. Specific genes participating in glutathione metabolism, plant hormone signal and transduction, members of protein processing in the endoplasmic reticulum, transporter proteins, transcription factors, and carbohydrate metabolism pathways were further analyzed in detail. These genes may contribute to the improvement of Cd tolerance in Z. japonica. In addition, some candidate genes were highlighted for future studies on Cd stress resistance in Z. japonica and other plants. Our results illustrate the early gene expression response of Z. japonica leaves to Cd and provide some new understanding of the molecular mechanisms of Cd stress in Zosia and Gramineae species.
Collapse
Affiliation(s)
- Yi Xu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yonglong Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Yan Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Chenyuan Zhai
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Kun Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| |
Collapse
|
8
|
Ni WJ, Mubeen S, Leng XM, He C, Yang Z. Molecular-Assisted Breeding of Cadmium Pollution-Safe Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37923701 DOI: 10.1021/acs.jafc.3c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cadmium (Cd) contamination in edible agricultural products, especially in crops intended for consumption, has raised worldwide concerns regarding food safety. Breeding of Cd pollution-safe cultivars (Cd-PSCs) is an effective solution to preventing the entry of Cd into the food chain from contaminated agricultural soil. Molecular-assisted breeding methods, based on molecular mechanisms for cultivar-dependent Cd accumulation and bioinformatic tools, have been developed to accelerate and facilitate the breeding of Cd-PSCs. This review summarizes the recent progress in the research of the low Cd accumulation traits of Cd-PSCs in different crops. Furthermore, the application of molecular-assisted breeding methods, including transgenic approaches, genome editing, marker-assisted selection, whole genome-wide association analysis, and transcriptome, has been highlighted to outline the breeding of Cd-PSCs by identifying critical genes and molecular biomarkers. This review provides a comprehensive overview of the development of Cd-PSCs and the potential future for breeding Cd-PSC using modern molecular technologies.
Collapse
Affiliation(s)
- Wen-Juan Ni
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Samavia Mubeen
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Chuntao He
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
- School of Agriculture, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongyi Yang
- School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Chen J, Wang L, Liang X, Li B, He Y, Zhan F. An arbuscular mycorrhizal fungus differentially regulates root traits and cadmium uptake in two maize varieties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115458. [PMID: 37690173 DOI: 10.1016/j.ecoenv.2023.115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi that colonize plant roots, and they are more common in Cd-polluted habitats. However, there is limited understanding of the response of root traits and cadmium (Cd) uptake to AMF in different crop varieties. Two maize varieties, Panyu 3 and Ludan 8, with high and low Cd uptake capacities, respectively, were cultivated as host plants in a pot experiment with Cd-polluted soil (17.1 mg/kg Cd). The effects of AMF on the growth, mineral nutrient concentration, root traits, phytohormone concentrations and Cd uptake of the two maize varieties and their comprehensive response to AMF fungal inoculation were investigated. AMF improved growth, mineral nutrient levels and root morphology and increased lignin and phytohormone concentrations in roots and Cd uptake in the two maize varieties. However, the two maize varieties, Panyu 3 and Ludan 8, had different responses to AMF, and their comprehensive response indices were 753.6% and 389.4%, respectively. The root biomass, branch number, abscisic acid concentrations, lignin concentrations and Cd uptake of maize Panyu 3 increased by 151.1%, 28.6%, 139.7%, 99.5% and 84.7%, respectively. The root biomass, average diameter, auxin concentration, lignin concentration and Cd uptake of maize Ludan 8 increased by 168.7%, 31.8%, 31.4%, 41.7% and 136.7%, respectively. Moreover, Cd uptake in roots presented very significant positive correlations with the average root diameter and abscisic acid concentration. A structural equation model indicated that the root abscisic acid concentration and root surface area had positive effects on Cd uptake by the Panyu 3 maize roots; the root abscisic acid concentration and root tip number had positive effects on Cd uptake by the Ludan 8 maize roots. Thus, AMF differentially regulated Cd uptake in the two maize varieties, and the regulatory effect was closely related to root traits and phytohormone concentrations.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
10
|
Araniti F, Talarico E, Madeo ML, Greco E, Minervino M, Álvarez-Rodríguez S, Muto A, Ferrari M, Chiappetta A, Bruno L. Short-term exposition to acute Cadmium toxicity induces the loss of root gravitropic stimuli perception through PIN2-mediated auxin redistribution in Arabidopsis thaliana (L.) Heynh. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111726. [PMID: 37149227 DOI: 10.1016/j.plantsci.2023.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd), one of the most widespread and water-soluble polluting heavy metals, has been widely studied on plants, even if the mechanisms underlying its phytotoxicity remain elusive. Indeed, most experiments are performed using extensive exposure time to the toxicants, not observing the primary targets affected. The present work studied Cd effects on Arabidopsis thaliana (L.) Heynh's root apical meristem (RAM) exposed for short periods (24h and 48h) to acute phytotoxic concentrations (100 and 150µM). The effects were studied through integrated morpho-histological, molecular, pharmacological and metabolomic analyses, highlighting that Cd inhibited primary root elongation by affecting the meristem zone via altering cell expansion. Moreover, Cd altered Auxin accumulation in RAM and affected PINs polar transporters particularly PIN2. In addition, we observed that high Cd concentration induced accumulation of reactive oxygen species (ROS) in roots, which resulted in an altered organization of cortical microtubules and the starch and sucrose metabolism, altering the statolith formation and, consequently, the gravitropic root response. Our results demonstrated that short Cd exposition (24h) affected cell expansion preferentially, altering auxin distribution and inducing ROS accumulation, which resulted in an alteration of gravitropic response and microtubules orientation pattern.
Collapse
Affiliation(s)
- Fabrizio Araniti
- Department of Agricultural and Environmental Sciences, University of Milano, Milan 20133, Italy
| | - Emanuela Talarico
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Maria Letizia Madeo
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Eleonora Greco
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Marco Minervino
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Sara Álvarez-Rodríguez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Michele Ferrari
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Adriana Chiappetta
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy.
| |
Collapse
|
11
|
Moravčíková D, Žiarovská J. The Effect of Cadmium on Plants in Terms of the Response of Gene Expression Level and Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091848. [PMID: 37176906 PMCID: PMC10181241 DOI: 10.3390/plants12091848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is a heavy metal that can cause damage to living organisms at different levels. Even at low concentrations, Cd can be toxic to plants, causing harm at multiple levels. As they are unable to move away from areas contaminated by Cd, plants have developed various defence mechanisms to protect themselves. Hyperaccumulators, which can accumulate and detoxify heavy metals more efficiently, are highly valued by scientists studying plant accumulation and detoxification mechanisms, as they provide a promising source of genes for developing plants suitable for phytoremediation techniques. So far, several genes have been identified as being upregulated when plants are exposed to Cd. These genes include genes encoding transcription factors such as iron-regulated transporter-like protein (ZIP), natural resistance associated macrophage protein (NRAMP) gene family, genes encoding phytochelatin synthases (PCs), superoxide dismutase (SOD) genes, heavy metal ATPase (HMA), cation diffusion facilitator gene family (CDF), Cd resistance gene family (PCR), ATP-binding cassette transporter gene family (ABC), the precursor 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and precursor 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) multigene family are also influenced. Thanks to advances in omics sciences and transcriptome analysis, we are gaining more insights into the genes involved in Cd stress response. Recent studies have also shown that Cd can affect the expression of genes related to antioxidant enzymes, hormonal pathways, and energy metabolism.
Collapse
Affiliation(s)
- Dagmar Moravčíková
- Faculty of Agrobiology and Food Resources, Institute of Plant and Environmental Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Jana Žiarovská
- Faculty of Agrobiology and Food Resources, Institute of Plant and Environmental Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
12
|
Sferra G, Fantozzi D, Scippa GS, Trupiano D. Key Pathways and Genes of Arabidopsis thaliana and Arabidopsis halleri Roots under Cadmium Stress Responses: Differences and Similarities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091793. [PMID: 37176850 PMCID: PMC10180823 DOI: 10.3390/plants12091793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is among the world's major health concerns, as it renders soils unsuitable and unsafe for food and feed production. Phytoremediation has the potential to remediate Cd-polluted soils, but efforts are still needed to develop a deep understanding of the processes underlying it. In this study, we performed a comprehensive analysis of the root response to Cd stress in A. thaliana, which can phytostabilize Cd, and in A. halleri, which is a Cd hyperaccumulator. Suitable RNA-seq data were analyzed by WGCNA to identify modules of co-expressed genes specifically associated with Cd presence. The results evidenced that the genes of the hyperaccumulator A. halleri mostly associated with the Cd presence are finely regulated (up- and downregulated) and related to a general response to chemical and other stimuli. Additionally, in the case of A. thaliana, which can phytostabilize metals, the genes upregulated during Cd stress are related to a general response to chemical and other stimuli, while downregulated genes are associated with functions which, affecting root growth and development, determine a deep modification of the organ both at the cellular and physiological levels. Furthermore, key genes of the Cd-associated modules were identified and confirmed by differentially expressed gene (DEG) detection and external knowledge. Together, key functions and genes shed light on differences and similarities among the strategies that the plants use to cope with Cd and may be considered as possible targets for future research.
Collapse
Affiliation(s)
- Gabriella Sferra
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Daniele Fantozzi
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
13
|
Ferrari M, Muto A, Bruno L, Cozza R. DNA Methylation in Algae and Its Impact on Abiotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:241. [PMID: 36678953 PMCID: PMC9861306 DOI: 10.3390/plants12020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Epigenetics, referring to heritable gene regulatory information that is independent of changes in DNA sequences, is an important mechanism involved both in organism development and in the response to environmental events. About the epigenetic marks, DNA methylation is one of the most conserved mechanisms, playing a pivotal role in organism response to several biotic and abiotic stressors. Indeed, stress can induce changes in gene expression through hypo- or hyper-methylation of DNA at specific loci and/or in DNA methylation at the genome-wide level, which has an adaptive significance and can direct genome evolution. Exploring DNA methylation in responses to abiotic stress could have important implications for improving stress tolerance in algae. This article summarises the DNA methylation pattern in algae and its impact on abiotic stress, such as heavy metals, nutrients and temperature. Our discussion provides information for further research in algae for a better comprehension of the epigenetic response under abiotic stress, which could favour important implications to sustain algae growth under abiotic stress conditions, often related to high biosynthesis of interesting metabolites.
Collapse
|
14
|
Saini S, Kaur N, Pati PK. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112578. [PMID: 34352573 DOI: 10.1016/j.ecoenv.2021.112578] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 05/07/2023]
Abstract
Heavy metal (HM) stress in plants has received considerable global attention as it threatens sustainable growth in agriculture worldwide. Hence, desperate efforts have been undertaken for combating the effects of this stress in plants. Interestingly, the use of phytohormones in reducing the impact of HM toxicity has gained much momentum in the recent past. Phytohormones act as chemical messengers that improve the HM stress resistance in plants, thus allowing them to retain their growth and developmental plasticity. Their exogenous application as well as manipulation of endogenous levels through precise targeting of their biosynthesis/signaling components is a promising approach for providing a protective shield against HM stress in plants. However, for the successful use of phytohormones for field plants exposed to HM toxicity, in-depth knowledge of the key pathways regulated by them is of prime importance. Hence, the present review mainly summarizes the key conceptual developments on the involvement of phytohormones in the mitigation of HM stress in plants. The role of various genes, proteins, and signaling components involved in phytohormones associated HM stress tolerance and their modulation has also been discussed. Thus, this update will pave the way for improving HM stress tolerance in plants with the advent of phytohormones for sustainable agriculture growth in the future.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Botany, GGDSD College, Sector-32C, Chandigarh, India.
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Centre for Agricultural Research and Innovation, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Centre for Agricultural Research and Innovation, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
15
|
Leonardo B, Emanuela T, Letizia MM, Antonella M, Marco M, Fabrizio A, Beatrice BM, Adriana C. Cadmium affects cell niches maintenance in Arabidopsis thaliana post-embryonic shoot and root apical meristem by altering the expression of WUS/WOX homolog genes and cytokinin accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:785-794. [PMID: 34530323 DOI: 10.1016/j.plaphy.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is one of the most widespread polluting heavy metals in both terrestrial and aquatic environments and represents an extremely significant pollutant causing severe environmental and social problems due to its high toxicity and large solubility in water. In plants, the root is the first organ that get in contact with Cd. It is absorbed by the root system and translocated to the shoot and leaves through xylem loading, causing a variety of genetic, biochemical, and physiological damages. Cd inhibits both the root and shoot growth, but the mechanisms underlying this inhibition remain elusive. In this context in the present work we focused the attention on the effects of Cd on meristem size and organization of both shoot and root. To this aim morpho-histological and molecular analyses were carried out on 5 days old seedlings exposed or not to Cd (100 μM and 150 μM for 24) of wild type and transgenic lines expressing molecular markers with an important role in shoot and root pattern organization. More precisely, we monitored the expression pattern of WUS/CLV3 and WOX5 transcription factors involved in the establishment and maintenance of stem cell niche and the control of meristem size and of TCSn::GFP cytokinin-sensitive sensor as relevant components of hormone circuit controlling shoot and root growth. The results highlighted that the treatments with Cd impacts shoot and root size and shape by altering the paralogous WOX genes expression via cytokinin accumulation.
Collapse
Affiliation(s)
- Bruno Leonardo
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy.
| | - Talarico Emanuela
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| | - Madeo Maria Letizia
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| | - Muto Antonella
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| | - Minervino Marco
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| | - Araniti Fabrizio
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n°2, 20133, Milano, Italy
| | - Bitonti Maria Beatrice
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| | - Chiappetta Adriana
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), Arcavacata di Rende, Italy
| |
Collapse
|