1
|
Biegański HM, Dąbrowski KM, Różańska-Walędziak A. Omentin-General Overview of Its Role in Obesity, Metabolic Syndrome and Other Diseases; Problem of Current Research State. Biomedicines 2025; 13:632. [PMID: 40149608 PMCID: PMC11940803 DOI: 10.3390/biomedicines13030632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Omentin (omentin-1, intelectin-1, ITLN-1) is an adipokine considered to be a novel substance. Many chronic, inflammatory, or civilization diseases are linked to obesity, in which omentin plays a significant role. Methods: MEDLINE and SCOPUS databases were searched using the keywords "omentin" or "intelectin-1". Then the most recent articles providing new perspectives on the matter and the most important studies, which revealed crucial insight, were selected to summarize the current knowledge on the role of omentin in a literature review. Results and Conclusions: The valid role of this adipokine is evident in the course of metabolic syndrome. In most cases, elevated omentin expression is correlated with the better course of diseases, including: type 2 diabetes mellitus, polycystic ovary syndrome, rheumatoid arthritis, metabolic dysfunction-associated steatotic liver disease, Crohn's disease, ulcerative colitis, atherosclerosis, or ischemic stroke, for some of which it can be a better marker than the currently used ones. However, results of omentin studies are not completely one-sided. It was proven to participate in the development of asthma and atopic dermatitis and to have different concentration dynamics in various types of tumors. All of omentin's effects and properties make it an attractive subject of research, considering still unexplored inflammation mechanisms, in which it may play an important role. Omentin was proven to prevent osteoarthritis, hepatocirrhosis, and atherosclerosis in mouse models. All of the above places omentin among potential therapeutic products, and not only as a biomarker. However, the main problems with the omentin's research state are the lack of standardization, which causes many contradictions and disagreements in this field.
Collapse
Affiliation(s)
- Hubert Mateusz Biegański
- Medical Faculty, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (H.M.B.); (K.M.D.)
| | - Krzysztof Maksymilian Dąbrowski
- Medical Faculty, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (H.M.B.); (K.M.D.)
| | - Anna Różańska-Walędziak
- Departament of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| |
Collapse
|
2
|
Tiemblo Martín M, Coccimiglio M, Andretta E, De Simone Carone L, Bell A, Gerpe-Amor T, Di Carluccio C, Molinaro A, van Kooyk Y, Juge N, Chiodo F, Di Lorenzo F, Silipo A. The human gut Bacteroides eggerthii expresses a new galactofuranose-containing lipooligosaccharide with weak immunostimulatory properties. Carbohydr Polym 2025; 348:122833. [PMID: 39562107 DOI: 10.1016/j.carbpol.2024.122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/21/2024]
Abstract
Lipopolysaccharides (LPS) decorating the cell surface of Gram-negative bacteria exhibit nuanced functionalities linked to their precise structural composition. However, despite their critical role in health and disease, information on the structure and function of LPS from members of the human gut microbiota is still limited. Here, we deciphered the complete structure of the LPS isolated from the human gut bacterium Bacteroides eggerthii 1_2_48FAA. We showed that B. eggerthii 1_2_48FAA produces an R-type LPS (or lipooligosaccharide, LOS) composed of a heterogeneous mixture of tetra- and penta-acylated lipid A species with different degree of phosphorylation, and a compact galactofuranose-containing core oligosaccharide. Using in vitro human cell lines, we showed that B. eggerthii 1_2_48FAA LOS acts as a weak activator of TLR4-mediated signaling. Moreover, we observed that expression of maturation markers CD40, CD80 and CD86 on monocytes-derived dendritic cells upon B. eggerthii 1_2_48FAA LOS exposure was significantly lower compared to pro-inflammatory Escherichia coli LPS. Taken together, these data provide new structural and biological insights into LPS from gut bacteria, underscoring the importance of structural features in modulating host immunity.
Collapse
Affiliation(s)
- Marta Tiemblo Martín
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Magali Coccimiglio
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Emanuela Andretta
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Luca De Simone Carone
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Andrew Bell
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Tania Gerpe-Amor
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina Di Carluccio
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Yvette van Kooyk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Nathalie Juge
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Fabrizio Chiodo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands; Institute of Biomolecular Chemistry, National Research Council (CNR), Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, 80145 Napoli, Italy.
| | - Alba Silipo
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore, Via Gaetano Salvatore 486, 80145 Napoli, Italy.
| |
Collapse
|
3
|
Heimburg-Molinaro J, Mehta AY, Tilton CA, Cummings RD. Insights Into Glycobiology and the Protein-Glycan Interactome Using Glycan Microarray Technologies. Mol Cell Proteomics 2024; 23:100844. [PMID: 39307422 PMCID: PMC11585810 DOI: 10.1016/j.mcpro.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 11/11/2024] Open
Abstract
Glycans linked to proteins and lipids and also occurring in free forms have many functions, and these are partly elicited through specific interactions with glycan-binding proteins (GBPs). These include lectins, adhesins, toxins, hemagglutinins, growth factors, and enzymes, but antibodies can also bind glycans. While humans and other animals generate a vast repertoire of GBPs and different glycans in their glycomes, other organisms, including phage, microbes, protozoans, fungi, and plants also express glycans and GBPs, and these can also interact with their host glycans. This can be termed the protein-glycan interactome, and in nature is likely to be vast, but is so far very poorly described. Understanding the breadth of the protein-glycan interactome is also a key to unlocking our understanding of infectious diseases involving glycans, and immunology associated with antibodies binding to glycans. A key technological advance in this area has been the development of glycan microarrays. This is a display technology in which minute quantities of glycans are attached to the surfaces of slides or beads. This allows the arrayed glycans to be interrogated by GBPs and antibodies in a relatively high throughput approach, in which a protein may bind to one or more distinct glycans. Such binding can lead to novel insights and hypotheses regarding both the function of the GBP, the specificity of an antibody and the function of the glycan within the context of the protein-glycan interactome. This article focuses on the types of glycan microarray technologies currently available to study animal glycobiology and examples of breakthroughs aided by these technologies.
Collapse
Affiliation(s)
- Jamie Heimburg-Molinaro
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Akul Y Mehta
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine A Tilton
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Richard D Cummings
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Peiffer AL, Dugan AE, Kiessling LL. Soluble Human Lectins at the Host-Microbe Interface. Annu Rev Biochem 2024; 93:565-601. [PMID: 38640018 PMCID: PMC11296910 DOI: 10.1146/annurev-biochem-062917-012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Human lectins are integral to maintaining microbial homeostasis on the skin, in the blood, and at mucosal barriers. These proteins can recognize microbial glycans and inform the host about its microbial status. In accordance with their roles, their production can vary with tissue type. They also can have unique structural and biochemical properties, and they can influence microbial colonization at sites proximal and distal to their tissue of origin. In line with their classification as innate immune proteins, soluble lectins have long been studied in the context of acute infectious disease, but only recently have we begun to appreciate their roles in maintaining commensal microbial communities (i.e., the human microbiota). This review provides an overview of soluble lectins that operate at host-microbe interfaces, their glycan recognition properties, and their roles in physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Amanda L Peiffer
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - A E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - L L Kiessling
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
5
|
He P, Guo Y, Wang S, Bu S. Innovative insights: ITLN1 modulates renal injury in response to radiation. Int Immunopharmacol 2024; 133:111987. [PMID: 38652961 DOI: 10.1016/j.intimp.2024.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Radiation-induced kidney injury is a common side effect of radiotherapy, as the pelvic region is in close proximity to the kidneys, posing a risk of inducing radiation-induced kidney injury when treating any pelvic malignancies with radiotherapy. This type of injury typically manifests as chronic kidney disease a few months after radiotherapy, with the potential to progress to end-stage renal disease. Radiation-induced damage involves various components of the kidney, including glomeruli, tubules, interstitium, and extracellular matrix. Therefore, investigating its molecular mechanisms is crucial. In this study, we extensively searched literature databases, selecting recent transcriptomic studies related to acute kidney injury (AKI) published in the past decade. We downloaded the raw RNA sequencing datasets GSE30718 and GSE66494 related to AKI from the GEO database and identified that intestinal-type lectin ITLN1 plays a significant role in regulating radiation-induced kidney injury in rats. Differential gene analysis was performed using chip data from the GEO database, and further bioinformatics analysis identified 13 genes that may be involved in regulating kidney injury, with ITLN1 being the most relevant to kidney damage, thus selected as the target gene for this study. Subsequently, a rat model of radiation-induced kidney injury was established for experimental validation, assessing kidney tissue morphology and injury extent through staining observation and immunohistochemical staining. The protective effect of ITLN1 on kidney function was evaluated by measuring changes in rat body weight and blood pressure, serum kidney injury markers, and kidney structure. The experimental results indicate that overexpression of ITLN1 can improve kidney function in rats with radiation-induced kidney injury by activating the Akt/GSK-3β/Nrf2 signaling pathway, suppressing oxidative stress, cell apoptosis, inflammation, cellular senescence, and fibrosis. This study highlights the significant role of ITLN1 in regulating kidney injury, providing a novel target for future treatments of radiation-induced kidney injury.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ying Guo
- Chengdu Aeronautic Polytechnic, Chengdu 610100, China
| | - Shize Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Siyuan Bu
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
6
|
Everman JL, Sajuthi SP, Liegeois MA, Jackson ND, Collet EH, Peters MC, Chioccioli M, Moore CM, Patel BB, Dyjack N, Powell R, Rios C, Montgomery MT, Eng C, Elhawary JR, Mak ACY, Hu D, Huntsman S, Salazar S, Feriani L, Fairbanks-Mahnke A, Zinnen GL, Michel CR, Gomez J, Zhang X, Medina V, Chu HW, Cicuta P, Gordon ED, Zeitlin P, Ortega VE, Reisdorph N, Dunican EM, Tang M, Elicker BM, Henry TS, Bleecker ER, Castro M, Erzurum SC, Israel E, Levy BD, Mauger DT, Meyers DA, Sumino K, Gierada DS, Hastie AT, Moore WC, Denlinger LC, Jarjour NN, Schiebler ML, Wenzel SE, Woodruff PG, Rodriguez-Santana J, Pearson CG, Burchard EG, Fahy JV, Seibold MA. A common polymorphism in the Intelectin-1 gene influences mucus plugging in severe asthma. Nat Commun 2024; 15:3900. [PMID: 38724552 PMCID: PMC11082194 DOI: 10.1038/s41467-024-48034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.
Collapse
Affiliation(s)
- Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Satria P Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Maude A Liegeois
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Erik H Collet
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Peters
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Maurizio Chioccioli
- Department of Genetics and Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Bhavika B Patel
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Roger Powell
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Michael T Montgomery
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Celeste Eng
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Jennifer R Elhawary
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Angel C Y Mak
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Sandra Salazar
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Luigi Feriani
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ana Fairbanks-Mahnke
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Gianna L Zinnen
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Xing Zhang
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | | | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Pietro Cicuta
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Erin D Gordon
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Pamela Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | | | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Eleanor M Dunican
- School of Medicine, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Monica Tang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Brett M Elicker
- University of California-San Francisco, San Francisco, CA, USA
| | | | | | - Mario Castro
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Bruce D Levy
- Brigham and Women's Hospital and Harvard University, Cambridge, MA, USA
| | | | | | - Kaharu Sumino
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Annette T Hastie
- Wake Forest University School of Medicine, Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Winston Salem, NC, USA
| | - Wendy C Moore
- Wake Forest University School of Medicine, Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Winston Salem, NC, USA
| | | | | | | | | | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | | | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Esteban G Burchard
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - John V Fahy
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Kim K, Park S, Lee Y, Baek J, Kim Y, Hwang SW, Lee JL, Park SH, Yang SK, Han B, Song K, Yoon YS, Lee HS, Ye BD. Transcriptomic Profiling and Cellular Composition of Creeping Fat in Crohn's disease. J Crohns Colitis 2024; 18:223-232. [PMID: 37594364 DOI: 10.1093/ecco-jcc/jjad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND AND AIMS Creeping fat [CF] is a poorly understood feature of Crohn's disease [CD], characterized by the wrapping of mesenteric adipose tissue [MAT] around the inflamed intestine. The aim of this study was to investigate the transcriptional profile and compositional features of CF. METHODS We collected 59 MAT samples: 23 paired samples from patients with CD (CF [CD-CF] and MAT around the uninflamed intestine [CD-MAT]) and 13 MAT samples from non-CD patients [Con-MAT]. Differentially expressed gene [DEG], functional pathway, cell deconvolution, and gene co-expression network analyses were performed. RESULTS By comparing three different MAT samples, we identified a total of 529 DEGs [|log2FoldChange| > 1.5; false discovery rate < 0.05]. Of these, 323 genes showed an incremental pattern from Con-MAT to CD-MAT, and to CD-CF, while 105 genes displayed a decremental pattern. Genes with an incremental pattern were related to immune cell responses, including B- and T-cell activation, while genes with a decremental pattern were involved in cell trafficking and migration. Cell deconvolution analysis revealed significant changes in cellular composition between the CD-CF and Con-MAT groups, with increased proportions of B-cells/plasma cells [p = 1.16 × 10-4], T-cells [p = 3.66 × 10-3], and mononuclear phagocytes [p = 3.53 × 10-2] in the CD-CF group. In contrast, only the B-cell/plasma cell component showed a significant increase [p = 1.62 × 10-2] in the CD-MAT group compared to Con-MAT. CONCLUSION The distinct transcriptional profiles and altered cellular components of each MAT found in our study provide insight into the mechanisms behind CF and highlight its possible role in the pathogenesis of CD.
Collapse
Affiliation(s)
- Kyuwon Kim
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sojung Park
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yoonho Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yongjae Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jong Lyul Lee
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Buhm Han
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yong Sik Yoon
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ho-Su Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Byong Duk Ye
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
8
|
Hong JS, Shamim A, Atta H, Nonnecke EB, Merl S, Patwardhan S, Manell E, Gunes E, Jordache P, Chen B, Lu W, Shen B, Dionigi B, Kiran RP, Sykes M, Zorn E, Bevins CL, Weiner J. Application of enzyme-linked immunosorbent assay to detect antimicrobial peptides in human intestinal lumen. J Immunol Methods 2024; 525:113599. [PMID: 38081407 PMCID: PMC10956375 DOI: 10.1016/j.jim.2023.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Intestinal transplantation is the definitive treatment for intestinal failure. However, tissue rejection and graft-versus-host disease are relatively common complications, necessitating aggressive immunosuppression that can itself pose further complications. Tracking intraluminal markers in ileal effluent from standard ileostomies may present a noninvasive and sensitive way to detect developing pathology within the intestinal graft. This would be an improvement compared to current assessments, which are limited by poor sensitivity and specificity, contributing to under or over-immunosuppression, respectively, and by the need for invasive biopsies. Herein, we report an approach to reproducibly analyze ileal fluid obtained through stoma sampling for antimicrobial peptide/protein concentrations, reasoning that these molecules may provide an assessment of intestinal homeostasis and levels of intestinal inflammation over time. Concentrations of lysozyme (LYZ), myeloperoxidase (MPO), calprotectin (S100A8/A9) and β-defensin 2 (DEFB2) were assessed using adaptations of commercially available enzyme-linked immunosorbent assays (ELISAs). The concentration of α-defensin 5 (DEFA5) was assessed using a newly developed sandwich ELISA. Our data support that with proper preparation of ileal effluent specimens, precise and replicable determination of antimicrobial peptide/protein concentrations can be achieved for each of these target molecules via ELISA. This approach may prove to be reliable as a clinically useful assessment of intestinal homeostasis over time for patients with ileostomies.
Collapse
Affiliation(s)
- Julie S Hong
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America.
| | - Abrar Shamim
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; College of Dental Medicine, Columbia University, New York, NY, United States of America
| | - Hussein Atta
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Eric B Nonnecke
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Sarah Merl
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| | - Satyajit Patwardhan
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Elin Manell
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Esad Gunes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Philip Jordache
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Bryan Chen
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Bo Shen
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Beatrice Dionigi
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Ravi P Kiran
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Megan Sykes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Emmanuel Zorn
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Charles L Bevins
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Joshua Weiner
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| |
Collapse
|
9
|
Arnesen H, Markussen T, Birchenough G, Birkeland S, Nyström EEL, Hansson GC, Carlsen H, Boysen P. Microbial experience through housing in a farmyard-type environment alters intestinal barrier properties in mouse colons. Sci Rep 2023; 13:13701. [PMID: 37607995 PMCID: PMC10444815 DOI: 10.1038/s41598-023-40640-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
To close the gap between ultra-hygienic research mouse models and the much more environmentally exposed conditions of humans, we have established a system where laboratory mice are raised under a full set of environmental factors present in a naturalistic, farmyard-type habitat-a process we have called feralization. In previous studies we have shown that feralized (Fer) mice were protected against colorectal cancer when compared to conventionally reared laboratory mice (Lab). However, the protective mechanisms remain to be elucidated. Disruption of the protective intestinal barrier is an acknowledged player in colorectal carcinogenesis, and in the current study we assessed colonic mucosal barrier properties in healthy, feralized C57BL/6JRj male mice. While we found no effect of feralization on mucus layer properties, higher expression of genes encoding the mucus components Fcgbp and Clca1 still suggested mucus enforcement due to feralization. Genes encoding other proteins known to be involved in bacterial defense (Itln1, Ang1, Retnlb) and inflammatory mechanisms (Zbp1, Gsdmc2) were also higher expressed in feralized mice, further suggesting that the Fer mice have an altered intestinal mucosal barrier. These findings demonstrate that microbial experience conferred by housing in a farmyard-type environment alters the intestinal barrier properties in mice possibly leading to a more robust protection against disease. Future studies to unravel regulatory roles of feralization on intestinal barrier should aim to conduct proteomic analyses and in vivo performance of the feralized mice intestinal barrier.
Collapse
Affiliation(s)
- Henriette Arnesen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Turhan Markussen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - George Birchenough
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Signe Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Elisabeth E L Nyström
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Mucin Biology Group, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
10
|
Karampela I, Vallianou NG, Tsilingiris D, Christodoulatos GS, Antonakos G, Marinou I, Vogiatzakis E, Armaganidis A, Dalamaga M. Diagnostic and Prognostic Value of Serum Omentin-1 in Sepsis: A Prospective Study in Critically Ill Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050833. [PMID: 37241065 DOI: 10.3390/medicina59050833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Omentin-1, also known as intelectin-1, is a novel adipokine with anti-inflammatory activities implicated in inflammatory diseases and sepsis. We aimed to explore serum omentin-1 and its kinetics in critically ill patients early in sepsis and its association with severity and prognosis. Materials and Methods: Serum omentin-1 was determined in 102 critically ill patients with sepsis during the first 48 h from sepsis onset and 1 week later, and in 102 age- and gender-matched healthy controls. The outcome of sepsis at 28 days after enrollment was recorded. Results: Serum omentin-1 at enrollment was significantly higher in patients compared to controls (763.3 ± 249.3 vs. 451.7 ± 122.3 μg/L, p < 0.001) and it further increased 1 week after (950.6 ± 215.5 vs. 763.3 ± 249.3 μg/L, p < 0.001). Patients with septic shock (n = 42) had higher omentin-1 compared to those with sepsis (n = 60) at enrollment (877.9 ± 241.2 vs. 683.1 ± 223.7 μg/L, p < 0.001) and 1 week after (1020.4 ± 224.7 vs. 901.7 ± 196.3 μg/L, p = 0.007). Furthermore, nonsurvivors (n = 30) had higher omentin-1 at sepsis onset (952.1 ± 248.2 vs. 684.6 ± 204.7 μg/L, p < 0.001) and 1 week after (1051.8 ± 242 vs. 908.4 ± 189.8 μg/L, p < 0.01). Patients with sepsis and survivors presented higher kinetics than those with septic shock and nonsurvivors (Δ(omentin-1)% 39.8 ± 35.9% vs. 20.2 ± 23.3%, p = 0.01, and 39.4 ± 34.3% vs. 13.3 ± 18.1%, p < 0.001, respectively). Higher omentin-1 at sepsis onset and 1 week after was an independent predictor of 28-day mortality (HR 2.26, 95% C.I. 1.21-4.19, p = 0.01 and HR: 2.15, 95% C.I. 1.43-3.22, p < 0.001, respectively). Finally, omentin-1 was significantly correlated with the severity scores, the white blood cells, coagulation biomarkers, and CRP, but not procalcitonin and other inflammatory biomarkers. Conclusions: Serum omentin-1 is increased in sepsis, while higher levels and lower kinetics during the first week of sepsis are associated with the severity and 28-day mortality of sepsis. Omentin-1 may be a promising biomarker of sepsis. However, more studies are needed to explore its role in sepsis.
Collapse
Affiliation(s)
- Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natalia G Vallianou
- First Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Georgios Antonakos
- Laboratory of Clinical Biochemistry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ioanna Marinou
- Laboratory of Microbiology, Sotiria Athens General Hospital, 11527 Athens, Greece
| | | | - Apostolos Armaganidis
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Matute JD, Duan J, Flak MB, Griebel P, Tascon-Arcila JA, Doms S, Hanley T, Antanaviciute A, Gundrum J, Mark Welch JL, Sit B, Abtahi S, Fuhler GM, Grootjans J, Tran F, Stengel ST, White JR, Krupka N, Haller D, Clare S, Lawley TD, Kaser A, Simmons A, Glickman JN, Bry L, Rosenstiel P, Borisy G, Waldor MK, Baines JF, Turner JR, Blumberg RS. Intelectin-1 binds and alters the localization of the mucus barrier-modifying bacterium Akkermansia muciniphila. J Exp Med 2023; 220:e20211938. [PMID: 36413219 PMCID: PMC9683900 DOI: 10.1084/jem.20211938] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/06/2022] [Accepted: 10/13/2022] [Indexed: 01/25/2023] Open
Abstract
Intelectin-1 (ITLN1) is a lectin secreted by intestinal epithelial cells (IECs) and upregulated in human ulcerative colitis (UC). We investigated how ITLN1 production is regulated in IECs and the biological effects of ITLN1 at the host-microbiota interface using mouse models. Our data show that ITLN1 upregulation in IECs from UC patients is a consequence of activating the unfolded protein response. Analysis of microbes coated by ITLN1 in vivo revealed a restricted subset of microorganisms, including the mucolytic bacterium Akkermansia muciniphila. Mice overexpressing intestinal ITLN1 exhibited decreased inner colonic mucus layer thickness and closer apposition of A. muciniphila to the epithelial cell surface, similar to alterations reported in UC. The changes in the inner mucus layer were microbiota and A. muciniphila dependent and associated with enhanced sensitivity to chemically induced and T cell-mediated colitis. We conclude that by determining the localization of a select group of bacteria to the mucus layer, ITLN1 modifies this critical barrier. Together, these findings may explain the impact of ITLN1 dysregulation on UC pathogenesis.
Collapse
Affiliation(s)
- Juan D. Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jinzhi Duan
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Magdalena B. Flak
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Paul Griebel
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jose A. Tascon-Arcila
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Shauni Doms
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Thomas Hanley
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | - Brandon Sit
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA
- Department of Microbiology, Harvard Medical School, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Shabnam Abtahi
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Gwenny M. Fuhler
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Joep Grootjans
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology and Metabolism & Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stephanie T. Stengel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Niklas Krupka
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Dirk Haller
- Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jonathan N. Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA
- Department of Microbiology, Harvard Medical School, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - John F. Baines
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Schutt CR, Yamasaki S. Lectin recruits pathogenic bugs. J Exp Med 2023; 220:e20221732. [PMID: 36413218 PMCID: PMC9684000 DOI: 10.1084/jem.20221732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Colitis is an irritable bowel disorder affecting about 7 million patients worldwide, but the causes are diverse and not fully understood. In this issue, Matute et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20211938) found that a stress-induced lectin, intelectin-1, recruits pathogenic bacteria to the gut and exacerbates colitis.
Collapse
Affiliation(s)
- Charles R. Schutt
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Wang R, Cao S, Bashir MEH, Hesser LA, Su Y, Hong SMC, Thompson A, Culleen E, Sabados M, Dylla NP, Campbell E, Bao R, Nonnecke EB, Bevins CL, Wilson DS, Hubbell JA, Nagler CR. Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles. Nat Biomed Eng 2023; 7:38-55. [PMID: 36550307 PMCID: PMC9870785 DOI: 10.1038/s41551-022-00972-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
The microbiome modulates host immunity and aids the maintenance of tolerance in the gut, where microbial and food-derived antigens are abundant. Yet modern dietary factors and the excessive use of antibiotics have contributed to the rising incidence of food allergies, inflammatory bowel disease and other non-communicable chronic diseases associated with the depletion of beneficial taxa, including butyrate-producing Clostridia. Here we show that intragastrically delivered neutral and negatively charged polymeric micelles releasing butyrate in different regions of the intestinal tract restore barrier-protective responses in mouse models of colitis and of peanut allergy. Treatment with the butyrate-releasing micelles increased the abundance of butyrate-producing taxa in Clostridium cluster XIVa, protected mice from an anaphylactic reaction to a peanut challenge and reduced disease severity in a T-cell-transfer model of colitis. By restoring microbial and mucosal homoeostasis, butyrate-releasing micelles may function as an antigen-agnostic approach for the treatment of allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Ruyi Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - Lauren A Hesser
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Yanlin Su
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sung Min Choi Hong
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Andrew Thompson
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Elliot Culleen
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Matthew Sabados
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Nicholas P Dylla
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Evelyn Campbell
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Committee on Microbiology, University of Chicago, Chicago, IL, USA
| | - Riyue Bao
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric B Nonnecke
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - Charles L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - D Scott Wilson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA.
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Biological Sciences Division, University of Chicago, Chicago, IL, USA.
- Department of Pathology, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2022; 19:785-803. [PMID: 36097076 DOI: 10.1038/s41575-022-00675-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/08/2022]
Abstract
The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemisty and Cell biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
15
|
Nonnecke EB, Castillo PA, Akahoshi DT, Goley SM, Bevins CL, Lönnerdal B. Characterization of an intelectin-1 ( Itln1) knockout mouse model. Front Immunol 2022; 13:894649. [PMID: 36072603 PMCID: PMC9441953 DOI: 10.3389/fimmu.2022.894649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/28/2022] [Indexed: 01/26/2023] Open
Abstract
Intelectins are carbohydrate-binding proteins implicated in innate immunity and highly conserved across chordate evolution, including both ascidians and humans. Human intelectin-1 (ITLN1) is highly abundant within the intestinal mucosa and binds microbial but not host glycans. Genome-wide association studies identified SNPs in ITLN1 that are linked to susceptibility for Crohn's disease. Moreover, ITLN1 has been implicated in the pathophysiology of obesity and associated metabolic disease. To gain insight on biological activities of human ITLN1 in vivo, we developed a C57BL/6 mouse model genetically targeting the gene encoding the functional mouse ortholog. In wild-type C57BL/6 mice, both mRNA and protein analysis showed high expression of Itln1 in the small intestine, but manifold lower levels in colon and other extraintestinal tissues. Whereas intestinal expression of human ITLN1 localizes to goblet cells, our data confirm that mouse Itln1 is expressed in Paneth cells. Compared to wild-type littermate controls, mice homozygous for the Itln1 hypomorphic trapping allele had reduced expression levels of Itln1 expression (~10,000-fold). The knockout mice exhibited increased susceptibility in an acute model of experimentally induced colitis with 2% w/v dextran sulfate sodium (DSS). In a model of chronic colitis using a lower dose of DSS (1.5% w/v), which enabled a detailed view of disease activity across a protracted period, no differences were observed in body weight, fecal texture, hemoccult scores, food/water intake, or colon length at necropsy, but there was a statistically significant genotype over time effect for the combined fecal scores of disease activity. In model of diet-induced obesity, using two western-style diets, which varied in amounts of sugar (as sucrose) and saturated fat (as lard), mice with Itln1 expression ablated showed no increased susceptibility, in terms of weight gain, food intake, plasma markers of obesity compared to wildtype littermates. While the mouse genetic knockout model for Itln1 holds promise for elucidating physiological function(s) for mammalian intelectins, results reported here suggest that Itln1, a Paneth cell product in C57BL/6 mice, likely plays a minor role in the pathophysiology of chemically induced colitis or diet-induced obesity.
Collapse
Affiliation(s)
- Eric B. Nonnecke
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States,*Correspondence: Eric B. Nonnecke, ; Charles L. Bevins,
| | - Patricia A. Castillo
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Douglas T. Akahoshi
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Stephanie M. Goley
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Charles L. Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States,*Correspondence: Eric B. Nonnecke, ; Charles L. Bevins,
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Nonnecke EB, Castillo PA, Johansson MEV, Hollox EJ, Shen B, Lönnerdal B, Bevins CL. Human intelectin-2 (ITLN2) is selectively expressed by secretory Paneth cells. FASEB J 2022; 36:e22200. [PMID: 35182405 PMCID: PMC9262044 DOI: 10.1096/fj.202101870r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/04/2023]
Abstract
Intelectins (intestinal lectins) are highly conserved across chordate evolution and have been implicated in various human diseases, including Crohn's disease (CD). The human genome encodes two intelectin genes, intelectin-1 (ITLN1) and intelectin-2 (ITLN2). Other than its high sequence similarity with ITLN1, little is known about ITLN2. To address this void in knowledge, we report that ITLN2 exhibits discrete, yet notable differences from ITLN1 in primary structure, including a unique amino terminus, as well as changes in amino acid residues associated with the glycan-binding activity of ITLN1. We identified that ITLN2 is a highly abundant Paneth cell-specific product, which localizes to secretory granules, and is expressed as a multimeric protein in the small intestine. In surgical specimens of ileal CD, ITLN2 mRNA levels were reduced approximately five-fold compared to control specimens. The ileal expression of ITLN2 was unaffected by previously reported disease-associated variants in ITLN2 and CD-associated variants in neighboring ITLN1 as well as NOD2 and ATG16L1. ITLN2 mRNA expression was undetectable in control colon tissue; however, in both ulcerative colitis (UC) and colonic CD, metaplastic Paneth cells were found to express ITLN2. Together, the data reported establish the groundwork for understanding ITLN2 function(s) in the intestine, including its possible role in CD.
Collapse
Affiliation(s)
- Eric B Nonnecke
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Patricia A Castillo
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Bo Shen
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Charles L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
17
|
Extensive variation in the intelectin gene family in laboratory and wild mouse strains. Sci Rep 2021; 11:15548. [PMID: 34330944 PMCID: PMC8324875 DOI: 10.1038/s41598-021-94679-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022] Open
Abstract
Intelectins are a family of multimeric secreted proteins that bind microbe-specific glycans. Both genetic and functional studies have suggested that intelectins have an important role in innate immunity and are involved in the etiology of various human diseases, including inflammatory bowel disease. Experiments investigating the role of intelectins in human disease using mouse models are limited by the fact that there is not a clear one-to-one relationship between intelectin genes in humans and mice, and that the number of intelectin genes varies between different mouse strains. In this study we show by gene sequence and gene expression analysis that human intelectin-1 (ITLN1) has multiple orthologues in mice, including a functional homologue Itln1; however, human intelectin-2 has no such orthologue or homologue. We confirm that all sub-strains of the C57 mouse strain have a large deletion resulting in retention of only one intelectin gene, Itln1. The majority of laboratory strains have a full complement of six intelectin genes, except CAST, SPRET, SKIVE, MOLF and PANCEVO strains, which are derived from different mouse species/subspecies and encode different complements of intelectin genes. In wild mice, intelectin deletions are polymorphic in Mus musculus castaneus and Mus musculus domesticus. Further sequence analysis shows that Itln3 and Itln5 are polymorphic pseudogenes due to premature truncating mutations, and that mouse Itln1 has undergone recent adaptive evolution. Taken together, our study shows extensive diversity in intelectin genes in both laboratory and wild-mice, suggesting a pattern of birth-and-death evolution. In addition, our data provide a foundation for further experimental investigation of the role of intelectins in disease.
Collapse
|