1
|
Abbad L, Esteve E, Chatziantoniou C. Advances and challenges in kidney fibrosis therapeutics. Nat Rev Nephrol 2025; 21:314-329. [PMID: 39934355 DOI: 10.1038/s41581-025-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Chronic kidney disease (CKD) is a major global health burden that affects more than 10% of the adult population. Current treatments, including dialysis and transplantation, are costly and not curative. Kidney fibrosis, defined as an abnormal accumulation of extracellular matrix in the kidney parenchyma, is a common outcome in CKD, regardless of disease aetiology, and is a major cause of loss of kidney function and kidney failure. For this reason, research efforts have focused on identifying mediators of kidney fibrosis to inform the development of effective anti-fibrotic treatments. Given the prominent role of the transforming growth factor-β (TGFβ) family in fibrosis, efforts have focused on inhibiting TGFβ signalling. Despite hopes raised by the efficacy of this approach in preclinical models, translation into clinical practice has not met expectations. Antihypertensive and antidiabetic drugs slow the decline in kidney function and could slow fibrosis but, owing to the lack of technologies for in vivo renal imaging, their anti-fibrotic effect cannot be truly assessed at present. The emergence of new drugs targeting pro-fibrotic signalling, or enabling cell repair and cell metabolic reprogramming, combined with better stratification of people with CKD and the arrival of nanotechnologies for kidney-specific drug delivery, open up new perspectives for the treatment of this major public health challenge.
Collapse
Affiliation(s)
- Lilia Abbad
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Emmanuel Esteve
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France
| | - Christos Chatziantoniou
- INSERM UMR S 1155, Common and Rare Kidney Diseases, Tenon Hospital, Faculty of Medicine, Sorbonne University, Paris, France.
| |
Collapse
|
2
|
Lauriola M, Farré R, Dejongh S, de Loor H, Evenepoel P, Masereeuw R, Zadora W, Meijers B. Dietary protein intake and the tubular handling of indoxyl sulfate. Nephrol Dial Transplant 2025; 40:739-750. [PMID: 39354683 DOI: 10.1093/ndt/gfae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) patients are advised to limit their protein intake. A high protein diet is known to induce glomerular hyperfiltration, as well as hypertrophy of the remnant kidney, and glomerulosclerosis. Whether the diet causes changes in kidney tubule transport via gut microbiome metabolites is still unknown. We hypothesized that protein intake affects not only the intestinal generation and absorption, but also the kidney disposal of microbial amino acid metabolites. METHODS We combined data from animal models and human studies. 5/6th nephrectomy rats were administered a high (HP) or low-protein (LP) diet for 7 weeks. Plasma and urine concentration of the uremic toxins (UTs) indoxyl sulfate (IS), p-cresyl sulfate (PCS) and p-cresyl glucuronide (PCG) were measured. Their fractional excretion (FE) was calculated. The expression of kidney membrane transporters organic anion transporter 1 (OAT1), OAT3, BCRP, OCT2 and MRP4 was analyzed. Differences in FE of UTs between individuals with higher and lower protein intake in two CKD cohorts were sought. RESULTS CKD rats on an HP diet showed increased plasma levels of PCS and PCG but not IS compared with rats on an LP diet. Conversely, urinary excretion and FE of IS were higher in the HP CKD group. BCRP, MRP4 and OCT2 were not influenced by the diet. OAT1 and OAT3 were upregulated in the HP CKD group. In two independent cohorts of CKD patients, individuals with a high dietary protein intake showed a significantly higher FE of IS. CONCLUSIONS A HP diet leads to a higher generation and/or absorption of amino acid-derived UT precursors in CKD rodent models and humans, most likely via gut microbiome modulation. We demonstrate that dietary protein intake modulates transcription and expression of OAT1 and OAT3, corroborating the existence of the remote sensing and signaling hypothesis. Dietary protein intake influences kidney physiology beyond glomerular filtration.
Collapse
Affiliation(s)
- Mara Lauriola
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Belgium
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Sander Dejongh
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Belgium
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
| | - Henriette de Loor
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
| | - Pieter Evenepoel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ward Zadora
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Belgium
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
| | - Björn Meijers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, UZ Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Yin L, Kuai M, Liu Z, Zou B, Wu P. Global burden of chronic kidney disease due to dietary factors. Front Nutr 2025; 11:1522555. [PMID: 39882042 PMCID: PMC11774714 DOI: 10.3389/fnut.2024.1522555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Background We aimed to assess the global impact of chronic kidney disease (CKD) attributable to dietary risk factors. Methods The research utilized data from the Global Burden of Disease Study 2021 to evaluate age-standardized mortality rates (ASMR), disability-adjusted life years (DALYs), and estimated annual percentage changes (EAPCs) linked to CKD resulting from dietary risk factors. Results From 1990 to 2021, both the ASMR and age-standardized DALY rate (ASDR) for CKD attributable to dietary risk factors exhibited an overall increasing trend globally. The mortality EAPC was 0.65, while the EAPC for DALYs stood at 0.39. Among dietary risk factors examined, a diet high in sugar-sweetened beverages was associated with the most substantial increase in CKD burden. Notably, Central sub-Saharan Africa bore the highest burden of CKD due to dietary risk factors, with an ASMR of 10.24 and an ASDR of 229.23. The increases in ASMR and ASDR were more pronounced in high-income regions, particularly in Latin America and the Caribbean, where the EAPC values for ASMR were 1.45 and 1.05, respectively, and for ASDR were 1.08 and 0.96. Furthermore, the burden of CKD was notably higher among middle-aged and elderly individuals, especially men aged 65 and above. Conclusion The global disease burden attributed to dietary risk factors for CKD is increasing. A diet high in sugar-sweetened beverages exerted the most significant impact on CKD. There is a high incidence in Central sub-Saharan Africa, as well as in high-income regions and Latin America and the Caribbean.
Collapse
Affiliation(s)
- Lingtao Yin
- Department of Pharmacy, Loudi Hospital of Traditional Chinese Medicine, Loudi, Hunan, China
| | - Mengni Kuai
- Department of Pharmacy, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| | - Zhuo Liu
- College of Traditional Chinese Medicine, Changsha Medical University, Changsha, Hunan, China
| | - Binbin Zou
- Department of Hematology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ping Wu
- Department of Pharmacy, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| |
Collapse
|
4
|
Yang WY, Wang J, Li XH, Xu B, Yang YW, Yu L, Zhang B, Feng JF. Analysis of non-targeted serum metabolomics in patients with chronic kidney disease and hyperuricemia. Biotechnol Genet Eng Rev 2024; 40:4013-4039. [PMID: 37098873 DOI: 10.1080/02648725.2023.2204715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023]
Abstract
Hyperuricemia (HUA) is a common complication of chronic kidney disease (CKD). Conversely, HUA can promote the disease progression of CKD. However, the molecular mechanism of HUA in CKD development remains unclear. In the present study, we applied ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to analyze the serum metabolite profiling of 47 HUA patients, 41 non-hyperuricemic CKD (NUA-CKD) patients, and 51 CKD and HUA (HUA-CKD) patients, and then subjected to multivariate statistical analysis, metabolic pathway analysis and diagnostic performance evaluation. Metabolic profiling of serums showed that 40 differential metabolites (fold-change threshold (FC) > 1.5 or<2/3, variable importance in projection (VIP) > 1, and p < 0.05) were screened in HUA-CKD and HUA patients, and 24 differential metabolites (FC > 1.2 or<0.83, VIP>1, and p < 0.05) were screened in HUA-CKD and NUA-CKD patients. According to the analysis of metabolic pathways, significant changes existed in three metabolic pathways (compared with the HUA group) and two metabolic pathways (compared with the HUA-CKD group) in HUA-CKD patients. Glycerophospholipid metabolism was a significant pathway in HUA-CKD. Our findings show that the metabolic disorder in HUA-CKD patients was more serious than that in NUA-CKD or HUA patients. A theoretical basis is provided for HUA to accelerate CKD progress.
Collapse
Affiliation(s)
- Wen-Yu Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Han Li
- Department of Medical Laboratory, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bei Xu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yu-Wei Yang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Lin Yu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Bin Zhang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jia-Fu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
5
|
Knol MGE, Wulfmeyer VC, Müller RU, Rinschen MM. Amino acid metabolism in kidney health and disease. Nat Rev Nephrol 2024; 20:771-788. [PMID: 39198707 DOI: 10.1038/s41581-024-00872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 09/01/2024]
Abstract
Amino acids form peptides and proteins and are therefore considered the main building blocks of life. The kidney has an important but under-appreciated role in the synthesis, degradation, filtration, reabsorption and excretion of amino acids, acting to retain useful metabolites while excreting potentially harmful and waste products from amino acid metabolism. A complex network of kidney transporters and enzymes guides these processes and moderates the competing concentrations of various metabolites and amino acid products. Kidney amino acid metabolism contributes to gluconeogenesis, nitrogen clearance, acid-base metabolism and provision of fuel for tricarboxylic acid cycle and urea cycle intermediates, and is thus a central hub for homeostasis. Conversely, kidney disease affects the levels and metabolism of a variety of amino acids. Here, we review the metabolic role of the kidney in amino acid metabolism and describe how different diseases of the kidney lead to aberrations in amino acid metabolism. Improved understanding of the metabolic and communication routes that are affected by disease could provide new mechanistic insights into the pathogenesis of kidney diseases and potentially enable targeted dietary or pharmacological interventions.
Collapse
Affiliation(s)
- Martine G E Knol
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- III Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
6
|
Tang W, Wei Q. The metabolic pathway regulation in kidney injury and repair. Front Physiol 2024; 14:1344271. [PMID: 38283280 PMCID: PMC10811252 DOI: 10.3389/fphys.2023.1344271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Kidney injury and repair are accompanied by significant disruptions in metabolic pathways, leading to renal cell dysfunction and further contributing to the progression of renal pathology. This review outlines the complex involvement of various energy production pathways in glucose, lipid, amino acid, and ketone body metabolism within the kidney. We provide a comprehensive summary of the aberrant regulation of these metabolic pathways in kidney injury and repair. After acute kidney injury (AKI), there is notable mitochondrial damage and oxygen/nutrient deprivation, leading to reduced activity in glycolysis and mitochondrial bioenergetics. Additionally, disruptions occur in the pentose phosphate pathway (PPP), amino acid metabolism, and the supply of ketone bodies. The subsequent kidney repair phase is characterized by a metabolic shift toward glycolysis, along with decreased fatty acid β-oxidation and continued disturbances in amino acid metabolism. Furthermore, the impact of metabolism dysfunction on renal cell injury, regeneration, and the development of renal fibrosis is analyzed. Finally, we discuss the potential therapeutic strategies by targeting renal metabolic regulation to ameliorate kidney injury and fibrosis and promote kidney repair.
Collapse
Affiliation(s)
- Wenbin Tang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
El Chamieh C, Larabi IA, Alencar De Pinho N, Lambert O, Combe C, Fouque D, Frimat L, Jacquelinet C, Laville M, Laville S, Lange C, Alvarez JC, Massy ZA, Liabeuf S. Study of the association between serum levels of kynurenine and cardiovascular outcomes and overall mortality in chronic kidney disease. Clin Kidney J 2024; 17:sfad248. [PMID: 38186868 PMCID: PMC10768787 DOI: 10.1093/ckj/sfad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 01/09/2024] Open
Abstract
Background Kynurenine is a protein-bound uremic toxin. Its circulating levels are increased in chronic kidney disease (CKD). Experimental studies showed that it exerted deleterious cardiovascular effects. We sought to evaluate an association between serum kynurenine levels and adverse fatal or nonfatal cardiovascular events and all-cause mortality in CKD patients. Methods The CKD-REIN study is a prospective cohort of people with CKD having an estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m². Baseline frozen samples of total and free fractions of kynurenine and tryptophan were measured using a validated liquid chromatography tandem mass spectrometry technique. Cause-specific Cox models were used to estimate hazard ratios (HRs) for each outcome. Results Of the 2406 included patients (median age: 68 years; median eGFR: 25 ml/min/1.73 m2), 52% had a history of cardiovascular disease. A doubling of serum-free kynurenine levels was associated with an 18% increased hazard of cardiovascular events [466 events, HR (95%CI):1.18(1.02,1.33)], independently of eGFR, serum-free tryptophan level or other uremic toxins, cardioprotective drugs, and traditional cardiovascular risk factors. Serum-free kynurenine was significantly associated with non-atheromatous cardiovascular events [HR(95%CI):1.26(1.03,1.50)], but not with atheromatous cardiovascular events [HR(95%CI):1.15(0.89,1.50)]. The association of serum-free kynurenine with cardiovascular mortality was also independently significant [87 events; adjusted HR(95%CI):1.64(1.10,2.40)]. However, the association of serum-free kynurenine with all-cause mortality was no more significant after adjustment on serum-free tryptophan [311 events, HR(95%CI):1.12(0.90, 1.40)]. Conclusions Our findings imply that serum-free kynurenine, independently of other cardiovascular risk factors (including eGFR), is associated with fatal or nonfatal cardiovascular outcomes, particularly non-atheromatous cardiovascular events; in patients with CKD. Strategies to reduce serum kynurenine levels should be evaluated in further studies.
Collapse
Affiliation(s)
- Carolla El Chamieh
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, Villejuif, France
| | - Islam Amine Larabi
- Department of Pharmacology and Toxicology, Raymond Poincaré Hospital, AP-HP, Garches, France
- UVSQ, Université Paris-Saclay, Inserm U1018, CESP, Équipe MOODS, MasSpecLab, Montigny-le-Bretonneux, France
| | - Natalia Alencar De Pinho
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, Villejuif, France
| | - Oriane Lambert
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, Villejuif, France
| | - Christian Combe
- Service de Néphrologie Transplantation Dialyse Aphérèse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- INSERM, U1026, University Bordeaux, Bordeaux, France
| | - Denis Fouque
- Nephrology Dept, Centre Hospitalier Lyon Sud, Université de Lyon, Carmen, Pierre-Bénite, France
- Université de Lyon, CarMeN INSERM 1060, Lyon, France
| | - Luc Frimat
- Nephrology Department, CHRU de Nancy, Vandoeuvre-lès-Nancy, France
- Lorraine University, APEMAC, Vandoeuvre-lès-Nancy, France
| | - Christian Jacquelinet
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, Villejuif, France
- Biomedecine Agency, Saint Denis La Plaine, France
| | | | - Solène Laville
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens-Picardie University Medical Center, Amiens, France
- MP3CV Laboratory, Jules Verne University of Picardie, Amiens, France
| | - Céline Lange
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, Villejuif, France
| | - Jean-Claude Alvarez
- Department of Pharmacology and Toxicology, Raymond Poincaré Hospital, AP-HP, Garches, France
- UVSQ, Université Paris-Saclay, Inserm U1018, CESP, Équipe MOODS, MasSpecLab, Montigny-le-Bretonneux, France
| | - Ziad A Massy
- Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin, Villejuif, France
- Department of Nephrology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt, France
| | - Sophie Liabeuf
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens-Picardie University Medical Center, Amiens, France
- MP3CV Laboratory, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
8
|
Bataille S, McKay N, Koppe L, Beau A, Benoit B, Bartoli M, Da Silva N, Poitevin S, Aniort J, Chermiti R, Burtey S, Dou L. Indoxyl sulfate inhibits muscle cell differentiation via Myf6/MRF4 and MYH2 downregulation. Nephrol Dial Transplant 2023; 39:103-113. [PMID: 37349959 DOI: 10.1093/ndt/gfad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with a significant decrease in muscle strength and mass, possibly related to muscle cell damage by uremic toxins. Here, we studied in vitro and in vivo the effect of indoxyl sulfate (IS), an indolic uremic toxin, on myoblast proliferation, differentiation and expression of myogenic regulatory factors (MRF)-myoblast determination protein 1 (MyoD1), myogenin (Myog), Myogenic Factor 5 (Myf5) and myogenic regulatory factor 4 (Myf6/MRF4)-and expression of myosin heavy chain, Myh2. METHODS C2C12 myoblasts were cultured in vitro and differentiated in myotubes for 7 days in the presence of IS at a uremic concentration of 200 µM. Myocytes morphology and differentiation was analyzed after hematoxylin-eosin staining. MRF genes' expression was studied using reverse transcription polymerase chain reaction in myocytes and 5/6th nephrectomized mice muscle. Myf6/MRF4 protein expression was studied using enzyme-linked immunosorbent assay; MYH2 protein expression was studied using western blotting. The role of Aryl Hydrocarbon Receptor (AHR)-the cell receptor of IS-was studied by adding an AHR inhibitor into the cell culture milieu. RESULTS In the presence of IS, the myotubes obtained were narrower and had fewer nuclei than control myotubes. The presence of IS during differentiation did not modify the gene expression of the MRFs Myf5, MyoD1 and Myog, but induced a decrease in expression of Myf6/MRF4 and MYH2 at the mRNA and the protein level. AHR inhibition by CH223191 did not reverse the decrease in Myf6/MRF4 mRNA expression induced by IS, which rules out the implication of the ARH genomic pathway. In 5/6th nephrectomized mice, the Myf6/MRF4 gene was down-regulated in striated muscles. CONCLUSION In conclusion, IS inhibits Myf6/MRF4 and MYH2 expression during differentiation of muscle cells, which could lead to a defect in myotube structure. Through these new mechanisms, IS could participate in muscle atrophy observed in CKD.
Collapse
Affiliation(s)
- Stanislas Bataille
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Department of Nephrology, Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France
| | - Nathalie McKay
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
- University Lyon, CarMeN lab, INSERM U1060, INRAE, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Alice Beau
- University Lyon, CarMeN lab, INSERM U1060, INRAE, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Bérengère Benoit
- University Lyon, CarMeN lab, INSERM U1060, INRAE, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Marc Bartoli
- Aix Marseille University, MMG, INSERM, Marseille, France
| | | | | | - Julien Aniort
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Rania Chermiti
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Stéphane Burtey
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix-Marseille University, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | - Laetitia Dou
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
| |
Collapse
|
9
|
Zhuang X, Liu T, Wei L, Gao Y, Gao J. RNA sequencing reveals the mechanism of FTO in inhibiting inflammation and excessive proliferation of lipopolysaccharide-induced human glomerular mesangial cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3835-3846. [PMID: 37358794 DOI: 10.1007/s00210-023-02570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Chronic glomerulonephritis (CGN) is a leading cause of end-stage renal disease in China; thus, there is an urgent need for effective therapeutic targets and strategies for CGN treatment. However, studies on CGN pathogenesis are limited. In this study, we found that the fat mass and obesity-associated protein (FTO) was significantly decreased in the lipopolysaccharide (LPS)-induced human glomerular mesangial cells (HGMCs) (P < 0.01) and kidney tissues of CGN patients (P < 0.05). Moreover, double-labeling immunofluorescence and flow cytometry assays demonstrated that the overexpression of FTO could inhibit inflammation and excessive proliferation of HGMCs. Furthermore, RNA-sequencing (RNA-seq) and real-time quantitative polymerase chain reaction (RT-qPCR) analyses revealed that FTO overexpression induced differential expression of 269 genes (absolute fold change ≥ 2 and P-value < 0.05), including 143 upregulated and 126 downregulated genes. Further functional analysis of these differentially expressed genes by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses suggested that FTO possibly mediates its inhibitory function by regulating the mammalian target of rapamycin (mTOR) signaling pathway and substance metabolism. Lastly, analysis of the PPI network and further identification of the top 10 hub genes (RPS15, RPS18, RPL18A, GNB2L1, RPL19, EEF1A1, RPS25, FAU, UBA52, and RPS6) indicated that FTO mediates its function by affecting the ribosomal proteins. Therefore, in this study, we elucidated the important role of FTO in the regulation of inflammation and excessive proliferation of HGMCs, suggesting FTO administration as a suitable therapeutic intervention for CGN.
Collapse
Affiliation(s)
- Xingxing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, 238000, Anhui, China
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Hefei, 230012, Anhui, China
| | - Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Hefei, 230012, Anhui, China
| | - Liangbing Wei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Hefei, 230012, Anhui, China
| | - Yachen Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Hefei, 230012, Anhui, China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Hefei, 230012, Anhui, China.
| |
Collapse
|
10
|
Kelly JT, Gonzalez-Ortiz A, St-Jules DE, Carrero JJ. Animal Protein Intake and Possible Cardiovascular Risk in People With Chronic Kidney Disease: Mechanisms and Evidence. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:480-486. [PMID: 38453263 DOI: 10.1053/j.akdh.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Individuals with chronic kidney disease (CKD) have an increased risk of cardiovascular disease (CVD), and the kidney function is a critical determinant of this risk. CKD is also a major cause of complications and disease progression in patients with CVD. Practice guidelines suggest that CVD risk in CKD patients can be managed through healthy lifestyle and dietary behaviors. Assessing the impact of diet on heart and kidney health is complex because numerous bioactive compounds from diet may contribute to or prevent CVD or CKD via a myriad of pathways and mechanisms. The objective of this review was to provide a discussion of the mechanisms and evidence linking protein-rich foods and CVD risk in people with CKD. This review highlights the current evidence-based strategies for primary CKD prevention that incorporate a healthy dietary pattern, while tertiary prevention strategies focus on avoiding excess protein and reducing dietary acid load. The effect of protein restriction for improving CVD and CKD outcomes is conflicting; however, these approaches show no negative effects on kidney health. Low-protein and very low-protein diets are promising interventions for reducing the progression of CKD and CVD. Animal-sourced protein may be more detrimental to kidney health than plant-sourced protein due to specific acid load, amino acid composition, generation of uremic toxins, accompanying saturated fat content, low fiber composition, and higher generation of advanced glycation end-products. There are no one-size fits all nutrition prescriptions. Personalized nutrition interventions that target the unique risk factors for CVD associated with reduced kidney function are required to improve the health of people living with CKD.
Collapse
Affiliation(s)
- Jaimon T Kelly
- Centre for Online Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Ailema Gonzalez-Ortiz
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Translational Research Center, Instituto Nacional de Pediatría, Mexico
| | | | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Hui Y, Zhao J, Yu Z, Wang Y, Qin Y, Zhang Y, Xing Y, Han M, Wang A, Guo S, Yuan J, Zhao Y, Ning X, Sun S. The Role of Tryptophan Metabolism in the Occurrence and Progression of Acute and Chronic Kidney Diseases. Mol Nutr Food Res 2023; 67:e2300218. [PMID: 37691068 DOI: 10.1002/mnfr.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Indexed: 09/12/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are common kidney diseases in clinics with high morbidity and mortality, but their pathogenesis is intricate. Tryptophan (Trp) is a fundamental amino acid for humans, and its metabolism produces various bioactive substances involved in the pathophysiology of AKI and CKD. Metabolomic studies manifest that Trp metabolites like kynurenine (KYN), 5-hydroxyindoleacetic acid (5-HIAA), and indoxyl sulfate (IS) increase in AKI or CKD and act as biomarkers that facilitate the early identification of diseases. Meanwhile, KYN and IS act as ligands to exacerbate kidney damage by activating aryl hydrocarbon receptor (AhR) signal transduction. The reduction of renal function can cause the accumulation of Trp metabolites which in turn accelerate the progression of AKI or CKD. Besides, gut dysbiosis induces the expansion of Enterobacteriaceae family to produce excessive IS, which cannot be excreted due to the deterioration of renal function. The application of Trp metabolism as a target in AKI and CKD will also be elaborated. Thus, this study aims to elucidate Trp metabolism in the development of AKI and CKD, and explores the relative treatment strategies by targeting Trp from the perspective of metabolomics to provide a reference for their diagnosis and prevention.
Collapse
Affiliation(s)
- Yueqing Hui
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuwei Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Nephrology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Shuxian Guo
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yueru Zhao
- School of Clinical Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
12
|
Li C, Gao L, Lv C, Li Z, Fan S, Liu X, Rong X, Huang Y, Liu J. Active role of amino acid metabolism in early diagnosis and treatment of diabetic kidney disease. Front Nutr 2023; 10:1239838. [PMID: 37781128 PMCID: PMC10539689 DOI: 10.3389/fnut.2023.1239838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Diabetic Kidney Disease (DKD) is one of the significant microvascular consequences of type 2 diabetes mellitus with a complex etiology and protracted course. In the early stages of DKD, the majority of patients experience an insidious onset and few overt clinical symptoms and indicators, but they are prone to develop end-stage renal disease in the later stage, which is life-threatening. The abnormal amino acid metabolism is tightly associated with the development of DKD, which involves several pathological processes such as oxidative stress, inflammatory response, and immune response and is also closely related to autophagy, mitochondrial dysfunction, and iron death. With a focus on taurine, branched-chain amino acids (BCAAs) and glutamine, we explored the biological effects of various amino acid mechanisms linked to DKD, the impact of amino acid metabolism in the early diagnosis of DKD, and the role of amino acid metabolism in treating DKD, to offer fresh objectives and guidelines for later early detection and DKD therapy.
Collapse
Affiliation(s)
- Chenming Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lidong Gao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Lv
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziqiang Li
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyue Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyi Rong
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Yang Y, Mihajlovic M, Masereeuw R. Protein-Bound Uremic Toxins in Senescence and Kidney Fibrosis. Biomedicines 2023; 11:2408. [PMID: 37760849 PMCID: PMC10525416 DOI: 10.3390/biomedicines11092408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive condition of kidney dysfunction due to diverse causes of injury. In healthy kidneys, protein-bound uremic toxins (PBUTs) are cleared from the systemic circulation by proximal tubule cells through the concerted action of plasma membrane transporters that facilitate their urinary excretion, but the endogenous metabolites are hardly removed with kidney dysfunction and may contribute to CKD progression. Accumulating evidence suggests that senescence of kidney tubule cells influences kidney fibrosis, the common endpoint for CKD with an excessive accumulation of extracellular matrix (ECM). Senescence is a special state of cells characterized by permanent cell cycle arrest and limitation of proliferation, which promotes fibrosis by releasing senescence-associated secretory phenotype (SASP) factors. The accumulation of PBUTs in CKD causes oxidative stress and increases the production of inflammatory (SASP) factors that could trigger fibrosis. Recent studies gave some clues that PBUTs may also promote senescence in kidney tubular cells. This review provides an overview on how senescence contributes to CKD, the involvement of PBUTs in this process, and how kidney senescence can be studied. Finally, some suggestions for future therapeutic options for CKD while targeting senescence are given.
Collapse
Affiliation(s)
- Yi Yang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Milos Mihajlovic
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
14
|
Landau D, Shukri N, Arazi E, Tobar A, Segev Y. Beneficiary Effects of Colchicine on Inflammation and Fibrosis in a Mouse Model of Kidney Injury. Nephron Clin Pract 2023; 147:693-700. [PMID: 37263257 DOI: 10.1159/000531313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Low-grade inflammation is seen in many chronic illnesses, including chronic kidney disease (CKD). We have recently reported on beneficiary effects of anti-inflammatory treatment in the interleukin (IL-) 1 pathway on anemia as well as CKD extent in a mouse model. Colchicine has been shown to have beneficiary effects in several inflammatory conditions through various mechanisms, including inhibition of tubulin polymerization as well as caspase-1-mediated IL-1 activation. METHODS Kidney injury (KI) was induced by administering an adenine diet to 8-week-old C57BL/6J mice treated with colchicine (Col) (30 µg/kg) or saline injections for 3 weeks, generating 4 groups: C, Ccol, KI, and KIcol. RESULTS KI animals had an increase in inflammation indices in the blood (neutrophils), liver, and kidneys (uromodulin, IL-6, pSTAT3). Increased kidney tubulin polymerization and caspase-1 in KI, as well as kidney Mid88 and IRAK4 (downstream of IL-1), were inhibited in KIcol. Kidney macrophage and polymorphonuclear infiltration (positive for F4/80 and MPO, respectively), the percentage of fibrotic area, and TGFβ mRNA levels were lower in KIcol versus KI. CONCLUSIONS Colchicine inhibited tubulin polymerization and caspase-1 activation and attenuated kidney inflammation and fibrosis in a mouse model of adenine-induced KI. Given its reported safety profile for long-term anti-inflammatory therapy without increasing infection tendency, it may serve as novel therapeutic approach in CKD.
Collapse
Affiliation(s)
- Daniel Landau
- Institute of Nephrology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nehoray Shukri
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Eden Arazi
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ana Tobar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, Rabin Medical Center, Petach Tikva, Israel
| | - Yael Segev
- Institute of Pathology, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
15
|
Zhu N, Duan H, Feng Y, Xu W, Shen J, Wang K, Liu J. Magnesium lithospermate B ameliorates diabetic nephropathy by suppressing the uremic toxin formation mediated by gut microbiota. Eur J Pharmacol 2023:175812. [PMID: 37245856 DOI: 10.1016/j.ejphar.2023.175812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Diabetic nephropathy (DN) is a major cause of renal failure and urgently necessitates new therapeutic strategies. Magnesium lithospermate B (MLB) showed a good protective effect on kidney injure by oral administration, despite its extremely low bioavailability. The current study aimed to investigate its gut microbiota-targeted mechanism to explain the paradoxical properties of pharmacodynamics and pharmacokinetics. Here we show that MLB alleviated DN by recovering the dysfunction of gut microbiota and their associated metabolites in colon content, such as short-chain fatty acids and amino acids. Moreover, MLB significantly decreased uremic toxin levels in plasma, especially the p-cresyl sulfate. We further discovered that MLB could affect the metabolism of p-cresyl sulfate by suppressing the formation of its intestinal precursors, i.e. the microbiota-mediated conversion from 4-hydroxyphenylacetate to p-cresol. In addition, the inhibition effects of MLB were confirmed. MLB and its metabolite danshensu exhibited inhibitory effects on p-cresol formation mediated by three strains belonging to the genus Clostridium, Bifidobacterium, and Fusobacterium, respectively. Meanwhile, MLB decreased the levels of p-cresyl sulfate in plasma and p-cresol in feces caused by rectal administration of tyrosine in mice. To summarize, the results indicated that MLB ameliorated DN through modulating gut microbiota-associated p-cresyl sulfate metabolism. Together, this study provides new insights on the microbiota-targeted mechanism of MLB in intervening DN and a new strategy in lowering plasma uremic toxins by blocking the formation of their precursors in intestine.
Collapse
Affiliation(s)
- Nanlin Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Haonan Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yingying Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wenwei Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310058, PR China.
| |
Collapse
|
16
|
Benoit B, Beau A, Bres É, Chanon S, Pinteur C, Vieille-Marchiset A, Jalabert A, Zhang H, Garg P, Strigini M, Vico L, Ruzzin J, Vidal H, Koppe L. Treatment with fibroblast growth factor 19 increases skeletal muscle fiber size, ameliorates metabolic perturbations and hepatic inflammation in 5/6 nephrectomized mice. Sci Rep 2023; 13:5520. [PMID: 37015932 PMCID: PMC10073190 DOI: 10.1038/s41598-023-31874-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with osteosarcopenia, and because a physical decline in patients correlates with an increased risk of morbidity, an improvement of the musculoskeletal system is expected to improve morbi-mortality. We recently uncovered that the intestinal hormone Fibroblast Growth Factor 19 (FGF19) is able to promote skeletal muscle mass and strength in rodent models, in addition to its capacity to improve glucose homeostasis. Here, we tested the effects of a treatment with recombinant human FGF19 in a CKD mouse model, which associates sarcopenia and metabolic disorders. In 5/6 nephrectomized (5/6Nx) mice, subcutaneous FGF19 injection (0.1 mg/kg) during 18 days increased skeletal muscle fiber size independently of food intake and weight gain, associated with decreased gene expression of myostatin. Furthermore, FGF19 treatment attenuated glucose intolerance and reduced hepatic expression of gluconeogenic genes in uremic mice. Importantly, the treatment also decreased gene expression of liver inflammatory markers in CKD mice. Therefore, our results suggest that FGF19 may represent a novel interesting therapeutic strategy for a global improvement of sarcopenia and metabolic complications in CKD.
Collapse
Affiliation(s)
- Berengère Benoit
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Alice Beau
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Émilie Bres
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
- Department of Nephrology and Nutrition, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Chemin du Grand Revoyet, 69495, Pierre Bénite, France
| | - Stéphanie Chanon
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Claudie Pinteur
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | | | - Audrey Jalabert
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Hao Zhang
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Priyanka Garg
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Maura Strigini
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Laurence Vico
- INSERM U1059, Sainbiose, Jean Monnet University, Saint-Etienne, France
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hubert Vidal
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France
| | - Laetitia Koppe
- CarMeN Laboratory, INSERM, INRAE, Claude Bernard Lyon 1 University, Pierre Bénite, France.
- Department of Nephrology and Nutrition, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Chemin du Grand Revoyet, 69495, Pierre Bénite, France.
| |
Collapse
|
17
|
Joshi S, Kalantar-Zadeh K, Chauveau P, Carrero JJ. Risks and Benefits of Different Dietary Patterns in CKD. Am J Kidney Dis 2023; 81:352-360. [PMID: 36682903 DOI: 10.1053/j.ajkd.2022.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
Food has the potential to cause and exacerbate many lifestyle diseases. Or it can be used to prevent and treat illnesses like primary hypertension, the metabolic syndrome, and insulin resistance. In parallel, there is also a growing body of evidence of the role of diet in the treatment of kidney disease and its ensuing complications. Popular diets for this purpose have included low-carbohydrate diets, including the ketogenic diet, and higher carbohydrate diets like Mediterranean diets and other plant-based dietary patterns. Low-carbohydrate diets have not shown harm in patients with kidney disease and may benefit a select few. Mediterranean diets have an established record of cardioprotective benefits but also may be beneficial for the kidney. Intermittent fasting has benefits for metabolic health, but limited research exists on the risk or benefit for patients with kidney disease. Plant-based diets, especially those that are lower in protein, may slow kidney disease progression, mitigate uremia, and delay dialysis initiation. Although each dietary pattern has its unique pros and cons, most healthful dietary patterns favor the inclusion of whole, unprocessed foods, preferably from plant-based sources. In this perspective, we discuss the risks and benefits of major popular diets to help guide health care professionals in treating patients with kidney disease.
Collapse
Affiliation(s)
- Shivam Joshi
- Department of Medicine, Grossman School of Medicine, New York University, New York, New York; Department of Medicine, NYC Health + Hospitals/Bellevue, New York, New York.
| | | | | | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Lauriola M, Farré R, Evenepoel P, Overbeek SA, Meijers B. Food-Derived Uremic Toxins in Chronic Kidney Disease. Toxins (Basel) 2023; 15:116. [PMID: 36828430 PMCID: PMC9960799 DOI: 10.3390/toxins15020116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have a higher cardiovascular risk compared to the average population, and this is partially due to the plasma accumulation of solutes known as uremic toxins. The binding of some solutes to plasma proteins complicates their removal via conventional therapies, e.g., hemodialysis. Protein-bound uremic toxins originate either from endogenous production, diet, microbial metabolism, or the environment. Although the impact of diet on uremic toxicity in CKD is difficult to quantify, nutrient intake plays an important role. Indeed, most uremic toxins are gut-derived compounds. They include Maillard reaction products, hippurates, indoles, phenols, and polyamines, among others. In this review, we summarize the findings concerning foods and dietary components as sources of uremic toxins or their precursors. We then discuss their endogenous metabolism via human enzyme reactions or gut microbial fermentation. Lastly, we present potential dietary strategies found to be efficacious or promising in lowering uremic toxins plasma levels. Aligned with current nutritional guidelines for CKD, a low-protein diet with increased fiber consumption and limited processed foods seems to be an effective treatment against uremic toxins accumulation.
Collapse
Affiliation(s)
- Mara Lauriola
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Pieter Evenepoel
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| | | | - Björn Meijers
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Lu YP, Zhang ZY, Wu HW, Fang LJ, Hu B, Tang C, Zhang YQ, Yin L, Tang DE, Zheng ZH, Zhu T, Dai Y. SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming in mice with diabetic kidney disease. J Transl Med 2022; 20:420. [PMID: 36104729 PMCID: PMC9476562 DOI: 10.1186/s12967-022-03629-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. SGLT2 inhibitors are clinically effective in halting DKD progression. However, the underlying mechanisms remain unclear. The serum and kidneys of mice with DKD were analyzed using liquid chromatography with tandem mass spectrometry (LC–MS/MS)-based metabolomic and proteomic analyses. Three groups were established: placebo-treated littermate db/m mice, placebo-treated db/db mice and EMPA-treated db/db mice. Empagliflozin (EMPA) and placebo (10 mg/kg/d) were administered for 12 weeks. EMPA treatment decreased Cys-C and urinary albumin excretion compared with placebo by 78.60% and 57.12%, respectively (p < 0.001 in all cases). Renal glomerular area, interstitial fibrosis and glomerulosclerosis were decreased by 16.47%, 68.50% and 62.82%, respectively (p < 0.05 in all cases). Multi-omic analysis revealed that EMPA treatment altered the protein and metabolic profiles in the db/db group, including 32 renal proteins, 51 serum proteins, 94 renal metabolites and 37 serum metabolites. Five EMPA-related metabolic pathways were identified by integrating proteomic and metabolomic analyses, which are involved in renal purine metabolism; pyrimidine metabolism; tryptophan metabolism; nicotinate and nicotinamide metabolism, and glycine, serine and threonine metabolism in serum. In conclusion, this study demonstrated metabolic reprogramming in mice with DKD. EMPA treatment improved kidney function and morphology by regulating metabolic reprogramming, including regulation of renal reductive stress, alleviation of mitochondrial dysfunction and reduction in renal oxidative stress reaction.
Collapse
|
20
|
Koppe L, Soulage CO. The impact of dietary nutrient intake on gut microbiota in the progression and complications of chronic kidney disease. Kidney Int 2022; 102:728-739. [PMID: 35870642 DOI: 10.1016/j.kint.2022.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Chronic kidney disease (CKD) has been associated with changes in the function and composition of the gut microbiota. The ecosystem of the human gut consists of trillions of microorganisms forming an authentic metabolically active organ that is fueled by nutrients to produce bioactive compounds. These microbiota-derived metabolites may be protective for kidney function (e.g. short-chain fatty acids from fermentation of dietary fibers) or deleterious (e.g. gut-derived uremic toxins such as trimethylamine N-oxide, p-cresyl sulfate, and indoxyl sulfate from fermentation of amino acids). Although diet is the cornerstone of the management of the patient with CKD, it remains a relatively underused component of the clinician's armamentarium. In this review, we describe the latest advances in understanding diet-microbiota crosstalk in a uremic context, and how this communication might contribute to CKD progression and complications. We then discuss how this knowledge could be harnessed for personalized nutrition strategies to prevent patients with CKD progressing to end-stage kidney disease and its detrimental consequences.
Collapse
Affiliation(s)
- Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, F-69495 Pierre-Bénite, France; Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France.
| | - Christophe O Soulage
- Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France
| |
Collapse
|