1
|
Zhang X, van Greevenbroek MMJ, Scheijen JLJM, Eussen SJPM, Kelly J, Stehouwer CDA, Schalkwijk CG, Wouters K. Fasting plasma methylglyoxal concentrations are associated with higher numbers of circulating intermediate and non-classical monocytes but with lower activation of intermediate monocytes: the Maastricht Study. J Endocrinol Invest 2025; 48:1257-1268. [PMID: 39847265 PMCID: PMC12049376 DOI: 10.1007/s40618-025-02536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
PURPOSE Elevated methylglyoxal (MGO) levels and altered immune cell responses are observed in diabetes. MGO is thought to modulate immune cell activation. The current study investigated whether fasting or post-glucose-load plasma MGO concentrations are associated with circulating immune cell counts and activation in a large cohort study. METHODS 696 participants of The Maastricht Study (age 60.3 ± 8.4 years, 51.9% women) underwent an oral glucose tolerance test (OGTT). Fasting and post-OGTT plasma MGO concentrations were measured using mass spectrometry. Numbers and activation of circulating immune cells at fasting state were quantified using flow cytometry. Activation scores were calculated by averaging individual marker z-scores for neutrophils (CD11b, CD11c, CD16) and classical, intermediate, and non-classical monocytes (CD11b, CD11c, CX3XR1, HLA-DR). Associations were analysed using multiple linear regression adjusted for potential confounders. Stratified analyses were performed for glucose metabolism status for associations between plasma MGO levels and immune cell counts. RESULTS Higher fasting plasma MGO concentrations were significantly associated with higher numbers of intermediate (β = 0.09 [95%CI 0.02; 0.17]) and non-classical monocytes (0.08 [0.002; 0.15]), but with lower activation scores for the intermediate monocytes (-0.14 [-0.22; -0.06]). Stratified analyses showed that positive associations between fasting plasma MGO levels and numbers of intermediate and non-classical monocytes appear only in participants with type 2 diabetes. Post-OGTT plasma MGO concentrations were not consistently associated with immune cells counts or activation. CONCLUSION Higher fasting plasma MGO concentrations are associated with higher intermediate and non-classical monocyte counts but with lower activation of intermediate monocytes.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, 6229HA, the Netherlands
- CAPHRI School for Care and Public Health Research Unit, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Jaycey Kelly
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands.
| | - Kristiaan Wouters
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands.
| |
Collapse
|
2
|
Song Z, Clemens RA, Zhang Y, Chen J, Wang Y, Dinauer MC, Meng S. Investigating pulmonary neutrophil responses to inflammation in mice via flow cytometry. J Leukoc Biol 2025; 117:qiae189. [PMID: 39212489 DOI: 10.1093/jleuko/qiae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neutrophils play a crucial role in maintaining lung health by defending against infections and participating in inflammation processes. Here we describe a detailed protocol for evaluating pulmonary neutrophil phenotype using a murine model of sterile inflammation induced by the fungal cell wall particle zymosan. We provide step-by-step instructions for the isolation of single cells from both lung tissues and airspaces, followed by comprehensive staining techniques for both cell surface markers and intracellular components. This protocol facilitates the sorting and detailed characterization of lung neutrophils via flow cytometry, making it suitable for downstream applications such as mRNA extraction, single-cell sequencing, and analysis of neutrophil heterogeneity. We also identify and discuss essential considerations for conducting successful neutrophil flow cytometry experiments. This work is aimed at researchers exploring the intricate functions of neutrophils in the lung under physiological and pathological conditions with the aid of flow cytometry.
Collapse
Affiliation(s)
- Zhimin Song
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, No. 195, Dongfeng West Road, Guangzhou, Guangdong 510180, China
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Regina A Clemens
- Departments of Pediatrics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, PO Box 8208, St. Louis, MO 63110, United States
| | - Yun Zhang
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Jingjing Chen
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Yaofeng Wang
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Mary C Dinauer
- Departments of Pediatrics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, PO Box 8208, St. Louis, MO 63110, United States
- Departments of Pathology and Immunology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, PO Box 8208, St. Louis, MO 63110, United States
| | - Shu Meng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, No. 195, Dongfeng West Road, Guangzhou, Guangdong 510180, China
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| |
Collapse
|
3
|
Parker AC, Van Amburg JC, Heimlich JB, Pershad Y, Mickels NA, Mack TM, Ferrell PB, Savona MR, Jones AL, Bick AG. Methylation sequencing enhances interpretation of clonal hematopoiesis dynamics. Blood 2025; 145:988-992. [PMID: 39565983 DOI: 10.1182/blood.2024026555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
ABSTRACT We have developed a cost-effective DNA methylation sequencing assay to improve monitoring of clonal hematopoiesis. By inferring cell-type proportions, this method enhances interpretation of clonal trajectories compared with interpretation based on variant allele fraction only.
Collapse
Affiliation(s)
- Alyssa C Parker
- Program in Human Genetics, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph C Van Amburg
- Program in Human Genetics, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - J Brett Heimlich
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yash Pershad
- Program in Human Genetics, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Nicole A Mickels
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Taralynn M Mack
- Program in Human Genetics, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - P Brent Ferrell
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Michael R Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
4
|
Nieto Ramirez LM, Mehaffy C, Dobos KM. Systematic review of innate immune responses against Mycobacterium tuberculosis complex infection in animal models. Front Immunol 2025; 15:1467016. [PMID: 39949719 PMCID: PMC11821578 DOI: 10.3389/fimmu.2024.1467016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/27/2024] [Indexed: 02/16/2025] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) complex (MTBC) includes ten species that affect mammals and pose a significant global health concern. Upon infection, Mtb induces various stages in the host, including early bacterial elimination, which may or may not involve memory responses. Deciphering the role of innate immune responses during MTBC infection is crucial for understanding disease progression or protection. Over the past decade, there has been growing interest in the innate immune response to Mtb, with new preclinical models emerging. Methods We conducted a systematic review following PRISMA guidelines, focused on innate immune mediators linked to protection or disease progression in animal models of MTBC infection. We searched two databases: National Library of Medicine and Web of Science. Two researchers independently extracted data based on specific inclusion and exclusion criteria. Results Eighty-three articles were reviewed. Results were categorized in four groups: MTBC species, animal models, soluble factors and innate pathways, and other molecules (metabolites and drugs). Mtb and M. bovis were the only species studied. P2X7R receptor's role in disease progression and higher macrophage recruitment were observed differentially after infection with hypervirulent Mtb strains. Mice and non-human primates (NHPs) were the most used mammals, with emerging models like Galleria mellonella and planarians also studied. NHPs provided insights into age-dependent immunity and markers for active tuberculosis (ATB). Key innate immune factors/pathways identified included TNF-α, neutrophil recruitment, ROS/RNS responses, autophagy, inflammasomes, and antimicrobial peptides, with homologous proteins identified in insects. Metabolites like vitamin B5 and prostaglandin E2 were associated with protection. Immunomodulatory drugs targeting autophagy and other mechanisms were studied, exhibiting their potential as therapeutic alternatives. Conclusion Simpler, physiologically relevant, and ethically sound models, such as G. mellonella, are needed for studying innate responses in MTBC infection. While insects lack adaptive immunity, they could provide insights into "pure" innate immune responses. The dissection of "pure," "sustained" (later than 7 days post-infection), and trained innate immunity presents additional challenges that require high-resolution temporospatial analytical methods. Identifying early innate immune mediators and targetable pathways in the blood and affected tissues could identify biomarkers for immunization efficiency, disease progression, and potential synergistic therapies for ATB.
Collapse
Affiliation(s)
- Luisa Maria Nieto Ramirez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | | | - Karen Marie Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
5
|
Fegraeus K, Riihimäki M, Nordlund J, Akula S, Wernersson S, Raine A. Exploring a pico-well based scRNA-seq method (HIVE) for simplified processing of equine bronchoalveolar lavage cells. PLoS One 2025; 20:e0317343. [PMID: 39854349 PMCID: PMC11760581 DOI: 10.1371/journal.pone.0317343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a valuable tool for investigating cellular heterogeneity in diseases such as equine asthma (EA). This study evaluates the HIVE™ scRNA-seq method, a pico-well-based technology, for processing bronchoalveolar lavage (BAL) cells from horses with EA. The HIVE method offers practical advantages, including compatibility with both field and clinical settings, as well as a gentle workflow suited for handling sensitive cells. Our results show that the major cell types in equine BAL were successfully identified; however, the proportions of T cells and macrophages deviated from cytological expectations, with macrophages being overrepresented and T cells underrepresented. Despite these limitations, the HIVE method confirmed previously identified T cell and macrophage subpopulations and defined other BAL cell subsets. However, compared to previous studies T helper subsets were less clearly defined. Additionally, consistent with previous scRNA-seq studies, the HIVE method detected fewer granulocytes and mast cells than anticipated in the total BAL samples. Nevertheless, applying the method to purified mast cells recovered an expected number of cells. A small set of eosinophils were also detected which have not been characterized in earlier studies. In summary these findings suggest that while the HIVE method shows promise for certain applications, further optimization is needed to improve the accuracy of cell type representation, particularly for granulocytes and mast cells, in BAL samples.
Collapse
Affiliation(s)
- Kim Fegraeus
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Miia Riihimäki
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Srinivas Akula
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Amanda Raine
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Enochs C, Colpo GD, Couture L, Baskin L, Cahuiche AE, Lee EA, Nimjee S, McCullough LD. The Contribution of Neutrophil Extracellular Traps to Coagulopathy in Patients with COVID-19-Related Thrombosis. Viruses 2024; 16:1677. [PMID: 39599792 PMCID: PMC11598969 DOI: 10.3390/v16111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with hypercoagulability and increased incidence of thrombotic events. In this study, we investigated the levels of neutrophil extracellular trap biomarkers and von Willebrand factor to assess if these could predict the occurrence of a thrombotic event in COVID-19 patients. We enrolled 202 patients hospitalized with symptomatic COVID-19 infection. Of those, 104 patients did not experience any type of thrombotic events before or during their hospitalization. These patients were compared to the other cohort of 98, who experienced thrombotic events before or during their hospitalization. In total, 61 patients who experienced thrombotic events had the event after initial blood collection, so the predictive capacity of biomarkers in these patients was evaluated. Citrullinated histone H3 was the best predictive biomarker for thrombotic events in COVID-19 regardless of age, sex, and race; disease severity was also a significant predictor in most thrombotic event groups. These results may better inform treatment and prophylaxis of thrombotic events in COVID-19 and similar viral illnesses in the future to improve outcomes and reduce mortality.
Collapse
Affiliation(s)
- Carolyn Enochs
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Gabriela Delevati Colpo
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Lucy Couture
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Lynae Baskin
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Ana E. Cahuiche
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Eunyoung Angela Lee
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Shahid Nimjee
- Neurosurgery, The Ohio State University Medical Center, Columbus, OH 43210, USA;
| | - Louise D. McCullough
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| |
Collapse
|
7
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Sae-Khow K, Charoensappakit A, Leelahavanichkul A. Neutrophil Diversity (Immature, Aged, and Low-Density Neutrophils) and Functional Plasticity: Possible Impacts of Iron Overload in β-Thalassemia. Int J Mol Sci 2024; 25:10651. [PMID: 39408979 PMCID: PMC11476590 DOI: 10.3390/ijms251910651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Neutrophil dysfunction is a form of immune suppression in patients with β-thalassemia (Beta-thal), although data on this are limited. In this study, blood from patients and healthy volunteers was analyzed. Flow cytometry analysis demonstrated an increase in immature neutrophils (CD16- CD62L+) and aged (senescent) neutrophils (CD16+ CD62L-) in Beta-thal patients compared to healthy volunteers. The Beta-thal neutrophils demonstrated less prominent chemotaxis and phagocytosis than healthy neutrophils at the baseline. With phorbol myristate acetate (PMA) or lipopolysaccharide (LPS) stimulations, some of the indicators, including the flow cytometry markers (CD11b, CD62L, CD66b, CD63, apoptosis, and reactive oxygen species) and neutrophil extracellular traps (NETs; detected by anti-citrullinated histone 3 immunofluorescence), were lower than the control. Additionally, low-density neutrophils (LDNs), which are found in the peripheral blood mononuclear cell (PBMC) fraction, were observed in Beta-thal patients but not in the control group. The expression of CD11b, CD66b, CD63, arginase I, and ROS in LDNs was higher than the regular normal-density neutrophils (NDNs). The proliferation rate of CD3+ T cells isolated from the PBMC fraction of healthy volunteers was higher than that of the cells from patients with Beta-thal. The incubation of red blood cell (RBC) lysate plus ferric ions with healthy NDNs transformed the NDNs into the aged neutrophils (decreased CD62L) and LDNs. In conclusion, iron overload induces neutrophil diversity along with some dysfunctions.
Collapse
Affiliation(s)
- Kritsanawan Sae-Khow
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.-K.); (A.C.)
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Awirut Charoensappakit
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.-K.); (A.C.)
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.-K.); (A.C.)
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Crowley LE, Stockley RA, Thickett DR, Dosanjh D, Scott A, Parekh D. Neutrophil dynamics in pulmonary fibrosis: pathophysiological and therapeutic perspectives. Eur Respir Rev 2024; 33:240139. [PMID: 39603661 PMCID: PMC11600124 DOI: 10.1183/16000617.0139-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 11/29/2024] Open
Abstract
The shared pathobiological mechanisms driving progressive fibrosis in interstitial lung diseases (ILDs) remain unclear. Neutrophils, the most common immune cells in the human body, contain an extensive array of proteinases that are important for cell function, including tissue repair and remodelling. Increasing observational studies have reported elevated neutrophil counts in the respiratory tract and circulation of patients with ILD and suggest a role as a biomarker of disease severity. Neutrophils and their contents (including the formation of neutrophil extracellular traps (NETs)) are present in fibrotic lung tissue. Proteinases and NETs may drive fibrogenesis in animal and in vitro models and may impact transforming growth factor-β1 activation. However, the effect of neutrophil action, whether reparative or pathologically destructive to the delicate lung architecture, has yet to be determined. This review aims to summarise the current literature surrounding the potential role of the neutrophil as a biomarker and contributor to the pathogenesis of ILD. There is currently a paucity of treatment options in ILD driven by the knowledge gap underlying the overall disease mechanisms. This review concludes that neutrophils warrant further evaluation as manipulation of recruitment and function could provide a novel and much needed therapeutic strategy.
Collapse
Affiliation(s)
- Louise Elizabeth Crowley
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Robert Andrew Stockley
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
| | - David Richard Thickett
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Davinder Dosanjh
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
| | - Aaron Scott
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Joint senior authors
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham, UK
- Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Joint senior authors
| |
Collapse
|
10
|
De Pooter D, De Clerck B, Dockx K, De Santis D, Sauviller S, Dehertogh P, Beyens M, Bergiers I, Nájera I, Van Gulck E, Conceição-Neto N, Pierson W. Robust isolation protocol for mouse leukocytes from blood and liver resident cells for immunology research. PLoS One 2024; 19:e0304063. [PMID: 39172771 PMCID: PMC11340898 DOI: 10.1371/journal.pone.0304063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/06/2024] [Indexed: 08/24/2024] Open
Abstract
Research on liver-related conditions requires a robust and efficient method to purify viable hepatocytes, lymphocytes and all other liver resident cells, such as Kupffer or liver sinusoidal endothelial cells. Here we describe a novel purification method using liver enzymatic digestion, followed by a downstream optimized purification. Using this enzymatic digestion protocol, the resident liver cells as well as viable hepatocytes could be captured, compared to the classical mechanical liver disruption method. Moreover, single-cell RNA-sequencing demonstrated higher quality lymphocyte data in downstream analyses after the liver enzymatic digestion, allowing for studying of immunological responses or changes. In order to also understand the peripheral immune landscape, a protocol for lymphocyte purification from mouse systemic whole blood was optimized, allowing for efficient removal of red blood cells. The combination of microbeads and mRNA blockers allowed for a clean blood sample, enabling robust single-cell RNA-sequencing data. These two protocols for blood and liver provide important new methodologies for liver-related studies such as NASH, hepatitis virus infections or cancer research but also for immunology where high-quality cells are indispensable for further downstream assays.
Collapse
Affiliation(s)
- Dorien De Pooter
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Ben De Clerck
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Koen Dockx
- Charles River Laboratories, Beerse, Belgium
| | | | - Sarah Sauviller
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Pascale Dehertogh
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Matthias Beyens
- Discovery Technologies & Molecular Pharmacology, Therapeutics Discovery, Janssen Research and Development, Beerse, Belgium
| | - Isabelle Bergiers
- Discovery Technologies & Molecular Pharmacology, Therapeutics Discovery, Janssen Research and Development, Beerse, Belgium
| | - Isabel Nájera
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, California, Brisbane, United States of America
| | - Ellen Van Gulck
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Nádia Conceição-Neto
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| | - Wim Pierson
- Infectious Diseases Discovery, Infectious Diseases Therapeutic Area, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
11
|
de Miranda LHM, Santiago MDA, Frankenfeld J, dos Reis EG, Menezes RC, Pereira SA, Gremião IDF, Hofmann-Lehmann R, Conceição-Silva F. Neutrophil Oxidative Burst Profile Is Related to a Satisfactory Response to Itraconazole and Clinical Cure in Feline Sporotrichosis. J Fungi (Basel) 2024; 10:422. [PMID: 38921408 PMCID: PMC11205038 DOI: 10.3390/jof10060422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Despite the central role of cats in the transmission and amplification of Sporothrix, studies regarding immune response in feline sporotrichosis are scarce. In cats with sporotrichosis, neutrophil-rich lesions are usually associated to good general condition and lower fungal burden. However, the role of neutrophils in anti-Sporothrix immunity has been little explored in cats. Thus, the aim of this study was to evaluate the neutrophil oxidative burst in the blood of cats with sporotrichosis. Cats with sporotrichosis included in the study were treated with itraconazole (ITZ) alone or combined with potassium iodide (KI). The neutrophil oxidative burst was evaluated through a flow-cytometry-based assay using dihydrorhodamine 123 (background) and stimulation with Zymosan and heat-killed Sporothrix yeasts. The cure rate was 50.0% in cats under treatment with ITZ monotherapy and 90.9% in cats treated with ITZ + KI (p = 0.014), endorsing the combination therapy as an excellent alternative for the treatment of feline sporotrichosis. Higher percentages of Sporothrix-stimulated neutrophils were associated with good general condition (p = 0.003). Higher percentages of Sporothrix- (p = 0.05) and Zymosan-activated (p = 0.014) neutrophils before and early in the treatment were related to clinical cure in ITZ-treated cats. The correlation between oxidative burst and successful use of KI could not be properly assessed given the low number of failures (n = 2) in this treatment group. Nasal mucosa involvement, typically linked to treatment failure, was related to lower percentages of activated neutrophils in the background at the treatment outcome (p = 0.02). Our results suggest a beneficial role of neutrophils in feline sporotrichosis and a positive correlation between neutrophil activation and the cure process in ITZ-treated cats.
Collapse
Affiliation(s)
- Luisa Helena Monteiro de Miranda
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Marta de Almeida Santiago
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
| | - Julia Frankenfeld
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Facility, University of Zurich, 8057 Zurich, Switzerland; (J.F.); (R.H.-L.)
| | - Erica Guerino dos Reis
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Rodrigo Caldas Menezes
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Sandro Antonio Pereira
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Isabella Dib Ferreira Gremião
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (E.G.d.R.); (R.C.M.); (S.A.P.); (I.D.F.G.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory and Center for Clinical Studies, Vetsuisse Facility, University of Zurich, 8057 Zurich, Switzerland; (J.F.); (R.H.-L.)
| | - Fátima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil; (M.d.A.S.); (F.C.-S.)
| |
Collapse
|
12
|
Neeland MR, Gubbels L, Wong ATC, Walker H, Ranganathan SC, Shanthikumar S. Pulmonary immune profiling reveals common inflammatory endotypes of childhood wheeze and suppurative lung disease. Mucosal Immunol 2024; 17:359-370. [PMID: 38492745 DOI: 10.1016/j.mucimm.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Suppurative lung disease and wheezing are common respiratory diseases of childhood, however, due to poor understanding of underlying pathobiology, there are limited treatment options and disease recurrence is common. We aimed to profile the pulmonary and systemic immune response in children with wheeze and chronic suppurative lung disease for identification of endotypes that can inform improved clinical management. We used clinical microbiology data, highly multiplexed flow cytometry and immunoassays to compare pulmonary [bronchoalveolar lavage (BAL)] and systemic immunity in children with lung disease and controls. Unsupervised analytical approaches were applied to BAL immune data to explore biological endotypes. We identified two endotypes that were analogous in both frequency and immune signature across both respiratory diseases. The hyper-inflammatory endotype had a 12-fold increase in neutrophil infiltration and upregulation of 14 soluble signatures associated with type 2 inflammation and cell recruitment to tissue. The non-inflammatory endotype was not significantly different from controls. We showed these endotypes are measurable in a clinical setting and can be defined by measuring only three immune factors in BAL. We identified hyper-inflammatory and non-inflammatory endotypes common across pediatric wheeze and chronic suppurative lung disease that, if validated in future studies, have the potential to inform clinical management.
Collapse
Affiliation(s)
- Melanie R Neeland
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia.
| | - Liam Gubbels
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Anson Tsz Chun Wong
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Hannah Walker
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia; Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia
| | - Sarath C Ranganathan
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia; Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Shivanthan Shanthikumar
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia; Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
13
|
Müller S, Kröger C, Schultze JL, Aschenbrenner AC. Whole blood stimulation as a tool for studying the human immune system. Eur J Immunol 2024; 54:e2350519. [PMID: 38103010 DOI: 10.1002/eji.202350519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The human immune system is best accessible via tissues and organs not requiring major surgical intervention, such as blood. In many circumstances, circulating immune cells correlate with an individual's health state and give insight into physiological and pathophysiological processes. Stimulating whole blood ex vivo is a powerful tool to investigate immune responses. In the context of clinical research, the applications of whole blood stimulation include host immunity, disease characterization, diagnosis, treatment, and drug development. Here, we summarize different setups and readouts of whole blood assays and discuss applications for preclinical research and clinical practice. Finally, we propose combining whole blood stimulation with high-throughput technologies, such as single-cell RNA-sequencing, to comprehensively analyze the human immune system for the identification of biomarkers, therapeutic interventions as well as companion diagnostics.
Collapse
Affiliation(s)
- Sophie Müller
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Genomics & Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Charlotte Kröger
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- Genomics & Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- Genomics & Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| |
Collapse
|
14
|
Majid R, Al Talebi ZA, Al-Kawaz HS, Hassan Alta'ee A, Alsalman ARS, Hadwan AM, Hadwan MM, Hadwan MH. Novel fluorometric protocol for assessing myeloperoxidase activity. Enzyme Microb Technol 2023; 171:110320. [PMID: 37703636 DOI: 10.1016/j.enzmictec.2023.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Neutrophil myeloperoxidase (MPO) is an essential enzyme for the innate immune system. Measuring MPO activity is vital for understanding neutrophil characteristics and functions in various diseases. MPO activity can be measured using several methods, including spectrophotometric and fluorometric protocols. This paper introduces a fluorometric method for specifically quantifying MPO activity based on the H2O2-dependent oxidation of thiamine. We optimized this new method using the robust statistical approach response surface methodology (RSM) and Box Benken Design (BBD). We extensively examined the effects of several experimental parameters using the RSM methodology and determined the best conditions for accurate and sensitive MPO activity measurement. The optimal conditions were determined using the analysis of variance (ANOVA) for second-order polynomial equations. The resulting F-value (4.86) indicated that the model was significant. However, the lack-of-fitness F-value (1.79) suggested it did not differ significantly from the corresponding p-value. The greatest MPO activity (30 ± 2 U L-1) was obtained under optimum conditions, which were 1000 µM of H2O2, 10 min incubation time, and 1000 µM of thiamine. Our results suggest that this advanced fluorometric method has significant accuracy, sensitivity, and linearity up to 60 IU. The new and standard colorimetric methods also showed a good correlation. These results indicate that the new fluorometric method can be dependable and efficient for assessing MPO activity. The new method is characterized by excellent accuracy, sensitivity, and linearity, making it a valuable protocol for researchers and clinicians interested in assessing MPO activity.
Collapse
Affiliation(s)
- Rawa Majid
- Department of Medical Physics, University of Al-Mustaqbal, Hilla City, Babylon Governorate p.o. 51001, Iraq
| | - Zainab Abbas Al Talebi
- Chemistry Dept., College of Science, University of Babylon, Hilla City, Babylon Governorate p.o. 51002, Iraq
| | - Hawraa Saad Al-Kawaz
- Department of Pathological Analysis, College of Science, Al-Qasim Green University, 51013, Iraq
| | | | | | - Asad M Hadwan
- Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Al-Manara College for Medical Sciences, Al-Amarah City, Iraq
| | - Muntadhar M Hadwan
- College of Medicine, University of Babylon, Hilla City, Babylon Governorate, Iraq
| | - Mahmoud Hussein Hadwan
- Chemistry Dept., College of Science, University of Babylon, Hilla City, Babylon Governorate p.o. 51002, Iraq.
| |
Collapse
|
15
|
Krémer V, Godon O, Bruhns P, Jönsson F, de Chaisemartin L. Isolation methods determine human neutrophil responses after stimulation. Front Immunol 2023; 14:1301183. [PMID: 38077317 PMCID: PMC10704165 DOI: 10.3389/fimmu.2023.1301183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Studying neutrophils is challenging due to their limited lifespan, inability to proliferate, and resistance to genetic manipulation. Neutrophils can sense various cues, making them susceptible to activation by blood collection techniques, storage conditions, RBC lysis, and the isolation procedure itself. Here we assessed the impact of the five most used methods for neutrophil isolation on neutrophil yield, purity, activation status and responsiveness. We monitored surface markers, reactive oxygen species production, and DNA release as a surrogate for neutrophil extracellular trap (NET) formation. Our results show that neutrophils isolated by negative immunomagnetic selection and density gradient methods, without RBC lysis, resembled untouched neutrophils in whole blood. They were also less activated and more responsive to milder stimuli in functional assays compared to neutrophils obtained using density gradients requiring RBC lysis. Our study highlights the importance of selecting the appropriate method for studying neutrophils, and underscores the need for standardizing isolation protocols to facilitate neutrophil subset characterization and inter-study comparisons.
Collapse
Affiliation(s)
- Vanessa Krémer
- Institut Pasteur, Université Paris-Cité, Institut national de la santé et de la recherche (INSERM) Unité mixte de recherche (UMR)1222, Antibodies in Therapy and Pathology, Paris, France
- Inflammation, Microbiome and Immunosurveillance, INSERM, Université Paris-Saclay, Orsay, France
| | - Ophélie Godon
- Institut Pasteur, Université Paris-Cité, Institut national de la santé et de la recherche (INSERM) Unité mixte de recherche (UMR)1222, Antibodies in Therapy and Pathology, Paris, France
| | - Pierre Bruhns
- Institut Pasteur, Université Paris-Cité, Institut national de la santé et de la recherche (INSERM) Unité mixte de recherche (UMR)1222, Antibodies in Therapy and Pathology, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Université Paris-Cité, Institut national de la santé et de la recherche (INSERM) Unité mixte de recherche (UMR)1222, Antibodies in Therapy and Pathology, Paris, France
- Centre national de la recherche scientifique (CNRS), Paris, France
| | - Luc de Chaisemartin
- Institut Pasteur, Université Paris-Cité, Institut national de la santé et de la recherche (INSERM) Unité mixte de recherche (UMR)1222, Antibodies in Therapy and Pathology, Paris, France
- Inflammation, Microbiome and Immunosurveillance, INSERM, Université Paris-Saclay, Orsay, France
- L'Assistance Publique - Hôpitaux de Paris (APHP), Bichat Hospital, Immunology Department, Paris, France
| |
Collapse
|
16
|
Li Y, Li X, Zhang L, Luan X, Jiang J, Zhang L, Li M, Wang J, Duan J, Zhao H, Zhao Y, Huang C. From the teapot effect to tap-triggered self-wetting: a 3D self-driving sieve for whole blood filtration. MICROSYSTEMS & NANOENGINEERING 2023; 9:30. [PMID: 36960347 PMCID: PMC10027851 DOI: 10.1038/s41378-023-00490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Achieving passive microparticle filtration with micropore membranes is challenging due to the capillary pinning effect of the membranes. Inspired by the teapot effect that occurs when liquid (tea) is poured from a teapot spout, we proposed a tap-triggered self-wetting strategy and utilized the method with a 3D sieve to filter rare cells. First, a 3D-printed polymer tap-trigger microstructure was implemented. As a result, the 3 µm micropore membrane gating threshold (the pressure needed to open the micropores) was lowered from above 3000 to 80 Pa by the tap-trigger microstructure that facilated the liquid leakage and spreading to self-wet more membrane area in a positive feedback loop. Then, we implemented a 3D cone-shaped cell sieve with tap-trigger microstructures. Driven by gravity, the sieve performed at a high throughput above 20 mL/min (DPBS), while the micropore size and porosity were 3 µm and 14.1%, respectively. We further filtered leukocytes from whole blood samples with the proposed new 3D sieve, and the method was compared with the traditional method of leukocyte isolation by chemically removing red blood cells. The device exhibited comparable leukocyte purity but a higher platelet removal rate and lower leukocyte simulation level, facilitating downstream single-cell analysis. The key results indicated that the tap-triggered self-wetting strategy could significantly improve the performance of passive microparticle filtration.
Collapse
Affiliation(s)
- Yuang Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xue Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, 100053 China
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University / Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149 China
| | - Xiaofeng Luan
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiahong Jiang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
| | - Lingqian Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
| | - Jinghui Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University / Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149 China
| | - Jiangang Duan
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, 100053 China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, 100053 China
| | - Yang Zhao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
17
|
Deng M, Aberle MR, van Bijnen AAJHM, van der Kroft G, Lenaerts K, Neumann UP, Wiltberger G, Schaap FG, Olde Damink SWM, Rensen SS. Lipocalin-2 and neutrophil activation in pancreatic cancer cachexia. Front Immunol 2023; 14:1159411. [PMID: 37006254 PMCID: PMC10057111 DOI: 10.3389/fimmu.2023.1159411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundCancer cachexia is a multifactorial syndrome characterized by body weight loss and systemic inflammation. The characterization of the inflammatory response in patients with cachexia is still limited. Lipocalin-2, a protein abundant in neutrophils, has recently been implicated in appetite suppression in preclinical models of pancreatic cancer cachexia. We hypothesized that lipocalin-2 levels could be associated with neutrophil activation and nutritional status of pancreatic ductal adenocarcinoma (PDAC) patients.MethodsPlasma levels of neutrophil activation markers calprotectin, myeloperoxidase, elastase, and bactericidal/permeability-increasing protein (BPI) were compared between non-cachectic PDAC patients (n=13) and cachectic PDAC patients with high (≥26.9 ng/mL, n=34) or low (<26.9 ng/mL, n=34) circulating lipocalin-2 levels. Patients’ nutritional status was assessed by the patient-generated subjective global assessment (PG-SGA) and through body composition analysis using CT-scan slices at the L3 level.ResultsCirculating lipocalin-2 levels did not differ between cachectic and non-cachectic PDAC patients (median 26.7 (IQR 19.7-34.8) vs. 24.8 (16.6-29.4) ng/mL, p=0.141). Cachectic patients with high systemic lipocalin-2 levels had higher concentrations of calprotectin, myeloperoxidase, and elastase than non-cachectic patients or cachectic patients with low lipocalin-2 levels (calprotectin: 542.3 (355.8-724.9) vs. 457.5 (213.3-606.9), p=0.448 vs. 366.5 (294.5-478.5) ng/mL, p=0.009; myeloperoxidase: 30.3 (22.1-37.9) vs. 16.3 (12.0-27.5), p=0.021 vs. 20.2 (15.0-29.2) ng/mL, p=0.011; elastase: 137.1 (90.8-253.2) vs. 97.2 (28.8-215.7), p=0.410 vs. 95.0 (72.2-113.6) ng/mL, p=0.006; respectively). The CRP/albumin ratio was also higher in cachectic patients with high lipocalin-2 levels (2.3 (1.3-6.0) as compared to non-cachectic patients (1.0 (0.7-4.2), p=0.041). Lipocalin-2 concentrations correlated with those of calprotectin (rs=0.36, p<0.001), myeloperoxidase (rs=0.48, p<0.001), elastase (rs=0.50, p<0.001), and BPI (rs=0.22, p=0.048). Whereas no significant correlations with weight loss, BMI, or L3 skeletal muscle index were observed, lipocalin-2 concentrations were associated with subcutaneous adipose tissue index (rs=-0.25, p=0.034). Moreover, lipocalin-2 tended to be elevated in severely malnourished patients compared with well-nourished patients (27.2 (20.3-37.2) vs. 19.9 (13.4-26.4) ng/mL, p=0.058).ConclusionsThese data suggest that lipocalin-2 levels are associated with neutrophil activation in patients with pancreatic cancer cachexia and that it may contribute to their poor nutritional status.
Collapse
Affiliation(s)
- Min Deng
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Merel R. Aberle
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Annemarie A. J. H. M. van Bijnen
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Gregory van der Kroft
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Kaatje Lenaerts
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Ulf P. Neumann
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Georg Wiltberger
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Frank G. Schaap
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Steven W. M. Olde Damink
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- *Correspondence: Sander S. Rensen,
| |
Collapse
|
18
|
Haeusner S, Jauković A, Kupczyk E, Herrmann M. Review: cellularity in bone marrow autografts for bone and fracture healing. Am J Physiol Cell Physiol 2023; 324:C517-C531. [PMID: 36622067 DOI: 10.1152/ajpcell.00482.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of autografts, as primary cell and tissue source, is the current gold standard approach to treat critical size bone defects and nonunion defects. The unique mixture of the autografts, containing bony compartments and bone marrow (BM), delivers promising results. Although BM mesenchymal stromal cells (BM-MSCs) still represent a major target for various healing approaches in current preclinical research and respective clinical trials, their occurrence in the human BM is typically low. In vitro expansion of this cell type is regulatory challenging as well as time and cost intensive. Compared with marginal percentages of resident BM-MSCs in BM, BM mononuclear cells (BM-MNCs) contained in BM aspirates, concentrates, and bone autografts represent a readily available abundant cell source, applicable within hours during surgical procedures without the need for time-consuming and regulatory challenging cell expansion. This benefit is one reason why autografting has become a clinical standard procedure. However, the exact anatomy and cellularity of BM-MNCs in humans, which is strongly correlated to their unique mode of action and wide application range remains to be elucidated. The aim of this review was to present an overview of the current knowledge on these specific cell types found in human BM, emphasize the contribution of BM-MNCs in bone healing, highlight donor site dependence, and discuss limitations in the current isolation and subsequent characterization procedures. Hereby, the most recent and relevant examples of human BM-MNC cell characterization, flow cytometric analyses, and findings are summarized, with a strong focus on bone therapy.
Collapse
Affiliation(s)
- S Haeusner
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital of Wuerzburg, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| | - A Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - E Kupczyk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - M Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital of Wuerzburg, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
19
|
Ong KL, Davis MD, Purnell KK, Cutshall H, Pal HC, Connelly AN, Fay CX, Kuznetsova V, Brown EE, Hel Z. Distinct phenotype of neutrophil, monocyte, and eosinophil populations indicates altered myelopoiesis in a subset of patients with multiple myeloma. Front Oncol 2023; 12:1074779. [PMID: 36733370 PMCID: PMC9888259 DOI: 10.3389/fonc.2022.1074779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Hematologic malignancies, including multiple myeloma (MM), promote systemic immune dysregulation resulting in an alteration and increased plasticity of myeloid cell subsets. To determine the heterogeneity of the myeloid cell compartment in the peripheral blood of patients with MM, we performed a detailed investigation of the phenotype and function of myeloid subpopulations. We report that a subset of MM patients exhibits a specific myeloid cell phenotype indicative of altered myelopoiesis characterized by significant changes in the properties of circulating granulocytic, monocytic, and eosinophilic populations. The subset, referred to as MM2, is defined by a markedly elevated level of CD64 (FcγRI) on the surface of circulating neutrophils. Compared to healthy controls or MM1 patients displaying intermediate levels of CD64, neutrophils from MM2 patients exhibit a less differentiated phenotype, low levels of CD10 and CXC chemokine receptor 2 (CXCR2), increased capacity for the production of mitochondrial reactive oxygen species, and an expansion of CD16neg immature neutrophil subset. Classical and patrolling monocytes from MM2 patients express elevated levels of CD64 and activation markers. MM2 eosinophils display lower levels of C-C Chemokine receptor 3 (CCR3), Toll-like receptor 4 (TLR4, CD284), and tissue factor (TF, CD142). The MM2 (CD64high) phenotype is independent of age, race, sex, and treatment type. Characteristic features of the MM2 (CD64high) phenotype are associated with myeloma-defining events including elevated involved/uninvolved immunoglobulin free light chain (FLC) ratio at diagnosis. Detailed characterization of the altered myeloid phenotype in multiple myeloma will likely facilitate the identification of patients with an increased risk of disease progression and open new avenues for the rational design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Krystle L. Ong
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marcus D. Davis
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kalyn K. Purnell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hannah Cutshall
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harish C. Pal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashley N. Connelly
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christian X. Fay
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Valeriya Kuznetsova
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elizabeth E. Brown
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States,Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Zdenek Hel,
| |
Collapse
|
20
|
Beignon AS, Galeotti C, Menager MM, Schvartz A. Trained immunity as a possible newcomer in autoinflammatory and autoimmune diseases pathophysiology. Front Med (Lausanne) 2023; 9:1085339. [PMID: 36743677 PMCID: PMC9896524 DOI: 10.3389/fmed.2022.1085339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Autoimmune disorders have been well characterized over the years and many pathways-but not all of them-have been found to explain their pathophysiology. Autoinflammatory disorders, on the other hand, are still hiding most of their molecular and cellular mechanisms. During the past few years, a newcomer has challenged the idea that only adaptive immunity could display memory response. Trained immunity is defined by innate immune responses that are faster and stronger to a second stimulus than to the first one, being the same or not. In response to the trained immunity inducer, and through metabolic and epigenetic changes of hematopoietic stem and progenitor cells in the bone marrow that are transmitted to their cellular progeny (peripheral trained immunity), or directly of tissue-resident cells (local innate immunity), innate cells responsiveness and functions upon stimulation are improved in the long-term. Innate immunity can be beneficial, but it could also be detrimental when maladaptive. Here, we discuss how trained immunity could contribute to the physiopathology of autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Anne-Sophie Beignon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases/Infectious Diseases Models and Innovative Technologies (IMVA-HB/IDMIT), U1184, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Caroline Galeotti
- Department of Pediatric Rheumatology, Reference Center for AutoInflammatory Diseases and Amyloidosis (CEREMAIA), Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - Mickael M. Menager
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases/Infectious Diseases Models and Innovative Technologies (IMVA-HB/IDMIT), U1184, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Adrien Schvartz
- Department of Pediatric Rheumatology, Reference Center for AutoInflammatory Diseases and Amyloidosis (CEREMAIA), Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France,*Correspondence: Adrien Schvartz,
| |
Collapse
|
21
|
Hundhammer T, Gruber M, Wittmann S. Paralytic Impact of Centrifugation on Human Neutrophils. Biomedicines 2022; 10:biomedicines10112896. [PMID: 36428463 PMCID: PMC9687505 DOI: 10.3390/biomedicines10112896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Centrifugation is a common step in most of the popular protocols for the isolation of neutrophils from whole blood. Inconsistent results from previous studies on neutrophils may originate from an underestimation of the centrifugation effect, as in consequence impaired, not native cells, being investigated. We hypothesize, that centrifugation significantly impairs major neutrophil functions. However, there is no data yet whether the application of g-force itself or the product of g-force and duration of centrifugation (="g-time") defines the impact on neutrophils. Neutrophils were isolated from whole blood via centrifugation with different g-times and subsequently analyzed via live cell imaging for migration, as well as via flow cytometry for oxidative burst and surface antigen expression. Chemotactic migration was significantly reduced with increasing g-time. Oxidative burst decreased likewise the higher the g-time applied. Expression of CD11b was no longer upregulated in response to an n-formylmethionine-leucyl-phenylalanine (fMLP) stimulus in neutrophils having experienced high g-time during the isolation process. We conclude that centrifugation "paralyzes" neutrophils in the form of a significant decrease in functionality. Future investigations on neutrophil granulocytes should reduce the g-time load as far as possible.
Collapse
|