1
|
Pan WC, Luo CH, Lin WL, Wang LC, Manoharan D, Chang PY, Sheu HS, Yeh CH, Yen CJ, Yeh CS. Enhanced Catalytic Cycle of Glucose Oxidation and Reactive Species with ROS and RHS Generation Mediated by Galvanic Engineering of Dual Atomic Sites on Covalent Organic Frameworks Demonstrating Synergistic Bimetal Tumor Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e00515. [PMID: 40434035 DOI: 10.1002/advs.202500515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/29/2025] [Indexed: 05/29/2025]
Abstract
This study introduces a novel approach to cancer treatment using covalent organic frameworks (COFs) with dual atomic metal sites, employing a galvanic reaction to integrate both gold (Au) and iridium (Ir) onto COF (COF/Aux/Ir1-x). The integration of these metals enables a synergistic catalytic cycle that enhances glucose oxidation and the generation of reactive oxygen species (ROS) and reactive halogen species (RHS). Au catalyzes glucose oxidation, producing gluconic acid and hydrogen peroxide (H₂O₂), while Ir decomposes H₂O₂ into superoxide anion (O₂⁻) and, in the presence of chloride ions (Cl⁻), generates hypochlorous acid (HOCl). The dual metal atomic sites facilitate a feedback cycle where H₂O₂ is efficiently converted back to oxygen (O₂), amplifying ROS and RHS generation within cancer cells. By fine-tuning the Au: Ir ratio through the galvanic reaction, optimal catalytic performance is achieved, creating a highly effective tumor treatment strategy. This work represents the first application of dual metal atomic sites on COFs for cancer therapy, demonstrating significant potential for catalysis-based biomedical applications. The synergistic interactions between Au and Ir enhance catalytic efficiency, offering a new approach to exploiting endogenous cancer cell metabolites for targeted and efficient cancer treatment.
Collapse
Affiliation(s)
- Wei-Chung Pan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Cheng-Hung Luo
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Ling Lin
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Po-Ya Chang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hwo-Shuenn Sheu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chen-Hao Yeh
- Department of Materials Science and Engineering, Feng Chia University, Taichung, 40724, Taiwan
| | - Chia-Jui Yen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University Institution, Tainan, 704, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
2
|
Wei K, Sun M, Xi X, Yang T, Tang M, Wang K, Gao S, Cao R, Wang X, Huang B, Ge J. Hydrophilic Single-Atom Interface Empowered Pure Formic Acid Fuel Cells. J Am Chem Soc 2025; 147:15490-15498. [PMID: 40279192 DOI: 10.1021/jacs.5c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Single-atom catalysts (SACs), offering high mass activity and enhanced resistance to poisoning, are regarded as superior alternatives to traditional Pt/Pd nanocatalysts for direct formic acid fuel cells (DFAFCs). However, failure toward operation in concentrated formic acid (FA), which is critical for portable electronics, challenges their antipoisoning advantage and highlights a missing part in the understanding of the reaction. We herein demonstrate that the interfacial hydrophilicity of SACs is pivotal for high-performance DFAFCs, enabling, for the first time, stable operation with pure FA (>99%). By incorporating transition metal single atoms (Co, Fe, Ni, Ru) into Ir/NC catalysts, we engineered highly hydrophilic interfaces, as validated by molecular dynamics simulations and experimental studies. The optimized IrCo/NC anode exhibited a mass activity 342 times higher than that of nanoparticle-based catalysts and represented as the first SAC to achieve a higher peak power density (107.7 mW cm-2). A new reaction mechanism is revealed, where CO acts as a reactive intermediate rather than a poison. Further, in situ spectroscopy and isotope kinetic analyses identified water intermediate involvement in the rate-determining step, underscoring the critical role of hydrophilic interface engineering in DFAFC.
Collapse
Affiliation(s)
- Kai Wei
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Mingzi Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoke Xi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongtong Yang
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Meijian Tang
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Kangcheng Wang
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Siming Gao
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Ruiguo Cao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Wang
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Bolong Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Junjie Ge
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Sim Y, Yun TG, Park KH, Kim D, Bae HB, Chung SY. Effect of ionic-bonding d 0 cations on structural durability in barium iridates for oxygen evolution electrocatalysis. Nat Commun 2025; 16:4152. [PMID: 40320410 PMCID: PMC12050298 DOI: 10.1038/s41467-024-55290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/06/2024] [Indexed: 05/08/2025] Open
Abstract
Iridium has the exclusive chemistry guaranteeing both high catalytic activity and sufficient corrosion resistance in a strong acidic environment under anodic potential. Complex iridates thus attract considerable attention as high-activity electrocatalysts with less iridium utilization for the oxygen evolution reaction (OER) in water electrolyzers using a proton-exchange membrane. Here we demonstrate the effect of chemical doping on the durability of hexagonal-perovskite Bax(M,Ir)yOz-type iridates in strong acid (pH ~ 0). Some aliovalent cations are directly visualized to periodically locate at the octahedral sites bridging the two face-sharing [Ir2O9] dimer or [Ir3O12] trimers in hexagonal-perovskite polytypes. In particular, highly ionic bonding of the d0 Nb5+ and Ta5+ cations with oxygen anions results in notable suppression of lattice oxygen participation during the OER and thus effectively preserves the connectivity between the [Ir3O12] trimers without lattice collapse. Providing an in-depth understanding of the correlation between the electronic structure and bonding nature in crystals, our work suggests that proper control of chemical doping in complex oxides promises a simple but efficient tool to realize OER electrocatalysts with markedly improved durability.
Collapse
Affiliation(s)
- Yelyn Sim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Tae Gyu Yun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ki Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Dongho Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyung Bin Bae
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
4
|
Kim S, Woo J, Ngo YLT, Park HY, Kim JY, Jang JH, Seo B. NaCl Modification: A Novel Strategy for Boosting Oxygen Evolution Activity of Ir Catalysts in Proton Exchange Membrane Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412083. [PMID: 40130706 DOI: 10.1002/smll.202412083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/07/2025] [Indexed: 03/26/2025]
Abstract
The development of high-performance, low-content Ir catalysts is essential for enhancing the cost efficiency of anode catalysts and accelerating the widespread adoption of proton exchange membrane water electrolysis (PEMWE) for sustainable hydrogen production. Existing strategies, such as reducing catalyst particle size and alloying with non-precious metals, have shown limited success in surpassing the intrinsic activity of commercial IrO2 catalysts. This study presents a novel synthesis strategy for IrOx catalyst using NaCl as a structure modifier, delivering a catalyst (IrOx_NaCl) that achieves an impressive current density of 2.48 A cm-2 at 1.9 V, outperforming commercial IrO2 (2.35 A cm-2), even under low Ir catalyst loading in single-cell PEMWE test. Ex situ and in situ spectroscopic analyses suggested that NaCl incorporation effectively modulates the oxidation states and coordination structure of IrOx, leading to enhanced activity, improved stability, and greater cost efficiency. These findings offer a transformative pathway for designing advanced Ir-based catalysts for PEMWE applications.
Collapse
Affiliation(s)
- Sol Kim
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Jinwoo Woo
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yen-Linh Thi Ngo
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hee-Young Park
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jin Young Kim
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Jong Hyun Jang
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Bora Seo
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|
5
|
Wang Y, Qin Y, Liu S, Zhao Y, Liu L, Zhang D, Zhao S, Liu J, Wang J, Liu Y, Wu H, Jia B, Qu X, Li H, Qin M. Mesoporous Single-Crystalline Particles as Robust and Efficient Acidic Oxygen Evolution Catalysts. J Am Chem Soc 2025; 147:13345-13355. [PMID: 40196994 DOI: 10.1021/jacs.4c18390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The scarcity of iridium (Ir) limits its widespread use in acidic oxygen evolution reaction (OER). Herein, mesoporous single-crystalline spinel Co3O4 with atomically dispersed low-valence-state Ir has been developed to enable Ir's efficient and stable utilization. The surface Pourbaix diagram suggests that under acidic OER conditions, O* fully covers both Co3O4(111) and (110) surfaces, passivating Co sites but enhancing Co3O4's structural stability, a benefit further improved by Ir doping. Mesopores offer numerous loading sites for Ir single atoms (13.8 wt %), which activate the originally O*-passivated Co3O4(111) surface by creating high-intrinsic-activity Co-Ir bridge sites; meanwhile, Ir and Co leaching rates are reduced to about 1/4 and 1/5, respectively, compared to conventional Ir/Co3O4 catalysts. Our catalyst exhibits a low η10 of 248 mV for over 100 h, showcasing its potential in water electrolysis.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Yunpu Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Sijia Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongzhi Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Luan Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Shangqing Zhao
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Jianfang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yadong Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoyang Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Baorui Jia
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 301811, China
| | - Xuanhui Qu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Mingli Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
6
|
Lin HY, Li WJ, Lin MY, Xu HG, Fang SR, Lv Y, Li W, Guo J, Fu HQ, Yuan HY, Sun C, Dai S, Liu PF, Yang HG. Leaching-Induced Ti Trapping Stabilizes Amorphous IrO x for Proton Exchange Membrane Water Electrolysis. Angew Chem Int Ed Engl 2025:e202504212. [PMID: 40257792 DOI: 10.1002/anie.202504212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 04/22/2025]
Abstract
Transition metal nitrides are promising conductive support materials in oxygen evolution reaction (OER), whereas it is unclear if their electrochemical oxidation during prolonged test would affect the OER catalysts. Herein, we demonstrate that the leaching-induced Ti trapping effect from TiN supports effectively stabilizes the electrochemically oxidized amorphous IrOx catalyst. Structural characterizations reveal that the TiN support experiences severe leaching during OER test, leaving minor amounts of Ti-O species trapping on IrOx clusters, which mitigate the overoxidation of Ir(III) species and elongate the Ir-O bonds. This leads to 70% reduction of lattice oxygen oxidation and the substantially reduced Ir leaching. Additionally, self-thickening of the catalyst layers is found during proton exchange membrane water electrolysis (PEMWE), enabling an ultralow catalyst loading of 87 µgIr cm-2 to obtain a stable operation at 1.0 A cm-2 for 500 h. This work deepens the understanding of TiN-supported catalysts for long-term stable OER electrocatalysis.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wen Jing Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Miao Yu Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hao Guan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Song Ru Fang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yao Lv
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenbo Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianwei Guo
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Huai Qin Fu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, 3122, Australia
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
7
|
Zhang N, Liu X, Zhong H, Liu W, Bao D, Zeng J, Wang D, Ma C, Zhang X. Local Oxygen Vacancy-Mediated Oxygen Exchange for Active and Durable Acidic Water Oxidation. Angew Chem Int Ed Engl 2025:e202503246. [PMID: 40139981 DOI: 10.1002/anie.202503246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/08/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Developing an active and durable acidic oxygen evolution reaction (OER) catalyst is vital for implementing a proton exchange membrane water electrolyzer (PEMWE) in sustainable hydrogen production. However, it remains dauntingly challenging to balance high activity and long-term stability under harsh acidic and oxidizing conditions. Herein, through developing the universal rare-earth participated pyrolysis-leaching approach, we customized the active and long lifespan pseudo-amorphous IrOx with locally ordered rutile IrO2 and unique defect sites (IrOx-3Nd). IrOx-3Nd achieved a low overpotential of 206 mV and long-term durability of 2200 h with a slow degradation rate of 0.009 mV h-1 at 10 mA cm-2, and, more importantly, high efficiency in PEMWE (1.68 V at 1 A cm-2 for 1000 h) for practical hydrogen production. Utilizing in situ characterizations and theoretical calculations, we found that lattice oxygen vacancies (Ov) and contracted Ir-O in locally ordered rutile IrO2 induced the Ov-modulated lattice oxygen exchange process, wherein thermodynamically spontaneous occupation of surface hydroxyl groups on Ov and effective promotion of O─O coupling and lattice oxygen recovery accounted for enhanced activity and durability. This work underscores the importance of tailor-made local configuration in boosting activity and durability of OER catalyst and different insights into the promotion mechanism.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| | - Xinyi Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
| | - Haixia Zhong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| | - Di Bao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239, Zhangheng Road, Pudong new District, Shanghai, 201204, P.R. China
| | - Depeng Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| | - Caini Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Chaoyang District, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, No.96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
8
|
Kumar P, Zhang H, Yohannes AG, Wang J, Shayesteh Zeraati A, Roy S, Wang X, Kannimuthu K, Askar AM, Miller KA, Ling K, Adnan M, Hung SF, Ma JJ, Huang WH, Trivedi D, Molina M, Zhao H, Martí AA, Leontowich AFG, Shimizu GKH, Sinton D, Adachi MM, Wu YA, Ajayan PM, Siahrostami S, Hu J, Kibria MG. Isolated iridium oxide sites on modified carbon nitride for photoreforming of plastic derivatives. Nat Commun 2025; 16:2862. [PMID: 40128214 PMCID: PMC11933312 DOI: 10.1038/s41467-025-57999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
The rising concentration of plastics due to extensive disposal and inefficient recycling of plastic waste poses an imminent and critical threat to the environment and ecological systems. Photocatalytic reforming of plastic derivatives to value-added chemicals under ambient conditions proceeds at lower oxidation potential which galvanizes the hydrogen evolution. We report the synthesis of a narrow band gap NCN-functionalized O-bridged carbon nitride (MC) through condensation polymerization of hydrogen-bonded melem (M)-cyameluric acid (C) macromolecular aggregate. The MC scaffold hosts well-dispersed Ir single atom (MCIrSA) sites which catalyze oxidative photoreforming of alkali-treated polylactic acid (PLA) and polyethylene terephthalate (PET) derivatives to produce H2 at a rate of 147.5 and 29.58 μmol g-1cat h-1 under AM1.5G irradiation. Solid-state electron paramagnetic resonance (EPR) and time-resolved photoluminescence (TRPL) reveals efficient charge carrier generation and separation in MCIrSA. X-ray absorption spectroscopy (XAS) and Bader charge analysis reveal undercoordinated IrN2O2 SA sites pinned in C6N7 moieties leading to efficient hole quenching. The liquid phase EPR, in situ FTIR and density functional theory (DFT) studies validate the facile generation of •OH radicals due to the evolution of O-Ir-OH transient species with weak Ir--OH desorption energy barrier.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Asfaw G Yohannes
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Ali Shayesteh Zeraati
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Soumyabrata Roy
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, ON, Canada
| | - Karthick Kannimuthu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | | | - Kristen A Miller
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | - Kexin Ling
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Muflih Adnan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Sung-Fu Hung
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jian-Jie Ma
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | | | - Dhwanil Trivedi
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Maria Molina
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Angel A Martí
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | | | | | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael M Adachi
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, ON, Canada
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | | | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada.
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Zhu W, Ma M, Gao D, Chen J, Huang H, Feng K, Wang Q, Wu J, Li P, Guo J, Fan Z, Zhong J, Shao Q, Liao F, Liu Y, Shao M, Kang Z. Establishing the Link Between Oxygen Vacancy and Activity Enhancement in Acidic Water Oxidation of Trigonal Iridium Oxide. Angew Chem Int Ed Engl 2025; 64:e202423353. [PMID: 39794300 DOI: 10.1002/anie.202423353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
Developing durable IrO2-based electrocatalysts with high oxygen evolution reaction (OER) activity under acidic condition is crucial for proton exchange membrane electrolyzers. While oxygen defects are considered potentially important in OER, their direct relationship with catalytic activity has yet to be established. In this study, we introduced abundant oxygen vacancies through Re doping in 2D IrO2 (Re0.03Ir0.97O2), demonstrating their decisive role in enhancing OER performance. The Re0.03Ir0.97O2 catalyst exhibited excellent OER performance with an overpotential of 193 mV at 10 mA cm-2 and sustained activity for over 650 hours, significantly surpassing the undoped catalyst. Moreover, it maintained operation at a cell voltage of 1.70 V (~1200 mA cm-2) for over 140 hours without significant performance degradation. Theoretical calculations coupled with cyclic voltammetry, transient potential scanning and in situ characterizations confirmed the adsorbate evolving mechanism on Re0.03Ir0.97O2, as well as the critical role of Re-induced oxygen vacancies in enhancing OER performance. These findings highlight that oxygen defects directly influence OER activity, providing guidance for the application of oxygen vacancy engineering in electrocatalyst design.
Collapse
Affiliation(s)
- Wenxiang Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Mengjie Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Dongdong Gao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jinxin Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Kun Feng
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Qun Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Penghao Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jinzeng Guo
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Zhenglong Fan
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Fan Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Mingwang Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China
| |
Collapse
|
10
|
Chen Y, Dai C, Wu Q, Li H, Xi S, Seow JZY, Luo S, Meng F, Bo Y, Xia Y, Jia Y, Fisher AC, Xu ZJ. Support-free iridium hydroxide for high-efficiency proton-exchange membrane water electrolysis. Nat Commun 2025; 16:2730. [PMID: 40108156 PMCID: PMC11923266 DOI: 10.1038/s41467-025-58019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
The large-scale implementation of proton-exchange membrane water electrolyzers relies on high-performance membrane-electrode assemblies that use minimal iridium (Ir). In this study, we present a support-free Ir catalyst developed through a metal-oxide-based molecular self-assembly strategy. The unique self-assembly of densely isolated single IrO6H8 octahedra leads to the formation of μm-sized hierarchically porous Ir hydroxide particles. The support-free Ir catalyst exhibits a high turnover frequency of 5.31 s⁻¹ at 1.52 V in the membrane-electrode assembly. In the corresponding proton-exchange membrane water electrolyzer, notable performance with a cell voltage of less than 1.75 V at 4.0 A cm⁻² (Ir loading of 0.375 mg cm⁻²) is achieved. This metal-oxide-based molecular self-assembly strategy may provide a general approach for the development of advanced support-free catalysts for high-performance membrane-electrode assemblies.
Collapse
Affiliation(s)
- Yubo Chen
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore.
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore.
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Chencheng Dai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore
| | - Qian Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Haiyan Li
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Justin Zhu Yeow Seow
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
- Energy Research Institute@NTU (ERI@N), Nanyang Technological University, Singapore, Republic of Singapore
| | - Songzhu Luo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Fanxu Meng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yaolong Bo
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- College of Electrical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yanghong Xia
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- College of Electrical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yansong Jia
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Adrian C Fisher
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore.
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
11
|
Gao C, Cai B. Spin Effects in Optimizing Electrochemical Applications. ACS MATERIALS AU 2025; 5:253-267. [PMID: 40093830 PMCID: PMC11907292 DOI: 10.1021/acsmaterialsau.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 03/19/2025]
Abstract
Efficient electrocatalyst development is crucial for addressing global energy challenges, and recent advances have highlighted the significant role of electron spin-a fundamental property of electrons-in influencing catalytic processes. Regulating the spin states of active sites has emerged as a powerful strategy to enhance catalytic performance. In response to growing interest in spin-induced electrocatalysis, this review offers a comprehensive examination of the impact of spin states on electrocatalytic activity. We explore various strategies for modulating spin states, review state-of-the-art techniques for spin state characterization, and elucidate the mechanisms by which spin effects enhance catalytic efficiency. Additionally, we discuss future research directions, emphasizing the potential of spin regulation to drive innovation in electrocatalyst design and application. This review aims to provide a foundational understanding of spin effects in electrocatalysis, guiding future efforts in the rational design of high-performance catalysts.
Collapse
Affiliation(s)
- Cunyuan Gao
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| |
Collapse
|
12
|
Kim HR, Yeon C, Kim JH, Lee G, Baek S, Lim H, Lee C, Joo JH. Enhancing OER Activity Through Water Treatment-Induced Surface Reconstruction of Metal Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500078. [PMID: 39905894 PMCID: PMC11899550 DOI: 10.1002/smll.202500078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/20/2025] [Indexed: 02/06/2025]
Abstract
This research introduces a simple and effective method to enhance oxygen evolution reaction (OER) performance through surface reconstruction of metal substrates via hydration. A water treatment technique is employed to form a nanometer-thick hydroxide layer on Ni foam, which significantly improved OER activity compared to pristine Ni. To further explore catalyst performance on hydrated substrates, NiFe layered double hydroxide (LDH) is deposited, resulting in NiFe LDH@hydrated Ni foam achieving superior performance and exceptional stability, maintaining 1 A cm-2 for 1000 h. In contrast, NiFe LDH@pristine Ni foam showed rapid degradation. Interestingly, while the hydrated hydroxide layer demonstrated remarkable OER activity, it is ineffective for hydrogen evolution reaction (HER). Density functional theory (DFT) calculations revealed the differing roles of hydroxides in OER and HER, providing insights into their electrochemical pathways. These findings highlight that simple hydration enhances the activity and long-term stability of LDH catalysts, addressing a key limitation in their practical use. This study demonstrates a promising and scalable strategy for improving OER performance and catalyst durability, offering valuable insights into the role of surface hydroxides in electrode reactions for energy applications.
Collapse
Affiliation(s)
- Hye Ri Kim
- Department of Environment and Energy EngineeringGwangju Institute of Science and Technology123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Changho Yeon
- Energy Storage Research DepartmentKorea Institute of Energy ResearchDaejeon34129Republic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Jee Hyeon Kim
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
- Center for Quantum Conversion Research (QCR)Institute of Basic Science (IBS)123 Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Gahyeon Lee
- Department of Environment and Energy EngineeringGwangju Institute of Science and Technology123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn‐ECOSysChem)Gwangju Institute of Science and Technology123 Cheomdan‐gwagiro, Buk‐guGwangju61005South Korea
| | - Seulgi Baek
- Department of Environment and Energy EngineeringGwangju Institute of Science and Technology123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Hyunseob Lim
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123 Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
- Center for Quantum Conversion Research (QCR)Institute of Basic Science (IBS)123 Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Chan‐Woo Lee
- Energy Storage Research DepartmentKorea Institute of Energy ResearchDaejeon34129Republic of Korea
- Energy AI & Computational Science LaboratoryKorea Institute of Energy ResearchDaejeon34129Republic of Korea
| | - Jong Hoon Joo
- Department of Environment and Energy EngineeringGwangju Institute of Science and Technology123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn‐ECOSysChem)Gwangju Institute of Science and Technology123 Cheomdan‐gwagiro, Buk‐guGwangju61005South Korea
| |
Collapse
|
13
|
Wang S, Shi Y, Shen T, Wang G, Sun Y, Wang G, Xiao L, Yan C, Wang C, Liu H, Wang Y, Liao H, Zhuang L, Wang D. Strong Heteroatomic Bond-Induced Confined Restructuring on Ir-Mn Intermetallics Enable Robust PEM Water Electrolyzers. Angew Chem Int Ed Engl 2025; 64:e202420470. [PMID: 39726992 DOI: 10.1002/anie.202420470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Low-iridium acid-stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir-based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade-off. Under working conditions, the strong heteroatom-bonded structure triggers rational surface-confined reconstruction to form self-stabilizing amorphous (oxy)hydroxides on the model Ir-Mn intermetallic (IMC). Combined in situ/ex situ characterizations and theoretical analysis demonstrate that the induced strong covalent Ir-O-Mn units in the catalytic layer weaken the formation barrier of OOH* and promote the preferential dynamic replenishment/conversion pathway of H2O molecules to suppress the uncontrollable participation of lattice oxygen (about 2.6 times lower than that of pure Ir). Thus, a PEM cell with Ir-Mn IMC as anode "pre-electrocatalyst" (0.24 mgIr cm-2) delivers an impressive performance (3.0 A cm-2@1.851 V@80 °C) and runs stably at 2.0 A cm-2 for more than 2,000 h with the cost of USD 0.98 per kg H2, further validating its promising application. This work highlights surface-confined evolution triggered by strong heteroatom bonds, providing insights into the design of catalysts involving surface reconstruction.
Collapse
Affiliation(s)
- Shuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yan Shi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Guangzhe Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yue Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Minis-try of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Gongwei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Changfeng Yan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510650, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430072, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | - Honggang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Minis-try of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
14
|
Fairhurst A, Snyder J, Wang C, Strmcnik D, Stamenkovic VR. Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces. Chem Rev 2025; 125:1332-1419. [PMID: 39873431 PMCID: PMC11826915 DOI: 10.1021/acs.chemrev.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025]
Abstract
The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.
Collapse
Affiliation(s)
- Alasdair
R. Fairhurst
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Joshua Snyder
- Department
of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chao Wang
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 United States
| | - Dusan Strmcnik
- National
Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Vojislav R. Stamenkovic
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
15
|
He N, Yuan Z, Wu C, Xi S, Xiong J, Huang Y, Lian G, Du Z, Liu L, Wu D, Chen Z, Tu W, Zou Z, Tong SY. Efficient Nitrate to Ammonia Conversion on Bifunctional IrCu 4 Alloy Nanoparticles. ACS NANO 2025; 19:4684-4693. [PMID: 39825843 DOI: 10.1021/acsnano.4c15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Electrochemical nitrate reduction (NO3RR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu4 alloy nanoparticles as a bifunctional catalyst to achieve efficient NO3RR and OER while suppressing the unwanted HER. This is achieved by operating the NO3RR at positive potentials using the IrCu4 catalyst, which allows a Faradaic efficiency of 93.6% for NO3RR. When applied to OER catalysis, the IrCu4 alloy also shows excellent results, with a relatively low overpotential of 260 mV at 10 mA cm-2. Stable ammonia production can be achieved for 50 h in a 16 cm2 flow electrolyzer in simulated working conditions. Our research provides a pathway for optimizing NO3RR through bifunctional catalysts in a tandem approach.
Collapse
Affiliation(s)
- Ning He
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhi Yuan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Chao Wu
- Agency for Science, Technology and Research, Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Singapore 627833, Republic of Singapore
| | - Shibo Xi
- Agency for Science, Technology and Research, Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Singapore 627833, Republic of Singapore
| | - Jingjing Xiong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Yucong Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Guanwu Lian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zefan Du
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Laihao Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Dawei Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Wenguang Tu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Shuk-Yin Tong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
16
|
Chang B, Ren Y, Mu N, Zuo S, Zou C, Zhou W, Wen L, Tao H, Zhou W, Lai Z, Kobayashi Y, Zhang H. Dynamic Redox Induced Localized Charge Accumulation Accelerating Proton Exchange Membrane Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2405447. [PMID: 39744769 DOI: 10.1002/adma.202405447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/12/2024] [Indexed: 02/20/2025]
Abstract
The sluggish anodic oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolysis necessitates applied bias to facilitate electron transfer as well as bond cleavage and formation. Traditional electrocatalysis focuses on analyzing the effects of electron transfer, while the role of charge accumulation induced by the applied overpotential has not been thoroughly investigated. To explore the influence mechanism of bias-driven charge accumulation, capacitive Mn is incorporated into IrO2 to regulate the local electronic structure and the adsorption behavior. The applied bias triggers dynamic redox reactions at the active sites, which introduce local charge accumulation on the surface of electrocatalyst. Under bias, Mn oxidation induced a noticeable pseudocapacitance in the pre-OER region, promoting the OER kinetics of iridium sites. Meanwhile, the increased oxygen vacancy formation energy further prevents the lattice oxygen activation. The PEM electrolyzer, equipped with optimal materials as an anode, operates at a low driving voltage of 1.637 V under 2.0 A cm-2, maintaining stable performance for over 800 h with a low degradation rate (19.4 µV h-1). This work provides insights into the performance of metal oxide catalysts in acidic environments and offers forward-looking strategies for enhancing the catalytic performance through dynamic redox induced capacitive behavior.
Collapse
Affiliation(s)
- Bin Chang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nan Mu
- Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chen Zou
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Wei Zhou
- Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Linrui Wen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Huabing Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Zhiping Lai
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Division of Physical Sciences and Engineering and Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yoji Kobayashi
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Wang H, Li X, Zhang G, Gu Z, Chen H, Wei G, Shen S, Cheng J, Zhang J. Recent Progress in Balancing the Activity, Durability, and Low Ir Content for Ir-Based Oxygen Evolution Reaction Electrocatalysts in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410407. [PMID: 39711255 DOI: 10.1002/smll.202410407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Proton exchange membrane (PEM) electrolysis faces challenges associated with high overpotential and acidic environments, which pose significant hurdles in developing highly active and durable electrocatalysts for the oxygen evolution reaction (OER). Ir-based nanomaterials are considered promising OER catalysts for PEM due to their favorable intrinsic activity and stability under acidic conditions. However, their high cost and limited availability pose significant limitations. Consequently, numerous studies have emerged aimed at reducing iridium content while maintaining high activity and durability. Furthermore, the research on the OER mechanism of Ir-based catalysts has garnered widespread attention due to differing views among researchers. The recent progress in balancing activity, durability, and low iridium content in Ir-based catalysts is summarized in this review, with a particular focus on the effects of catalyst morphology, heteroatom doping, substrate introduction, and novel structure development on catalyst performance from four perspectives. Additionally, the recent mechanistic studies on Ir-based OER catalysts is discussed, and both theoretical and experimental approaches is summarized to elucidate the Ir-based OER mechanism. Finally, the perspectives on the challenges and future developments of Ir-based OER catalysts is presented.
Collapse
Affiliation(s)
- Huimin Wang
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Li
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guozhu Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Gu
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Chen
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanghua Wei
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junfang Cheng
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
18
|
Li J, Dong W, Zhu Z, Yang Y, Zhou J, Wang S, Zhou Y, Song E, Liu J. Optimizing Interfacial Charge Dynamics and Quantum Effects in Heterodimensional Superlattices for Efficient Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412805. [PMID: 39679808 PMCID: PMC11809332 DOI: 10.1002/advs.202412805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Superlattice materials have emerged as promising candidates for water electrocatalysis due to their tunable crystal structures, electronic properties, and potential for interface engineering. However, the catalytic activity of transition metal-based superlattice materials for the hydrogen evolution reaction (HER) is often constrained by their intrinsic electronic band structures, which can limit charge carrier mobility and active site availability. Herein, a highly efficient electrocatalyst based on a VS2-VS heterodimensional (2D-1D) superlattice with sulfur vacancies is designed addressing the limitations posed by the intrinsic electronic structure. The enhanced catalytic performance of the VS2-VS superlattice is primarily attributed to the engineered heterojunction, where the work function difference between the VS2 layer and VS chain induces a charge separation field that promotes efficient electron-hole separation. Introducing sulfur vacancies further amplifies this effect by inducing quantum localization of the separated electrons, thereby significantly boosting HER activity. Both theoretical and experimental results demonstrate that the superlattice achieves a ΔGH* of -0.06 eV and an impressively low overpotential of 46 mV at 10 mA·cm-2 in acidic media, surpassing the performance of commercial Pt/C while maintaining exceptional stability over 15 000 cycles. This work underscores the pivotal role of advanced material engineering in designing catalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Jinpeng Li
- State Key Lab of High‐Performance Ceramics and Superfine microstructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Weikang Dong
- School of PhysicsBeijing Institute of TechnologyBeijing100081China
| | - Zibo Zhu
- State Key Lab of High‐Performance Ceramics and Superfine microstructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Yang Yang
- School of PhysicsBeijing Institute of TechnologyBeijing100081China
| | - Jiadong Zhou
- School of PhysicsBeijing Institute of TechnologyBeijing100081China
| | - Sufan Wang
- College of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241000China
| | - Yao Zhou
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijing100081China
| | - Erhong Song
- State Key Lab of High‐Performance Ceramics and Superfine microstructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Jianjun Liu
- State Key Lab of High‐Performance Ceramics and Superfine microstructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Science1 Sub‐lane XiangshanHangzhou310024China
| |
Collapse
|
19
|
Ko W, Shim J, Ahn H, Kwon HJ, Lee K, Jung Y, Antink WH, Lee CW, Heo S, Lee S, Jang J, Kim J, Lee HS, Cho SP, Lee BH, Kim M, Sung YE, Hyeon T. Controlled Structural Activation of Iridium Single Atom Catalyst for High-Performance Proton Exchange Membrane Water Electrolysis. J Am Chem Soc 2025; 147:2369-2379. [PMID: 39778120 DOI: 10.1021/jacs.4c11442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Iridium single atom catalysts are promising oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane water electrolysis (PEMWE), as they can reduce the reliance on costly Ir in the OER catalysts. However, their practical application is hindered by their limited stability during PEMWE operation. Herein, we report on the activation of Ir-doped CoMn2O4 in acidic electrolyte that leads to enhanced activity and stability in acidic OER for long-term PEMWE operation. In-depth material characterization combined with electrochemical analysis and theoretical calculations reveal that activating Ir-doped CoMn2O4 induces controlled restructuring of Ir single atoms to IrOx nanoclusters, resulting in an optimized Ir configuration with outstanding mass activity of 3562 A gIr-1 at 1.53 V (vs RHE) and enhanced OER stability. The PEMWE using activated Ir-doped CoMn2O4 exhibited a stable operation for >1000 h at 250 mA cm-2 with a low degradation rate of 0.013 mV h-1, demonstrating its practical applicability. Furthermore, it remained stable for more than 400 h at a high current density of 1000 mA cm-2, demonstrating long-term durability under practical operation conditions.
Collapse
Affiliation(s)
- Wonjae Ko
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehyuk Shim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunsoo Ahn
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Jung Kwon
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Wytse Hooch Antink
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungeun Heo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongbeom Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiheon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeon Seok Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Pyo Cho
- National Center for Inter-University Research Facilities, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Hoon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Minho Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Xie Z, Chen H, Wang X, Wu YA, Wang Z, Jana S, Zou Y, Zhao X, Liang X, Zou X. Honeycomb-Structured IrO x Foam Platelets as the Building Block of Anode Catalyst Layer in PEM Water Electrolyzer. Angew Chem Int Ed Engl 2025; 64:e202415032. [PMID: 39302057 DOI: 10.1002/anie.202415032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Achieving robust long-term durability with high catalytic activity at low iridium loading remains one of great challenges for proton exchange membrane water electrolyzer (PEMWE). Herein, we report the low-temperature synthesis of iridium oxide foam platelets comprising edge-sharing IrO6 octahedral honeycomb framework, and demonstrate the structural advantages of this material for multilevel tuning of anodic catalyst layer across atomic-to-microscopic scales for PEMWE. The integration of IrO6 octahedral honeycomb framework, foam-like texture and platelet morphology into a single material system assures the generation and exposure of highly active and stable iridium catalytic sites for the oxygen evolution reaction (OER), while facilitating the reduction of both mass transport loss and electronic resistance of catalyst layer. As a proof of concept, the membrane electrode assembly in single-cell PEMWE based on honeycomb-structured IrOx foam platelets, with a low iridium loading (~0.3 mgIr/cm2), is demonstrated to exhibit high catalytic activity at ampere-level current densities and to remain stable for more than 2000 hours.
Collapse
Affiliation(s)
- Zhoubing Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zizhun Wang
- Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Subhajit Jana
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Zhao
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, State Key Laboratory of Automotive Simulation and Control, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
21
|
Park Y, Jang HY, Lee TK, Kim T, Kim D, Kim D, Baik H, Choi J, Kwon T, Yoo SJ, Back S, Lee K. Atomic-level Ru-Ir mixing in rutile-type (RuIr)O 2 for efficient and durable oxygen evolution catalysis. Nat Commun 2025; 16:579. [PMID: 39794326 PMCID: PMC11723980 DOI: 10.1038/s41467-025-55910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
The success of proton exchange membrane water electrolysis (PEMWE) depends on active and robust electrocatalysts to facilitate oxygen evolution reaction (OER). Heteroatom-doped-RuOx has emerged as a promising electrocatalysts because heteroatoms suppress lattice oxygen participation in the OER, thereby preventing the destabilization of surface Ru and catalyst degradation. However, identifying suitable heteroatoms and achieving their atomic-scale coupling with Ru atoms are nontrivial tasks. Herein, to steer the reaction pathway away from the involvement of lattice oxygen, we integrate OER-active Ir atoms into the RuO2 matrix, which maximizes the synergy between stable Ru and active Ir centers, by leveraging the changeable growth behavior of Ru/Ir atoms on lattice parameter-modulated templates. In PEMWE, the resulting (RuIr)O2/C electrocatalysts demonstrate notable current density of 4.96 A cm-2 and mass activity of 19.84 A mgRu+Ir-1 at 2.0 V. In situ spectroscopic analysis and computational calculations highlight the importance of the synergistic coexistence of Ru/Ir-dual-OER-active sites for mitigating Ru dissolution via the optimization of the binding energy with oxygen intermediates and stabilization of Ru sites.
Collapse
Affiliation(s)
- Yeji Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ho Yeon Jang
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea
| | - Tae Kyung Lee
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Chemistry and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Taekyung Kim
- Korea Basic Science Institute (KBSI), Seoul, Republic of Korea
| | - Doyeop Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea
| | - Dongjin Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Chemistry, Incheon National University, Incheon, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon, Republic of Korea
| | - Taehyun Kwon
- Department of Chemistry, Incheon National University, Incheon, Republic of Korea.
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon, Republic of Korea.
| | - Sung Jong Yoo
- Hydrogen Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea.
- Division of Energy & Environment Technology, KIST school, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea.
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Park W, Chung DY. Activity-Stability Relationships in Oxygen Evolution Reaction. ACS MATERIALS AU 2025; 5:1-10. [PMID: 39802143 PMCID: PMC11718537 DOI: 10.1021/acsmaterialsau.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 01/16/2025]
Abstract
The oxygen evolution reaction (OER) is a critical process in various sustainable energy technologies. Despite substantial progress in catalyst development, the practical application of OER catalysts remains hindered by the ongoing challenge of balancing high catalytic activity with long-term stability. We explore the inverse trends often observed between activity and stability, drawing on key insights from both experimental and theoretical studies. Special focus is placed on the performance of different electrodes and their interaction with acidic and alkaline media across a range of electrochemical conditions. This Perspective integrates recent advancements to present a thorough framework for understanding the mechanisms underlying the activity-stability relationship, offering strategies for the rational design of next-generation OER catalysts that successfully meet the dual demands of activity and durability.
Collapse
Affiliation(s)
- Wonchul Park
- Department of Chemical and Biomolecular
Engineering, Korea Advanced Institute of
Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong Young Chung
- Department of Chemical and Biomolecular
Engineering, Korea Advanced Institute of
Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
23
|
Wang D, Lin F, Luo H, Zhou J, Zhang W, Li L, Wei Y, Zhang Q, Gu L, Wang Y, Luo M, Lv F, Guo S. Ir-O-Mn embedded in porous nanosheets enhances charge transfer in low-iridium PEM electrolyzers. Nat Commun 2025; 16:181. [PMID: 39746916 PMCID: PMC11696821 DOI: 10.1038/s41467-024-54646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Using metal oxides to disperse iridium (Ir) in the anode layer proves effective for lowering Ir loading in proton exchange membrane water electrolyzers (PEMWE). However, the reported low-Ir-based catalysts still suffer from unsatisfying electrolytic efficiency and durability under practical industrial working conditions, mainly due to insufficient catalytic activity and mass transport in the catalyst layer. Herein we report a class of porous heterogeneous nanosheet catalyst with abundant Ir-O-Mn bonds, achieving a notable mass activity of 4 A mgIr-1 for oxygen evolution reaction at an overpotential of 300 mV, which is 150.6 times higher than that of commercial IrO2. Ir-O-Mn bonds are unraveled to serve as efficient charge-transfer channels between in-situ electrochemically-formed IrOx clusters and MnOx matrix, fostering the generation and stabilization of highly active Ir3+ species. Notably, Ir/MnOx-based PEMWE demonstrates comparable performance under 10-fold lower Ir loading (0.2 mgIr cm-2), taking a low cell voltage of 1.63 V to deliver 1 A cm-2 for over 300 h, which positions it among the elite of low Ir-based PEMWEs.
Collapse
Affiliation(s)
- Dawei Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Jinhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Wenshu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yi Wei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Science, Beijing, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Science, Beijing, China
| | - Yanfei Wang
- Petrochemical Research Institute, PetroChina, Beijing, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, China.
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
24
|
Xu N, Jin Y, Liu Q, Yu M, Wang X, Wang C, Tu W, Zhang Z, Geng Z, Suenaga K, Cheng F, Song E, Peng Z, Xu J. Rational Design of Diatomic Active Sites for Elucidating Oxygen Evolution Reaction Performance Trends. Angew Chem Int Ed Engl 2025; 64:e202413749. [PMID: 39363752 DOI: 10.1002/anie.202413749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Diatomic catalysts, especially those with heteronuclear active sites, have recently attracted significant attention for their advantages over single-atom catalysts in reactions with relatively high energy barrier, e.g. oxygen evolution reaction. Rational design and synthesis of heteronuclear diatomic catalysts are of immense significance but have so far been plagued by the lack of a definitive correlation between structure and catalytic properties. Here, we report macrocyclic precursor constrained strategy to fabricate series of transition metal (MT, Ni, Co, Fe, Mn, or Cu)-noble (MN, Ir or Ru) centers in carbon material. One notable performance trend is observed in the order of Cu-MN
Collapse
Affiliation(s)
- Nanfeng Xu
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxiang Jin
- State Key Lab of High-Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiunan Liu
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka, 567-0047, Japan
| | - Meng Yu
- State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao Wang
- State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Wang
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wei Tu
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhirong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka, 567-0047, Japan
| | - Fangyi Cheng
- State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Erhong Song
- State Key Lab of High-Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhangquan Peng
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junyuan Xu
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
25
|
Li Y, Zhao G, Zuo S, Wen L, Liu Q, Zou C, Ren Y, Kobayashi Y, Tao H, Luan D, Huang K, Cavallo L, Zhang H. Integrating Interactive Ir Atoms into Titanium Oxide Lattice for Proton Exchange Membrane Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2407386. [PMID: 39623783 DOI: 10.1002/adma.202407386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/08/2024] [Indexed: 01/24/2025]
Abstract
Iridium (Ir)-based oxide is the state-of-the-art electrocatalyst for acidic water oxidation, yet it is restricted to a few Ir-O octahedral packing modes with limited structural flexibility. Herein, the geometric structure diversification of Ir is achieved by integrating spatially correlated Ir atoms into the surface lattice of TiO2 and its booting effect on oxygen evolution reaction (OER) is investigated. Notably, the resultant i-Ir/TiO2 catalyst exhibits much higher electrocatalytic activity, with an overpotential of 240 mV at 10 mA cm-2 and excellent stability of 315 h at 100 mA cm-2 in acidic electrolyte. Both experimental and theoretical findings reveal that flexible Ir─O─Ir coordination with varied geometric structure plays a crucial role in enhancing OER activity, which optimize the intermediate adsorption by adjusting the d-band center of active Ir sites. Operando characterizations demonstrate that the interactive Ir─O─Ir units can suppress over-oxidation of Ir, effectively widening the stable region of Ir species during the catalytic process. The proton exchange membrane (PEM) electrolyzer, equipped with i-Ir/TiO2 as an anode, gives a low driving voltage of 1.63 V at 2 A cm-2 and maintains stable performance for over 440 h. This work presents a general strategy to eliminate the inherent geometric limitations of IrOx species, thereby inspiring further development of advanced catalyst designs.
Collapse
Affiliation(s)
- Yang Li
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Guoxiang Zhao
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Shouwei Zuo
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Linrui Wen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Qiao Liu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, Zhejiang, 315211, P. R. China
| | - Chen Zou
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yoji Kobayashi
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Huabing Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Deyan Luan
- Department of Chemistry City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Kuowei Huang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
26
|
Yang Z, Lai F, Mao Q, Liu C, Peng S, Liu X, Zhang T. Breaking the Mutual-Constraint of Bifunctional Oxygen Electrocatalysis via Direct O─O Coupling on High-Valence Ir Single-Atom on MnO x. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412950. [PMID: 39558778 DOI: 10.1002/adma.202412950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/27/2024] [Indexed: 11/20/2024]
Abstract
Insufficient bifunctional activity of electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the major obstruction to the application of rechargeable metal-air batteries. The primary reason is the mutual constraint of ORR and OER mechanism, involving the same oxygen-containing intermediates and demonstrating the scaling limitations of the adsorption energies. Herein, it is reported a high-valence Ir single atom anchored on manganese oxide (IrSA-MnOx) bifunctional catalyst showing independent pathways for ORR and OER, i.e., associated 4e- pathway on high-valence Ir site for ORR and a novel chemical-activated concerted mechanism for OER, where a distinct spontaneous chemical activation process triggers direct O─O coupling. The IrSA-MnOx therefore delivers outstanding bifunctional activities with remarkably low potential difference (0.635 V) between OER potential at 10 mA cm-2 and ORR half-wave potential in alkaline solution. This work breaks the scaling limitations and provides a new avenue to design efficient and multifunctional electrocatalysts.
Collapse
Affiliation(s)
- Ziyi Yang
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fayuan Lai
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qianjiang Mao
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chong Liu
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing City, Jiangsu Province, 211106, China
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tianran Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China
| |
Collapse
|
27
|
Deng L, Chen H, Hung SF, Zhang Y, Yu H, Chen HY, Li L, Peng S. Lewis Acid-Mediated Interfacial Water Supply for Sustainable Proton Exchange Membrane Water Electrolysis. J Am Chem Soc 2024; 146:35438-35448. [PMID: 39660962 DOI: 10.1021/jacs.4c14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The catalyst-electrolyte interface plays a crucial role in proton exchange membrane water electrolysis (PEMWE). However, optimizing the interfacial hydrogen bonding to enhance both catalytic activity and stability remains a significant challenge. Here, a novel catalyst design strategy is proposed based on the hard-soft acid-base principle, employing hard Lewis acids (LAs = ZrO2, TiO2, HfO2) to mediate the reconfiguration of interfacial hydrogen bonding, thereby enhancing the acidic oxygen evolution reaction (OER) performance of RuO2. Mechanistic analysis indicates that LAs prompt a directional evolution from a rigid hydrogen bonding network to free water, enhancing the trapping of interfacial water on the RuO2 surface, which continuously supplies reactants to the catalytic sites. Moreover, the interconnected hydrogen bonding network facilitates rapid proton transfer, reducing local acidity on the catalyst surface and preventing structural corrosion, thus significantly improving long-term stability. The tandem pathway of water supply and deprotonation transforms the dissolution mechanism of traditional Ru-based catalysts, emphasizing the widespread applicability. Consequently, ZrO2-RuO2 displays a significantly reduced overpotential of 170 mV and exhibits high durability, sustaining 1800 h at 10 mA cm-2 under acidic OER, and maintains robust activity for 100 h at 2 A cm-2 in PEMWE, outperforming most Ru/Ir-based catalysts.
Collapse
Affiliation(s)
- Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hongjun Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanzhi Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | | |
Collapse
|
28
|
Dai J, Shen Z, Chen Y, Li M, Peterson VK, Tang J, Wang X, Li Y, Guan D, Zhou C, Sun H, Hu Z, Huang WH, Pao CW, Chen CT, Zhu Y, Zhou W, Shao Z. A Complex Oxide Containing Inherent Peroxide Ions for Catalyzing Oxygen Evolution Reactions in Acid. J Am Chem Soc 2024; 146:33663-33674. [PMID: 39585747 DOI: 10.1021/jacs.4c11477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Proton exchange membrane water electrolyzers powered by sustainable energy represent a cutting-edge technology for renewable hydrogen generation, while slow anodic oxygen evolution reaction (OER) kinetics still remains a formidable obstacle that necessitates basic comprehension for facilitating electrocatalysts' design. Here, we report a low-iridium complex oxide La1.2Sr2.7IrO7.33 with a unique hexagonal structure consisting of isolated Ir(V)O6 octahedra and true peroxide O22- groups as a highly active and stable OER electrocatalyst under acidic conditions. Remarkably, La1.2Sr2.7IrO7.33, containing 59 wt % less iridium relative to the benchmark IrO2, shows about an order of magnitude higher mass activity, 6-folds higher intrinsic activity than the latter, and also surpasses the state-of-the-art Ir-based oxides ever reported. Combined electrochemical, spectroscopic, and density functional theory investigations reveal that La1.2Sr2.7IrO7.33 follows the peroxide-ion participation mechanism under the OER condition, where the inherent peroxide ions with accessible nonbonded oxygen states are responsible for the high OER activity. This discovery offers an innovative strategy for designing advanced catalysts for various catalytic applications.
Collapse
Affiliation(s)
- Jie Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Shen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Chen
- Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia
| | - Mengran Li
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Vanessa K Peterson
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, New South Wales 2234, Australia
| | - Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yu Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Daqin Guan
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia
| | | | - Hainan Sun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187 Dresden, Germany
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 300092, Taiwan
| | - Yinlong Zhu
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia
| |
Collapse
|
29
|
Abdullah MI, Fang Y, Wu X, Hu M, Shao J, Tao Y, Wang H. Tackling activity-stability paradox of reconstructed NiIrO x electrocatalysts by bridged W-O moiety. Nat Commun 2024; 15:10587. [PMID: 39632899 PMCID: PMC11618364 DOI: 10.1038/s41467-024-54987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
One challenge remaining in the development of Ir-based electrocatalyst is the activity-stability paradox during acidic oxygen evolution reaction (OER), especially for the surface reconstructed IrOx catalyst with high efficiency. To address this, a phase selective Ir-based electrocatalyst is constructed by forming bridged W-O moiety in NiIrOx electrocatalyst. Through an electrochemical dealloying process, an nano-porous structure with surface-hydroxylated rutile NiWIrOx electrocatalyst is engineered via Ni as a sacrificial element. Despite low Ir content, NiWIrOx demonstrates a minimal overpotential of 180 mV for the OER at 10 mA·cm-2. It maintains a stable 300 mA·cm-2 current density during an approximately 300 h OER at 1.8 VRHE and shows a stability number of 3.9 × 105 noxygen · nIr-1. The resulting W - O-Ir bridging motif proves pivotal for enhancing the efficacy of OER catalysis by facilitating deprotonation of OER intermediates and promoting a thermodynamically favorable dual-site adsorbent evolution mechanism. Besides, the phase selective insertion of W-O in NiIrOx enabling charge balance through the W-O-Ir bridging motif, effectively counteracting lattice oxygen loss by regulating Ir-O co-valency.
Collapse
Affiliation(s)
| | - Yusheng Fang
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaobing Wu
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meiqi Hu
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing Shao
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Youkun Tao
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
30
|
Zhang L, Lei Y, Yang Y, Wang D, Zhao Y, Xiang X, Shang H, Zhang B. High Coverage Sub-Nano Iridium Cluster on Core-Shell Cobalt-Cerium Bimetallic Oxide for Highly Efficient Full-pH Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407475. [PMID: 39401396 PMCID: PMC11615758 DOI: 10.1002/advs.202407475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/09/2024] [Indexed: 12/06/2024]
Abstract
The construction of sub-nanometer cluster catalysts (<1 nm) with almost complete exposure of active atoms serves as a promising avenue for the simultaneous enhancement of atom utilization efficiency and specific activity. Herein, a core-shell cobalt-cerium bimetallic oxide protected by high coverage sub-nanometer Ir clusters (denoted as Ir cluster@CoO/CeO2) is constructed by a confined in situ exsolution strategy. The distinctive core-shell structure endows Ir cluster@CoO/CeO2 with enhanced intrinsic activity and high conductivity, facilitating efficient charge transfer and full-pH water splitting. The Ir cluster@CoO/CeO2 achieves low overpotentials of 49/215, 52/390, and 54/243 mV at 10 mA cm-2 for hydrogen evolution reaction/oxygen evolution reaction (HER/OER) in 0.5 m H2SO4, 1.0 m PBS, and 1.0 m KOH, respectively. The small decline in performance after 300 h of operation renders it one of the most effective catalysts for full-pH water splitting. DFT calculations indicate that oriented electron transfer (along the path from Ce to Co and then to Ir) creates an electron-rich environment for surface Ir clusters. The reconstructed interface electronic environment provides optimized intermediates adsorption/desorption energy at the Ir site (for HER) and at the Ir-Co site (for OER), thus simultaneously speeding up the HER/OER kinetics.
Collapse
Affiliation(s)
- Lili Zhang
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Yuanting Lei
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Yinze Yang
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Dan Wang
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Yafei Zhao
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Huishan Shang
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| | - Bing Zhang
- School of Chemical EngineeringZhengzhou Key Laboratory of Advanced Separation TechnologyZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
31
|
Duan J, Zhao Y, Wu Y, Liu Y, Chen J, Yang R, Huang J, Luo C, Wu M, Zheng X, Li P, Jiang X, Guan J, Zhai T. Strain-induced charge delocalization achieves ultralow exciton binding energy toward efficient photocatalysis. Chem Sci 2024; 15:19546-19555. [PMID: 39568926 PMCID: PMC11575543 DOI: 10.1039/d4sc05873a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
The exciton effect is commonly observed in photocatalysts, where substantial exciton binding energy (E b) significantly hampers the efficient generation of photo-excited electron-hole pairs, thereby severely constraining photocatalysis. Herein, we propose a strategy to reduce E b through strain-induced charge delocalization. Taking Ta2O5 as a prototype, tensile strain was introduced by engineering a crystalline/amorphous interface, weakening the interaction between Ta 5d and O 2p orbitals, thus endowing a delocalized charge transport and significantly lowering E b. Consequently, the E b of strained Ta2O5 nanorods (s-Ta2O5 NRs) was reduced to 24.26 meV, below the ambient thermal energy (26 meV). The ultralow E b significantly enhanced the yield of free charges, resulting in a two-fold increase in carrier lifetime and surface potential. Remarkably, the hydrogen evolution rate of s-Ta2O5 NRs increased 51.5 times compared to that of commercial Ta2O5. This strategy of strain-induced charge delocalization to significantly reduce E b offers a promising avenue for developing advanced semiconductor photoconversion systems.
Collapse
Affiliation(s)
- Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology Wuhan 430205 China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Yu Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Junnian Chen
- School of Materials Science & Engineering, Hubei University Wuhan 430062 China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jiazhao Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Chuanqi Luo
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Mao Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xiaodong Zheng
- Department of Applied Physics, The Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Pengyu Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology Wuhan 430205 China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
32
|
Zhou Y, Guo W, Xing L, Dong Z, Yang Y, Du L, Xie X, Ye S. Keys to Unravel the Stability/Durability Issues of Platinum-Group-Metal Catalysts toward Oxygen Evolution Reaction for Acidic Water Splitting. ACS CENTRAL SCIENCE 2024; 10:2006-2015. [PMID: 39634218 PMCID: PMC11613331 DOI: 10.1021/acscentsci.4c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Proton exchange membrane (PEM) water electrolyzers stand as one of the foremost promising avenues for acidic water splitting and green hydrogen production, yet this electrolyzer encounters significant challenges. The primary culprit lies in not only the requirements of substantial platinum-group-metal (PGM)-based electrocatalysts (e.g., IrO x ) at the anode where sluggish oxygen evolution reaction (OER) takes place, but also the harsh high overpotential and acidic environments leading to severe performance degradation. The key points for obtaining accurate stability/durability information on the OER catalysts have not been well agreed upon, in contrast to the oxygen reduction reaction fields. In this regard, we herein reviewed and discussed the pivotal experimental variables involved in stability/durability testing (including but not limited to electrolyte, impurity, catalyst loading, and two/three-electrode vs membrane-electrode-assembly), while the test protocols are revisited and summarized. This outlook is aimed at highlighting the reasonable and effective accelerated degradation test procedures to unravel the acidic OER catalyst instability issues and promote the research and development of a PEM water electrolyzer.
Collapse
Affiliation(s)
- Yangdong Zhou
- Huangpu
Hydrogen Energy Innovation Centre/School of Chemistry and Chemical
Engineering, Guangzhou University, Waihuanxi Road 230, Guangzhou 510006, P. R. China
- School
of Chemistry and Chemical Engineering, Chongqing
University, Daxuecheng
South Road 55, Chongqing 401331, P. R. China
| | - Weijia Guo
- School
of Materials Science and Physics/School of Chemical Engineering and
Technology, China University of Mining and
Technology, Daxue Road 1, Xuzhou 221116, P. R. China
| | - Lixin Xing
- Huangpu
Hydrogen Energy Innovation Centre/School of Chemistry and Chemical
Engineering, Guangzhou University, Waihuanxi Road 230, Guangzhou 510006, P. R. China
| | - Zhun Dong
- SinoHykey
Technology Company Ltd., Hongyuan Road 8, Huangpu District, Guangzhou 510760, P. R. China
| | - Yunsong Yang
- SinoHykey
Technology Company Ltd., Hongyuan Road 8, Huangpu District, Guangzhou 510760, P. R. China
| | - Lei Du
- Huangpu
Hydrogen Energy Innovation Centre/School of Chemistry and Chemical
Engineering, Guangzhou University, Waihuanxi Road 230, Guangzhou 510006, P. R. China
| | - Xiaohong Xie
- School
of Chemistry and Chemical Engineering, Chongqing
University, Daxuecheng
South Road 55, Chongqing 401331, P. R. China
| | - Siyu Ye
- Huangpu
Hydrogen Energy Innovation Centre/School of Chemistry and Chemical
Engineering, Guangzhou University, Waihuanxi Road 230, Guangzhou 510006, P. R. China
- SinoHykey
Technology Company Ltd., Hongyuan Road 8, Huangpu District, Guangzhou 510760, P. R. China
| |
Collapse
|
33
|
Jeon SS, Lee W, Jeon H, Lee H. Developing Catalysts for Membrane Electrode Assemblies in High Performance Polymer Electrolyte Membrane Water Electrolyzers. CHEMSUSCHEM 2024; 17:e202301827. [PMID: 38985026 PMCID: PMC11587686 DOI: 10.1002/cssc.202301827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Extensive research is underway to achieve carbon neutrality through the production of green hydrogen via water electrolysis, powered by renewable energy. Polymer membrane water electrolyzers, such as proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE), are at the forefront of this research. Developing highly active and durable electrode catalysts is crucial for commercializing these electrolyzers. However, most research is conducted in half-cell setups, which may not fully represent the catalysts' effectiveness in membrane-electrode-assembly (MEA) devices. This review explores the catalysts developed for high-performance PEMWE and AEMWE MEA systems. Only the catalysts reporting on the MEA performance were discussed in this review. In PEMWE, strategies aim to minimize Ir use for the oxygen evolution reaction (OER) by maximizing activity, employing metal oxide-based supports, integrating secondary elements into IrOx lattices, or exploring non-Ir materials. For AEMWE, the emphasis is on enhancing the performance of NiFe-based and Co-based catalysts by improving electrical conductivity and mass transport. Pt-based and Ni-based catalysts for the hydrogen evolution reaction (HER) in AEMWE are also examined. Additionally, this review discusses the unique considerations for catalysts operating in pure water within AEMWE systems.
Collapse
Affiliation(s)
- Sun Seo Jeon
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Wonjae Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Hyeseong Jeon
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
34
|
Tran HP, Nong HN, Zlatar M, Yoon A, Hejral U, Rüscher M, Timoshenko J, Selve S, Berger D, Kroschel M, Klingenhof M, Paul B, Möhle S, Nagi Nasralla KN, Escalera-López D, Bergmann A, Cherevko S, Cuenya BR, Strasser P. Reactivity and Stability of Reduced Ir-Weight TiO 2-Supported Oxygen Evolution Catalysts for Proton Exchange Membrane (PEM) Water Electrolyzer Anodes. J Am Chem Soc 2024; 146:31444-31455. [PMID: 39526338 PMCID: PMC11583366 DOI: 10.1021/jacs.4c07002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Reducing the iridium demand in Proton Exchange Membrane Water Electrolyzers (PEM WE) is a critical priority for the green hydrogen industry. This study reports the discovery of a TiO2-supported Ir@IrO(OH)x core-shell nanoparticle catalyst with reduced Ir content, which exhibits superior catalytic performance for the electrochemical oxygen evolution reaction (OER) compared to a commercial reference. The TiO2-supported Ir@IrO(OH)x core-shell nanoparticle configuration significantly enhances the OER Ir mass activity from 8 to approximately 150 A gIr-1 at 1.53 VRHE while reducing the iridium packing density from 1.6 to below 0.77 gIr cm-3. These advancements allow for viable anode layer thicknesses with lower Ir loading, reducing iridium utilization at 70% LHV from 0.42 to 0.075 gIr kW-1 compared to commercial IrO2/TiO2. The identification of the Ir@IrO(OH)x/TiO2 OER catalyst resulted from extensive HAADF-EDX microscopic analysis, operando XAS, and online ICP-MS analysis of 30-80 wt % Ir/TiO2 materials. These analyses established correlations among Ir weight loading, electrode electrical conductivity, electrochemical stability, and Ir mass-based OER activity. The activated Ir@IrO(OH)x/TiO2 catalyst-support system demonstrated an exceptionally stable morphology of supported core-shell particles, suggesting strong catalyst-support interactions (CSIs) between nanoparticles and crystalline oxide facets. Operando XAS analysis revealed the reversible evolution of significantly contracted Ir-O bond motifs with enhanced covalent character, conducive to the formation of catalytically active electrophilic OI- ligand species. These findings indicate that atomic Ir surface dissolution generates Ir lattice vacancies, facilitating the emergence of electrophilic OI- species under OER conditions, while CSIs promote the reversible contraction of Ir-O distances, reforming electrophilic OI- and enhancing both catalytic activity and stability.
Collapse
Affiliation(s)
- Hoang Phi Tran
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Department of Chemical Engineering, Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Bac Tu Liem District, Hanoi 100000, Vietnam
| | - Hong Nhan Nong
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Matej Zlatar
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstraße 1, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Aram Yoon
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Uta Hejral
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Sören Selve
- Center for Electron Microscopy (ZELMI), Technische Universität Berlin, D-10623 Berlin, Germany
| | - Dirk Berger
- Center for Electron Microscopy (ZELMI), Technische Universität Berlin, D-10623 Berlin, Germany
| | - Matthias Kroschel
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Malte Klingenhof
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Benjamin Paul
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Sebastian Möhle
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Kerolus Nasser Nagi Nasralla
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Daniel Escalera-López
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Cauerstraße 1, 91058 Erlangen, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Peter Strasser
- Department of Chemistry, Chemical Engineering Division, The Electrochemical Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
35
|
Xie C, Chen W, Wang Y, Yang Y, Wang S. Dynamic evolution processes in electrocatalysis: structure evolution, characterization and regulation. Chem Soc Rev 2024; 53:10852-10877. [PMID: 39382539 DOI: 10.1039/d3cs00756a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Reactions on electrocatalytic interfaces often involve multiple processes, including the diffusion, adsorption, and conversion of reaction species and the interaction between reactants and electrocatalysts. Generally, these processes are constantly changing rather than being in a steady state. Recently, dynamic evolution processes on electrocatalytic interfaces have attracted increasing attention owing to their significant roles in catalytic reaction kinetics. In this review, we aim to provide insights into the dynamic evolution processes in electrocatalysis to emphasize the importance of unsteady-state processes in electrocatalysis. Specifically, the dynamic structure evolution of electrocatalysts, methods for the characterization of the dynamic evolution and the strategies for the regulation of the dynamic evolution for improving electrocatalytic performance are summarized. Finally, the conclusion and outlook on the research on dynamic evolution processes in electrocatalysis are presented. It is hoped that this review will provide a deeper understanding of dynamic evolution in electrocatalysis, and studies of electrocatalytic reaction processes and kinetics on the unsteady-state microscopic spatial and temporal scales will be given more attention.
Collapse
Affiliation(s)
- Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yahui Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
36
|
Han J, Sun J, Chen S, Zhang S, Qi L, Husile A, Guan J. Structure-Activity Relationships in Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408139. [PMID: 39344559 DOI: 10.1002/adma.202408139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Oxygen electrocatalysis, as the pivotal circle of many green energy technologies, sets off a worldwide research boom in full swing, while its large kinetic obstacles require remarkable catalysts to break through. Here, based on summarizing reaction mechanisms and in situ characterizations, the structure-activity relationships of oxygen electrocatalysts are emphatically overviewed, including the influence of geometric morphology and chemical structures on the electrocatalytic performances. Subsequently, experimental/theoretical research is combined with device applications to comprehensively summarize the cutting-edge oxygen electrocatalysts according to various material categories. Finally, future challenges are forecasted from the perspective of catalyst development and device applications, favoring researchers to promote the industrialization of oxygen electrocatalysis at an early date.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siyu Chen
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| |
Collapse
|
37
|
Wei J, Tang H, Liu Y, Liu G, Sheng L, Fan M, Ma Y, Zhang Z, Zeng J. Optimizing the Intermediates Adsorption by Manipulating the Second Coordination Shell of Ir Single Atoms for Efficient Water Oxidation. Angew Chem Int Ed Engl 2024; 63:e202410520. [PMID: 39080157 DOI: 10.1002/anie.202410520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 10/25/2024]
Abstract
The precise regulation of single-atom catalysts (SACs) with the desired local chemical environment is vital to elucidate the relationship between the SACs structure and the catalytic performance. The debate on the effect of the local coordination environment is quite complicated even for the SACs with the same composition and chemical nature, calling for increased attention on the regulation of the second coordination shell. For oxide-supported SACs, it remains a significant challenge to precisely manipulate the second coordination shell of single atoms supported on oxides due to the structural robustness of oxides. Here, Ir single atoms were anchored on NiO supports via different bonding strategies, resulting in the diverse Ir-O-Ni coordination numbers for Ir sites. Specifically, Ir1/NiO, Ir1-NiO, and Ir1@NiO SACs with increasing Ir-O-Ni coordination numbers of 3, 4, and 5 were synthesized, respectively. We found that the activity of the three samples towards oxygen evolution reaction (OER) exhibited a volcano-shaped relationship with the Ir-O-Ni coordination number, with Ir1-NiO showing the lowest overpotential of 225 mV at 10 mA cm-2. Mechanism investigations indicate that the moderate coordination number of Ir-O-Ni in Ir1-NiO creates the higher occupied Ir dz2 orbital, weakening the adsorption strength for *OOH intermediates and thereby enhancing the OER activity.
Collapse
Affiliation(s)
- Jie Wei
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hua Tang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guiliang Liu
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Li Sheng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yiling Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhirong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| |
Collapse
|
38
|
Liu W, Long G, Xiang Z, Ren T, Piao J, Wan K, Fu Z, Liang Z. Extremely Active and Robust Ir-Mn Dual-Atom Electrocatalyst for Oxygen Evolution Reaction by Oxygen-Oxygen Radical Coupling Mechanism. Angew Chem Int Ed Engl 2024; 63:e202411014. [PMID: 39034426 DOI: 10.1002/anie.202411014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/23/2024]
Abstract
A novel Ir-Mn dual-atom electrocatalyst is synthesized by a facile ion-exchange method by incorporating Ir in SrMnO3, which yields an extremely high activity and stability for the oxygen evolution reaction (OER). The ion exchange process occurs in a self-limitation way, which favors the formation of Ir-Mn dual-atom in the IrMnO9 unit. The incorporation of Ir modulates the electronic structure of both Ir and Mn, thereby resulting in a shorter distance of the Ir-Mn dual-atom (2.41 Å) than the Mn-Mn dual-atom (2.49 Å). The modulated Ir-Mn dual-atom enables the same spin direction O (↑) of the adsorbed *O intermediates, thus facilitating the direct coupling of the two adsorbed *O intermediates to release O2 via the oxygen-oxygen radical coupling mechanism. Electrochemical tests reveal that the Ir-SrMnO3 exhibits a superior OER's activity with a low overpotential of 207 mV at 10 mA cm-2 and achieves a mass specific activity of 1100 A gIr -1 at 1.5 V. The proton-exchange-membrane water electrolyzer with the Ir-SrMnO3 catalyst exhibits a low electrolysis voltage of 1.63 V at 1.0 A cm-2 and a stable 2000-h operation with a decay of only 15 μV h-1 at 0.5 A cm-2.
Collapse
Affiliation(s)
- Wenbo Liu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, 530008, Nanning, P. R. China
| | - Zhipeng Xiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Tianlu Ren
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Jinhua Piao
- School of Food Science and Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Kai Wan
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Zhiyong Fu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, P. R. China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510641, Guangzhou, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Jieyang Center, 522000, Jieyang, Guangdong, China
| |
Collapse
|
39
|
Falling LJ, Jang W, Laha S, Götsch T, Terban MW, Bette S, Mom R, Velasco-Vélez JJ, Girgsdies F, Teschner D, Tarasov A, Chuang CH, Lunkenbein T, Knop-Gericke A, Weber D, Dinnebier R, Lotsch BV, Schlögl R, Jones TE. Atomic Insights into the Competitive Edge of Nanosheets Splitting Water. J Am Chem Soc 2024; 146:27886-27902. [PMID: 39319770 PMCID: PMC11467904 DOI: 10.1021/jacs.4c10312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The oxygen evolution reaction (OER) provides the protons for many electrocatalytic power-to-X processes, such as the production of green hydrogen from water or methanol from CO2. Iridium oxohydroxides (IOHs) are outstanding catalysts for this reaction because they strike a unique balance between activity and stability in acidic electrolytes. Within IOHs, this balance varies with the atomic structure. While amorphous IOHs perform best, they are least stable. The opposite is true for their crystalline counterparts. These rules-of-thumb are used to reduce the loading of scarce IOH catalysts and retain the performance. However, it is not fully understood how activity and stability are related at the atomic level, hampering rational design. Herein, we provide simple design rules (Figure 12) derived from the literature and various IOHs within this study. We chose crystalline IrOOH nanosheets as our lead material because they provide excellent catalyst utilization and a predictable structure. We found that IrOOH signals the chemical stability of crystalline IOHs while surpassing the activity of amorphous IOHs. Their dense bonding network of pyramidal trivalent oxygens (μ3Δ-O) provides structural integrity, while allowing reversible reduction to an electronically gapped state that diminishes the destructive effect of reductive potentials. The reactivity originates from coordinative unsaturated edge sites with radical character, i.e., μ1-O oxyls. By comparing to other IOHs and literature, we generalized our findings and synthesized a set of simple rules that allow prediction of stability and reactivity of IOHs from atomistic models. We hope that these rules will inspire atomic design strategies for future OER catalysts.
Collapse
Affiliation(s)
- Lorenz J. Falling
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
- School
of Natural Sciences, Technical University, Munich 85748, Germany
| | - Woosun Jang
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
- Integrated
Science & Engineering Division, Underwood International College, Yonsei University, Incheon 21983, Republic of Korea
| | - Sourav Laha
- Department
of Chemistry, National Institute of Technology
Durgapur, Durgapur 713209, West Bengal, India
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Thomas Götsch
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Maxwell W. Terban
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Sebastian Bette
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Rik Mom
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
- Leiden Institute
of Chemistry, Leiden University, 2300 Leiden, RA, Netherlands
| | - Juan-Jesús Velasco-Vélez
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
- Experiments
Division, ALBA Synchrotron Light Source,
Cerdanyola del Vallés, Barcelona 08290, Spain
| | - Frank Girgsdies
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Detre Teschner
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Andrey Tarasov
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Cheng-Hao Chuang
- Department
of Physics, Tamkang University, New Taipei City 251301, Taiwan
| | - Thomas Lunkenbein
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Axel Knop-Gericke
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Daniel Weber
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
- Wallenberg
Initiative Materials Science for Sustainability, Chemistry and Chemical
Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Robert Dinnebier
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Bettina V. Lotsch
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Robert Schlögl
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Travis E. Jones
- Fritz
Haber Institute of the Max Planck Society, Berlin 14195, Germany
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
40
|
Kovács MM, Fritsch B, Lahn L, Bachmann J, Kasian O, Mayrhofer KJJ, Hutzler A, Dworschak D. Electrospun Iridium-Based Nanofiber Catalysts for Oxygen Evolution Reaction: Influence of Calcination on Activity-Stability Relation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52179-52190. [PMID: 39293816 PMCID: PMC11450683 DOI: 10.1021/acsami.4c07831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
The enhanced utilization of noble metal catalysts through highly porous nanostructures is crucial to advancing the commercialization prospects of proton exchange membrane water electrolysis (PEMWE). In this study, hierarchically structured IrOx-based nanofiber catalyst materials for acidic water electrolysis are synthesized by electrospinning, a process known for its scalability and ease of operation. A calcination study at various temperatures from 400 to 800 °C is employed to find the best candidates for both electrocatalytic activity and stability. Morphology, structure, phase, and chemical composition are investigated using a scale-bridging approach by SEM, TEM, XRD, and XPS to shed light on the structure-function relationship of the thermally prepared nanofibers. Activity and stability are monitored by a scanning flow cell (SFC) coupled with an inductively coupled plasma mass spectrometer (ICP-MS). We evaluate the dissolution of all metals potentially incorporated into the final catalyst material throughout the synthesis pathway. Despite the opposite trend of performance and stability, the present study demonstrates that an optimum between these two aspects can be achieved at 600 °C, exhibiting values that are 1.4 and 2.4 times higher than those of the commercial reference material, respectively. The dissolution of metal contaminations such as Ni, Fe, and Cr remains minimal, exhibiting no correlation with the steps of the electrochemical protocol applied, thus exerting a negligible influence on the stability of the nanofibrous catalyst materials. This work demonstrates the scalability of electrospinning to produce nanofibers with enhanced catalyst utilization and their testing by SFC-ICP-MS. Moreover, it illustrates the influence of calcination temperature on the structure and chemical composition of the nanofibers, resulting in outstanding electrocatalytic performance and stability compared to commercial catalyst materials for PEMWE.
Collapse
Affiliation(s)
- Miklós Márton Kovács
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of Chemical
and Biological Engineering, 91058 Erlangen, Germany
| | - Birk Fritsch
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
| | - Leopold Lahn
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Dynamic Electrocatalytic Interfaces, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of
Materials Science and Engineering, 91058 Erlangen, Germany
| | - Julien Bachmann
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Chemistry of Thin
Film Materials, IZNF, 91058 Erlangen, Germany
| | - Olga Kasian
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Dynamic Electrocatalytic Interfaces, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of
Materials Science and Engineering, 91058 Erlangen, Germany
| | - Karl J. J. Mayrhofer
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of Chemical
and Biological Engineering, 91058 Erlangen, Germany
| | - Andreas Hutzler
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
| | - Dominik Dworschak
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
| |
Collapse
|
41
|
Lin HY, Yang QQ, Lin MY, Xu HG, Tang X, Fu HQ, Wu H, Zhu M, Zhou L, Yuan HY, Dai S, Liu PF, Yang HG. Enriched Oxygen Coverage Localized within Ir Atomic Grids for Enhanced Oxygen Evolution Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408045. [PMID: 39177118 DOI: 10.1002/adma.202408045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Inefficient active site utilization of oxygen evolution reaction (OER) catalysts have limited the energy efficiency of proton exchange membrane (PEM) water electrolysis. Here, an atomic grid structure is demonstrated composed of high-density Ir sites (≈10 atoms per nm2) on reactive MnO2-x support which mediates oxygen coverage-enhanced OER process. Experimental characterizations verify the low-valent Mn species with decreased oxygen coordination in MnO2-x exert a pivotal impact in the enriched oxygen coverage on the surface during OER process, and the distributed Ir atomic grids, where highly electrophilic Ir─O(II-δ)- bonds proceed rapidly, render intense nucleophilic attack of oxygen radicals. Thereby, this metal-support cooperation achieves ultra-low overpotentials of 166 mV at 10 mA cm-2 and 283 mV at 500 mA cm-2, together with a striking mass activity which is 380 times higher than commercial IrO2 at 1.53 V. Moreover, its high OER performance also markedly surpasses the commercial Ir black catalyst in PEM electrolyzers with long-term stability.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qian Qian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Miao Yu Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Guan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huai Qin Fu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Haoran Wu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
42
|
Wei J, Ye G, Lin H, Li Z, Zhou J, Li YY. Enhanced electrochemical nitrate reduction on copper nitride with moderate intermediates adsorption. J Colloid Interface Sci 2024; 670:798-807. [PMID: 38789354 DOI: 10.1016/j.jcis.2024.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Nitrate in surface and underground water caused systematic risk to the ecological environment. The electrochemically reduction of nitrate into ammonia (NO3RR), offering a sustainable route for nitrate containing wastewater treatment and ammonia fertilizer conversion. Exploration of catalyst with improved catalytic activity with lower energy barriers is still challenging. Here, we report a copper nitride (Cu3N) catalyst with moderate *NOx and *H2O intermediates adsorptions showed enhanced NO3RR performance. Density functional theory calculations reveals that the unique electronic structure of Cu3N provides efficient active sites for NO3RR, thus enabled balanced adsorption of *NO3 and *H2O (ΔE descriptor), sufficient active hydrogen, and moderate intermediate (*NO3 → HNO3, *NH2→*NH3) adsorption energy. Notably, the in-situ analysis technology revealed potential-driven reconstruction and rehabilitation of Cu3N, forming possible nitrogen vacancy, thus implied for better mechanism understanding. The NO3RR activity of Cu3N surpasses that of most recent catalysts and demonstrates superior stability and implies the application for NH4+ fertilizer recovery, which maintaining an NH3 Faradaic efficiency of 93.1 % and high yield rate of 2.9 mg cm2h-1 at -0.6 V versus RHE. These findings broaden the application scenarios of Cu3N catalyst for ammonia synthesis and provide strategy on improving NO3RR performance.
Collapse
Affiliation(s)
- Jinshan Wei
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Gan Ye
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Hexing Lin
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhiming Li
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Ya-Yun Li
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
43
|
Han W, Cai X, Liao J, He Y, Yu C, Zhang X. Regulating Strain and Electronic Structure of Indium Tin Oxide Supported IrO x Electrocatalysts for Highly Efficient Oxygen Evolution Reaction in Acid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47610-47619. [PMID: 39213613 DOI: 10.1021/acsami.4c09431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The development of proton exchange membrane water electrolysis is a promising technology for hydrogen production, which has always been restricted by the slow kinetics of the oxygen evolution reaction (OER). Although IrOx is one of the benchmark acidic OER electrocatalysts, there are still challenges in designing highly active and stable Ir-based electrocatalysts for commercial application. Herein, a Ru-doped IrOx electrocatalyst with abundant twin boundaries (TB-Ru0.3Ir0.7Ox@ITO) is reported, employing indium tin oxide with high conductivity as the support material. Combing the TB-Ru0.3Ir0.7Ox nanoparticles with ITO support could expose more active sites and accelerate the electron transfer. The TB-Ru0.3Ir0.7Ox@ITO exhibits a low overpotential of 203 mV to achieve 10 mA cm-2 and a high mass activity of 854.45 A g-1noble metal at 1.53 V vs RHE toward acidic OER, which exceeds most reported Ir-based OER catalysts. Moreover, improved long-term stability could be obtained, maintaining the reaction for over 110 h at 10 mA cm-2 with negligible deactivation. DFT calculations further reveal the activity enhancement mechanism, demonstrating the synergistic effects of Ru doping and strains on the optimization of the d-band center (εd) position and the adsorption free energy of oxygen intermediates. This work provides ideas to realize the trade-off between high catalytic activity and good stability for acidic OER electrocatalysts.
Collapse
Affiliation(s)
- Weiwei Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xinuo Cai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Jiahong Liao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| | - Chunlin Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang Province 324000, China
| |
Collapse
|
44
|
Shen Y, Zhang XL, Qu MR, Ma J, Zhu S, Min YL, Gao MR, Yu SH. Cr dopant mediates hydroxyl spillover on RuO 2 for high-efficiency proton exchange membrane electrolysis. Nat Commun 2024; 15:7861. [PMID: 39251585 PMCID: PMC11385839 DOI: 10.1038/s41467-024-51871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Simultaneously improving the activity and stability of catalysts for anodic oxygen evolution reaction (OER) in proton exchange membrane water electrolysis (PEMWE) remains a notable challenge. Here, we report a chromium-doped ruthenium dioxide with oxygen vacancies, termed Cr0.2Ru0.8O2-x, that drives OER with an overpotential of 170 mV at 10 mA cm-2 and operates stably over 2000 h in acidic media. Experimental and theoretical studies show that the synergy of Cr dopant and oxygen vacancy induces an unconventional dopant-mediated hydroxyl spillover mechanism. Such dynamic hydroxyl spillover from Cr dopant to Ru active site changes the rate-determining step from OOH* formation to O2 formation and thus greatly improves the OER performance. Moreover, the Cr dopant and oxygen vacancy also play a crucial role in stabilizing surface Ru and lattice oxygen in the Ru-O-Cr structural motif. When assembled into the anode of a practical PEMWE device, Cr0.2Ru0.8O2-x enables long-term durability of over 200 h at an ampere-level current density and 60 degrees centigrade.
Collapse
Affiliation(s)
- Yu Shen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ming-Rong Qu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jie Ma
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Yu-Lin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
45
|
Sun S, Zhang Y, Shi X, Sun W, Felser C, Li W, Li G. From Charge to Spin: An In-Depth Exploration of Electron Transfer in Energy Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312524. [PMID: 38482969 DOI: 10.1002/adma.202312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/24/2024] [Indexed: 05/01/2024]
Abstract
Catalytic materials play crucial roles in various energy-related processes, ranging from large-scale chemical production to advancements in renewable energy technologies. Despite a century of dedicated research, major enduring challenges associated with enhancing catalyst efficiency and durability, particularly in green energy-related electrochemical reactions, remain. Focusing only on either the crystal structure or electronic structure of a catalyst is deemed insufficient to break the linear scaling relationship (LSR), which is the golden rule for the design of advanced catalysts. The discourse in this review intricately outlines the essence of heterogeneous catalysis reactions by highlighting the vital roles played by electron properties. The physical and electrochemical properties of electron charge and spin that govern catalysis efficiencies are analyzed. Emphasis is placed on the pronounced influence of external fields in perturbing the LSR, underscoring the vital role that electron spin plays in advancing high-performance catalyst design. The review culminates by proffering insights into the potential applications of spin catalysis, concluding with a discussion of extant challenges and inherent limitations.
Collapse
Affiliation(s)
- Shubin Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xin Shi
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Chemical Engineering, Ningbo University, 818 A Fenghua Rd, Jiangbei District, Ningbo, 315211, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Claudia Felser
- Topological Quantum Chemistry, Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
46
|
Shu W, Sun Q, Guo M. A novel design of urea-assisted hydrogen production in electrochemical-chemical decoupled self-circulating systems. RSC Adv 2024; 14:26659-26666. [PMID: 39175676 PMCID: PMC11340426 DOI: 10.1039/d4ra04644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
In traditional water electrolysis processes, the oxidation and reduction reactions of water are coupled in both time and space, which presents significant challenges. Here, we propose an optimized design for an electrochemical-chemical self-circulating decoupled system. This system uses the continuous Ni2+/Ni3+ redox process on nickel hydroxide electrode sheets to stepwise couple the urea oxidation-assisted hydrogen production system, separating the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) into two distinct steps: electrochemical and chemical reactions. In the first electrochemical step, water is reduced at the cathode to produce hydrogen, while the single-electron electrochemical oxidation of Ni(OH)2 at the anode generates NiOOH. Then, in the second chemical reaction step, NiOOH spontaneously oxidizes urea, causing its decomposition and simultaneously reducing back to the Ni(OH)2 state. We concurrently investigated the effects of temperature and OH-concentration on the spontaneous oxidation of urea. At 80 °C and with a 1 M KOH concentration containing 50 mg of urea solution, the NiOOH electrode successfully catalyzed the spontaneous decomposition of urea, achieving conversion rate of 100% and faradaic efficiency of 98%.
Collapse
Affiliation(s)
- Weihang Shu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Qi Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Mingrui Guo
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| |
Collapse
|
47
|
Jones TE, Teschner D, Piccinin S. Toward Realistic Models of the Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2024; 124:9136-9223. [PMID: 39038270 DOI: 10.1021/acs.chemrev.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The electrocatalytic oxygen evolution reaction (OER) supplies the protons and electrons needed to transform renewable electricity into chemicals and fuels. However, the OER is kinetically sluggish; it operates at significant rates only when the applied potential far exceeds the reversible voltage. The origin of this overpotential is hidden in a complex mechanism involving multiple electron transfers and chemical bond making/breaking steps. Our desire to improve catalytic performance has then made mechanistic studies of the OER an area of major scientific inquiry, though the complexity of the reaction has made understanding difficult. While historically, mechanistic studies have relied solely on experiment and phenomenological models, over the past twenty years ab initio simulation has been playing an increasingly important role in developing our understanding of the electrocatalytic OER and its reaction mechanisms. In this Review we cover advances in our mechanistic understanding of the OER, organized by increasing complexity in the way through which the OER is modeled. We begin with phenomenological models built using experimental data before reviewing early efforts to incorporate ab initio methods into mechanistic studies. We go on to cover how the assumptions in these early ab initio simulations─no electric field, electrolyte, or explicit kinetics─have been relaxed. Through comparison with experimental literature, we explore the veracity of these different assumptions. We summarize by discussing the most critical open challenges in developing models to understand the mechanisms of the OER.
Collapse
Affiliation(s)
- Travis E Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
| | - Detre Teschner
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Simone Piccinin
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Trieste 34136, Italy
| |
Collapse
|
48
|
Guan Z, Li J, Li S, Wang K, Lei L, Wang Y, Zhuang L, Xu Z. Multivalence-State Tungsten Species Facilitated Iridium Loading for Robust Acidic Water Oxidation. SMALL METHODS 2024; 8:e2301419. [PMID: 38315088 DOI: 10.1002/smtd.202301419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Indexed: 02/07/2024]
Abstract
The development of the proton exchange membrane water electrolyzer (PEMWE) is still limited by the prohibitive cost and scarcity of iridium (Ir)-based oxygen evolution reaction (OER) catalyst. This work presents a novel catalyst synthesized by precursor-atomization and rapid joule-heating method, successfully doping iridium atoms into polyvalent tungsten blends (W0, W5+, W6+) based on titanium substrate. The vacancy engineering of unsaturated tungsten oxide (W5+, W6+) reconstructs the electronic structure of the catalyst surface, which resulting in the low-valence state iridium species, avoiding excessive oxidation of iridium and accelerating the catalytic kinetics. Meanwhile, metallic tungsten (W0) improves the conductivity of catalyst and guarantees the stable existence of oxygen vacancy. The TiIrWOx possesses excellent performance in acidic OER catalysis, requiring overpotential of only 181 mV to drive 10.0 mA cm-2, and exhibiting a high mass activity of 753 A gIr -1 at an overpotential of 300 mV. The membrane electrode assembly (MEA) with TiIrWOx as anode electrocatalyst can reduce the Ir consumption amount by >60% compared to commercial IrO2, and it can operated over 120 h at a current density of 1.0 A cm-2.
Collapse
Affiliation(s)
- Zeyu Guan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiankun Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiyi Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Keyu Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Linfeng Lei
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Suzhou Laboratory, Suzhou, 215000, China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Suzhou Laboratory, Suzhou, 215000, China
| | - Linzhou Zhuang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
49
|
Gao C, Wang J, Hübner R, Zhan J, Zhao M, Li Y, Cai B. Spin Effect to Regulate the Electronic Structure of Ir─Fe Aerogels for Efficient Acidic Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400875. [PMID: 38558285 DOI: 10.1002/smll.202400875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Indexed: 04/04/2024]
Abstract
"Spin" has been recently reported as an important degree of electronic freedom to promote catalysis, yet how it influences electronic structure remains unexplored. This work reports the spin-induced orbital hybridization in Ir─Fe bimetallic aerogels, where the electronic structure of Ir sites is effectively regulated by tuning the spin property of Fe atoms. The spin-optimized electronic structure boosts oxygen evolution reaction (OER) electrocatalysis in acidic media, resulting in a largely improved catalytic performance with an overpotential of as low as 236 mV at 10 mA cm-2. Furthermore, the gelation kinetics for the aerogel synthesis is improved by an order of magnitude based on the introduction of a magnetic field. Density functional theory calculation reveals that the increased magnetic moment of Fe (3d orbital) changes the d-band structure (i.e., the d-band center and bandwidth) of Ir (5d orbital) via orbital hybridization, resulting in optimized binding of reaction intermediates. This strategy builds the bridge between the electron spin theory with the d-band theory and provides a new way for the design of high-performance electrocatalysts by using spin-induced orbital interaction.
Collapse
Affiliation(s)
- Cunyuan Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Juan Wang
- School of Physics, Shandong University, Jinan, 250100, China
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Mingwen Zhao
- School of Physics, Shandong University, Jinan, 250100, China
| | - Yangyang Li
- School of Physics, Shandong University, Jinan, 250100, China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| |
Collapse
|
50
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|