1
|
Rani S, Jain A, Nag R, Rani D, Pahuja M, E M H, Das S, Afshan M, Siddiqui SA, Chaudhary N, Bera A, Bera C, Ghosh K. Unraveling Hydrogen Evolution in Ni-Doped SnSe: Mechanistic Insights into the Synergy of Crystal Facets, Doping, and External Stimuli Using On-Chip Microelectrochemical Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502759. [PMID: 40376976 DOI: 10.1002/smll.202502759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/03/2025] [Indexed: 05/18/2025]
Abstract
Understanding electrocatalytic processes at the microscale in 2D-layered architectures is crucial for catalyst design and investigating underlying mechanisms. In this study, pristine and nickel (Ni)-doped tin selenide (SnSe) flakes are analyzed using on-chip microelectrochemical measurements to explore the effects of defect and facet engineering on their hydrogen evolution reaction (HER) activity. The catalytic activity is found to be influenced by the exposed crystal facets, with the edges exhibiting higher activity than the basal planes. Deliberately exposing the (010) planes of SnSe flakes, having the highest density of dangling bonds, results in a noticeable improvement in HER performance. Additionally, Ni doping in SnSe enhances the HER performance by reducing the overpotential value required to achieve a current density of 100 mA cm-2 from 231 ± 24 to just 89 ± 35 mV versus the reversible hydrogen electrode, which is attributed to an increased number of active sites and lower semiconductor/electrolyte barrier height. Ni doping also induces a transition in p-type SnSe to n-type by substituting Sn sites and occupying Sn vacancies, which facilitates enhanced HER kinetics with ~ three times enhancement in current density. External electric fields and photoirradiation further modulate HER kinetics, highlighting the potential for tuning SnSe and similar 2D materials for electrocatalytic applications.
Collapse
Affiliation(s)
- Seema Rani
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali, 140306, India
| | - Ayushi Jain
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali, 140306, India
| | - Riya Nag
- Department of Physics, Midnapore College, Midnapore, West Bengal, 721101, India
| | - Daya Rani
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali, 140306, India
| | - Mansi Pahuja
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali, 140306, India
| | - Harini E M
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali, 140306, India
| | - Subhabrata Das
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali, 140306, India
| | - Mohd Afshan
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali, 140306, India
| | - Shumile Ahmed Siddiqui
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali, 140306, India
| | - Nikita Chaudhary
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali, 140306, India
| | - Abhijit Bera
- Department of Physics, Midnapore College, Midnapore, West Bengal, 721101, India
| | - Chandan Bera
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali, 140306, India
| | - Kaushik Ghosh
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali, 140306, India
| |
Collapse
|
2
|
Wei M, Huang Y, Wei Y, Chen S, Zhang Z, Ge Z, Chen J, Saleem F, Liu W. Emerging Trends in Two-Dimensional Nanomaterials for Electrocatalytic Nitrate-to-Ammonia Conversion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27671-27696. [PMID: 40317103 DOI: 10.1021/acsami.5c04070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Electrocatalytic nitrate reduction to ammonia (ENRA) has emerged as a promising strategy due to its dual functionality in wastewater treatment and sustainable ammonia synthesis. Two-dimensional (2D) nanomaterials offer the exposure of highly active sites, tunability of the electronic structure, and enhanced mass transfer capabilities, thereby optimizing the atomic-scale kinetics of the nitrate reduction reaction and improving the ammonia synthesis efficiency. This review provides a comprehensive overview of recent advances in the field of 2D nanomaterials. Initially, fundamental mechanisms are examined. Subsequently, the paper explores the advantages of 2D materials, including metallic variants (e.g., metals, metal oxides, metal hydroxides, metal carbides, metal nitrides, metal borides, and 2D-confined single-atom catalysts) as well as 2D nonmetallic materials, focusing on their roles in nitrate activation and proton-coupled electron transfer processes. Finally, this review provides a prospective development of 2D catalysts, addressing the challenges related to long-term stability under industrial-grade current densities and outlining potential avenues for future research in this area.
Collapse
Affiliation(s)
- Mo Wei
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yuting Huang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yuao Wei
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Shuo Chen
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ziyi Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zhou Ge
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jie Chen
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Faisal Saleem
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Wenjing Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
3
|
Zhang T, Ye Q, Liu Y, Liu Q, Han Z, Wu D, Chen Z, Li Y, Fan HJ. Data-driven discovery of biaxially strained single atoms array for hydrogen production. Nat Commun 2025; 16:3644. [PMID: 40240379 PMCID: PMC12003809 DOI: 10.1038/s41467-025-59053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
The structure-performance relationship for single atom catalysts has remained unclear due to the averaged coordination information obtained from most single-atom catalysts. Periodic array of single atoms may provide a platform to tackle this inaccuracy. Here, we develop a data-driven approach by incorporating high-throughput density functional theory computations and machine learning to screen candidates based on a library of 1248 sites from single atoms array anchored on biaxial-strained transition metal dichalcogenides. Our screening results in Au atom anchored on biaxial-strained MoSe2 surface via Au-Se3 bonds. Machine learning analysis identifies four key structural features by classifying the ΔGH* data. We show that the average band center of the adsorption sites can be a predictor for hydrogen adsorption energy. This prediction is validated by experiments which show single-atom Au array anchored on biaxial-strained MoSe2 archives 1000 hour-stability at 800 mA cm-2 towards acidic hydrogen evolution. Moreover, active hotspot consisting of Au atoms array and the neighboring Se atoms is unraveled for enhanced activity.
Collapse
Affiliation(s)
- Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Qitong Ye
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, P. R. China
| | - Yipu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, P. R. China.
| | - Qingyi Liu
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zengyu Han
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dongshuang Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Chen
- School of Physical Science and Technology, Tiangong University, XiQing District, Tianjin, P.R. of China
| | - Yue Li
- School of Physical Science and Technology, Tiangong University, XiQing District, Tianjin, P.R. of China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
4
|
Zheng L, Li H, Kovalska E, Luxa J, Yu R, Zhou H, Chen M, Wu B, Sofer Z. Electrochemical Exfoliation of Layered Non-van der Waals Crystals into 2D Nanosheets: MAX Phases and Beyond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408801. [PMID: 39924796 PMCID: PMC11899520 DOI: 10.1002/smll.202408801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/12/2024] [Indexed: 02/11/2025]
Abstract
2D materials have rapidly gained attention due to their exceptional properties like high surface area, flexibility, and tunable electronic characteristics. These attributes make them highly versatile for applications in energy storage, electronics, and biomedicine. Inspired by graphene's success, researchers are exploring other 2D materials from bulk crystals. Electrochemical exfoliation (ECE) is an efficient method for producing these materials, offering more sustainable mild conditions, quick processing, simple equipment, and high yields. While substantial progress has been made in the ECE of layered van der Waals (L-vdW) crystals, the exploration of layered non-van der Waals (L-NvdW) materials remains in its early stages. This review delves into using ECE to create 2D nanoplatelets from L-NvdW crystals. A comparative analysis of exfoliation techniques is provided for L-vdW and L-NvdW materials, followed by a comprehensive overview of recent advances in ECE methods applied to L-NvdW crystals. The discussion is organized around key categories, including the selective extraction of "M" and "A" layers respectively from MAX phases, decalcification of Zintl phases, and oxide delocalization from metal oxides. It is concluded by highlighting the potential applications of these 2D materials and discussing the challenges and future directions in this evolving field.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Inorganic ChemistryUniversity of Chemistry and Technology PragueTechnická 5Prague166 28Czech Republic
| | - Heng Li
- Department of Inorganic ChemistryUniversity of Chemistry and Technology PragueTechnická 5Prague166 28Czech Republic
| | - Evgeniya Kovalska
- Department of EngineeringFaculty of Environment Science and EconomyUniversity of ExeterExeterEX4 4QFUK
| | - Jan Luxa
- Department of Inorganic ChemistryUniversity of Chemistry and Technology PragueTechnická 5Prague166 28Czech Republic
| | - Ruizhi Yu
- Institute of Micro/Nano Materials and DevicesNingbo University of TechnologyNingboZhejiang315211P. R. China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary SciencesBeijing Institute of TechnologyBeijing100081China
| | - Manfang Chen
- National Base for International Science & Technology CooperationSchool of ChemistryXiangtan UniversityXiangtan411105China
| | - Bing Wu
- Department of Inorganic ChemistryUniversity of Chemistry and Technology PragueTechnická 5Prague166 28Czech Republic
| | - Zdenek Sofer
- Department of Inorganic ChemistryUniversity of Chemistry and Technology PragueTechnická 5Prague166 28Czech Republic
| |
Collapse
|
5
|
Ying Y, Fan K, Lin Z, Huang H. Facing the "Cutting Edge:" Edge Site Engineering on 2D Materials for Electrocatalysis and Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418757. [PMID: 39887476 PMCID: PMC11899551 DOI: 10.1002/adma.202418757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/15/2025] [Indexed: 02/01/2025]
Abstract
The utilization of 2D materials as catalysts has garnered significant attention in recent years, primarily due to their exceptional features including high surface area, abundant exposed active sites, and tunable physicochemical properties. The unique geometry of 2D materials imparts them with versatile active sites for catalysis, including basal plane, interlayer, defect, and edge sites. Among these, edge sites hold particular significance as they not only enable the activation of inert 2D catalysts but also serve as platforms for engineering active sites to achieve enhanced catalytic performance. Here it is comprehensively aimed to summarize the state-of-the-art advancements in the utilization of edge sites on 2D materials for electrocatalysis and photocatalysis, with applications ranging from water splitting, oxygen reduction, and nitrogen reduction to CO2 reduction. Additionally, various approaches for harnessing and modifying edge sites are summarized and discussed. Here guidelines for the rational engineering of 2D materials for heterogeneous catalysis are provided.
Collapse
Affiliation(s)
- Yiran Ying
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072China
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Ke Fan
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
- School of Materials Science and EngineeringAnhui UniversityHefei230601P. R. China
| | - Zezhou Lin
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Haitao Huang
- Department of Applied PhysicsResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| |
Collapse
|
6
|
Yan X, Wang W, Prezhdo OV, Xu L. Boron Phosphide Nanotubes for Electrocatalytic CO Reduction to Multicarbon Products. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2025; 37:1382-1392. [PMID: 40026706 PMCID: PMC11866746 DOI: 10.1021/acs.chemmater.4c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Developing an efficient catalyst that can reduce CO to economically viable products provides a pathway to achieve carbon neutrality. For this purpose, we introduce and characterize boron phosphide nanotubes, a class of materials that allow one to reach a goal without costly and toxic metal atoms. The tubular configuration imparts a confining effect, facilitating CO adsorption and catalytic reduction into ethanol. By calculating the transition state conditions under different charging and using grand canonical potential kinetics, we establish the transition state energy barriers in the system at different electrochemical potentials. We further elucidate the kinetics and mechanism of the entire reaction process at the microkinetics level and predict the onset potential to be -0.30 V with the Tafel slope of 93.69 mV/dec. Finally, we demonstrate control over concentrations of the products and intermediate species by the choice of pH and the applied potential. The characterized material class and established chemical mechanisms guide design of electrocatalysts for producing multicarbon products.
Collapse
Affiliation(s)
- Xiaodong Yan
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for
Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Wugang Wang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for
Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Lai Xu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
of Advanced Negative Carbon Technologies, Jiangsu Key Laboratory for
Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, PR China
| |
Collapse
|
7
|
Van Winkle M, Zhang K, Bediako DK. Nanoscale Structure and Interfacial Electrochemical Reactivity of Moiré-Engineered Atomic Layers. Acc Chem Res 2025; 58:415-427. [PMID: 39817845 DOI: 10.1021/acs.accounts.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices. In recent years, the application of this "twistronics" concept to interfacial electrochemistry has unveiled unique pathways for tailoring the electrochemical reactivity. This Account provides an overview of our work that leveraged a suite of structural characterization methods, such as interferometric four-dimensional scanning transmission electron microscopy, dark-field transmission electron microscopy, and scanning tunneling microscopy, along with nanoscale electrochemical measurement techniques, namely, scanning electrochemical cell microscopy (SECCM), to uncover and dissect the profound impact of electrode electronic structure, controlled by interlayer twist, on interfacial electron transfer kinetics. At the heart of our findings is the discovery that moiré engineering enables the isolation of thermodynamically unfavorable stacking configurations, or topological defects, that substantially increase the standard electron transfer rate constant at the solid-liquid interface beyond what has been measured on conventional, nontwisted two-dimensional (2D) materials. This enhancement in interfacial reactivity can be attributed to the localization of a high density of electronic states within these particular sites in the superlattice, a similar effect to that which occurs upon incorporation of physical defects or vacancies in an electrode material but instead using an atomically pristine surface with a highly tunable structure. Throughout our studies, understanding the nuances of the relationship between the preimposed moiré twist angle and the observed electron transfer kinetics has heavily relied on the interrogation of additional factors such as spontaneous superlattice reconstruction and three-dimensional localization of electronic states, illustrating the importance of combining electrochemical measurements with both nanoscale structural probes and theoretical modeling for designing and optimizing moiré-engineered electrodes. The insight afforded by our efforts in this space continues to deepen our understanding of the fundamental mechanisms governing electron transfer at electrochemical interfaces at large and also points to the revolutionary prospect of twistronics for advancing electrochemical technologies. While our electrochemical studies have, so far, focused largely on graphene-based moiré materials, we also offer a perspective on the promise of transition metal dichalcogenide (TMD)-based moirés as candidates for highly versatile (photo)electrode surfaces. Accordingly, we provide a discussion of our studies on the structural relaxation observed in moiré superlattices of TMDs, and we summarize our work combining SECCM with field-effect electrostatic gating of TMDs to deconvolute the influences of material conductivity and intrinsic electron transfer kinetics from the overall electrochemical response of a semiconducting 2D material. Overall, this body of work establishes a distinctive foundation for the design of a wide range of materials with tailored properties that can provide crucial insights into interfacial charge transfer chemistry─potentially serving as platforms for sensing, energy conversion, and electrocatalysis─in addition to the emergent exotic correlated electron physics that originally ignited intense interest in moiré twistronics.
Collapse
Affiliation(s)
- Madeline Van Winkle
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kaidi Zhang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - D Kwabena Bediako
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Carey MS, Taussig L, Nantz JM, Lipp JW, Mirau P, Barsoum MW, Nepal D, Magenau AJD. MXene-Vitrimer Nanocomposites: Photo-Thermal Repair, Reinforcement, and Conductivity at Low Volume Fractions Through a Percolative Voronoi-Inspired Microstructure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412000. [PMID: 39679730 DOI: 10.1002/adma.202412000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Indexed: 12/17/2024]
Abstract
An innovative process to multifunctional vitrimer nanocomposites with a percolative MXene minor phase is reported, marking a significant advancement in creating stimuli-repairable, reinforced, sustainable, and conductive nanocomposites at diminished loadings. This achievement arises from a Voronoi-inspired biphasic morphological design via a straight-forward three-step process involving ambient-condition precipitation polymerization of micron-sized prepolymer powders, aqueous powder-coating with 2D MXene (Ti3C2Tz), and melt-pressing of MXene-coated powders into crosslinked films. Due to the formation of MXene-rich boundaries between thiourethane vitrimer domains in a pervasive low-volume fraction conductive network, a low percolation threshold (≈0.19 vol.%) and conductive polymeric nanocomposites (≈350 S m-1) are achieved. The embedded MXene skeleton mechanically bolsters the vitrimer at intermediate loadings, enhancing the modulus and toughness by 300% and 50%, respectively, without mechanical detriment compared to the neat vitrimer. The vitrimer's dynamic-covalent bonds and MXene's photo-thermal conversion properties enable repair in minutes through short-term thermal treatments for full macroscopic mechanical restoration or in seconds under 785 nm light for rapid localized surface repair. This versatile fabrication method to nanocoated pre-vitrimer powders and morphologically complex nanocomposites is compatible with classic composite manufacturing, and when coupled with the material's exceptional properties, holds immense potential for revolutionizing advanced composites and inspiring next-generation smart materials.
Collapse
Affiliation(s)
- Michael S Carey
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
- Riverside Research Institute, Beavercreek, OH, 45431, USA
| | - Laine Taussig
- Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Jacob M Nantz
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jeremiah W Lipp
- Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Peter Mirau
- Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Michel W Barsoum
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Dhriti Nepal
- Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Andrew J D Magenau
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Valentini C, Montes‐García V, Pakulski D, Samorì P, Ciesielski A. Covalent Organic Frameworks and 2D Materials Hybrids: Synthesis Strategies, Properties Enhancements, and Future Directions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410544. [PMID: 39998902 PMCID: PMC11855252 DOI: 10.1002/smll.202410544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Indexed: 02/27/2025]
Abstract
Covalent organic frameworks (COFs) are highly porous, thermally and chemically stable organic polymers. Their high porosity, crystallinity, and adjustable properties make them suitable for numerous applications. However, COFs encounter critical challenges, such as their difficult processability, self-stacking propensity, low electrical conductivity, pore blockage which limits their ionic conductivity, and high recombination rates of photoinduced electrons and holes. To overcome these issues, the hybridization of COFs with 2D materials (2DMs) has proven to be an effective strategy. 2DMs including graphene-like materials, transition metal dichalcogenides, and MXenes are particularly advantageous because of their unique physicochemical properties, such as exceptional electrical and optical characteristics, and mechanical resilience. Over the past decade, significant research efforts have been focused on hybrid 2DMs-COFs materials. These hybrids leverage the strengths of both materials, making them suitable for advanced applications. This Review highlights the latest advancements in 2DM-COF hybrids, examining the physicochemical strengths and weaknesses of the pristine materials, together with the synergistic benefits of their hybridization. Moreover, it emphasizes their most remarkable applications in chemical sensing, catalysis, energy storage, adsorption and filtration, and as anticorrosion agents. Finally, it discusses future challenges and opportunities in the development of 2DM-COFs for new disruptive technologies.
Collapse
Affiliation(s)
- Cataldo Valentini
- Center for Advanced TechnologiesAdam Mickiewicz UniversityUniwersytetu Poznańskiego 10Poznań61‐614Poland
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | | - Dawid Pakulski
- Center for Advanced TechnologiesAdam Mickiewicz UniversityUniwersytetu Poznańskiego 10Poznań61‐614Poland
| | - Paolo Samorì
- Université de StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| | - Artur Ciesielski
- Center for Advanced TechnologiesAdam Mickiewicz UniversityUniwersytetu Poznańskiego 10Poznań61‐614Poland
- Université de StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| |
Collapse
|
10
|
Wang CT, Yue Q, Wang C, Xu Y, Zhou C. A First-Principles Calculation Study of the Catalytic Properties of Two-Dimensional Bismuthene Materials for Carbon Dioxide Reduction. MATERIALS (BASEL, SWITZERLAND) 2025; 18:594. [PMID: 39942261 PMCID: PMC11818279 DOI: 10.3390/ma18030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025]
Abstract
The electrochemical reduction of carbon dioxide (CO2) at room temperature into industrial chemicals and energy products offers a promising strategy to mitigate atmospheric greenhouse gas emissions. In this study, bismuthene was employed as a catalyst for CO2 reduction reaction (CO2RR). Through first-principles calculations, we evaluated the CO2RR catalytic activities of bismuth (Bi) on the (001) and (012) surfaces, analyzing the mechanisms underlying these activities. Surface energy calculations for monolayer and multilayer bismuthene confirmed that monolayer bismuthene is stable and suitable for catalytic applications. Adsorption free energies of intermediates showed that formic acid is the primary product. Furthermore, it is found that the Bi(012) surface has a lower free energy barrier than Bi(001) in the CO2RR process, representing the higher catalytic activity. These results provide theoretical insights for designing bismuthene-based CO2RR catalysts with reduced overpotential, improved efficiency and enhanced selectivity, particularly enhancing catalyst selectivity.
Collapse
Affiliation(s)
- Chang-Tian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China;
| | - Qinchi Yue
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.Y.); (C.W.)
| | - Changhao Wang
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.Y.); (C.W.)
| | - Yuanji Xu
- Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083, China;
| | - Chang Zhou
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Mudassir MW, Goverapet Srinivasan S, Mynam M, Rai B. High-Throughput Exploration of Ti-V-Nb-Mo Carbide MXenes Using Neural Network Potentials and Their Evaluation as Catalysts for Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1127-1138. [PMID: 39731567 DOI: 10.1021/acsami.4c16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (Mn+1Xn) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure. Recently, high entropy MXenes were synthesized, opening a vast compositional space of potentially stable and functionally superior materials. Detailed atomistic modeling enables us to systematically explore this extensive design space, which is otherwise infeasible in experiments. We have developed a Neural Network Potential (NNP) to model (TixVyNbzMop)n+1Cn MXenes (x+y+z+p = 1; n = 1,2,3) by training against Density Functional Theory (DFT) data in an active learning fashion. We then used the developed NNP to perform hybrid Monte Carlo-Molecular Dynamics (MC-MD) simulations to identify thermodynamically stable compositions and investigate the relative arrangement of transition metal atoms within and across layers. Thermodynamic stability increased with Mo content and its presence on the surface layer. We further investigated the catalytic performance of stable MXenes for the HER and observed that the center of the oxygen p-band (εp) correlated well with the energy of adsorption of a hydrogen atom ΔG(*H). Subsurface metal atoms significantly influenced the ΔG(*H) values at the surface via both ligand and strain effects. Our work expands the space of potentially stable MXene compositions, providing targets for synthesis and their evaluation in various applications.
Collapse
Affiliation(s)
| | | | - Mahesh Mynam
- TCS Research, Tata Consultancy Services, Deccan Park, Madhapur, Hyderabad 500081, India
| | - Beena Rai
- TCS Research, Sahyadri Park 2, Rajiv Gandhi Infotech Park, Hinjewadi Phase 3, Pune 411057, India
| |
Collapse
|
12
|
Xu W, Wu Y, Xi S, Wang Y, Wang Y, Ke Y, Ding L, Wang X, Yang J, Zhang W, Loh KP, Ding F, Liu Z, Chhowalla M. Ultrathin transition metal oxychalcogenide catalysts for oxygen evolution in acidic media. NATURE SYNTHESIS 2025; 4:327-335. [PMID: 40092523 PMCID: PMC11903303 DOI: 10.1038/s44160-024-00694-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/05/2024] [Indexed: 03/19/2025]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) exfoliated from bulk layered materials possess interesting properties. Most transition metal oxides are not layered and therefore cannot be exfoliated. Here we report the synthesis of a family of ultrathin materials-transition metal oxychalcogenides (TMOCs)-and demonstrate their unique properties. Two-dimensional TMOCs (MX x O y , M = group IV or V transition metal, X = chalcogen, O = oxygen; x, y = 0-2) from bulk transition metal dichalcogenides (MX2) have been fabricated using tetrabutylammonium intercalation. The stoichiometry of TMOCs can be adjusted, which enables control of their optical bandgaps and tunability of electrical conductivity by more than eight orders of magnitude. By tuning the chalcogen-to-oxygen ratio along with local atomic structure in TMOCs, it is possible to impart unexpected properties. For example, in contrast to conventional TMDs, the hybrid structure of TMOCs renders them surprisingly stable and electrochemically active in strong acids, allowing them to be used as proof-of-concept catalysts for the oxygen evolution reaction at pH ≈ 0. The HfS0.52O1.09 catalyst shows high mass activity (103,000 A g-1 at an overpotential of 0.5 V) and exhibits durability in proton exchange membrane water electrolysers.
Collapse
Affiliation(s)
- Wenshuo Xu
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Yao Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yan Wang
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Ye Wang
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Yuxuan Ke
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, China
| | - Lingtong Ding
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Xiao Wang
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jieun Yang
- Department of Chemistry, Kyung Hee University, Seoul, Republic of Korea
| | - Wenjing Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, China
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Feng Ding
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Manish Chhowalla
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Li K, Ma T, Hu J, Gu Q, Xin Y, He J, Peng YK, Xu Z. Self-Similar Ligand for 2D Zr(IV)-Based Metal-Organic Frameworks: Fluorescent Sensing and Catalysis. Inorg Chem 2024; 63:23894-23906. [PMID: 39636016 DOI: 10.1021/acs.inorgchem.4c04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Two-dimensional (2D) metal-organic framework sheets, in comparison to the 3D analogues, offer potential advantages for intercalation of guest components between the layers, exfoliation/dispersion into solutions, and processing into thin films. As a versatile platform for leveraging organic functions, the 2D Zr(IV)-carboxylate net here features a dendritic Sierpinski tritopic linker with conjugated alkyne branches and a photoactive triphenylamine core. The 2D solid can be easily dispersed in water and many other solvents, resulting in stable and fluorescent suspension for sensing nitro aromatic compounds and Fe3+ ions with high quenching efficiencies and ultralow limits of detection. Also, the neighboring alkyne units of the coordination solid undergo thermal cyclization (e.g., at 320 °C) to form cross-linked nanographene-like components to afford robust porosity, which substantially takes up PdCl2 (atomic ratio of Zr/Pd, 2.4:1) to afford a heterogeneous catalyst for Suzuki-Miyaura coupling reactions─direct in air and without the need for phosphine ligands.
Collapse
Affiliation(s)
- Kedi Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tengrui Ma
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 Guangdong, China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yinger Xin
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 Guangdong, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| |
Collapse
|
14
|
Xu Z, Hu X, Jiang X, Zhu S, Lei K, Pi Y, Jiang K, Zheng S. 2D Carbon-Anchored Platinum-Based Nanodot Arrays as Efficient Catalysts for Methanol Oxidation Reaction. SMALL METHODS 2024:e2401717. [PMID: 39679765 DOI: 10.1002/smtd.202401717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Ultrafine Pt-based alloy nanoparticles supported on carbon substrates have attracted significant attention due to their catalytic potential. Nevertheless, ensuring the stability of these nanoparticles remains a critical challenge, impeding their broad application. In this work, novel nanodot arrays (NAs) are introduced where superfine alloy nanoparticles are uniformly implanted in a 2D carbon substrate and securely anchored. Electrochemical testing of the PtCo NAs demonstrates exceptional methanol oxidation reaction (MOR) activity, achieving 1.25 A mg-1. Moreover, the PtCo NAs exhibit outstanding stability throughout the testing period, underscoring the effectiveness of the anchoring mechanism. Comprehensive characterization and theoretical calculations reveal that the 2D carbon-anchored structure optimizes the electronic structure and coordination environment of Pt, restricts nanoparticle migration, and suppresses transition metal dissolution. This strategy represents a major advancement in addressing the stability limitations of ultrafine nanoparticles in catalytic applications and offers broader insights into the design of next-generation catalysts with enhanced durability and performance.
Collapse
Affiliation(s)
- Zhen Xu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xing Hu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaojie Jiang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Shan Zhu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Kaixiang Lei
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Kezhu Jiang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Shijian Zheng
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
15
|
Sun X, Zhang P, Zhang B, Xu C. Electronic Structure Regulated Carbon-Based Single-Atom Catalysts for Highly Efficient and Stable Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405624. [PMID: 39252646 DOI: 10.1002/smll.202405624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/18/2024] [Indexed: 09/11/2024]
Abstract
Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications.
Collapse
Affiliation(s)
- Xiaohui Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bangyan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| |
Collapse
|
16
|
Coello Escalante L, Limmer DT. Microscopic Origin of Twist-Dependent Electron Transfer Rate in Bilayer Graphene. NANO LETTERS 2024; 24:14868-14874. [PMID: 39527706 DOI: 10.1021/acs.nanolett.4c04690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Using molecular simulation and continuum dielectric theory, we consider how electrochemical kinetics are modulated by the twist angle in bilayer graphene electrodes. By establishing a connection between the twist angle and the screening length of charge carriers within the electrode, we investigate how tunable metallicity modifies the statistics of the electron transfer energy gap. Constant potential molecular simulations show that the activation free energy for electron transfer increases with screening length, leading to a non-monotonic dependence on the twist angle. The twist angle alters the density of states, tuning the number of thermally accessible channels for electron transfer and the reorganization energy by affecting the stability of the vertically excited state through attenuated image charge interactions. Understanding these effects allows us to express the Marcus rate of interfacial electron transfer as a function of the twist angle in a manner consistent with experimental observations.
Collapse
Affiliation(s)
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- MSD, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- CSD, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Liu Y, Wu Z, Gu C, Chen J, Zhu Y, Wang L. Curved Structure Regulated Single Metal Sites for Advanced Electrocatalytic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404758. [PMID: 39140281 DOI: 10.1002/smll.202404758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Curved surface with defined local electronic structures and regulated surface microenvironments is significant for advanced catalytic engineering. Since single-atom catalysts are highly efficient and active, they have attracted much attention in recent years. The curvature carrier has a significant effect on the electronic structure regulation of single-atom sites, which effectively promote the catalytic efficiency. Here, the effect of the curvature structure with exposed metal atoms for catalysis is comprehensively summarized. First, the substrates with curvature features are reviewed. Second, the applications of single-atom catalysts containing curvature in a variety of different electrocatalytic reactions are discussed in depth. The impact of curvature effects in catalytic reactions is further analyzed. Finally, prospects and suggestions for their application and future development are presented. This review paves the way for the construction of high curvature-containing surface carriers, which is of great significance for single-atom catalysts development.
Collapse
Affiliation(s)
- Yang Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Zefei Wu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Chen Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Yanwei Zhu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| |
Collapse
|
18
|
Li Z, Mao X, Feng D, Li M, Xu X, Luo Y, Zhuang L, Lin R, Zhu T, Liang F, Huang Z, Liu D, Yan Z, Du A, Shao Z, Zhu Z. Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures. Nat Commun 2024; 15:9318. [PMID: 39472575 PMCID: PMC11522418 DOI: 10.1038/s41467-024-53578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Efficient catalysts are imperative to accelerate the slow oxygen reaction kinetics for the development of emerging electrochemical energy systems ranging from room-temperature alkaline water electrolysis to high-temperature ceramic fuel cells. In this work, we reveal the role of cationic inductive interactions in predetermining the oxygen vacancy concentrations of 235 cobalt-based and 200 iron-based perovskite catalysts at different temperatures, and this trend can be well predicted from machine learning techniques based on the cationic lattice environment, requiring no heavy computational and experimental inputs. Our results further show that the catalytic activity of the perovskites is strongly correlated with their oxygen vacancy concentration and operating temperatures. We then provide a machine learning-guided route for developing oxygen electrocatalysts suitable for operation at different temperatures with time efficiency and good prediction accuracy.
Collapse
Affiliation(s)
- Zhiheng Li
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
- School of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Xin Mao
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Desheng Feng
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Mengran Li
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia.
| | - Xiaoyong Xu
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia.
- School of Chemical Engineering, The University of Adelaide, Adelaide, Australia.
| | - Yadan Luo
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - Linzhou Zhuang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Tianjiu Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Fengli Liang
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Zi Huang
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Dong Liu
- School of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Zifeng Yan
- School of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Zongping Shao
- WASM: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Australia.
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
19
|
Cao J, Zhao F, Li C, Zhao Q, Gao L, Ma T, Xu H, Ren X, Liu A. Electrocatalytic Synthesis of Urea: An In-depth Investigation from Material Modification to Mechanism Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403412. [PMID: 38934550 DOI: 10.1002/smll.202403412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Industrial urea synthesis production uses NH3 from the Haber-Bosch method, followed by the reaction of NH3 with CO2, which is an energy-consuming technique. More thorough evaluations of the electrocatalytic C-N coupling reaction are needed for the urea synthesis development process, catalyst design, and the underlying reaction mechanisms. However, challenges of adsorption and activation of reactant and suppression of side reactions still hinder its development, making the systematic review necessary. This review meticulously outlines the progress in electrochemical urea synthesis by utilizing different nitrogen (NO3 -, N2, NO2 -, and N2O) and carbon (CO2 and CO) sources. Additionally, it delves into advanced methods in materials design, such as doping, facet engineering, alloying, and vacancy introduction. Furthermore, the existing classes of urea synthesis catalysts are clearly defined, which include 2D nanomaterials, materials with Mott-Schottky structure, materials with artificially frustrated Lewis pairs, single-atom catalysts (SACs), and heteronuclear dual-atom catalysts (HDACs). A comprehensive analysis of the benefits, drawbacks, and latest developments in modern urea detection techniques is discussed. It is aspired that this review will serve as a valuable reference for subsequent designs of highly efficient electrocatalysts and the development of strategies to enhance the performance of electrochemical urea synthesis.
Collapse
Affiliation(s)
- Jianghui Cao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Fang Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Chengjie Li
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Weifang, 262700, China
| | - Qidong Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Liguo Gao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Tingli Ma
- Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Hao Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xuefeng Ren
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Anmin Liu
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| |
Collapse
|
20
|
Liu X, Shan J, Cao T, Zhu L, Ma J, Wang G, Shi Z, Yang Q, Ma M, Liu Z, Yan S, Wang L, Dai Y, Xiong J, Chen F, Wang B, Pan C, Wang Z, Cheng B, He Y, Luo X, Lin J, Liang SJ, Miao F. On-device phase engineering. NATURE MATERIALS 2024; 23:1363-1369. [PMID: 38664497 DOI: 10.1038/s41563-024-01888-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/03/2024] [Indexed: 08/15/2024]
Abstract
In situ tailoring of two-dimensional materials' phases under external stimulus facilitates the manipulation of their properties for electronic, quantum and energy applications. However, current methods are mainly limited to the transitions among phases with unchanged chemical stoichiometry. Here we propose on-device phase engineering that allows us to realize various lattice phases with distinct chemical stoichiometries. Using palladium and selenide as a model system, we show that a PdSe2 channel with prepatterned Pd electrodes can be transformed into Pd17Se15 and Pd4Se by thermally tailoring the chemical composition ratio of the channel. Different phase configurations can be obtained by precisely controlling the thickness and spacing of the electrodes. The device can be thus engineered to implement versatile functions in situ, such as exhibiting superconducting behaviour and achieving ultralow-contact resistance, as well as customizing the synthesis of electrocatalysts. The proposed on-device phase engineering approach exhibits a universal mechanism and can be expanded to 29 element combinations between a metal and chalcogen. Our work highlights on-device phase engineering as a promising research approach through which to exploit fundamental properties as well as their applications.
Collapse
Affiliation(s)
- Xiaowei Liu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Junjie Shan
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Tianjun Cao
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Liang Zhu
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China
| | - Jiayu Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Gang Wang
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China
| | - Zude Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Qishuo Yang
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China
| | - Mingyu Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zenglin Liu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Shengnan Yan
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Lizheng Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yudi Dai
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Junlin Xiong
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Fanqiang Chen
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Buwei Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Chen Pan
- Institute of Interdisciplinary Physical Sciences, School of Physics, Nanjing University of Science and Technology, Nanjing, China
| | - Zhenlin Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Bin Cheng
- Institute of Interdisciplinary Physical Sciences, School of Physics, Nanjing University of Science and Technology, Nanjing, China
| | - Yongmin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xin Luo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-Sen University, Guangzhou, China.
| | - Junhao Lin
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China.
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen, China.
| | - Shi-Jun Liang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Feng Miao
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
21
|
Fu H, Chen Z, Chen X, Jing F, Yu H, Chen D, Yu B, Hu YH, Jin Y. Modification Strategies for Development of 2D Material-Based Electrocatalysts for Alcohol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306132. [PMID: 38044296 PMCID: PMC11462311 DOI: 10.1002/advs.202306132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Indexed: 12/05/2023]
Abstract
2D materials, such as graphene, MXenes (metal carbides and nitrides), graphdiyne (GDY), layered double hydroxides, and black phosphorus, are widely used as electrocatalyst supports for alcohol oxidation reactions (AORs) owing to their large surface area and unique 2D charge transport channels. Furthermore, the development of highly efficient electrocatalysts for AORs via tuning the structure of 2D support materials has recently become a hot area. This article provides a critical review on modification strategies to develop 2D material-based electrocatalysts for AOR. First, the principles and influencing factors of electrocatalytic oxidation of alcohols (such as methanol and ethanol) are introduced. Second, surface molecular functionalization, heteroatom doping, and composite hybridization are deeply discussed as the modification strategies to improve 2D material catalyst supports for AORs. Finally, the challenges and perspectives of 2D material-based electrocatalysts for AORs are outlined. This review will promote further efforts in the development of electrocatalysts for AORs.
Collapse
Affiliation(s)
- Haichang Fu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Zhangxin Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Xiaohe Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Fan Jing
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Hua Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Dan Chen
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Binbin Yu
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| | - Yun Hang Hu
- Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Yanxian Jin
- School of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangZhejiang318000China
| |
Collapse
|
22
|
Kim J, Mayorga-Burrezo P, Song SJ, Mayorga-Martinez CC, Medina-Sánchez M, Pané S, Pumera M. Advanced materials for micro/nanorobotics. Chem Soc Rev 2024; 53:9190-9253. [PMID: 39139002 DOI: 10.1039/d3cs00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Autonomous micro/nanorobots capable of performing programmed missions are at the forefront of next-generation micromachinery. These small robotic systems are predominantly constructed using functional components sourced from micro- and nanoscale materials; therefore, combining them with various advanced materials represents a pivotal direction toward achieving a higher level of intelligence and multifunctionality. This review provides a comprehensive overview of advanced materials for innovative micro/nanorobotics, focusing on the five families of materials that have witnessed the most rapid advancements over the last decade: two-dimensional materials, metal-organic frameworks, semiconductors, polymers, and biological cells. Their unique physicochemical, mechanical, optical, and biological properties have been integrated into micro/nanorobots to achieve greater maneuverability, programmability, intelligence, and multifunctionality in collective behaviors. The design and fabrication methods for hybrid robotic systems are discussed based on the material categories. In addition, their promising potential for powering motion and/or (multi-)functionality is described and the fundamental principles underlying them are explained. Finally, their extensive use in a variety of applications, including environmental remediation, (bio)sensing, therapeutics, etc., and remaining challenges and perspectives for future research are discussed.
Collapse
Affiliation(s)
- Jeonghyo Kim
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Su-Jin Song
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Mariana Medina-Sánchez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi, 5, Bilbao, 48009, Spain
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and Nano-Biosystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, CH-8092 Zürich, Switzerland
| | - Martin Pumera
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
23
|
He L, Zhuang H, Fan Q, Yu P, Wang S, Pang Y, Chen K, Liang K. Advances and challenges in MXene-based electrocatalysts: unlocking the potential for sustainable energy conversion. MATERIALS HORIZONS 2024; 11:4239-4255. [PMID: 39188198 DOI: 10.1039/d4mh00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
MXenes, a novel class of two-dimensional materials, have garnered significant attention for their promising electrocatalytic properties in various energy conversion applications such as water splitting, fuel cells, metal-air batteries, and nitrogen reduction reactions. Their excellent electrical conductivity, high specific surface area, and versatile surface chemistry enable exceptional catalytic performance. This review highlights recent advancements in the design and application strategies of MXenes as electrocatalysts, focusing on key reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and nitrogen reduction reaction (NRR). We discuss the tunability of MXenes' layered structures and surface properties through surface modification, MXene lattice substitution, defect and morphology engineering, and heterostructure construction. Despite the considerable progress, MXenes face challenges such as restacking during catalysis, stability issues, and difficulties in large-scale production. Addressing these challenges through innovative engineering approaches and advancing industrial synthesis techniques is crucial for the broader application of MXene-based materials. Our review underscores the potential of MXenes in transforming electrocatalytic processes and highlights future research directions to optimize their catalytic efficiency and stability.
Collapse
Affiliation(s)
- Lei He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Haizheng Zhuang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Ping Yu
- School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Shengchao Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yifan Pang
- Department of Materials Science and Engineering, the Ohio State University, Columbus, OH 43210, USA
| | - Ke Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Qianwan Institute of CNITECH, Ningbo 315336, China
| |
Collapse
|
24
|
Siddiqui R, Rani M, Shah AA, Siddique S, Ibrahim A. Enhanced electrochemical performance with exceptional capacitive retention in Ce-Co MOFs/Ti 3C 2T x nanocomposite for advanced supercapacitor applications. Heliyon 2024; 10:e36540. [PMID: 39263092 PMCID: PMC11386012 DOI: 10.1016/j.heliyon.2024.e36540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
This study introduces a high-performance Ce-Co MOFs/Ti3C2Tx nanocomposite, synthesized via hydrothermal methods, designed to advance supercapacitor technology. The integration of Ce-Co metal-organic frameworks (MOFs) with Ti3C2Tx (Mxene) yields a composite that exhibits superior electrochemical properties. Structural analyses, including X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), confirm the successful formation of the composite, featuring well-defined rod-like Ce-Co MOFs and layered Ti3C2Tx sheets. Electrochemical evaluation highlights the exceptional performance of the Ce-Co MOFs/Ti3C2Tx nanocomposite, achieving a specific capacitance of 483.3 Fg⁻1 at 10 mVs⁻1, a notable enhancement over the 200 Fg⁻1 of Ce-Co MOFs. It also delivers a high energy density of 78.48 Whkg⁻1 compared to 19 Whkg⁻1 for Ce-Co MOFs. Remarkably, the nanocomposite shows outstanding cyclic stability with a capacitance retention of 109 % after 4000 cycles and electrochemical surface area (ECSA) of 845 cm2, coupled with a reduced charge transfer resistance (Rct) of 2.601 Ω and an equivalent series resistance (ESR) of 0.8 Ω. These findings demonstrate that the Ce-Co MOFs/Ti3C2Tx nanocomposite is a groundbreaking material, offering enhanced energy storage, conductivity, and durability, positioning it as a leading candidate for next-generation supercapacitors.
Collapse
Affiliation(s)
- Rabia Siddiqui
- Department of Physics, The Women University, Multan, 66000, Pakistan
| | - Malika Rani
- Department of Physics, The Women University, Multan, 66000, Pakistan
| | - Aqeel Ahmed Shah
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - Sadaf Siddique
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS), 45650, Islamabad, Pakistan
| | - Akram Ibrahim
- Department of Physics, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
25
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
26
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
27
|
Xu T, Wang D, Fu Q, Liu C. Effect of Different N/C Coordination Electronic Structures on the Activity of Bifunctional Rare-Earth Ytterbium Electrocatalysts for Oxygen Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16463-16472. [PMID: 39054753 DOI: 10.1021/acs.langmuir.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The research and development of bifunctional electrocatalysts for the oxygen electrode is of great significance to solve the problem of electrochemical energy. Herein, the effect of different structure-activity relationships on the performance of YbNxCy-gra catalysts was explored. The bifunctional activity of graphene with a vacancy defect supported by single-atom rare-earth ytterbium was studied by density functional theory (DFT) calculations. We systematically analyzed the stability, electronic properties, and catalytic performance of potential bifunctional catalysts. The results showed that all catalysts were thermodynamically and kinetically stable. Under acidic conditions, YbN2C2-oppo-gra and YbN2C2-pen-gra showed good ORR activity, and their overpotentials were 0.53 and 0.65 V, respectively. In an alkaline environment, most of the Yb(OH)NxCy-gra catalysts showed excellent ORR and OER bifunctional catalytic activity. Their overpotentials were all below 0.6 V. In particular, the ηORR and ηOER of the Yb(OH)N4C0-gra electrocatalyst were as low as 0.33 and 0.42 V. This verified the practicability and feasibility of hydroxyl-modified catalysts to enhance activity. This research provides theoretical insights into the further design and development of high-efficiency rare-earth-supported bifunctional catalysts.
Collapse
Affiliation(s)
- Tao Xu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Daomiao Wang
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Qiming Fu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Chao Liu
- School of Materials Science and Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
28
|
Zhao X, Chen H, Cui Y, Zhang X, Hao R. Dual-Mode Imaging of Dynamic Interaction between Bubbles and Single Nanoplates during the Electrocatalytic Hydrogen Evolution Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400273. [PMID: 38552218 DOI: 10.1002/smll.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Indexed: 08/17/2024]
Abstract
Gas bubble formation at electrochemical interfaces can significantly affect the efficiency and durability of electrocatalysts. However, obtaining comprehensive details on bubble evolution dynamics, particularly their dynamic interaction with high-performance structured electrocatalysts, poses a considerable challenge. Herein, dual-mode interference/total internal reflection fluorescence microscopy is introduced, which allows for the simultaneous capture of the evolution pathway of bubbles and the 3D motion of nanoplate electrocatalysts, providing high-resolution and accurate spatiotemporal information. During the hydrogen evolution reaction, the dynamics of hydrogen bubble generation and their interactions with single nanoplate electrocatalysts at the electrochemical interface are observed. The results unveiled that, under constant potential, bubbles initially manifest as fast-moving nanobubbles, transforming into stationary microbubbles subsequently. The morphology of stationary nanoplates regulates the trajectories of these moving nanobubbles while the pinned microbubbles induce the motion of the electrocatalysts. The dual-mode microscopy can be employed to scrutinize numerous multiphase electrochemical interactions with high spatiotemporal resolution, which can facilitate the rational design of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Houkai Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
29
|
Ismael M, Wark M. A recent review on photochemical and electrochemical nitrogen reduction to ammonia: Strategies to improve NRR selectivity and faradaic efficiency. APPLIED MATERIALS TODAY 2024; 39:102253. [DOI: 10.1016/j.apmt.2024.102253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Kesavan G, Sorescu DC, Ahamed R, Damodaran K, Crawford SE, Askari F, Star A. Influence of gadolinium doping on structural, optical, and electronic properties of polymeric graphitic carbon nitride. RSC Adv 2024; 14:23342-23351. [PMID: 39049892 PMCID: PMC11267507 DOI: 10.1039/d4ra03437f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Polymeric graphitic carbon nitride (gCN) materials have received great attention in the fields of photo and electrocatalysis due to their distinct properties in metal-free systems with high physicochemical stability. Nevertheless, the activity of undoped gCN is limited due to its relatively low specific surface area, low conductivity, and poor dispersibility. Doping Gd atoms in a gCN matrix is an efficient strategy to fine-tune its catalytic activity and its electronic structure. Herein, the influence of various wt% of gadolinium (Gd) doped in melon-type carbon nitride was systematically investigated. Gadolinium-doped graphitic carbon nitride (GdgCN) was synthesized by adding gadolinium nitrate to dicyandiamide during polymerization. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that the crystallinity and the morphological properties are influenced by the % of Gd doping. Furthermore, X-ray photoelectron spectroscopy (XPS) studies revealed that the gadolinium ions bonded with nitrogen atoms. Complementary density functional theory (DFT) calculations illustrate possible bonding configurations of Gd ions both in bulk material and on ultrathin melon layers and provide evidence for the corresponding bandgap modifications induced by gadolinium doping.
Collapse
Affiliation(s)
- Ganesh Kesavan
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Dan C Sorescu
- United States Department of Energy, National Energy Technology Laboratory Pittsburgh Pennsylvania 15236 USA
- Department of Chemical & Petroleum Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15261 USA
| | - Raihan Ahamed
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Krishnan Damodaran
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Scott E Crawford
- United States Department of Energy, National Energy Technology Laboratory Pittsburgh Pennsylvania 15236 USA
| | - Faezeh Askari
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
- Department of Bioengineering, University of Pittsburgh Pittsburgh Pennsylvania 15261 USA
| |
Collapse
|
31
|
Zhou E, Jin H, Lv H, Xie Y, Lu Y, Lu YR, Chan TS, Wang C, Yan W, Zhang J, Ji H, Wu X, Duan X. Solid-State Electrocatalysis in Heteroatom-Doped Alloy Anode Enables Ultrafast Charge Lithium-Ion Batteries. J Am Chem Soc 2024. [PMID: 39019580 DOI: 10.1021/jacs.4c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Electrocatalysis is generally confined to dynamic liquid-solid and gas-solid interfaces and is rarely applicable in solid-state reactions. Here, we report a paradigm shift strategy to exploit electrocatalysis to accelerate solid-state reactions in the context of lithium-ion batteries (LIBs). We employ heteroatom doping, specifically boron for silicon and sulfur for phosphorus, to catalyze electrochemical Li-alloying reactions in solid-state electrode materials. The preferential cleavage of polar dopant-host chemical bonds upon lithiation triggers chemical bond breaking of the host material. This solid-state catalysis, distinct from liquid and gas phases, requires a critical doping concentration for optimal performance. Beyond a critical concentration of ∼1 atom %, boron and sulfur doping drastically reduces activation energies and accelerates redox kinetics during lithiation/delithiation processes, leading to markedly enhanced rate performance in boron-doped silicon and sulfur-doped black/red phosphorus anode. Notably, a sulfur-doped black phosphorus anode coupled with a lithium cobalt oxide cathode achieves an ultrafast-charging battery, recharging 80% energy of a battery in 302 Wh kg-1 in 9 min, surpassing the thus far reported LIBs.
Collapse
Affiliation(s)
- En Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongchang Jin
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haifeng Lv
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuansen Xie
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
- Ningde Amperex Technology Limited (ATL), Ningde, Fujian 352100, China
| | - Yuhao Lu
- Ningde Amperex Technology Limited (ATL), Ningde, Fujian 352100, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Hengxing Ji
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
32
|
Hoat DM, Ponce-Pérez R, Ha CV, Guerrero-Sanchez J. Controlling the electronic and magnetic properties of the GeAs monolayer by generating Ge vacancies and doping with transition-metal atoms. NANOSCALE ADVANCES 2024; 6:3602-3611. [PMID: 38989525 PMCID: PMC11232550 DOI: 10.1039/d4na00235k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024]
Abstract
Controlling the electronic and magnetic properties of two-dimensional (2D) materials is a key step to make new multifunctional candidates for practical applications. In this work, defects and doping with transition metals (TMs = V, Cr, Mn, and Fe) at Ge sublattices are proposed in order to develop novel features in the hexagonal germanium arsenide (GeAs) monolayer. The pristine GeAs monolayer is a non-magnetic indirect gap semiconductor with an energy gap of 1.20(1.82) eV as provided by PBE(HSE06)-based calculations. A single Ge vacancy metallizes the monolayer, preserving its non-magnetic nature. In contrast, significant magnetization with a total magnetic moment of 1.96 μ B is achieved by a pair of Ge vacancies. Herein, the computed band structures assert the half-metallic behavior of the defective system. Similarly, half-metallicity is also obtained by V, Mn, and Fe doping. Meanwhile, the Cr-doped GeAs monolayer is classified as a diluted magnetic semiconductor 2D system. In these cases, magnetic properties are produced mainly by TM-3d electrons with total magnetic moments between 2.00 and 4.00 μ B. Further, the effects of substituting a pair of Ge atoms with a pair of TM atoms (pTMGe systems) are also investigated. Results indicate the ferromagnetic half-metallicity of the pVGe system, meanwhile antiferromagnetic ordering is stable in the remaining cases. In all cases, TM impurities transfer charge to the host GeAs monolayer since they are surrounded by As atoms, which are more electronegative than dopant atoms. Results presented herein may introduce new 2D systems - made from the non-magnetic GeAs monolayer - for spintronic applications with suitable electronic and magnetic features controlled mainly by transition metals.
Collapse
Affiliation(s)
- D M Hoat
- Institute of Theoretical and Applied Research, Duy Tan University Ha Noi 100000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - R Ponce-Pérez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología Apartado Postal 14 Ensenada Baja California Código Postal 22800 Mexico
| | - Chu Viet Ha
- Faculty of Physics, TNU-University of Education Thai Nguyen 250000 Vietnam
| | - J Guerrero-Sanchez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología Apartado Postal 14 Ensenada Baja California Código Postal 22800 Mexico
| |
Collapse
|
33
|
Dhakshinamoorthy A, Ramírez-Grau R, Garcia H, Primo A. Opportunities of MXenes in Heterogeneous Catalysis: V 2C as Aerobic Oxidation Catalyst. Chemistry 2024; 30:e202400576. [PMID: 38618910 DOI: 10.1002/chem.202400576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
MXenes are two-dimensional nanomaterials having alternating sheets of one atom-thick early transition metal layer and one atom-thick carbide or nitride layer. The external surface contains termination groups, whose nature depends on the etching agent used in the preparation procedure from the MAX phase. The present concept proposes that, due to their composition, the metal-surface termination groups make MXenes particularly suited as heterogeneous catalysts for some reactions. This proposal comes from the consideration that early transition metal atoms bonded to hydroxyl and oxo groups are a general type of active sites in heterogeneous catalysis and that similar catalytic centers can also be present in the MXene structure. After having presented the concept, we have selected V2C Mxene as an example to illustrate its catalytic activity and to show how the catalytic performance varies when the surface groups are modified. As a test reaction, we selected the aerobic oxidation of indane to the corresponding indanol/indanone mixture using molecular oxygen as terminal oxidizing reagent. Two previously reported procedures to modify the surface groups, namely surface dehydroxylation by thermal treatment under diluted hydrogen flow and surface oxidation with ammonium persulfate to convert some surface groups into oxo groups were used, observing in both cases a decrease in the catalytic activity of V2C. Based on this, VIII/IV-OH are proposed as catalytic centers in this aerobic oxidation. Overall, the present concept shows the merits of MXenes in heterogeneous catalysis, based on their chemical composition and the surface functionality.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Department of Chemistry, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022, Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Rubén Ramírez-Grau
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas-Universitat Politecnica de Valencia, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, Valencia, 46022, Spain
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas-Universitat Politecnica de Valencia, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, Valencia, 46022, Spain
| | - Ana Primo
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas-Universitat Politecnica de Valencia, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, Valencia, 46022, Spain
| |
Collapse
|
34
|
Duan J, Li J, Divitini G, Cortecchia D, Yuan F, You J, Liu SF, Petrozza A, Wu Z, Xi J. 2D Hybrid Perovskites: From Static and Dynamic Structures to Potential Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403455. [PMID: 38723249 DOI: 10.1002/adma.202403455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Indexed: 05/22/2024]
Abstract
2D perovskites have received great attention recently due to their structural tunability and environmental stability, making them highly promising candidates for various applications by breaking property bottlenecks that affect established materials. However, in 2D perovskites, the complicated interplay between organic spacers and inorganic slabs makes structural analysis challenging to interpret. A deeper understanding of the structure-property relationship in these systems is urgently needed to enable high-performance tunable optoelectronic devices. Herein, this study examines how structural changes, from constant lattice distortion and variable structural evolution, modeled with both static and dynamic structural descriptors, affect macroscopic properties and ultimately device performance. The effect of chemical composition, crystallographic inhomogeneity, and mechanical-stress-induced static structural changes and corresponding electronic band variations is reported. In addition, the structure dynamics are described from the viewpoint of anharmonic vibrations, which impact electron-phonon coupling and the carriers' dynamic processes. Correlated carrier-matter interactions, known as polarons and acting on fine electronic structures, are then discussed. Finally, reliable guidelines to facilitate design to exploit structural features and rationally achieve breakthroughs in 2D perovskite applications are proposed. This review provides a global structural landscape of 2D perovskites, expected to promote the prosperity of these materials in emerging device applications.
Collapse
Affiliation(s)
- Jianing Duan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingrui Li
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering & International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Daniele Cortecchia
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, Bologna, 40129, Italy
- Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, Milano, 20134, Italy
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxue You
- Department of Materials Science and Engineering, Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Annamaria Petrozza
- Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, Milano, 20134, Italy
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jun Xi
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
35
|
Wang P, Xia W, Liu N, Pei W, Zhou S, Tu Y, Zhao J. p-block germanenes as a promising electrocatalysts for the oxygen reduction reaction. J Chem Phys 2024; 160:234705. [PMID: 38884409 DOI: 10.1063/5.0211907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
The oxygen reduction reaction (ORR), a pivotal process in hydrogen fuel cells crucial for enhancing fuel cell performance through suitable catalysts, remains a challenging aspect of development. This study explores the catalytic potential of germanene on Al (111), taking advantage of the successful preparation of stable reconstructed germanene layers on Al (111) and the excellent catalytic performance exhibited by germanium-based nanomaterials. Through first-principles calculations, we demonstrate that the O2 molecule can be effectively activated on both freestanding and supported germanene nanosheets, featuring kinetic barriers of 0.40 and 0.04 eV, respectively. The presence of the Al substrate not only significantly enhances the stability of the reconstructed germanene but also preserves its exceptional ORR catalytic performance. These theoretical findings offer crucial insights into the substrate-mediated modulation of germanene stability and catalytic efficiency, paving the way for the design of stable and efficient ORR catalysts for future applications.
Collapse
Affiliation(s)
| | - Weizhi Xia
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Nanshu Liu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
| | - Wei Pei
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Si Zhou
- School of Physics, South China Normal University, Guangzhou 510631, China
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006 China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jijun Zhao
- School of Physics, South China Normal University, Guangzhou 510631, China
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou, 510006 China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
36
|
Chen WT, Yan CF, Yu CJ, Liao YC, Chen CF. Highly catalytic Prussian blue analogues and their application on the three-dimensional origami paper-based sweat sensors. Biosens Bioelectron 2024; 254:116188. [PMID: 38484412 DOI: 10.1016/j.bios.2024.116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Prussian blue analogues (PBAs) are promising materials due to their rich active sites and straightforward synthesis. However, their limited conductivity and electron transfer inefficiency hinder practical applications. This study utilizes a simple one-pot synthesis approach to produce a tungsten-disulfide (WS2) and iron-cobalt Prussian blue analogue composite (WS2-PBA), enhancing conductivity and electron transfer rate performance. Through the inclusion of sodium citrate into the solution, the S-edge site concentration of WS2 increases. This augmentation introduces additional active sites and defects into the catalyst, enhancing its catalytic activity. The effectiveness of the WS2-PBA 3D-Origami paper device for lactate detection in sweat is also evaluated for biomedical applications. The device demonstrated a robust relationship between the lactate concentration and current intensity (R2 = 0.997), with a detection limit of 1.83 mM. Additionally, this platform has successfully detected lactate in clinical sweat, correlating with the high-performance liquid chromatography test results, suggesting promising prospects for clinical diagnosis. In the future, the excellent catalytic and Rct performance of the WS2-PBA will enable its use in biomedical applications.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Chi-Fong Yan
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Ju Yu
- Department of Applied Physics and Chemistry, University of Taipei, Taipei, 100, Taiwan
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan; Graduate School of Advanced Technology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
37
|
Oschinski H, Hörmann NG, Reuter K. Constant potential energetics of metallic and semiconducting electrodes: A benchmark study on 2D materials. J Chem Phys 2024; 160:214706. [PMID: 38832745 DOI: 10.1063/5.0202849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024] Open
Abstract
Grand-canonical (GC) constant-potential methods within an implicit solvent environment provide a general approach to compute the potential-dependent energetics at electrified solid-liquid interfaces with first-principles density-functional theory. Here, we use a mindfully chosen set of 27 isostructural 2D metal halides MX2 to analyze the variation of this energetics when the electronic structure changes from metallic to semiconducting and insulating state. Apart from expectable changes due to the opening up of the electronic bandgap, the calculations also show an increasing sensitivity to the numerical Brillouin zone integration and electronic smearing, which imposes computational burdens in practice. We rationalize these findings within the picture of the total interfacial capacitance arising from a series connection of the electrochemical double-layer capacitance and the so-called quantum capacitance resulting from the filling of electronic states inside the electrode. For metals, the electrochemical double-layer capacitance dominates at all potentials, and the entire potential drop takes place in the electrolyte. For semiconductors, the potential drop occurs instead fully or partially inside the electrode at potentials within or just outside the bandgap. For 2D semiconductors, the increased sensitivity to numerical parameters then results from the concomitantly increased contribution of the quantum capacitance that is harder to converge. Fortunately, this understanding motivates a simple extension of the CHE + DL approximation for metals, which provides the approximate GC energetics of 2D semiconductors using only quantities that can be obtained from computationally undemanding calculations at the point of zero charge and a generic double-layer capacitance.
Collapse
Affiliation(s)
- Hedda Oschinski
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Nicolas Georg Hörmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
38
|
Han X, Zhang Z, Wang R. A Mini Review: Phase Regulation for Molybdenum Dichalcogenide Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:984. [PMID: 38869609 PMCID: PMC11174720 DOI: 10.3390/nano14110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Atomically thin two-dimensional transition metal dichalcogenides (TMDCs) have been regarded as ideal and promising nanomaterials that bring broad application prospects in extensive fields due to their ultrathin layered structure, unique electronic band structure, and multiple spatial phase configurations. TMDCs with different phase structures exhibit great diversities in physical and chemical properties. By regulating the phase structure, their properties would be modified to broaden the application fields. In this mini review, focusing on the most widely concerned molybdenum dichalcogenides (MoX2: X = S, Se, Te), we summarized their phase structures and corresponding electronic properties. Particularly, the mechanisms of phase transformation are explained, and the common methods of phase regulation or phase stabilization strategies are systematically reviewed and discussed. We hope the review could provide guidance for the phase regulation of molybdenum dichalcogenides nanomaterials, and further promote their real industrial applications.
Collapse
Affiliation(s)
| | - Zhihong Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
39
|
Zhou Y, Gao J, Ju M, Chen Y, Yuan H, Li S, Li J, Guo D, Hong M, Yang S. Combustion Growth of NiFe Layered Double Hydroxide for Efficient and Durable Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28526-28536. [PMID: 38775170 DOI: 10.1021/acsami.4c03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
NiFe layered double hydroxide (LDH) with abundant heterostructures represents a state-of-the-art electrocatalyst for the alkaline oxygen evolution reaction (OER). Herein, NiFe LDH/Fe2O3 nanosheet arrays have been fabricated by facile combustion of corrosion-engineered NiFe foam (NFF). The in situ grown, self-supported electrocatalyst exhibited a low overpotential of 248 mV for the OER at 50 mA cm-2, a small Tafel slope of 31 mV dec-1, and excellent durability over 100 h under the industrial benchmarking 500 mA cm-2 current density. A balanced Ni and Fe composition under optimal corrosion and combustion contributed to the desirable electrochemical properties. Comprehensive ex-situ analyses and operando characterizations including Fourier-transformed alternating current voltammetry (FTACV) and in situ Raman demonstrate the beneficial role of modulated interfacial electron transfer, dynamic atomic structural transformation to NiOOH, and the high-valence active metal sites. This study provides a low-cost and easy-to-expand way to synthesize efficient and durable electrocatalysts.
Collapse
Affiliation(s)
- Yu Zhou
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Jinqiang Gao
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Min Ju
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanpeng Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Haifeng Yuan
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Simeng Li
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Mei Hong
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shihe Yang
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
40
|
Lin Y, Li L, Shi Z, Zhang L, Li K, Chen J, Wang H, Lee JM. Catalysis with Two-Dimensional Metal-Organic Frameworks: Synthesis, Characterization, and Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309841. [PMID: 38217292 DOI: 10.1002/smll.202309841] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 01/15/2024]
Abstract
The demand for the exploration of highly active and durable electro/photocatalysts for renewable energy conversion has experienced a significant surge in recent years. Metal-organic frameworks (MOFs), by virtue of their high porosity, large surface area, and modifiable metal centers and ligands, have gained tremendous attention and demonstrated promising prospects in electro/photocatalytic energy conversion. However, the small pore sizes and limited active sites of 3D bulk MOFs hinder their wide applications. Developing 2D MOFs with tailored thickness and large aspect ratio has emerged as an effective approach to meet these challenges, offering a high density of exposed active sites, better mechanical stability, better assembly flexibility, and shorter charge and photoexcited state transfer distances compared to 3D bulk MOFs. In this review, synthesis methods for the most up-to-date 2D MOFs are first overviewed, highlighting their respective advantages and disadvantages. Subsequently, a systematic analysis is conducted on the identification and electronic structure modulation of catalytic active sites in 2D MOFs and their applications in renewable energy conversion, including electrocatalysis and photocatalysis (electro/photocatalysis). Lastly, the current challenges and future development of 2D MOFs toward highly efficient and practical electro/photocatalysis are proposed.
Collapse
Affiliation(s)
- Yanping Lin
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lu Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lishang Zhang
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ke Li
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, 2 Dublin, Ireland
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
41
|
Zhang J, Jin L, Sun H, Liu X, Ji Y, Li Y, Liu W, Su D, Liu X, Zhuang Z, Hu Z, Shao Q, Huang X. An all-metallic nanovesicle for hydrogen oxidation. Natl Sci Rev 2024; 11:nwae153. [PMID: 38800666 PMCID: PMC11126156 DOI: 10.1093/nsr/nwae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Vesicle, a microscopic unit that encloses a volume with an ultrathin wall, is ubiquitous in biomaterials. However, it remains a huge challenge to create its inorganic metal-based artificial counterparts. Here, inspired by the formation of biological vesicles, we proposed a novel biomimetic strategy of curling the ultrathin nanosheets into nanovesicles, which was driven by the interfacial strain. Trapped by the interfacial strain between the initially formed substrate Rh layer and subsequently formed RhRu overlayer, the nanosheet begins to deform in order to release a certain amount of strain. Density functional theory (DFT) calculations reveal that the Ru atoms make the curling of nanosheets more favorable in thermodynamics applications. Owing to the unique vesicular structure, the RhRu nanovesicles/C displays excellent hydrogen oxidation reaction (HOR) activity and stability, which has been proven by both experiments and DFT calculations. Specifically, the HOR mass activity of RhRu nanovesicles/C are 7.52 A mg(Rh+Ru)-1 at an overpotential of 50 mV at the rotating disk electrode (RDE) level; this is 24.19 times that of commercial Pt/C (0.31 mA mgPt-1). Moreover, the hydroxide exchange membrane fuel cell (HEMFC) with RhRu nanovesicles/C displays a peak power density of 1.62 W cm-2 in the H2-O2 condition, much better than that of commercial Pt/C (1.18 W cm-2). This work creates a new biomimetic strategy to synthesize inorganic nanomaterials, paving a pathway for designing catalytic reactors.
Collapse
Affiliation(s)
- Juntao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Lujie Jin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Hao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujin Ji
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuerui Liu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Qi Shao
- College of Chemistry and Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
42
|
Wright S, Brea C, Baxter JS, Saini S, Alsaç EP, Yoon SG, Boebinger MG, Hu G, McDowell MT. Epitaxial Metal Electrodeposition Controlled by Graphene Layer Thickness. ACS NANO 2024; 18:13866-13875. [PMID: 38751199 PMCID: PMC11140832 DOI: 10.1021/acsnano.4c02981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Control over material structure and morphology during electrodeposition is necessary for material synthesis and energy applications. One approach to guide crystallite formation is to take advantage of epitaxy on a current collector to facilitate crystallographic control. Single-layer graphene on metal foils can promote "remote epitaxy" during Cu and Zn electrodeposition, resulting in growth of metal that is crystallographically aligned to the substrate beneath graphene. However, the substrate-graphene-deposit interactions that allow for epitaxial electrodeposition are not well understood. Here, we investigate how different graphene layer thicknesses (monolayer, bilayer, trilayer, and graphite) influence the electrodeposition of Zn and Cu. Scanning transmission electron microscopy and electron backscatter diffraction are leveraged to understand metal morphology and structure, demonstrating that remote epitaxy occurs on mono- and bilayer graphene but not trilayer or thicker. Density functional theory (DFT) simulations reveal the spatial electronic interactions through thin graphene that promote remote epitaxy. This work advances our understanding of electrochemical remote epitaxy and provides strategies for improving control over electrodeposition.
Collapse
Affiliation(s)
- Salem
C. Wright
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Courtney Brea
- Department
of Chemistry and Biochemistry, Queens College
of the City University of New York, New York, New York 11367, United States
| | - Jefferey S. Baxter
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sonakshi Saini
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elif Pınar Alsaç
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sun Geun Yoon
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew G. Boebinger
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Guoxiang Hu
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T. McDowell
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Altvater M, Muratore C, Snure M, Glavin NR. Two-Step Conversion of Metal and Metal Oxide Precursor Films to 2D Transition Metal Dichalcogenides and Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400463. [PMID: 38733217 DOI: 10.1002/smll.202400463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Indexed: 05/13/2024]
Abstract
The widely studied class of two-dimensional (2D) materials known as transition metal dichalcogenides (TMDs) are now well-poised to be employed in real-world applications ranging from electronic logic and memory devices to gas and biological sensors. Several scalable thin film synthesis techniques have demonstrated nanoscale control of TMD material thickness, morphology, structure, and chemistry and correlated these properties with high-performing, application-specific device metrics. In this review, the particularly versatile two-step conversion (2SC) method of TMD film synthesis is highlighted. The 2SC technique relies on deposition of a solid metal or metal oxide precursor material, followed by a reaction with a chalcogen vapor at an elevated temperature, converting the precursor film to a crystalline TMD. Herein, the variables at each step of the 2SC process including the impact of the precursor film material and deposition technique, the influence of gas composition and temperature during conversion, as well as other factors controlling high-quality 2D TMD synthesis are considered. The specific advantages of the 2SC approach including deposition on diverse substrates, low-temperature processing, orientation control, and heterostructure synthesis, among others, are featured. Finally, emergent opportunities that take advantage of the 2SC approach are discussed to include next-generation electronics, sensing, and optoelectronic devices, as well as catalysis for energy-related applications.
Collapse
Affiliation(s)
- Michael Altvater
- Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Christopher Muratore
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, 45469, OH, USA
| | - Michael Snure
- Air Force Research Laboratory, Sensors Directorate, WPAFB, OH, 45433, USA
| | - Nicholas R Glavin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH, 45433, USA
| |
Collapse
|
44
|
Nandi S, Pumera M. Transition metal dichalcogenide-based materials for rechargeable aluminum-ion batteries: A mini-review. CHEMSUSCHEM 2024; 17:e202301434. [PMID: 38212248 DOI: 10.1002/cssc.202301434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Rechargeable aluminum-ion batteries (AIBs) have emerged as a promising candidate for energy storage applications and have been extensively investigated over the past few years. Due to their high theoretical capacity, nature of abundance, and high safety, AIBs can be considered an alternative to lithium-ion batteries. However, the electrochemical performance of AIBs for large-scale applications is still limited due to the poor selection of cathode materials. Transition metal dichalcogenides (TMDs) have been regarded as appropriate cathode materials for AIBs due to their wide layer spacing, large surface area, and distinct physiochemical characteristics. This mini-review provides a succinct summary of recent research progress on TMD-based cathode materials in non-aqueous AIBs. The latest developments in the benefits of utilizing 3D-printed electrodes for AIBs are also explored.
Collapse
Affiliation(s)
- Sunny Nandi
- New Technologies - Research Centre, University of West Bohemia, Univerzitní 8, Plzeň, 30614, Czech Republic
| | - Martin Pumera
- New Technologies - Research Centre, University of West Bohemia, Univerzitní 8, Plzeň, 30614, Czech Republic
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ, 616 00, Czech Republic
- Energy Research Institute @ NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Nanyang Technological University, 50 Nanyang Drive, Singapore, 03722, Singapore
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic
| |
Collapse
|
45
|
Wang C, Yang W, Ding Y, Bai P, Zeng Z, Lv H, Li X, Wang H, Wang Z, Zeng M, Wu X, Fu L. Interlayer Biatomic Pair Bridging the van der Waals Gap for 100% Activation of 2D Layered Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308984. [PMID: 38271565 DOI: 10.1002/adma.202308984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/20/2023] [Indexed: 01/27/2024]
Abstract
2D layered materials are regarded as prospective catalyst candidates due to their advantageous atomic exposure ratio. Nevertheless, the predominant population of atoms residing on the basal plane with saturated coordination, exhibit inert behavior, while a mere fraction of atoms located at the periphery display reactivity. Here, a novel approach is reported to attain complete atom activation in 2D layered materials through the construction of an interlayer biatomic pair bridge. The atoms in question have been strategically optimized to achieve a highly favorable state for the adsorption of intermediates. This optimization results from the introduction of new gap states around the Fermi level. Moreover, the presence of the interlayer bridge facilitates the electron transfer across the van der Waals gap, thereby enhancing the reaction kinetics. The hydrogen evolution reaction exhibits an impressive ultrahigh current density of 2000 mA cm-2 at 397 mV, surpassing the pristine MoS2 by approximately two orders of magnitude (26 mA cm-2 at 397 mV). This study provides new insights for enhancing the efficacy of 2D layered catalysts.
Collapse
Affiliation(s)
- Chenyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxuan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiran Ding
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Pengfei Bai
- CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science. CAS Center for Excellence in Nanoscience and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Ziyue Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Haifeng Lv
- CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science. CAS Center for Excellence in Nanoscience and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Huiliu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhouyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230088, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| |
Collapse
|
46
|
Zhu Z, Duan J, Chen S. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309119. [PMID: 38126651 DOI: 10.1002/smll.202309119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Carbon neutrality is an important goal for humanity . As an eco-friendly technology, electrocatalytic clean energy conversion technology has emerged in the 21st century. Currently, metal-organic framework (MOF)-based electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), are the mainstream energy catalytic reactions, which are driven by electrocatalysis. In this paper, the current advanced characterizations for the analyses of MOF-based electrocatalytic energy reactions have been described in details, such as density function theory (DFT), machine learning, operando/in situ characterization, which provide in-depth analyses of the reaction mechanisms related to the above reactions reported in the past years. The practical applications that have been developed for some of the responses that are of application values, such as fuel cells, metal-air batteries, and water splitting have also been demonstrated. This paper aims to maximize the potential of MOF-based electrocatalysts in the field of energy catalysis, and to shed light on the development of current intense energy situations.
Collapse
Affiliation(s)
- Zheng Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| |
Collapse
|
47
|
Escalera-López D, Iffelsberger C, Zlatar M, Novčić K, Maselj N, Van Pham C, Jovanovič P, Hodnik N, Thiele S, Pumera M, Cherevko S. Allotrope-dependent activity-stability relationships of molybdenum sulfide hydrogen evolution electrocatalysts. Nat Commun 2024; 15:3601. [PMID: 38684654 PMCID: PMC11058198 DOI: 10.1038/s41467-024-47524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Molybdenum disulfide (MoS2) is widely regarded as a competitive hydrogen evolution reaction (HER) catalyst to replace platinum in proton exchange membrane water electrolysers (PEMWEs). Despite the extensive knowledge of its HER activity, stability insights under HER operation are scarce. This is paramount to ensure long-term operation of Pt-free PEMWEs, and gain full understanding on the electrocatalytically-induced processes responsible for HER active site generation. The latter are highly dependent on the MoS2 allotropic phase, and still under debate. We rigorously assess these by simultaneously monitoring Mo and S dissolution products using a dedicated scanning flow cell coupled with downstream analytics (ICP-MS), besides an electrochemical mass spectrometry setup for volatile species analysis. We observe that MoS2 stability is allotrope-dependent: lamellar-like MoS2 is highly unstable under open circuit conditions, whereas cluster-like amorphous MoS3-x instability is induced by a severe S loss during the HER and undercoordinated Mo site generation. Guidelines to operate non-noble PEMWEs are therefore provided based on the stability number metrics, and an HER mechanism which accounts for Mo and S dissolution pathways is proposed.
Collapse
Affiliation(s)
- Daniel Escalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany.
| | - Christian Iffelsberger
- Future Energy and Innovation Technology, Central European Institute of Technology, Brno University of Technology, Purkiňova 656/123, 61200, Brno, Czech Republic
| | - Matej Zlatar
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Katarina Novčić
- Future Energy and Innovation Technology, Central European Institute of Technology, Brno University of Technology, Purkiňova 656/123, 61200, Brno, Czech Republic
| | - Nik Maselj
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Chuyen Van Pham
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
| | - Primož Jovanovič
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Simon Thiele
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Martin Pumera
- Future Energy and Innovation Technology, Central European Institute of Technology, Brno University of Technology, Purkiňova 656/123, 61200, Brno, Czech Republic
- Energy Research Institute @ NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore, Singapore
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany.
| |
Collapse
|
48
|
Lei YJ, Zhao L, Lai WH, Huang Z, Sun B, Jaumaux P, Sun K, Wang YX, Wang G. Electrochemical coupling in subnanometer pores/channels for rechargeable batteries. Chem Soc Rev 2024; 53:3829-3895. [PMID: 38436202 DOI: 10.1039/d3cs01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.
Collapse
Affiliation(s)
- Yao-Jie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zefu Huang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Pauline Jaumaux
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Kening Sun
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
49
|
Gao Y, Xue Y, Wu H, Chen S, Zheng X, Xing C, Li Y. Self-Organized Gradually Single-Atom-Layer of Metal Osmium for an Unprecedented Hydrogen Production from Seawater. J Am Chem Soc 2024; 146:10573-10580. [PMID: 38567542 DOI: 10.1021/jacs.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Atomic thick two-dimensional (2D) materials with exciting physical, chemical, and electronic properties are gaining increasing attention in next-generation science and technology, showing great promise in catalysis and energy science. However, the precise design and synthesis of efficient catalytic systems based on such materials still face many difficulties, especially in how to control the preparation of structurally determined, highly active, atomic-scale distribution of material systems. Here, we report that a highly active zerovalent osmium single-atom-layer with a thickness of single atom size has been successfully and controllably self-organized on the surface of 2D graphdiyne (GDY) material. Detailed characterizations showed that the incomplete charge transfer effect between the Os atoms and GDY not only stabilized the catalytic system but also improved the intrinsic activity, making the Gibbs free energy reach the best and resulting in remarkable performance with a small overpotential of 49 mV at 500 mA cm-2, large specific j0 of 18.6 mA cm-2, and turnover frequency of 3.89 H2 s-1 at 50 mV. In addition, the formation of sp-C-Os bonds guarantees the high long-term stability of 800 h at a large current density of 500 mA cm-2 in alkaline simulated seawater.
Collapse
Affiliation(s)
- Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Xing
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Cheng M, Cao N, Wang Z, Wang K, Pu T, Li Y, Sun T, Yue X, Ni W, Dai W, He Y, Shi Y, Zhang P, Zhu Y, Xie P. Strain-Induced Self-Assembly at Interface of Two-Dimensional Heterostructures Boosts CO 2 Reduction to Methanol by H 2O. ACS NANO 2024; 18:10582-10595. [PMID: 38564712 DOI: 10.1021/acsnano.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
CO2 conversion with pure H2O into CH3OH and O2 driven by solar energy can supply fuels and life-essential substances for extraterrestrial exploration. However, the effective production of CH3OH is significantly challenging. Here we report an organozinc complex/MoS2 heterostructure linked by well-defined zinc-sulfur covalent bonds derived by the structural deformation and intensive coupling of dx2 - y2(Zn)-p(S) orbitals at the interface, resulting in distinctive charge transfer behaviors and excellent redox capabilities as revealed by experimental characterizations and first-principle calculations. The synthesis strategy is further generalized to more organometallic compounds, achieving various heterostructures for CO2 photoreduction. The optimal catalyst delivers a promising CH3OH yield of 2.57 mmol gcat-1 h-1 and selectivity of more than 99.5%. The reverse water gas shift mechanism is identified for methanol formation. Meanwhile, energy-unfavorable adsorption of methanol on MoS2, where the photogenerated holes accumulate, ensures the selective oxidation of water over methanol.
Collapse
Affiliation(s)
- Ming Cheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Cao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhi Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ke Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Tiancheng Pu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yukun Li
- State Center for International Cooperation on Designer Low-Carbon and Environmental Materials School of Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xuanyu Yue
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Wenkang Ni
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Wenxin Dai
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yao Shi
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Peng Zhang
- State Center for International Cooperation on Designer Low-Carbon and Environmental Materials School of Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Pengfei Xie
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
| |
Collapse
|