1
|
Ascenzi Pettenuzzo C, Pradhan DR, Singh J, Liu L, Cuffel G, Vetticatt MJ, Deng Y. Photoredox/Pyridine N-Oxide Catalyzed Carbohydroxylation and Aminohydroxylation of α-Olefins. J Am Chem Soc 2025; 147:10382-10390. [PMID: 40087275 DOI: 10.1021/jacs.4c17657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Regioselective carbohydroxylation and aminohydroxylation of α-olefins were developed by a photoredox catalyst and pyridine N-oxide. This approach offers the catalytic and direct conversion of unactivated alkenes to a series of primary alcohols, including those bearing β-quaternary carbon centers and β-amino alcohols. The regioselective difunctionalization is enabled by the radical addition of α-olefin from the pyridine N-oxy radical, which is generated from readily available pyridine N-oxide via photoredox catalyzed single-electron oxidation. A combination of experimental and computational mechanistic studies was employed to lend support for the proposed reaction mechanism that proceeds via interwoven radical steps and polar substitution. The implications of this method for regioselective difunctionalization of α-olefins were further demonstrated by the examples of carboetherification, carboesterification, and lactone formation.
Collapse
Affiliation(s)
- Cristina Ascenzi Pettenuzzo
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Deepak Ranjan Pradhan
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jujhar Singh
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Lichuan Liu
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Gabe Cuffel
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Mathew J Vetticatt
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
2
|
van der Worp B, Ritter T. N-Protonated Acridinium Catalyst Enables Anti-Markovnikov Hydration of Unconjugated Tri- and Disubstituted Olefins. J Am Chem Soc 2025; 147:4736-4742. [PMID: 39888677 PMCID: PMC11826999 DOI: 10.1021/jacs.4c18185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/02/2025]
Abstract
The preparation of alcohols with anti-Markovnikov selectivity directly from olefins and water is a sought-after reaction due to its atom-economy and potential cost-effectiveness. Herein, we present the first general method for direct, catalytic anti-Markovnikov hydration of unconjugated tri- and disubstituted olefins. The key advancement is made possible by an oxidative (E*red = 2.15 V) N-H acridinium catalyst, which allowed for the functionalization of alkenes that were previously unreactive in such transformations due to their high oxidation potential. The developed protocol is not limited to hydration but also enables other hydrofunctionalizations, such as hydroetherifications, following the same mechanistic pathway.
Collapse
Affiliation(s)
- Boris
Alexander van der Worp
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Tobias Ritter
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Patra S, Katayev D. Facile Access to Terminal Nitroalkanes via Anti-Markovnikov Hydronitration and Hydronitroalkylation of Alkenes Using Photoredox Catalysis. Chemistry 2024; 30:e202403654. [PMID: 39366916 DOI: 10.1002/chem.202403654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
The evolution of catalysis and functional group transfer reagents play a significant role in the development of anti-Markovnikov alkene hydrofunctionalization reactions, facilitating the access to value-added molecules. We herein report the first rational design of a modular intermolecular anti-Markovnikov hydronitration of alkenes, enabling the direct synthesis of terminal nitroalkanes under visible light-mediated photoredox catalysis. By employing the redox-active organic nitrating reagent N-nitrosuccinimide, the produced nitryl radicals, in the presence of an olefin and a hydrogen atom transfer (HAT) mediator, lead to an anti-Markovnikov addition with complete regioselectivity. Furthermore, we present results demonstrating the use of this catalytic system for chain expansion via anti-Markovnikov addition, utilizing substituted bromonitroalkanes as commercially available reagents. These transformations effectively address a gap in synthetic chemistry, enabling the direct synthesis of nitroalkanes from a variety of unactivated olefins in both complex molecules and unfunctionalized commodity chemicals.
Collapse
Affiliation(s)
- Subrata Patra
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern (UniBe), Freiestrasse 3, 3012, Bern, Switzerland
| | - Dmitry Katayev
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern (UniBe), Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
4
|
Zhang Y, Hu B, Chen Y, Wang Z. Review on Catalytic Meinwald Rearrangement of Epoxides. Chemistry 2024; 30:e202402469. [PMID: 39140465 DOI: 10.1002/chem.202402469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
The past few decades have witnessed tremendous development within epoxides. Among the many known reactions involving epoxide, Meinwald rearrangements represent one of the most important and attractive approaches, which can transform epoxides into versatile carbonyl compounds. Given the high efficiency of this protocol, substantial efforts have been made by researchers by utilizing multiple catalyst systems. This review provides an overview of recent advances in the Meinwald rearrangement (from 2014 onward), along with detailed discussions on mechanistic insights. This review aims to highlight the importance and value of these methodologies, thereby promoting further investigation and application.
Collapse
Affiliation(s)
- Yulong Zhang
- Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Bowen Hu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Yushuang Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing, 401331, People's Republic of China
| |
Collapse
|
5
|
Sila N, Dürrmann A, Weber B, Heinemann FW, Irrgang T, Kempe R. A Selective Iron(I) Hydrogenation Catalyst. J Am Chem Soc 2024; 146:26877-26883. [PMID: 39308226 DOI: 10.1021/jacs.4c07959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Iron is the most abundant transition metal of the Earth's crust, and the understanding of its function in key technologies, such as catalysis, is highly important. We report here on an iron(I) hydrogenation catalyst. Our catalyst activates hydrogen via heterolytic bond cleavage, forms a monohydride, and hydrogenates polar double bonds via a bimetallic pathway (potassium-assisted hydride transfer). The mechanism observed seems to exclude oxidative addition and reductive elimination pathways, permitting the tolerance of numerous hydrogenation-sensitive functional groups, as demonstrated for the hydrogenation of C═O bonds.
Collapse
Affiliation(s)
- Niko Sila
- Inorganic Chemistry II-Catalyst Design, Sustainable Chemistry Center, University of Bayreuth, 95440 Bayreuth, Germany
| | - Andreas Dürrmann
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Birgit Weber
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Torsten Irrgang
- Inorganic Chemistry II-Catalyst Design, Sustainable Chemistry Center, University of Bayreuth, 95440 Bayreuth, Germany
| | - Rhett Kempe
- Inorganic Chemistry II-Catalyst Design, Sustainable Chemistry Center, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
6
|
Ghosh T, Ren P, Franck P, Tang M, Jaworski A, Barcaro G, Monti S, Chouhan L, Rabeah J, Skorynina A, Silvestre-Albero J, Simonelli L, Rokicińska A, Debroye E, Kuśtrowski P, Bals S, Das S. A robust Fe-based heterogeneous photocatalyst for the visible-light-mediated selective reduction of an impure CO 2 stream. Chem Sci 2024; 15:11488-11499. [PMID: 39055026 PMCID: PMC11268485 DOI: 10.1039/d4sc02773f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The transformation of CO2 into value-added products from an impure CO2 stream, such as flue gas or exhaust gas, directly contributes to the principle of carbon capture and utilization (CCU). Thus, we have developed a robust iron-based heterogeneous photocatalyst that can convert the exhaust gas from the car into CO with an exceptional production rate of 145 μmol g-1 h-1. We characterized this photocatalyst by PXRD, XPS, ssNMR, EXAFS, XANES, HR-TEM, and further provided mechanistic experiments, and multi-scale/level computational studies. We have reached a clear understanding of its properties and performance that indicates that this highly robust photocatalyst could be used to design an efficient visible-light-mediated reduction strategy for the transformation of impure CO2 streams into value-added products.
Collapse
Affiliation(s)
- Topi Ghosh
- Department of Chemistry, University of Antwerp Antwerp Belgium
| | - Peng Ren
- Department of Chemistry, University of Antwerp Antwerp Belgium
- Department of Chemistry, University of Bayreuth Bayreuth Germany
| | - Philippe Franck
- Department of Chemistry, University of Antwerp Antwerp Belgium
| | - Min Tang
- EMAT and NANO Lab Center of Excellence, Department of Physics, University of Antwerp Antwerp Belgium
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm Sweden
| | - Giovanni Barcaro
- CNR-IPCF, Institute for Chemical and Physical Processes via G. Moruzzi 1 56124 Pisa Italy
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds via G. Moruzzi 1 56124 Pisa Italy
| | - Lata Chouhan
- Department of Chemistry, KU Leuven Leuven Belgium
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e. V Albert-Einstein-Straße 29a 18059 Rostock Germany
| | | | - Joaquin Silvestre-Albero
- Departamento de Quimica Inorganica-Instituto Universitario de Materiales, Universidad de Alicante Alicante E-03080 Spain
| | | | | | - Elke Debroye
- Department of Chemistry, KU Leuven Leuven Belgium
| | | | - Sara Bals
- EMAT and NANO Lab Center of Excellence, Department of Physics, University of Antwerp Antwerp Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp Antwerp Belgium
- Department of Chemistry, University of Bayreuth Bayreuth Germany
| |
Collapse
|
7
|
Borden O, Joseph BT, Head MC, Ammons OA, Kim DE, Bonino AC, Keith JM, Chianese AR. Highly Enantiomerically Enriched Secondary Alcohols via Epoxide Hydrogenolysis. Organometallics 2024; 43:1490-1501. [PMID: 38993820 PMCID: PMC11234370 DOI: 10.1021/acs.organomet.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
In this article, we report the development of ruthenium-catalyzed hydrogenolysis of epoxides to selectively give the branched (Markovnikov) alcohol products. In contrast to previously reported catalysts, the use of Milstein's PNN-pincer-ruthenium complex at room temperature allows the conversion of enantiomerically enriched epoxides to secondary alcohols without racemization of the product. The catalyst is effective for a range of aryl epoxides, alkyl epoxides, and glycidyl ethers and is the first homogeneous system to selectively promote hydrogenolysis of glycidol to 1,2-propanediol, without loss of enantiomeric purity. A detailed mechanistic study was conducted, including experimental observations of catalyst speciation under catalytically relevant conditions, comprehensive kinetic characterization of the catalytic reaction, and computational analysis via density functional theory. Heterolytic hydrogen cleavage is mediated by the ruthenium center and exogenous alkoxide base. Epoxide ring opening occurs through an opposite-side attack of the ruthenium hydride on the less-hindered epoxide carbon, giving the branched alcohol product selectively.
Collapse
Affiliation(s)
- Olivia
J. Borden
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Benjamin T. Joseph
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Marianna C. Head
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Obsidian A. Ammons
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Diane Eun Kim
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Abigail C. Bonino
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Jason M. Keith
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Anthony R. Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| |
Collapse
|
8
|
Baruah MJ, Dutta R, Zaki MEA, Bania KK. Heterogeneous Iron-Based Catalysts for Organic Transformation Reactions: A Brief Overview. Molecules 2024; 29:3177. [PMID: 38999129 PMCID: PMC11243350 DOI: 10.3390/molecules29133177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Iron (Fe) is considered to be one of the most significant elements due to its wide applications. Recent years have witnessed a burgeoning interest in Fe catalysis as a sustainable and cost-effective alternative to noble metal catalysis in organic synthesis. The abundance and low toxicity of Fe, coupled with its competitive reactivity and selectivity, underscore its appeal for sustainable synthesis. A lot of catalytic reactions have been performed using heterogeneous catalysts of Fe oxide hybridized with support systems like aluminosilicates, clays, carbonized materials, metal oxides or polymeric matrices. This review provides a comprehensive overview of the latest advancements in Fe-catalyzed organic transformation reactions. Highlighted areas include cross-coupling reactions, C-H activation, asymmetric catalysis, and cascade processes, showcasing the versatility of Fe across a spectrum of synthetic methodologies. Emphasis is placed on mechanistic insights, elucidating the underlying principles governing iron-catalyzed reactions. Challenges and opportunities in the field are discussed, providing a roadmap for future research endeavors. Overall, this review illuminates the transformative potential of Fe catalysis in driving innovation and sustainability in organic chemistry, with implications for drug discovery, materials science, and beyond.
Collapse
Affiliation(s)
- Manash J Baruah
- Department of Chemistry, DCB Girls' College, Jorhat 785001, Assam, India
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Rupjyoti Dutta
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
9
|
Wang Z, Shao Z, Wang C, Wen J. Base-Promoted Ring-Opening Hydroxylation of Cyclic Sulfonium Salts. J Org Chem 2024; 89:3084-3091. [PMID: 38335534 DOI: 10.1021/acs.joc.3c02546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Herein, we reported a general strategy for the synthesis of sulfur-containing primary alcohol derivatives by base-promoted ring-opening hydroxylation of cyclic sulfonium salts. A variety of sulfonium salts were successfully transformed into the desired hydroxylated products in moderate to excellent yields with good functional group tolerance. Moreover, the one-pot synthesis, scale-up reaction, and late-stage functionalization of complex molecules demonstrated the practicability of this synthetic protocol in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zeyu Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Cheng Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
10
|
Li G, Norton JR. Ti(III)-Catalyzed Anti-Markovnikov Reduction of Epoxides with Borohydride. Org Lett 2024; 26:1382-1386. [PMID: 38350153 DOI: 10.1021/acs.orglett.3c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
We have developed a Ti catalyst that carries out the anti-Markovnikov reduction of a wide range of epoxides; [BH4]- is used as both the electron and the hydrogen atom source. It requires only mild conditions and accommodates a broad range of epoxide substrates. The Ti catalyst is readily available and is environmentally friendly.
Collapse
Affiliation(s)
- Guangchen Li
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
11
|
Gui YY, Chen XW, Mo XY, Yue JP, Yuan R, Liu Y, Liao LL, Ye JH, Yu DG. Cu-Catalyzed Asymmetric Dicarboxylation of 1,3-Dienes with CO 2. J Am Chem Soc 2024; 146:2919-2927. [PMID: 38277794 DOI: 10.1021/jacs.3c14146] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Dicarboxylic acids and derivatives are important building blocks in organic synthesis, biochemistry, and the polymer industry. Although catalytic dicarboxylation with CO2 represents a straightforward and sustainable route to dicarboxylic acids, it is still highly challenging and limited to generation of achiral or racemic dicarboxylic acids. To date, catalytic asymmetric dicarboxylation with CO2 to give chiral dicarboxylic acids has not been reported. Herein, we report the first asymmetric dicarboxylation of 1,3-dienes with CO2 via Cu catalysis. This strategy provides an efficient and environmentally benign route to chiral dicarboxylic acids with high regio-, chemo-, and enantioselectivities. The copper self-relay catalysis, that is, Cu-catalyzed boracarboxylation of 1,3-dienes to give carboxylated allyl boronic ester intermediates and subsequent carboxylation of C-B bonds to give dicarboxylates, is key to the success of this dicarboxylation. Moreover, this protocol exhibits broad substrate scope, good functional group tolerance, easy product derivatizations, and facile synthesis of chiral liquid crystalline polyester and drug-like scaffolds.
Collapse
Affiliation(s)
- Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Yan Mo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rong Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yi Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
12
|
Liu YY, Wu CD. Regioselective Ring-Opening of Terminal Epoxides Catalyzed by a Porous Metal Silicate Material. Inorg Chem 2024; 63:1166-1174. [PMID: 38159291 DOI: 10.1021/acs.inorgchem.3c03554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Reductive ring-opening of epoxides is a green pathway for synthesizing highly value-added alcohols. In this study, we present a practically applicable approach for the synthesis of anti-Markovnikov-type alcohols with high yields from aliphatic and aromatic epoxides under mild conditions by developing porous metal silicate (PMS) catalysts. A PMS material PMS-20 consists of cobalt and nickel bimetal redox-active sites, exhibiting exceptional catalytic activity and selectivity in the reductive ring-opening of terminal epoxides with >99% yield of primary alcohols. Comparing with the existing methods using noble metals, PMS-20 exhibits broad substrate scope and excellent functional group tolerance by synergistic work between cobalt and nickel species, which is clarified by dual chamber cell system characterization and theoretical calculation results.
Collapse
Affiliation(s)
- Yang-Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
13
|
Fessler J, Junge K, Beller M. Applying green chemistry principles to iron catalysis: mild and selective domino synthesis of pyrroles from nitroarenes. Chem Sci 2023; 14:11374-11380. [PMID: 37886090 PMCID: PMC10599485 DOI: 10.1039/d3sc02879h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 10/28/2023] Open
Abstract
An efficient and general cascade synthesis of pyrroles from nitroarenes using an acid-tolerant homogeneous iron catalyst is presented. Initial (transfer) hydrogenation using the commercially available iron-Tetraphos catalyst is followed by acid catalysed Paal-Knorr condensation. Both formic acid and molecular hydrogen can be used as green reductants in this process. Particularly, under transfer hydrogenation conditions, the homogeneous catalyst shows remarkable reactivity at low temperatures, high functional group tolerance and excellent chemoselectivity transforming a wide variety of substrates. Compared to classical heterogeneous catalysts, this system presents complementing reactivity, showing none of the typical side reactions such as dehalogenation, debenzylation, arene or olefin hydrogenation. It thereby enhances the chemical toolbox in terms of orthogonal reactivity. The methodology was successfully applied to the late-stage modification of multi-functional drug(-like) molecules as well as to the one-pot synthesis of the bioactive agent BM-635.
Collapse
Affiliation(s)
- Johannes Fessler
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
14
|
Heinz M, Weiss G, Shizgal G, Panfilova A, Gansäuer A. Coupling Titanium and Chromium Catalysis in a Reaction Network for the Reprogramming of [BH 4 ] - as Electron Transfer and Hydrogen Atom Transfer Reagent for Radical Chemistry. Angew Chem Int Ed Engl 2023; 62:e202308680. [PMID: 37515484 DOI: 10.1002/anie.202308680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
We describe a unique catalytic system with an efficient coupling of Ti- and Cr-catalysis in a reaction network that allows the use of [BH4 ]- as stoichiometric hydrogen atom and electron donor in catalytic radical chemistry. The key feature is a relay hydrogen atom transfer from [BH4 ]- to Cr generating the active catalysts under mild conditions. This enables epoxide reductions, regiodivergent epoxide opening and radical cyclizations that are not possible with cooperative catalysis with radicals or by epoxide reductions via Meinwald rearrangement and ensuing carbonyl reduction. No typical SN 2-type reactivity of [BH4 ]- salts is observed.
Collapse
Affiliation(s)
- Michael Heinz
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Gregor Weiss
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Grigoriy Shizgal
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Anastasia Panfilova
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
15
|
Zhang G, Zeng H, Tang Q, Ates S, Zheng S, Neary MC. Vanadium-catalysed regioselective hydroboration of epoxides for synthesis of secondary alcohols. Dalton Trans 2023; 52:11395-11400. [PMID: 37577840 DOI: 10.1039/d3dt01865b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Regioselective epoxide ring-opening through hydroboration catalysed by a vanadium(III) dialkyl complex supported by a redox-active terpyridine ligand is reported. Secondary alcohols were obtained in high yields via effective Markovnikov hydroboration of terminal epoxides, showcasing a new catalytic application of an earth-abundant vanadium(III) complex.
Collapse
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY 10019, USA.
| | - Haisu Zeng
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY 10019, USA.
- Department of Chemistry, Hunter College, the City University of New York, New York, 10065 NY, USA
| | - Quan Tang
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY 10019, USA.
| | - Selin Ates
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY 10019, USA.
| | - Shengping Zheng
- Department of Chemistry, Hunter College, the City University of New York, New York, 10065 NY, USA
| | - Michelle C Neary
- Department of Chemistry, Hunter College, the City University of New York, New York, 10065 NY, USA
| |
Collapse
|
16
|
Liang Y, Paulus F, Daniliuc CG, Glorius F. Catalytic Formal [2π+2σ] Cycloaddition of Aldehydes with Bicyclobutanes: Expedient Access to Polysubstituted 2-Oxabicyclo[2.1.1]hexanes. Angew Chem Int Ed Engl 2023; 62:e202305043. [PMID: 37307521 DOI: 10.1002/anie.202305043] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Synthesis of bicyclic scaffolds has attracted tremendous attention because they are playing an important role as saturated bioisosteres of benzenoids in modern drug discovery. Here, we report a BF3 -catalyzed [2π+2σ] cycloaddition of aldehydes with bicyclo[1.1.0]butanes (BCBs) to access polysubstituted 2-oxabicyclo[2.1.1]hexanes. A new kind of BCB containing an acyl pyrazole group was invented, which not only significantly facilitates the reactions, but can also serve as a handle for diverse downstream transformations. Furthermore, aryl and vinyl epoxides can also be utilized as substrates which undergo cycloaddition with BCBs after in situ rearrangement to aldehydes. We anticipate that our results will promote access to challenging sp3 -rich bicyclic frameworks and the exploration of BCB-based cycloaddition chemistry.
Collapse
Affiliation(s)
- Yujie Liang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Fritz Paulus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
17
|
Head M, Joseph BT, Keith JM, Chianese AR. The Mechanism of Markovnikov-Selective Epoxide Hydrogenolysis Catalyzed by Ruthenium PNN and PNP Pincer Complexes. Organometallics 2023; 42:347-356. [PMID: 36937786 PMCID: PMC10015984 DOI: 10.1021/acs.organomet.2c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 03/02/2023]
Abstract
The homogeneous catalysis of epoxide hydrogenolysis to give alcohols has recently received significant attention. Catalyst systems have been developed for the selective formation of either the Markovnikov (branched) or anti-Markovnikov (linear) alcohol product. Thus far, the reported catalysts exhibiting Markovnikov selectivity all feature the potential for Noyori/Shvo-type bifunctional catalysis, with either a RuH/NH or FeH/OH core structure. The proposed mechanisms of epoxide ring-opening have involved cooperative C-O bond hydrogenolysis involving the metal hydride and the acidic pendant group on the ligand, in analogy to the well-documented mechanism of polar double-bond hydrogenation exhibited by catalysts of this type. In this work, we present a combined computational/experimental study of the mechanism of epoxide hydrogenolysis catalyzed by Noyori-type PNP and PNN complexes of ruthenium. We find that, at least for these ruthenium systems, the previously proposed bifunctional pathway for epoxide ring-opening is energetically inaccessible; instead, the ring-opening proceeds through opposite-side nucleophilic attack of the ruthenium hydride on the epoxide carbon, without the involvement of the ligand N-H group. For both catalyst systems, the rate law and overall barrier predicted by density functional theory (DFT) are consistent with the results from kinetic studies.
Collapse
Affiliation(s)
- Marianna
C. Head
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Benjamin T. Joseph
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Jason M. Keith
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Anthony R. Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| |
Collapse
|
18
|
Kim J, Sun X, van der Worp BA, Ritter T. Anti-Markovnikov hydrochlorination and hydronitrooxylation of α-olefins via visible-light photocatalysis. Nat Catal 2023. [DOI: 10.1038/s41929-023-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
AbstractConventional hydrofunctionalization of α-olefins with mineral acids proceeds with Markovnikov selectivity to afford branched isomers. The direct formation of linear constitutional isomers is challenging, yet anti-Markovnikov addition would be valuable for the synthesis of commodity chemicals, such as primary alcohols, which are currently only accessible via stoichiometric redox reactions, with a full equivalent of waste of both oxidant and reductant. Strategies that utilize radical intermediates have been demonstrated, but only for activated alkenes, and the direct use of aqueous mineral acids remains elusive. Here we present anti-Markovnikov addition reactions of aqueous hydrochloric and nitric acid to unactivated alkenes. The transformation is enabled by the in situ generation of photoredox-active ion pairs, derived from acridine and the mineral acid, as a combined charge- and phase-transfer catalyst. The introduction of a hydrogen atom transfer catalyst enabled us to bypass the challenging chain propagation by hydrochloric and nitric acids that originates from the high bond dissociation energy.
Collapse
|
19
|
Sarkar N, Kumar Sahoo R, Nembenna S. Aluminium-Catalyzed Selective Hydroboration of Esters and Epoxides to Alcohols: C-O Bond Activation. Chemistry 2023; 29:e202203023. [PMID: 36226774 DOI: 10.1002/chem.202203023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/07/2022]
Abstract
In this work, the molecular aluminium dihydride complex bearing an N, N'-chelated conjugated bis-guanidinate (CBG) ligand is used as a catalyst for reducing a wide range of aryl and alkyl esters with good tolerance of alkene (C=C), alkyne (C≡C), halides (Cl, Br, I and F), nitrile (C≡N), and nitro (NO2 ) functionalities. Further, we investigated the catalytic application of aluminium dihydride in the C-O bond cleavage of alkyl and aryl epoxides into corresponding branched Markovnikov ring-opening products. In addition, the chemoselective intermolecular reduction of esters over other reducible functional groups, such as amides and alkenes, has been established. Intermediates are isolated and characterized by NMR and HRMS studies, which confirm the probable catalytic cycles for the hydroboration of esters and epoxides.
Collapse
Affiliation(s)
- Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
20
|
Jana A, Chakraborty S, Sarkar K, Maji B. Ruthenium-Catalyzed Reductive Coupling of Epoxides with Primary Alcohols via Hydrogen Transfer Catalysis. J Org Chem 2023; 88:310-318. [PMID: 36546672 DOI: 10.1021/acs.joc.2c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report the ruthenium-catalyzed synthesis of β-alkylated secondary alcohols via the regioselective ring-opening of epoxides with feedstock primary alcohols. The reaction utilized alcohol as the carbon source and the terminal reductant. Kinetic and labeling experiments elucidate the hydrogen transfer catalysis that operates via tandem Markovnikov selective transfer hydrogenation of terminal epoxides and hydrogen transfer-mediated cross-coupling of the resulting alcohol with primary alcohol substrates. A broad scope (40 examples including drugs/natural product derivatives) and excellent regioselectivity for a variety of substrates were shown.
Collapse
Affiliation(s)
- Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Sayandip Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
21
|
Li X, Yang X, Chen P, Liu G. Palladium-Catalyzed Remote Hydro-Oxygenation of Internal Alkenes: An Efficient Access to Primary Alcohols. J Am Chem Soc 2022; 144:22877-22883. [PMID: 36508607 DOI: 10.1021/jacs.2c11428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a general method for the synthesis of alcohols, the direct oxygenation of alkenes is difficult to afford linear alcohols. Herein, we communicate the remote hydro-oxygenation of alkenes under palladium catalysis, in which both terminal and internal alkenes are suitable to yield the corresponding linear alcohols efficiently. A compatible SelectFluor/silane redox system plays an essential role for the excellent chemo- and regioselectivities. The reaction features a broad substrate scope and excellent functional group compatibility.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xintuo Yang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
22
|
Zhang G, Zeng H, Zheng S, Neary MC, Dub PA. Markovnikov alcohols via epoxide hydroboration by molecular alkali metal catalysts. iScience 2022; 25:105119. [PMID: 36185366 PMCID: PMC9515598 DOI: 10.1016/j.isci.2022.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College and PhD in Chemistry Program, the Graduate Center of City University of New York, New York, NY 10019, USA
- Corresponding author
| | - Haisu Zeng
- Department of Sciences, John Jay College and PhD in Chemistry Program, the Graduate Center of City University of New York, New York, NY 10019, USA
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Shengping Zheng
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Michelle C. Neary
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Corresponding author
| |
Collapse
|
23
|
Wang J, Yao W, Hu D, Qi X, Zhang JQ, Ren H. NaOH/BEt3 Catalyzed Regioselective Hydroboration of Epoxides with HBpin to Secondary Alcohols. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiali Wang
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Wubin Yao
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Dandan Hu
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Xinxin Qi
- Zhejiang Sci-Tech University Department of Chemistry CHINA
| | - Jun-Qi Zhang
- Taizhou University Advanced Research Institute and Department of Chemistry, CHINA
| | - Hongjun Ren
- Taizhou University Advanced Research Institute and Department of Chemistry 1139 Shifu Avenue 318012 Taizhou CHINA
| |
Collapse
|
24
|
Schacht JH, Wu S, Klare S, Höthker S, Schmickler N, Gansäuer A. Polymethylhydrosiloxane (PMHS) as sustainable reductant in the titanocene catalyzed epoxide hydrosilylation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Shangze Wu
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Instutu für Organische Chemie GERMANY
| | - Sven Klare
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Sebastian Höthker
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Niklas Schmickler
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Andreas Gansäuer
- Universität Bonn Kekulé-Institut für Organische Chemie Gerhard Domagk Str. 1 53121 Bonn GERMANY
| |
Collapse
|
25
|
Zhang K, Ren BH, Liu XF, Wang LL, Zhang M, Ren WM, Lu XB, Zhang WZ. Direct and Selective Electrocarboxylation of Styrene Oxides with CO2 for Accessing β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ke Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Bai-Hao Ren
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiao-Fei Liu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Lin-Lin Wang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Min Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Wei-Min Ren
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiao-Bing Lu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Wen-Zhen Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals E-330 West Campus, No.2 Linggong Road, High-Tech Zone 116024 Dalian CHINA
| |
Collapse
|
26
|
Zhang K, Ren BH, Liu XF, Wang LL, Zhang M, Ren WM, Lu XB, Zhang WZ. Direct and Selective Electrocarboxylation of Styrene Oxides with CO2 for Accessing β-Hydroxy Acids. Angew Chem Int Ed Engl 2022; 61:e202207660. [PMID: 35862121 DOI: 10.1002/anie.202207660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/08/2022]
Abstract
Highly selective and direct electroreductive ring-opening carboxylation of epoxides with CO2 in an undivided cell is reported. This reaction shows broad substrate scopes within styrene oxides under mild conditions, providing practical and scalable access to important synthetic intermediate β-hydroxy acids. Mechanistic studies show that CO2 functions not only as a carboxylative reagent in this reaction but also as a promoter to enable efficient and chemoselective transformation of epoxides under additive-free electrochemical conditions. Cathodically generated α-radical and α-carbanion intermediates lead to the regioselective formation of α-carboxylation products.
Collapse
Affiliation(s)
- Ke Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Bai-Hao Ren
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Xiao-Fei Liu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Lin-Lin Wang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Min Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Wei-Min Ren
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Xiao-Bing Lu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Wen-Zhen Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, E-330 West Campus, No.2 Linggong Road, High-Tech Zone, 116024, Dalian, CHINA
| |
Collapse
|
27
|
Sarki N, Kumar R, Singh B, Ray A, Naik G, Natte K, Narani A. Lignin Residue-Derived Carbon-Supported Nanoscale Iron Catalyst for the Selective Hydrogenation of Nitroarenes and Aromatic Aldehydes. ACS OMEGA 2022; 7:19804-19815. [PMID: 35721941 PMCID: PMC9202032 DOI: 10.1021/acsomega.2c01566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 05/05/2023]
Abstract
Heterogeneous iron-based catalysts governing selectivity for the reduction of nitroarenes and aldehydes have received tremendous attention in the arena of catalysis, but relatively less success has been achieved. Herein, we report a green strategy for the facile synthesis of a lignin residue-derived carbon-supported magnetic iron (γ-Fe2O3/LRC-700) nanocatalyst. This active nanocatalyst exhibits excellent activity and selectivity for the hydrogenation of nitroarenes to anilines, including pharmaceuticals (e.g., flutamide and nimesulide). Challenging and reducible functionalities such as halogens (e.g., chloro, iodo, and fluoro) and ketone, ester, and amide groups were tolerated. Moreover, biomass-derived aldehyde (e.g., furfural) and other aromatic aldehydes were also effective for the hydrogenation process, often useful in biomedical sciences and other important areas. Before and after the reaction, the γ-Fe2O3/LRC-700 nanocatalyst was thoroughly characterized by X-ray diffraction (XRD), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, and thermogravimetric analysis (TGA). Additionally, the γ-Fe2O3/LRC-700 nanocatalyst is stable and easily separated using an external magnet and recycled up to five cycles with no substantial drop in the activity. Eventually, sustainable and green credentials for the hydrogenation reactions of 4-nitrobenzamide to 4-aminobenzamide and benzaldehyde to benzyl alcohol were assessed with the help of the CHEM21 green metrics toolkit.
Collapse
Affiliation(s)
- Naina Sarki
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Raju Kumar
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Baint Singh
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Anjan Ray
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ganesh Naik
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Kishore Natte
- Department
of Chemistry, Indian Institute of Technology
(IIT) Hyderabad, Kandi 502285, Sangareddy District, Telangana, India
- ,
| | - Anand Narani
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- ,
| |
Collapse
|
28
|
Thiyagarajan S, Gunanathan C. Catalytic Hydrogenation of Epoxides to Alcohols. Chem Asian J 2022; 17:e202200118. [PMID: 35486033 DOI: 10.1002/asia.202200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/16/2022] [Indexed: 11/10/2022]
Abstract
Atom-economical catalytic reactions are a highly enticing strategy because all atoms of the starting materials are incorporated into the products. Catalytic hydrogenation of epoxides to alcohols is an attractive and alternative protocol to other synthetic methodologies for the synthesis of alcohols from alkenes. In the last two decades, catalytic hydrogenation of epoxides to alcohols has made remarkable progress in chemical synthesis. In this review, an overview of the catalytic hydrogenation of both terminal and internal epoxides to the corresponding alcohols is presented. An outline of both homogeneous and heterogeneous hydrogenation of epoxides to the corresponding alcohols is provided. Moreover, the selectivity, efficiency, and the reaction mechanisms of these epoxide hydrogenation reactions are highlighted.
Collapse
Affiliation(s)
| | - Chidambaram Gunanathan
- National Institute of Science Education and Research, School of Chemical Sciences, IOP Campus, 752050, Bhubaneswar, INDIA
| |
Collapse
|
29
|
Kirlin FL, Borden OJ, Head MC, Kelly SE, Chianese AR. Epoxide Hydrogenolysis Catalyzed by Ruthenium PNN and PNP Pincer Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fallyn L. Kirlin
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Olivia J. Borden
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Marianna C. Head
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Sophie E. Kelly
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Anthony R. Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| |
Collapse
|
30
|
Vayer M, Zhang S, Moran J, Lebœuf D. Rapid and Mild Metal-Free Reduction of Epoxides to Primary Alcohols Mediated by HFIP. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marie Vayer
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Shaofei Zhang
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Joseph Moran
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - David Lebœuf
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| |
Collapse
|
31
|
Pajk SP, Qi Z, Sujansky SJ, Bandar JS. A Base-Catalyzed Approach for the anti-Markovnikov Hydration of Styrene Derivatives. Chem Sci 2022; 13:11427-11432. [PMID: 36320585 PMCID: PMC9533481 DOI: 10.1039/d2sc02827a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
The base-catalyzed addition of 1-cyclopropylethanol to styrene derivatives with an acidic reaction workup enables anti-Markovnikov hydration. The use of either catalytic organic superbase or crown ether-ligated inorganic base permits hydration of a wide variety of styrene derivatives, including electron-deficient, ortho-substituted and heteroaryl variants. This protocol complements alternative routes to terminal alcohols that rely on stoichiometric reduction and oxidation processes. The utility of this method is demonstrated through multigram scale reactions and its use in a two-step hydration/cyclization process of ortho-halogenated styrenes to prepare 2,3-dihydrobenzofuran derivatives. The base-catalyzed addition of 1-cyclopropylethanol to vinyl (hetero)arenes sequenced with an acidic reaction workup enables anti-Markovnikov hydration in a complementary fashion to traditional hydroboration/oxidation protocols.![]()
Collapse
Affiliation(s)
- Spencer P Pajk
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Zisong Qi
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Stephen J Sujansky
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
32
|
Liang Y, Luo J, Milstein D. Facile synthesis of amides via acceptorless dehydrogenative coupling of aryl epoxides and amines. Chem Sci 2022; 13:5913-5919. [PMID: 35685791 PMCID: PMC9132053 DOI: 10.1039/d2sc01959k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
The synthesis of amides is significant in a wide variety of academic and industrial fields. We report here a new reaction, namely acceptorless dehydrogenative coupling of epoxides and amines to form amides catalyzed by ruthenium pincer complexes. Various aryl epoxides and amines smoothly convert into the desired amides in high yields with the generation of H2 gas as the only byproduct. Control experiments indicate that amides are generated kinetically faster than side products, possibly because of the facile activation of epoxides by metal–ligand cooperation, as supported by the observation of a ruthenium-enolate species. No alcohol or free aldehyde are involved. A mechanism is proposed involving a dual role of the catalyst, which is responsible for the high yield and selectivity of the new reaction. We report the ruthenium pincer complex catalyzed acceptorless dehydrogenative coupling of epoxides and amines to form amides. The reaction offers a facile and atom economical two-step strategy for transforming alkenes into amides.![]()
Collapse
Affiliation(s)
- Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
33
|
Mandal SK, P S, Sarkar P, DUTTA SUPRITI, Das A, Pati SK. Regioselective ring-opening of epoxides towards Markovnikov alcohols: A metal-free catalytic approach using abnormal N-heterocyclic carbene. Chem Commun (Camb) 2022; 58:9540-9543. [DOI: 10.1039/d2cc03549a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the first metal-free regioselective Markovnikov ring-opening of epoxides (selectivity up to 99%) using an abnormal N-heterocyclic carbene (aNHC) to yield secondary alcohols. DFT calculations and X-ray crystallography...
Collapse
|
34
|
Abstract
Selective hydrogenation of epoxides would be a direct and powerful approach for alcohol synthesis, but it has proven to be elusive. Here, electrochemically epoxide hydrogenation using electrons and protons as reductants is reported. A wide range of primary, secondary, and tertiary alcohols can be achieved through selective Markovnikov or anti-Markovnikov ring opening in the absence of transition metals. Mechanistic investigations revealed that the regioselectivity is controlled by the thermodynamic stabilities of the in situ generated benzyl radicals for aryl-substituted epoxides and the kinetic tendency for Markovnikov selective ring opening for alkyl-substituted epoxides.
Collapse
Affiliation(s)
- Cheng Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Wan Ma
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Xuelian Zheng
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Minghao Xu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.,Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
35
|
Tadiello L, Gandini T, Stadler BM, Tin S, Jiao H, de Vries JG, Pignataro L, Gennari C. Regiodivergent Reductive Opening of Epoxides by Catalytic Hydrogenation Promoted by a (Cyclopentadienone)iron Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laura Tadiello
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Tommaso Gandini
- Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Bernhard M. Stadler
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Luca Pignataro
- Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Cesare Gennari
- Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
36
|
Steiniger KA, Lambert TH. Primary Alcohols via Nickel Pentacarboxycyclopentadienyl Diamide Catalyzed Hydrosilylation of Terminal Epoxides. Org Lett 2021; 23:8013-8017. [PMID: 34613745 DOI: 10.1021/acs.orglett.1c03029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficient and regioselective hydrosilylation of epoxides co-catalyzed by a pentacarboxycyclopentadienyl (PCCP) diamide nickel complex and Lewis acid is reported. This method allows for the reductive opening of terminal, monosubstituted epoxides to form unbranched, primary alcohols. A range of substrates including both terminal and nonterminal epoxides are shown to work, and a mechanistic rationale is provided. This work represents the first use of a PCCP derivative as a ligand for transition-metal catalysis.
Collapse
Affiliation(s)
- Keri A Steiniger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
37
|
Photocatalytic
Anti
‐Markovnikov Radical Hydro‐ and Aminooxygenation of Unactivated Alkenes Tuned by Ketoxime Carbonates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Lai SQ, Wei BY, Wang JW, Yu W, Han B. Photocatalytic Anti-Markovnikov Radical Hydro- and Aminooxygenation of Unactivated Alkenes Tuned by Ketoxime Carbonates. Angew Chem Int Ed Engl 2021; 60:21997-22003. [PMID: 34255913 DOI: 10.1002/anie.202107118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Indexed: 11/05/2022]
Abstract
A tunable photocatalytic method is reported for anti-Markovnikov hydro- and aminooxygenation of unactivated alkenes using readily accessible ketoxime carbonates as the diverse functionalization reagents. Mechanistic studies reveal that this reaction is initiated through an energy-transfer-promoted N-O bond homolysis of ketoxime carbonates leading to alkoxylcarbonyloxyl and iminyl radicals under visible-light photocatalysis, followed by the addition of alkoxylcarbonyloxyl radical to alkenes. By taking advantage of the different stability of the iminyl radicals, the generated carbon radical either abstracts a hydrogen atom from the media to form the anti-Markovnikov hydrooxygenation product, or it is trapped by the persistent iminyl radical to furnish the aminooxygenation product. Notably, this is the first example of direct hydrooxygenation of unactivated olefins with anti-Markovnikov regioselectivity involving an oxygen-centered radical.
Collapse
Affiliation(s)
- Sheng-Qiang Lai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bang-Yi Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jia-Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
39
|
Álvarez‐Miguel L, Burgoa JD, Mosquera MEG, Hamilton A, Whiteoak CJ. Catalytic Formation of Cyclic Carbonates using Gallium Aminotrisphenolate Compounds and Comparison to their Aluminium Congeners: A Combined Experimental and Computational Study. ChemCatChem 2021. [DOI: 10.1002/cctc.202100910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lucía Álvarez‐Miguel
- Department of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcalá Campus Universitario 28871 Alcalá de Henares Madrid Spain
| | - Jesús Damián Burgoa
- Department of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcalá Campus Universitario 28871 Alcalá de Henares Madrid Spain
| | - Marta E. G. Mosquera
- Department of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcalá Campus Universitario 28871 Alcalá de Henares Madrid Spain
| | - Alex Hamilton
- Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry College of Health, Wellbeing and Life Sciences Sheffield Hallam University Howard Street Sheffield S1 1WB United Kingdom
| | - Christopher J. Whiteoak
- Department of Organic and Inorganic Chemistry and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcalá Campus Universitario 28871 Alcalá de Henares Madrid Spain
| |
Collapse
|
40
|
Genç S, Gülcemal S, Günnaz S, Çetinkaya B, Gülcemal D. Synthesis of α-Alkylated Ketones via Selective Epoxide Opening/Alkylation Reactions with Primary Alcohols. Org Lett 2021; 23:5229-5234. [PMID: 34143639 DOI: 10.1021/acs.orglett.1c01765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new method for converting terminal epoxides and primary alcohols into α-alkylated ketones under borrowing hydrogen conditions is reported. The procedure involves a one-pot epoxide ring opening and alkylation via primary alcohols in the presence of an N-heterocyclic carbene iridium(I) catalyst, under aerobic conditions, with water as the side product.
Collapse
Affiliation(s)
- Sertaç Genç
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey
| | | | - Salih Günnaz
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey
| | - Bekir Çetinkaya
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey
| | - Derya Gülcemal
- Ege University, Chemistry Department, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
41
|
Duval M, Deboos V, Hallonet A, Sagorin G, Denicourt-Nowicki A, Roucoux A. Selective palladium nanoparticles-catalyzed hydrogenolysis of industrially targeted epoxides in water. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Fiorio JL, Rossi LM. Clean protocol for deoxygenation of epoxides to alkenes via catalytic hydrogenation using gold. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01695k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Au NP catalyst combined with triethylphosphite, P(OEt)3, is remarkably more reactive than solely Au NPs for the selective deoxygenation of epoxides to alkenes.
Collapse
Affiliation(s)
- Jhonatan L. Fiorio
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Liane M. Rossi
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
43
|
Liu X, Longwitz L, Spiegelberg B, Tönjes J, Beweries T, Werner T. Erbium-Catalyzed Regioselective Isomerization–Cobalt-Catalyzed Transfer Hydrogenation Sequence for the Synthesis of Anti-Markovnikov Alcohols from Epoxides under Mild Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03294] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Liu
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| | - Lars Longwitz
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| | - Brian Spiegelberg
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| | - Jan Tönjes
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| | - Torsten Beweries
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| | - Thomas Werner
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock D-18059, Germany
| |
Collapse
|
44
|
Magre M, Paffenholz E, Maity B, Cavallo L, Rueping M. Regiodivergent Hydroborative Ring Opening of Epoxides via Selective C-O Bond Activation. J Am Chem Soc 2020; 142:14286-14294. [PMID: 32658463 PMCID: PMC7458426 DOI: 10.1021/jacs.0c05917] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A magnesium-catalyzed regiodivergent C-O bond cleavage protocol is presented. Readily available magnesium catalysts achieve the selective hydroboration of a wide range of epoxides and oxetanes yielding secondary and tertiary alcohols in excellent yields and regioselectivities. Experimental mechanistic investigations and DFT calculations provide insight into the unexpected regiodivergence and explain the different mechanisms of the C-O bond activation and product formation.
Collapse
Affiliation(s)
- Marc Magre
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, Aachen 52074, Germany
| | - Eva Paffenholz
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, Aachen 52074, Germany
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
45
|
Liu W, Leischner T, Li W, Junge K, Beller M. A General Regioselective Synthesis of Alcohols by Cobalt-Catalyzed Hydrogenation of Epoxides. Angew Chem Int Ed Engl 2020; 59:11321-11324. [PMID: 32196878 PMCID: PMC7383699 DOI: 10.1002/anie.202002844] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 11/16/2022]
Abstract
A straightforward methodology for the synthesis of anti-Markovnikov-type alcohols is presented. By using a specific cobalt triphos complex in the presence of Zn(OTf)2 as an additive, the hydrogenation of epoxides proceeds with high yields and selectivities. The described protocol shows a broad substrate scope, including multi-substituted internal and terminal epoxides, as well as a good functional-group tolerance. Various natural-product derivatives, including steroids, terpenoids, and sesquiterpenoids, gave access to the corresponding alcohols in moderate-to-excellent yields.
Collapse
Affiliation(s)
- Weiping Liu
- College of Chemistry, Chemical Engineering and BiotechnologyDonghua University201620ShanghaiP. R. China
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Wu Li
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
46
|
Liu W, Leischner T, Li W, Junge K, Beller M. A General Regioselective Synthesis of Alcohols by Cobalt‐Catalyzed Hydrogenation of Epoxides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Weiping Liu
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai P. R. China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Wu Li
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
47
|
González-Delgado JA, Arteaga JF. Control of Homocoupling Versus Reduction in Titanium(III)-Mediated Radical Opening of Styrene Oxides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- José A. González-Delgado
- CIQSO-Center for Research in Sustainable Chemistry and Department of Chemistry; University of Huelva; Campus de El Carmen s/n E-21071 Huelva Spain
| | - Jesús F. Arteaga
- CIQSO-Center for Research in Sustainable Chemistry and Department of Chemistry; University of Huelva; Campus de El Carmen s/n E-21071 Huelva Spain
| |
Collapse
|
48
|
Thiyagarajan S, Gunanathan C. Ruthenium-Catalyzed Selective Hydrogenation of Epoxides to Secondary Alcohols. Org Lett 2019; 21:9774-9778. [DOI: 10.1021/acs.orglett.9b03995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subramanian Thiyagarajan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|