1
|
Zheng ZW, Zhang LJ, Li CY, Zhang XY, Huang K, Qin DB. Ion incorporation into cobalt(II)-organic framework for green and efficient synthesis of oxazolidinones via carbon dioxide fixation. J Colloid Interface Sci 2025; 688:32-43. [PMID: 39987839 DOI: 10.1016/j.jcis.2025.02.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Developing a green and efficient method for CO2 transformation is crucial for advancing carbon neutrality and effective resource utilization. Among the transformations, carboxylative cyclization of CO2 to produce oxazolidinones is an atom-economical reaction with valuable pharmaceutical applications. However, most catalytic systems often require high temperatures, organic solvents or show low efficiency. Herein, we report a novel anionic framework, {[NH2(CH3)2]2[Co3(L)3(µ3-O)]·0.37DMA }n (1), which can be synthesized on a gram scale and displays excellent stability. As a catalyst, compound 1 enables the carboxylative cyclization of propargylic amines with CO2 at 70 °C for 12 h under ambient pressure, and can be reused up to 10 times while maintaining structural stability. Given the relatively high temperature and extended reaction time required in the 1-catalytic system, Ag+ and Cu2+ ions are incorporated into the framework of compound 1 through cation exchange. The Ag+-incorporated composite 1-Ag(0.05) exhibits high catalytic efficiency under ambient temperature and CO2 pressure within 6 h without using solvent, and can be reused for at least five successive cycles. Control experiments and DFT calculations reveal that the synergistic interaction between Ag+, Co-framework and DBU is the key factor promoting the reaction. To our knowledge, this study provides the first comprehensive investigation into the impact of ion incorporation on the catalytic performance of a Co-based framework in the carboxylative cyclization of propargylic amines with CO2.
Collapse
Affiliation(s)
- Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ling-Jiao Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Chun-Yang Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
2
|
He RD, Lu Y. Proximal and Remote Hydrocarboxylation of Alkenes with Carbon Dioxide Enabled by Nickel-Catalyzed Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2025; 64:e202424790. [PMID: 40110906 DOI: 10.1002/anie.202424790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 03/22/2025]
Abstract
The utilization of carbon dioxide and alkenes as feedstocks for the synthesis of carboxylic acids holds great significance in the realm of sustainable chemistry. Nonetheless, achieving selective C─H bond carboxylation of alkenes with broad applicability has long been a challenging task. Herein, we present a straightforward and unifying approach for the preparation of α-carboxylic acids through nickel-catalyzed radical hydrocarboxylation of both functionalized and unactivated, simple alkenes, at proximal and remote sites. Notably, this operationally simple catalytic reaction exhibits a broad substrate scope, having excellent regio- and chemoselectivities, and is suitable for late-stage carboxylation of bioactive molecules. Preliminary mechanistic investigations showed that a nickel-catalyzed hydrogen atom transfer (Ni-HAT) pathway is in operation, accounting for the site-selective hydrocarboxylation protocol for various alkene substrates.
Collapse
Affiliation(s)
- Rong-De He
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Energy and Environmental Nanotech Platform, National University of Singapore (Suzhou) Research Institute, No.377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
3
|
Zeng X, Chen H, Liu Y, Fang W, Huang Z, Zhao L. Photo-thermal coupling-mediated enhancement in CO 2 conversion: Key role of thermal effect and cobalt valence change-regulated electron-transfer orientation. J Colloid Interface Sci 2025; 686:733-742. [PMID: 39922163 DOI: 10.1016/j.jcis.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Solar-driven CO2 conversion into fuels using particulate photocatalysts is a promising strategy for mitigating CO2 emissions with minimal environmental impact. However, the efficiency of CO2 photoreduction remains limited by the inherent trade-off between light absorption and charge transfer kinetics in single photocatalysts. Herein, we propose an innovative microtubular photocatalytic system consisting of integrated photothermal-photocatalytic materials. The system is based on hollow microtubular g-C3N4 substrates, which are wrapped with thin layers of graphene oxide (GO) acting as photothermal generators, while CoS2 nanoparticles are embedded between the layers to facilitate charge transfer. The synergistic effects of photon and thermal energy significantly reduce the activation energy by approximately 14 times, thereby promoting oriented electron transfer. Under full spectrum irradiation, the system exhibits superior CO2 reduction performance, achieving CO and CH4 yields of 143.73 and 60.27 μmol g-1, respectively, surpassing the combined contributions from light and heat alone.
Collapse
Affiliation(s)
- Xianghui Zeng
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003 PR China
| | - Hui Chen
- State Key Laboratory of Advanced Refractories, Wuhan University of Science & Technology, Wuhan 430081 PR China.
| | - Yongzheng Liu
- State Key Laboratory of Advanced Refractories, Wuhan University of Science & Technology, Wuhan 430081 PR China
| | - Wei Fang
- State Key Laboratory of Advanced Refractories, Wuhan University of Science & Technology, Wuhan 430081 PR China
| | - Zhaohui Huang
- College of Materials Science and Engineering, Hunan University, Changsha 410006 PR China
| | - Lei Zhao
- State Key Laboratory of Advanced Refractories, Wuhan University of Science & Technology, Wuhan 430081 PR China.
| |
Collapse
|
4
|
Sun Y, Yang P, Liu J, Liu P, Wang X, Zhou JS, Tang B. Unusual 1,1-Dicarboxylation Selectivity in the Domino Hydrocarboxylation of Alkynes with Formate and Application in Polyimide Photoresists. Angew Chem Int Ed Engl 2025; 64:e202502920. [PMID: 40016162 DOI: 10.1002/anie.202502920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
We report for the first time a photoinduced domino 1,1-dicarboxylation of alkynes for the synthesis of malonic acid derivatives using a cesium formate solution (80% w/w in water), which is different from previous 1,2-dicarboxylation methods that usually produce succinic acids. Cesium malonate precipitated directly from the diluted reaction mixture and was collected by filtration without further purification. Interestingly, solid cesium formate with additional water led to a mono-carboxylation product. The solubility of cesium formate and alkaline environment are two key factors contributing to the outcome. A series of malonic acids, propionic acids and drug intermediates were synthesized by the methods in good yields. Mechanism experiments and DFT calculations indicate that the malonic acid is formed through the α-selective addition of CO2 •- to a cinnamate intermediate. This method enables direct preparation of water-soluble carboxylate-functionalized molecules and polymers from hydrophobic alkyne-containing precursors, showing potential usability in photolithography for semiconductor manufacturing.
Collapse
Affiliation(s)
- Yaxin Sun
- Shandong Provincial Key Laboratory of Photoresist, Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Peng Yang
- Shandong Provincial Key Laboratory of Photoresist, Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Jianbiao Liu
- Shandong Provincial Key Laboratory of Photoresist, Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Pin Liu
- Suntific Materials Ltd., Weifang, 261061, P.R. China
| | - Xu Wang
- Shandong Provincial Key Laboratory of Photoresist, Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Bo Tang
- Shandong Provincial Key Laboratory of Photoresist, Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
- Laoshan Laboratory, Qingdao, 266237, P.R. China
| |
Collapse
|
5
|
Han Y, Wang X, Tao Q, Yang B, Zhu F. Switchable Divergent Photocatalytic C-Glycosylation of Glycosyl Benzoates. Angew Chem Int Ed Engl 2025; 64:e202504504. [PMID: 40084563 DOI: 10.1002/anie.202504504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/16/2025]
Abstract
Metabolically robust C-glycosides are crucial in various biological and medical applications, underscoring the need for efficient synthesis methods. While radical C-glycosylation reactions are known for their reliability and functional group tolerance, challenges such as glycosyl donor stability and atom economy persist. In this study, we investigate the underexplored potential of condition-controlled divergent synthesis of C-glycosides through a switchable photocatalytic C-glycosylation strategy, involving reductive anomeric C─O bond cleavage. Utilizing simple, readily available, and bench-stable glycosyl benzoates as novel O-based glycosyl radical precursors, we successfully achieve deoxygenative glycosylation of simple alkenes and styryl boronic acids, establishing a versatile platform for C-glycoside synthesis. A critical aspect of the challenging reductive cleavage of these benzoate esters is the introduction of strong single-electron transfer (SET) reductants, combined with Brønsted acids to accelerate fragmentation following substrate reduction. Notably, CO2 •-, generated via the consecutive photon-induced electron transfer process, is utilized for the first time in glycosylation reactions. By meticulously tuning the reaction conditions, including photocatalysts and formate additives, we facilitate the divergent synthesis of alkyl and alkenyl C-glycosides with good to high stereoselectivity and yields. Mechanistic studies provide insight into the reaction pathway and the underlying rationale behind this finely tuned, easily controlled photocatalytic system.
Collapse
Affiliation(s)
- Yang Han
- Frontiers Science Center for Transformative Molecules (FSCTM), Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xiaoling Wang
- Frontiers Science Center for Transformative Molecules (FSCTM), Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Qiang Tao
- Frontiers Science Center for Transformative Molecules (FSCTM), Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P.R. China
| | - Bo Yang
- Frontiers Science Center for Transformative Molecules (FSCTM), Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Feng Zhu
- Frontiers Science Center for Transformative Molecules (FSCTM), Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
6
|
Deeprose MJ, Bach T. Photocatalytic reductive incorporation of carbon dioxide into double bonds. Chem Commun (Camb) 2025; 61:6791-6794. [PMID: 40202249 DOI: 10.1039/d5cc00604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Carbon dioxide (CO2) is a challenging molecule to incorporate into olefins due to its inherent inert properties. Silanes have now been shown to rapidly react selectively with CO2, catalysed by the presence of a caesium base, to form formate salts which can undergo a hydrogen atom transfer (HAT) to give the desired CO2˙- adducts in the presence of activated olefins.
Collapse
Affiliation(s)
- Mark J Deeprose
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747 Garching, Germany.
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747 Garching, Germany.
| |
Collapse
|
7
|
Beeler JA, Walkingshaw RP, Hamud SAS, White HS. Reduction by Oxidation: Selective Hydrodehalogenation of Aryl Halides by Mediated Oxalate Oxidation. J Am Chem Soc 2025; 147:12206-12217. [PMID: 40162707 DOI: 10.1021/jacs.5c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Electro-organic reduction reactions are canonically carried out at a cathode at which a significant negative potential is applied. Specifically, at carbon electrodes, aryl bromides and chlorides undergo heterogeneous reduction in organic solvents at potentials more negative than -2 V vs E0' for the Fc/Fc+ couple (Fc = ferrocene). To decrease the overpotential for reduction reactions, homogeneous or heterogeneous electrocatalysis strategies are often employed. Here, we present an electrochemical method to reduce aryl bromides and chlorides that is initiated by an oxidation reaction at very mild potentials (∼0 V vs Fc/Fc+). Specifically, electrochemical oxidation of an outer-sphere redox mediator, 1,1-dimethylferrocene, in dry N,N-dimethylformamide (DMF) containing oxalate (C2O42-), results in the homogeneous one-electron oxidation of C2O42-. The resulting C2O4•- decomposes in ∼1 μs to release the carbon dioxide radical anion (CO2•-), a potent reductant that is oxidized to CO2 at -2.68 V vs Fc/Fc+. In this way, an oxidation reaction at low electrode potentials enables homogeneous reduction of aryl bromides and chlorides, which are otherwise directly reduced at very negative potentials. Using this method, selective hydrodehalogenations of electron-deficient aryl bromides and chlorides are carried out at a reticulated vitreous carbon anode with up to quantitative conversion yields. Cyclic voltammetry and finite difference simulations are used to characterize the hydrodehalogenation of 4-bromobenzonitrile via C2O42- oxidation. Additionally, we show that the efficiency of hydrodehalogenation is tuned by deliberate additions of water to DMF solutions, leading to a substantial improvement in overall conversion yields without interference from water or proton reduction.
Collapse
Affiliation(s)
- Joshua A Beeler
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Rune P Walkingshaw
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Safiya A S Hamud
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Zhang H, Jiang Z, Hu C, Zheng P, Ma J. Tunable Hydro/Dicarboxylation of Ethylene with CO 2 via a Barrierless Radiolytic Free-Radicals Pathway. J Am Chem Soc 2025; 147:10391-10400. [PMID: 40068922 DOI: 10.1021/jacs.4c17761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The hydro/dicarboxylation of ethylene (C2H4) feedstock with CO2 to produce high-value carboxylic acids is an industrially relevant yet challenging reaction due to their extremely low reactivities. Herein, we present an effective strategy to synthesize propionic acid and succinic acid from a mixture of CO2 and C2H4 catalyzed by high-energy water radiolysis. The process involves the generation of CO2 radical anions via the barrierless attachment of hydrated electrons to CO2, facilitating an ambient, continuous carboxylation of C2H4 with an efficiency of 81.4%. Utilizing easily available electron beam irradiation, we achieved a combined production rate of 0.34 mmol L-1 min-1 for carboxylic acids, which is unattainable by the existing methods. Notably, product selectivity between hydro- and dicarboxylation was dose-rate/beam intensity-dependent: high-dose-rate irradiation favored succinic acid formation with a proportional yield of up to 65.4%, while milder conditions resulted in an 85.1% yield of propionic acid. We suggested that the simplicity and efficiency of the present carboxylation approach promote circular carbon in the sustainable chemical industry.
Collapse
Affiliation(s)
- Hang Zhang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhiwen Jiang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changjiang Hu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pengfei Zheng
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Ma
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
9
|
Yin Y, You M, Li X, Jiang Z. Catalytic asymmetric photocycloaddition reactions mediated by enantioselective radical approaches. Chem Soc Rev 2025; 54:2246-2274. [PMID: 39869068 DOI: 10.1039/d5cs00019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The use of olefins in the construction of cyclic compounds represents a powerful strategy for advancing the pharmaceutical industry. Photocycloaddition has attracted significant interest from chemists due to its ability to exploit simple and readily available olefins along with their reaction patterns under mild conditions. Moreover, the sustainable and versatile pathways for generating highly reactive intermediates can greatly enrich both substrate diversity and reaction patterns. As a result, numerous photocycloaddition reactions have been successfully developed, particularly asymmetric [2+2], [3+2], and [4+2] photocycloadditions mediated by enantioselective radical approaches, achieving remarkable enantioselectivities. This review offers a comprehensive overview of this rapidly evolving field, organizing the discussion into three distinct reaction types that facilitate the construction of enantioenriched derivatives of cyclobutanes, cyclopentanes, and cyclohexanes. Emphasis is placed on analyzing and summarizing established strategies aimed at circumventing the challenges posed by racemic background transformations. Additionally, the exploration of asymmetric [3+2] and [4+2] photocycloaddition reactions will be interwoven with a detailed discussion of the various substrate types involved. This systematic framework seeks to enhance understanding of the strategies employed to manage the high reactivity of radicals while achieving high enantioselectivity. Importantly, it aims to guide readers in identifying uncharted radical-based cycloaddition pathways, which possess significant potential to broaden the diversity of complex cyclic molecules.
Collapse
Affiliation(s)
- Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P. R. China.
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, Henan, P. R. China
| | - Mengdi You
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P. R. China.
| | - Xiangtao Li
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P. R. China.
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P. R. China.
| |
Collapse
|
10
|
Das S, Maiti S, Mondal S, Mondal S, Midya SP, Ghosh P. Visible-Light-Induced Decarboxylative Annulation of α,β-Unsaturated Acids with Amines and α-Keto Acids for 2,4-Diarylquinoline Synthesis. Org Lett 2025. [PMID: 39898463 DOI: 10.1021/acs.orglett.5c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
An efficient and sustainable approach for the synthesis of 2,4-diarylquinolines has been developed via a visible-light-promoted metal-free three-component decarboxylative annulation pathway. This one-pot protocol combines readily available feed-stock α,β-unsaturated acids, aromatic amines, and α-keto acids in a cascade manner to access substituted quinolines under eco-benign conditions. Moreover, mechanistic insights suggest initial C-C cross coupling followed by decarboxylative 6π electrocyclic annulation to afford the desired products. The broad substrates scope and excellent functional group tolerance make this protocol more attractive and synthetically applicable toward the construction of complex N-heterocycles.
Collapse
Affiliation(s)
- Suman Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Souvik Maiti
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Siba P Midya
- Department of Chemistry, Rammohan College, Kolkata, West Bengal 700009, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
11
|
Wang S, Xu P, Liu ZT, Liu YQ, Jiang HQ, Hao TZ, Jiang HX, Xu H, Cao XD, Guo D, Zhu X. Visible-Light-Driven Carboxylative 1,2-Difunctionalization of C=C Bonds with Tetrabutylammonium Oxalate. ACS CENTRAL SCIENCE 2025; 11:46-56. [PMID: 39866692 PMCID: PMC11758224 DOI: 10.1021/acscentsci.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 01/28/2025]
Abstract
Herein, we report a visible-light-induced charge-transfer-complex-enabled dicarboxylation and deuterocarboxylation of C=C bonds with oxalate as a masked CO2 source under catalyst-free conditions. In this reaction, we disclosed the first example that the tetrabutylammonium oxalate could be able to aggregate with aryl substrates via π-cation interactions to form the charge transfer complexes, which subsequently triggers the single electron transfer from the oxalic dianion to the ammonium countercation under irradiation of 450 nm bule LEDs, releasing CO2 and CO2 radical anions. Diverse alkenes, dienes, trienes, and indoles, including challenging trisubstituted olefins, underwent dicarboxylation and anti-Markovnikov deuterocarboxylation with high selectivity to access valuable 1,2- and 1,4-dicarboxylic acids as well as indoline-derived diacids and β-deuterocarboxylic acids under mild conditions. The in situ generated CO2 •- and CO2 molecules from oxalic radical anions could both add to the C=C bond without assistance of any photocatalyst or additives, which made this reaction sustainable, clean, and efficient.
Collapse
Affiliation(s)
- Sai Wang
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Pei Xu
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Zhi-Tao Liu
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Yi-Qin Liu
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Hao-Qiang Jiang
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Tian-Zi Hao
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Hui-Xian Jiang
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Hui Xu
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xu-Dong Cao
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Dong Guo
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, School
of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
- Key
Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry,
Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Yan Q, Nan J, Cao R, Zhu L, Liu S, Liang C, Zhang C. Substrate-Controlled Divergent Reductive Cyclization of 2-Arylanilines Using CO 2 as a Switching Reagent. Org Lett 2025; 27:510-516. [PMID: 39791237 DOI: 10.1021/acs.orglett.4c04538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Capturing CO2 is highly valued in the field of organic synthesis, especially underdeveloped dual-CO2 conversion. In this study, we detail a novel reductive cyclization of 2-indolylanilines with dual CO2 as a difunctional reagent in the presence of PMHS [poly(methylhydrosiloxane)], delivering methyl-substituted quinoxalines. Furthermore, another chemoselective cyclization with 2-pyrrolylanilines is also realized by converting mono-CO2. Mechanistic investigations shed light upon the fact that this substrate-controlled divergence mainly depends on the formation of N-diacylative intermediates.
Collapse
Affiliation(s)
- Qiang Yan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiang Nan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Rui Cao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lanxin Zhu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shilei Liu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chengyuan Liang
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Chen Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
13
|
Li C, Chen XW, Liao LL, Gui YY, Yang JW, Zhang S, Yue JP, Zhou X, Ye JH, Lan Y, Yu DG. Nickel-Catalyzed Atroposelective Carbo-Carboxylation of Alkynes with CO 2: En Route to Axially Chiral Carboxylic Acids. Angew Chem Int Ed Engl 2025; 64:e202413305. [PMID: 39506458 DOI: 10.1002/anie.202413305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Precise synthesis of carboxylic acids via catalytic carboxylation with CO2 is highly appealing. Although considerable advancements have been achieved in difunctionalizing carboxylation of unsaturated hydrocarbons, the asymmetric variants are conspicuously underdeveloped, particularly in addressing axially chiral alkenes. Herein, we report the first catalytic atroposelective carboxylation of alkynes with CO2. A variety of valuable axially chiral carboxylic acids are obtained with good yields and high chemo-, regio-, Z/E and enantio-selectivities. Notably, an unexpected anti-selective carbo-carboxylation is observed in the sp2-hybrid carbo-electrophile-initiated reductive carboxylation of alkynes. Mechanistic studies including DFT calculation elucidate the origin of chiral induction and anti-selectivity in vinyl-carboxylation of alkynes.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 400030, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Shuo Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiangge Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 400030, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
14
|
Dong B, Qi W, Chen Y, Zhang Y, Gu S, Zhao J, Zhou Q, Shen J, Xie L. Stabilized Carbon Radical-Mediated Assembly of Arylthianthrenium Salts, Alkenes and Amino Acid/Peptide Derivatives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411579. [PMID: 39573977 PMCID: PMC11727398 DOI: 10.1002/advs.202411579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Indexed: 01/14/2025]
Abstract
Efficiently assembling amino acids and peptides with bioactive molecules facilitates the modular and streamlined synthesis of a diverse library of peptide-related compounds. Particularly notable is their application in pharmaceutical development, leveraging site-selective late-stage functionalization. Here, a visible light-induced three-component reaction involving arylthianthrenium salts, amino acid/peptide derivatives, and alkenes are introduced. This approach utilizes captodatively-stabilized carbon radicals to enable radical-radical C─C coupling, effectively constructing complex bioactive molecules. This method offers a promising alternative route for modular synthesis of peptide-derived bio-relevant compounds.
Collapse
Affiliation(s)
- Bo Dong
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Weiguan Qi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Yifeng Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Yufei Zhang
- State Key Laboratory of Natural MedicinesDepartment of Organic ChemistryChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shiyu Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Jianlin Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural MedicinesDepartment of Organic ChemistryChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
- Jiangsu Engineering Research Center of Interfacial ChemistryNanjing UniversityNanjing210023P. R. China
| | - Lan‐Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| |
Collapse
|
15
|
Dang Y, Han J, Chmiel AF, Alektiar SN, Mikhael M, Guzei IA, Yeung CS, Wickens ZK. Alkene Carboxy-Alkylation via CO 2•. J Am Chem Soc 2024; 146:35035-35042. [PMID: 39665217 PMCID: PMC12062844 DOI: 10.1021/jacs.4c14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we introduce a new platform for alkene carboxy-alkylation. This reaction is designed around CO2•- addition to alkenes followed by radical polar crossover, which enables alkylation through carbanion attack on carbonyl electrophiles. We discovered that CO2•- adds to alkenes faster than it reduces carbonyl electrophiles and that this reactivity can be exploited by accessing CO2•- via hydrogen atom transfer from formate. This photocatalytic system transforms vinylarenes and carbonyl compounds into a diverse array of substituted γ-lactone products. Furthermore, indoles can be engaged through dearomative carboxy-alkylation, delivering medicinally relevant C(sp3)-rich heterocyclic scaffolds. Mechanistic studies reveal that the active photocatalyst is generated in situ through a photochemically induced reaction between the precatalyst and DMSO. Overall, we have developed a three-component alkene carboxy-alkylation reaction enabled by the use of formate as the CO2•- precursor.
Collapse
Affiliation(s)
- Y Dang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jimin Han
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sara N. Alektiar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Myriam Mikhael
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Charles S. Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Debbarma S, Hayashi H, Ueno Y, Kanna W, Tanaka K, Mita T. Photoredox-Catalyst-Free Carboxylation of Unactivated Alkenes in DMSO: Synthesis of Polycyclic Indole Derivatives and Aliphatic Acids. Org Lett 2024; 26:10897-10902. [PMID: 39642036 DOI: 10.1021/acs.orglett.4c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A new method for the carboxylation of unactivated alkenes using CO2 radical anions in the absence of a photoredox catalyst has been developed. The photocatalyst-free approach enables the efficient synthesis of polycyclic indole derivatives and linear carboxylic acids under mild conditions from HCO2K with/without 1,4-diazabicyclo[2.2.2]octane (DABCO) in DMSO. This work demonstrates a significant advance in green chemistry, showcasing a catalyst-free approach for the functionalization of unactivated alkenes with cheap and readily available HCO2K.
Collapse
Affiliation(s)
- Suvankar Debbarma
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yamato Ueno
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Kanna
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kosaku Tanaka
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
17
|
Hu D, Dang H, Liang Z, Wang D, Du Y, Shen C, Shen J, Wang M. Visible-Light-Mediated Nucleophilic Addition of Alkene with Aldehyde: Synthesis of Secondary Alcohols. Org Lett 2024; 26:10797-10802. [PMID: 39658526 DOI: 10.1021/acs.orglett.4c03819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Herein, a photocatalytic strategy for the synthesis of secondary alcohols by nucleophilic addition of an alkene with an aldehyde is described. This operationally simple methodology opens an approach for the synthesis of alcohols using commercially available reagents in moderate to excellent yields. Mechanistic studies indicate that the formation of the radical anion from alkene via single-electron transfer is the key step in this reaction.
Collapse
Affiliation(s)
- Du Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Haowen Dang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhen Liang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Donghao Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yunyun Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Min Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
18
|
Yao Y, Bai J, Cheng P, Yang H, Sun J, Sun S. Base-promoted cascade 5- exo-dig annulation/carboxylation of o-(1-alkynyl)benzenesulfonamides with CO 2: divergent synthesis of mono- or gem-dicarboxylic esters. Chem Commun (Camb) 2024; 60:14850-14853. [PMID: 39585237 DOI: 10.1039/d4cc05239k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
A base-promoted cascade 5-exo-dig cyclization/carboxylation of o-alkynylsulfamides with CO2 has been accomplished, furnishing a variety of benzosultam-containing acrylates in good yields by using CO2 as the carboxylic source. Notably, in the case of substrates bearing a TMS-alkyne motif, the gem-dicarboxylation products were generated unprecedentedly.
Collapse
Affiliation(s)
- Yang Yao
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Junxue Bai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Peidong Cheng
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Han Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Song Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
19
|
Wu JY, Wan YC, Shao Y, Zhan LW, Li BD, Hou J. Visible-Light-Promoted Reduction of Nitroarenes with Formate Salts as Reductants. Chemistry 2024; 30:e202402870. [PMID: 39324515 DOI: 10.1002/chem.202402870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 09/27/2024]
Abstract
A visible-light-promoted reduction of nitrobenzenes using formate salts as the reductant was developed. A wide range of nitrobenzenes can be converted into aniline products in a transition metal free fashion. Mechanistic studies revealed that radical species (carbon dioxide radical anion and thiol radical) are key intermediates for the transformation. We anticipate that this method will provide a valuable and green strategy for the reduction of nitrobenzenes.
Collapse
Affiliation(s)
- Jun-Yue Wu
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuan-Cui Wan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yu Shao
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
20
|
Pan C, Chen D. Photocatalytic Consecutive Photoinduced Electron Transfer-Enabled C(sp 3)-H Pyridylation of Dihydroquinoxalin-2-ones. J Org Chem 2024; 89:17587-17597. [PMID: 39576665 DOI: 10.1021/acs.joc.4c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A photocatalytic decyanative C(sp3)-H pyridination of dihydroquinoxalin-2-ones with 4-cyanopyridines was developed by utilizing 4CzIPN as the photocatalyst. Mechanism studies show that this organophotocatalytic direct C(sp3)-H pyridination undergoes a radical-radical cross-coupling pathway promoted by consecutive photoinduced electron transfer.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Dongdong Chen
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
21
|
Liu J, Wang W, Liao LL, Zhang W, Yue JP, Liu Y, Chen XW, Ye JH, Yu DG. Photo-induced carboxylation of C(sp 2)-S bonds in aryl thiols and derivatives with CO 2. Nat Commun 2024; 15:10132. [PMID: 39578448 PMCID: PMC11584649 DOI: 10.1038/s41467-024-53351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/04/2024] [Indexed: 11/24/2024] Open
Abstract
Aryl thiols have proven to be a useful class of electron donors and hydrogen atom sources in photochemical processes. However, the direct activation and functionalization of C(sp2)-S bonds in aryl thiols remains elusive in the field of photochemistry. Herein, a photochemical carboxylation of C(sp2)-S bonds in aryl thiols with CO2 is reported, providing a synthetic route to important aryl carboxylic acids. Moreover, different kinds of aryl thiol derivatives, benzeneselenol and diphenyl diselenide also show moderate-to-high reactivity in this transformation. Mechanistic studies, including DFT calculations, suggest that the in situ generated carbon dioxide radical anion (CO2•-) and disulfide might be the key intermediates, which undergo radical substitution to yield products. This reaction features mild and catalyst-free conditions, good functional group tolerance and wide substrate scope. Furthermore, the efficient degradation of polyphenylene sulfide highlights the usefulness of this methodology.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Li-Li Liao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Yi Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
22
|
Ghosh P, Maiti S, Malandain A, Raja D, Loreau O, Maity B, Roy TK, Audisio D, Maiti D. Taming CO 2•- via Synergistic Triple Catalysis in Anti-Markovnikov Hydrocarboxylation of Alkenes. J Am Chem Soc 2024; 146:30615-30625. [PMID: 39468468 DOI: 10.1021/jacs.4c12294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The direct utilization of carbon dioxide as an ideal one-carbon source in value-added chemical synthesis has garnered significant attention from the standpoint of global sustainability. In this regard, the photo/electrochemical reduction of CO2 into useful fuels and chemical feedstocks could offer a great promise for the transition to a carbon-neutral economy. However, challenges in product selectivity continue to limit the practical application of these systems. A robust and general method for the conversion of CO2 to the polarity-reversed carbon dioxide radical anion, a C1 synthon, is critical for the successful valorization of CO2 to selective carboxylation reactions. We demonstrate herein a hydride and hydrogen atom transfer synergy driven general catalytic platform involving CO2•- for highly selective anti-Markovnikov hydrocarboxylation of alkenes via triple photoredox, hydride, and hydrogen atom transfer catalysis. Mechanistic studies suggest that the synergistic operation of the triple catalytic cycle ensures a low-steady-state concentration of CO2•- in the reaction medium. This method using a renewable light energy source is mild, robust, selective, and capable of accommodating a wide range of activated and unactivated alkenes. The highly selective nature of the transformation has been revealed through the synthesis of hydrocarboxylic acids from the substrates bearing a hydrogen atom available for intramolecular 1,n-HAT process as well as diastereoselective synthesis. This technology represents a general strategy for the merger of in situ formate generation with a synergistic photoredox and HAA catalytic cycle to provide CO2•- for selective chemical transformations.
Collapse
Affiliation(s)
- Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Augustin Malandain
- Université Paris Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| | - Dineshkumar Raja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Olivier Loreau
- Université Paris Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Davide Audisio
- Université Paris Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
23
|
Zhang SR, Yue JP, Wang LF, Gui YY, Zhang W, Yu DG, Ye JH. Dearomative hydroamination of heteroarenes catalyzed by the phenolate photocatalyst. Chem Commun (Camb) 2024; 60:13083-13086. [PMID: 39440373 DOI: 10.1039/d4cc03879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dearomative functionalization of heteroarenes offers an attractive and sustainable approach for the rapid construction of complex 3D heterocyclic scaffolds from planar structures. Despite progress in this field, dearomative amination of heteroarenes via a radical anion intermediate remains a challenge. Here, we report a photoredox-catalyzed dearomative hydroamination of heteroarenes with hydrazodiformates under mild and transition-metal-free reaction conditions. Various benzofurans and benzothiophenes can efficiently participate in this transformation. A series of mechanistic experiments revealed that heteroaryl radical anions are the crucial intermediates, generated through photo-induced electron transfer between the excited phenolate photocatalyst and heteroarenes.
Collapse
Affiliation(s)
- Shu-Rong Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Long-Fu Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
24
|
Zeng H, Yin R, Zhao Y, Ma JA, Wu J. Modular alkene synthesis from carboxylic acids, alcohols and alkanes via integrated photocatalysis. Nat Chem 2024; 16:1822-1830. [PMID: 39333390 DOI: 10.1038/s41557-024-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024]
Abstract
Alkenes serve as versatile building blocks in diverse organic transformations. Despite notable advancements in olefination methods, a general strategy for the direct conversion of carboxylic acids, alcohols and alkanes into alkenes remains a formidable challenge owing to their inherent reactivity disparities. Here we demonstrate an integrated photochemical strategy that facilitates a one-pot conversion of these fundamental building blocks into alkenes through a sequential C(sp3)-C(sp3) bond formation-fragmentation process, utilizing an easily accessible and recyclable phenyl vinyl ketone as the 'olefination reagent'. This practical method not only offers an unparalleled paradigm for accessing value-added alkenes from abundant and inexpensive starting materials but also showcases its versatility through various complex scenarios, including late-stage on-demand olefination of multifunctional molecules, chain homologation of acids and concise syntheses of bioactive molecules. Moreover, initiating from carboxylic acids, alcohols and alkanes, this protocol presents a complementary approach to traditional olefination methods, making it a highly valuable addition to the research toolkit for alkene synthesis.
Collapse
Affiliation(s)
- Hao Zeng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, P. R. China
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Ruize Yin
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, P. R. China.
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
| | - Jun-An Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, P. R. China.
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin, P. R. China.
| | - Jie Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, P. R. China.
- Department of Chemistry, National University of Singapore, Singapore, Republic of Singapore.
- National University of Singapore (Suzhou) Research Institute, Suzhou, P. R. China.
| |
Collapse
|
25
|
Xu P, Liu YQ, Jiang HX, Hao TZ, Yan SY, Liu ZT, Zhu X. Photoinduced Radical Approach for Desulfurative Alkylation of Cysteine Derivatives to Make Unnatural Amino Acids. Org Lett 2024; 26:8854-8859. [PMID: 39365118 DOI: 10.1021/acs.orglett.4c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Unnatural amino acids (UAAs) are highly valuable molecules in organic synthesis, pharmaceutical sciences, and material science. Herein, we present a photocatalytic radical approach for desulfurative alkylation of cysteine derivatives with arenethiol as the hydrogen atom transfer catalyst for making UAAs and peptides. The formate salt, acting as the hydrogen atom donor, in situ generates the highly reductive CO2 radical anion species, which is the key to unlocking the C-S bond cleavage process with a simple benzoyl protecting group. No photocatalyst is required for the radical initiation and propagation, which makes such a visible-light-induced process mild, efficient, and sustainable.
Collapse
Affiliation(s)
- Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Yi-Qin Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Hui-Xian Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Tian-Zi Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Si-Yi Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Zhi-Tao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
26
|
Liu Y, Xue GH, He Z, Yue JP, Pan M, Song L, Zhang W, Ye JH, Yu DG. Visible-Light Photoredox-Catalyzed Direct Carboxylation of Tertiary C(sp 3)-H Bonds with CO 2: Facile Synthesis of All-Carbon Quaternary Carboxylic Acids. J Am Chem Soc 2024. [PMID: 39374105 DOI: 10.1021/jacs.4c09558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Direct carboxylation of C-H bonds with CO2 represents an attractive strategy to synthesize valuable carboxylic acids with high atom, step, and redox economy. Although great progress has been achieved in this field, catalytic carboxylation of tertiary C(sp3)-H bonds still remains challenging due to their inherent inertness and significant steric hindrance. Herein, we report a direct carboxylation of tertiary benzylic C(sp3)-H bonds with CO2 via visible-light photoredox catalysis. Various all-carbon quaternary carboxylic acids, which are of significant importance in medicinal chemistry, are successfully obtained with high yields. This direct carboxylation is characterized by good functional group tolerance, broad substrate scope, and mild operational conditions. Furthermore, our methodology enables the efficient and rapid synthesis of key drug or bioactive molecules, such as carbetapentane, caramiphen, and PRE-084 (σ1 receptor agonist), and facilitates various functionalizations of C(sp2)-H bonds using the directing ability of target carboxylic acids, thus highlighting its practical applications. Mechanistic studies indicate that a carbanion, which serves as the key intermediate to react with CO2, is catalytically generated via a single electron reduction of a benzylic radical through a consecutive photoinduced electron transfer process.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Guan-Hua Xue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhen He
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Min Pan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Song
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
27
|
Ruzi R, Shu W. Visible-Light-Mediated Ni-Catalyzed Gas-Free Carboxylation: Stereodivergent Synthesis of E- and Z-Acrylic Acids. Org Lett 2024; 26:7926-7931. [PMID: 39250168 DOI: 10.1021/acs.orglett.4c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Stereodivergent syntheses of different scaffolds from identical starting materials by switching the fewest parameters are among the most appealing synthetic technologies. Herein, a visible-light mediated Ni-catalyzed carboxylation of vinyl halides with formates has been developed, affording acrylic acids in both Z- and E-configurations from identical vinyl halides. The reaction features Ni-catalyzed gas-free carboxylation of vinyl halides by utilizing formates as a surrogate of carbon dioxide.
Collapse
Affiliation(s)
- Rehanguli Ruzi
- Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
| | - Wei Shu
- Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, P. R. China
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000 Sichuan, P. R. China
| |
Collapse
|
28
|
Zheng ZW, Zhou JJ, Liu H, Zhang XY, Zhao J, Zheng DS, Huang K, Qin DB. Cu(II)-Organic Framework for Carboxylative Cyclization of Propargylic Amines with CO 2. Inorg Chem 2024; 63:16878-16887. [PMID: 39190825 DOI: 10.1021/acs.inorgchem.4c02730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Effective CO2 transformations hold essential significance for carbon neutrality and sustainable energy development. Carboxylative cyclization of propargylic amines with CO2 serves as an atom-economic reaction to afford oxazolidinones, showing broad applications in organic synthesis and pharmaceutical fields. However, most catalysts involved noble metals, exhibited low efficiency, or required large amounts of base. Hence, it is imperative to explore alternative noble-metal-free catalysts in order to achieve efficient conversion while minimizing the use of additives. Herein, a novel nanopore-based Cu(II)-organic framework (1) based on a new imidazole carboxylic ligand was successfully constructed and exhibited excellent stability. Catalytic investigations revealed that the combination of 1 with 1,4-diaza[2.2.2]bicyclooctane (DABCO) efficiently catalyzed the carboxylative cyclization of propargylic amines with CO2, achieving turnover numbers of 142 based on the catalyst and 7.1 based on DABCO. 1 as a heterogeneous catalyst maintained high catalytic performance even after being reused at least 5 cycles, with its structure remaining stable. The strong activation of Cu(II) cluster nodes of catalyst 1 toward -NH- groups within organic substrates, as demonstrated by mechanism experiments, along with excellent CO2 adsorption performance and the presence of regular 1D channels, synergistically facilitates the reaction rate. This research presents the first instance of a Cu(II)-organic framework achieving this cyclization reaction, offering wide prospects for novel catalyst design and CO2 utilization.
Collapse
Affiliation(s)
- Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jun-Jie Zhou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Hua Liu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian Zhao
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Sheng Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
29
|
Das S, Kundu S, Metya A, Maji MS. A toolbox approach to revealing a series of naphthocarbazoles to showcase photocatalytic reductive syntheses. Chem Sci 2024; 15:13466-13474. [PMID: 39183925 PMCID: PMC11339970 DOI: 10.1039/d4sc03438d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/14/2024] [Indexed: 08/27/2024] Open
Abstract
The development of highly reducing photocatalysts to functionalize arenes via the generation of reactive aryl radicals under mild and environmentally benign reaction conditions has emerged as a noteworthy approach in the realm of organic synthesis. Herein, we report a readily synthesized series of novel naphthocarbazole derivatives (NCs) as organo-photocatalysts, which, upon irradiation under 390 nm light, acquire high reducing power to catalyze several reductive transformations. The promising properties revealed by in depth photophysical and electrochemical studies ( = -1.9 V to -2.07 V vs. SCE, τ = 5.59 to 7.12 ns) demonstrate NCs to be versatile catalysts, and notably, rational variation of the substituents (NC1-NC6) modulates their success as efficient photoreductants. Detailed DFT calculations of the frontier MO diagrams and energy levels revealed them to be non-donor-acceptor type molecular scaffolds. The applicability of the NCs as catalysts was demonstrated in reductive dehalogenative borylation, phosphorylation, and dehydrohalide intramolecular C-C coupling reactions, as well as the dimerization of carbonyls and imines. Visible-light-irradiated selective reductive desulfonylation from heteroaromatics and peptides further enhances their synthetic utility.
Collapse
Affiliation(s)
- Sharmila Das
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India
| | - Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India
| | - Abhisek Metya
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India
| |
Collapse
|
30
|
Cheng X, Yin Q, Cheng YF, Wu SH, Sun XC, Kong DY, Deng QH. Practical and regioselective halonitrooxylation of olefins to access β-halonitrates. Nat Commun 2024; 15:7131. [PMID: 39164277 PMCID: PMC11335742 DOI: 10.1038/s41467-024-51655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Organic nitrates, as effective donors of the signaling molecule nitric oxide, are widely applied in the pharmaceutical industry. However, practical and efficient methods for accessing organic nitrates are still scarce, and achieving high regiocontrol in unactivated alkene difunctionalization remains challenging. Here we present a simple and practical method for highly regioselective halonitrooxylation of unactivated alkenes. The approach utilizes TMSX (X: Cl, Br, or I) and oxybis(aryl-λ3-iodanediyl) dinitrates (OAIDN) as sources of halogen and nitrooxy groups, with 0.5 mol % FeCl3 as the catalyst. Remarkably, high regioselectivity in the halonitrooxylation of aromatic alkenes can be achieved even without any catalyst. This protocol features easy scalability and excellent functional group compatibility, providing a range of β-halonitrates (127 examples, up to 99% yield, up to >20:1 rr). Notably, 2-iodoethyl nitrate, a potent synthon derived from ethylene, reacts smoothly with a variety of functional units to incorporate the nitrooxy group into the desired molecules.
Collapse
Affiliation(s)
- Xuan Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Quan Yin
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Fei Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Shao-Hua Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Xin-Chang Sun
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - De-Yi Kong
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Qing-Hai Deng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China.
- Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
31
|
Xu P, Jiang HQ, Xu H, Wang S, Jiang HX, Zhu SL, Yin L, Guo D, Zhu X. Photocatalytic deuterocarboxylation of alkynes with oxalate. Chem Sci 2024; 15:13041-13048. [PMID: 39148785 PMCID: PMC11323338 DOI: 10.1039/d4sc03586k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Herein, a catalytic photoredox-neutral strategy for alkyne deuterocarboxylation with tetrabutylammonium oxalate as the carbonyl source and D2O as the deuteration agent was described. For the first time, the oxalic salt acted as both the reductant and carbonyl source through single electron transfer and subsequential homolysis of the C-C bond. The strongly reductive CO2 radical anion species in situ generated from oxalate played significant roles in realizing the global deuterocarboxylation of terminal and internal alkynes to access various tetra- and tri-deuterated aryl propionic acids with high yields and deuteration ratios.
Collapse
Affiliation(s)
- Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Hao-Qiang Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Hui Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Sai Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Hui-Xian Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Song-Lei Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Long Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 China
| |
Collapse
|
32
|
Yang H, Yang Q, Yao Y, Gu P, Sun J, Sun S. Visible-Light-Promoted Cascade Carboxylation/Arylation of Unactivated Alkenes with CO 2 for the Synthesis of Carboxylated Indole-Fused Heterocycles. Org Lett 2024; 26:6341-6346. [PMID: 39024314 DOI: 10.1021/acs.orglett.4c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Described here is a visible-light-promoted cascade carboxylation/arylation of indole-tethered unactivated alkenes with CO2 to access various carboxylated indole-fused heterocycles. This reaction is initiated by the addition of a CO2 radical anion to the alkene motif toward an alkyl carbon radical, followed by its addition to the aromatic ring, and then rearomatization to afford the final products. This reaction provides a facile and sustainable protocol for the construction of carboxylated indole-fused heterocycles using CO2 as the carboxylic source.
Collapse
Affiliation(s)
- Han Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Yao
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peiyang Gu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Song Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
33
|
Lu X, Li Y, He X, Song P, Chai Z. Heterogeneous Photocatalytic C(sp 2)-H Activation of Formate for Hydrocarboxylation of Alkenes. Chemistry 2024; 30:e202402003. [PMID: 38801064 DOI: 10.1002/chem.202402003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Light-driven carboxylation offers a promising approach for synthesizing valuable fine chemicals under mild conditions. Here we disclose a heterogeneous photocatalytic strategy of C(sp2)-H activation of formate for hydrocarboxylation of alkenes over zinc indium sulfide (ZnIn2S4) under visible light. This protocol functions well with a variety of substituted styrenes with good to excellent yields; it also works for unactivated alkenes albeit with lower yields. Mechanistic studies confirm the existence of CO2⋅- as a key intermediate. It was found that C(sp2)-H activation of formate is induced by S⋅ species on the surface of ZnIn2S4 via hydrogen atom transfer (HAT) instead of a photogenerated hole oxidation mechanism. Moreover, both cleavage of the C(sp2)-H of HCOO- and formation of a benzylic anion were found to be involved in the rate-determining step for the hydrocarboxylation of styrene.
Collapse
Affiliation(s)
- Xingkai Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyuan He
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengfei Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhigang Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
34
|
Wei W, Li C, Fan Y, Chen X, Zhao X, Qiao B, Jiang Z. Catalytic Asymmetric Redox-Neutral [3+2] Photocycloadditions of Cyclopropyl Ketones with Vinylazaarenes Enabled by Consecutive Photoinduced Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202406845. [PMID: 38687326 DOI: 10.1002/anie.202406845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Consecutive photoinduced electron transfer (ConPET) is a powerful and atom-economical protocol to overcome the limitations of the intrinsic redox potential of visible light-absorbing photosensitizers, thereby considerably improving the substrate and reaction types. Likely because such an exothermic single-electron transfer (SET) process usually does not require the aid of chiral catalysts, resulting in an inevitable racemic background reaction, notably, no enantioselective manifolds have been reported. Herein, we report on the viability of cooperative ConPET and chiral hydrogen-bonding catalysis for the [3+2] photocycloaddition of cyclopropyl ketones with vinylazaarenes. In addition to enabling the first use of olefins that preferentially interact with chiral catalysts, this catalysis platform paves the way for the efficient synthesis of pharmaceutically and synthetically important cyclopentyl ketones functionalized by azaarenes with high yields, ees and dr. The robust capacity of the method can be further highlighted by the low loading of the chiral catalyst (1.0 mol %), the good compatibility of both 2-azaarene and 3-pyridine-based olefins, and the successful concurrent construction of three stereocenters on cyclopentane rings involving an elusive but important all-carbon quaternary.
Collapse
Affiliation(s)
- Wenhui Wei
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Chunyang Li
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yifan Fan
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xiaowei Chen
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Baokun Qiao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Zhiyong Jiang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
35
|
Xu P, Liu WW, Hao TZ, Liu YQ, Jiang HX, Xu J, Li JY, Yin L, Zhu SL, Zhu X. Formate and CO 2 Enable Reductive Carboxylation of Imines: Synthesis of Unnatural α-Amino Acids. J Org Chem 2024; 89:9750-9754. [PMID: 38940722 DOI: 10.1021/acs.joc.3c02887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Herein, a photocatalytic umpolung strategy for reductive carboxylation of imines for the synthesis of α-amino acids was disclosed. Carbon dioxide radical anion (CO2•-) generated from formate is the key single electron reductant in the reactions. An unprecedentedly broad substrate scope of imines with excellent reaction yields was obtained with carbon dioxide (CO2) and formate salt as carbon sources.
Collapse
Affiliation(s)
- Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Wen-Wen Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Tian-Zi Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yi-Qin Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hui-Xian Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jing Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin-You Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Long Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Song-Lei Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
36
|
Zhou L, Li L, Zhang S, Kuang XK, Zhou YY, Tang Y. Catalytic Regio- and Enantioselective Remote Hydrocarboxylation of Unactivated Alkenes with CO 2. J Am Chem Soc 2024; 146:18823-18830. [PMID: 38950377 DOI: 10.1021/jacs.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The catalytic regio- and enantioselective hydrocarboxylation of alkenes with carbon dioxide is a straightforward strategy to construct enantioenriched α-chiral carboxylic acids but remains a big challenge. Herein we report the first example of catalytic highly enantio- and site-selective remote hydrocarboxylation of a wide range of readily available unactivated alkenes with abundant and renewable CO2 under mild conditions enabled by the SaBOX/Ni catalyst. The key to this success is utilizing the chiral SaBOX ligand, which combines with nickel to simultaneously control both chain-walking and the enantioselectivity of carboxylation. This process directly furnishes a range of different alkyl-chain-substituted or benzo-fused α-chiral carboxylic acids bearing various functional groups in high yields and regio- and enantioselectivities. Furthermore, the synthetic utility of this methodology was demonstrated by the concise synthesis of the antiplatelet aggregation drug (R)-indobufen from commercial starting materials.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Liping Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Sudong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiao-Kang Kuang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - You-Yun Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yong Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
37
|
Khamespanah F, Gerken JB, Mannel DS, Nagy S, Kimmich B, Stahl SS. Nickel-Catalyzed Hydrocarboxylation of Terminal Unactivated Alkenes: Formation of Branched Carboxylic Acids and Competing Catalyst Deactivation from CO 2 Reduction to CO. Organometallics 2024; 43:1502-1510. [PMID: 40351529 PMCID: PMC12061079 DOI: 10.1021/acs.organomet.4c00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The reductive coupling of CO2 and alkenes represents a compelling strategy for the synthesis of carboxylic acids. In this study, we show that Ni(OAc)2 and 6,6'-Me2bpy (dmbpy) catalyzes hydrocarboxylation of terminal unactivated alkenes to afford the branched 2-methyl-substituted carboxylic acids. The nickel/dmbpy speciation in solution is elucidated through electrochemical and UV-visible and NMR spectroscopic methods. A catalyst deactivation process is identified, involving competitive reduction of CO2 to CO resulting in formation of an inactive Ni-CO complex. The Ni catalyst may be reactivated by oxidative treatment of the Ni-CO complex to release CO; however, the results highlight an important complication that can arise in Ni-catalyzed reductive coupling reactions with CO2.
Collapse
Affiliation(s)
- Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - James B. Gerken
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - David S. Mannel
- LyondellBasell, Houston Technology Center, 8280 Sheldon Road, Channelview, TX 77530, USA
| | - Sandor Nagy
- LyondellBasell, Houston Technology Center, 8280 Sheldon Road, Channelview, TX 77530, USA
| | - Barbara Kimmich
- LyondellBasell, Houston Technology Center, 8280 Sheldon Road, Channelview, TX 77530, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
38
|
Liu H, Zheng ZW, Zhang XY, Li Q, Zhou JJ, Huang K, Qin DB. Metal Hydrogen-Bonded Organic Frameworks as Open Lewis Acid Catalysts for Two Types of CO 2 Transformations. Inorg Chem 2024; 63:11554-11565. [PMID: 38815997 DOI: 10.1021/acs.inorgchem.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Efficient and multiple CO2 utilization into high-value-added chemicals holds significant importance in carbon neutrality and industry production. However, most catalysis systems generally exhibit only one type of CO2 transformation with the efficiency to be improved. The restricted abundance of active catalytic sites or an inefficient utilization rate of these sites results in the constraint. Consequently, we designed and constructed two metal hydrogen-bonded organic frameworks (M-HOFs) {[M3(L3-)2(H2O)10]·2H2O}n (M = Co (1), Ni (2); L = 1-(4-carboxyphenyl)-1H-pyrazole-3,5-dicarboxylic acid) in this research. 1 and 2 are well-characterized, and both show excellent stability. The networks connected by multiple hydrogen bonds enhance the structural flexibility and create accessible Lewis acidic sites, promoting interactions between the substrates and catalytic centers. This enhancement facilitates efficient catalysis for two types of CO2 transformations, encompassing both cycloaddition reactions with epoxides and aziridines to afford cyclic carbonates and oxazolidinones. The catalytic activities (TON/TOF) are superior compared with those of most other catalysts. These heterogeneous catalysts still exhibited high performance after being reused several times. Mechanistic studies indicated intense interactions between the metal sites and substrates, demonstrating the reason for efficient catalysis. This marks the first instance on M-HOFs efficiently catalyzing two types of CO2 conversions, finding important significance for catalyst design and CO2 utilization.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Qi Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
| | - Jun-Jie Zhou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| |
Collapse
|
39
|
Zhang T, Rabeah J, Das S. Red-light-mediated copper-catalyzed photoredox catalysis promotes regioselectivity switch in the difunctionalization of alkenes. Nat Commun 2024; 15:5208. [PMID: 38890327 PMCID: PMC11189478 DOI: 10.1038/s41467-024-49514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Controlling regioselectivity during difunctionalization of alkenes remains a significant challenge, particularly when the installation of both functional groups involves radical processes. In this aspect, methodologies to install trifluoromethane (-CF3) via difunctionalization have been explored, due to the importance of this moiety in the pharmaceutical sectors; however, these existing reports are limited, most of which affording only the corresponding β-trifluoromethylated products. The main reason for this limitation arises from the fact that -CF3 group served as an initiator in those reactions and predominantly preferred to be installed at the terminal (β) position of an alkene. On the contrary, functionalization of the -CF3 group at the internal (α) position of alkenes would provide valuable products, but a meticulous approach is necessary to win this regioselectivity switch. Intrigued by this challenge, we here develop an efficient and regioselective strategy where the -CF3 group is installed at the α-position of an alkene. Molecular complexity is achieved via the simultaneous insertion of a sulfonyl fragment (-SO2R) at the β-position. A precisely regulated sequence of radical generation using red light-mediated photocatalysis facilitates this regioselective switch from the terminal (β) position to the internal (α) position. Furthermore, this approach demonstrates broad substrate scope and industrial potential for the synthesis of pharmaceuticals under mild reaction conditions.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Rostock, Germany
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp, Belgium.
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
40
|
Li S, Nakahara S, Adachi T, Murata T, Takaishi K, Ema T. Skeletal Formation of Carbocycles with CO 2: Selective Synthesis of Indolo[3,2- b]carbazoles or Cyclophanes from Indoles, CO 2, and Phenylsilane. J Am Chem Soc 2024; 146:14935-14941. [PMID: 38722086 DOI: 10.1021/jacs.4c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The catalytic reactions of indoles with CO2 and phenylsilane afforded indolo[3,2-b]carbazoles, where the fused benzene ring was constructed by forming two C-H bonds and four C-C bonds with two CO2 molecules via deoxygenative conversions. Nine-membered cyclophanes made up of three indoles and three CO2 molecules were also obtained, where the cyclophane framework was constructed by forming six C-H bonds and six C-C bonds. These multicomponent cascade reactions giving completely different carbocycles were switched simply by choosing the solvent, acetonitrile or ethyl acetate.
Collapse
Affiliation(s)
- Sha Li
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Shoko Nakahara
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Taishin Adachi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Takumi Murata
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| |
Collapse
|
41
|
Zhang F, Wu XY, Gao PP, Zhang H, Li Z, Ai S, Li G. Visible-light-driven alkene dicarboxylation with formate and CO 2 under mild conditions. Chem Sci 2024; 15:6178-6183. [PMID: 38665514 PMCID: PMC11041354 DOI: 10.1039/d3sc04431a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Low-cost formate salt was used as the reductant and part of the carboxyl source in a visible-light-driven dicarboxylation of diverse alkenes, including simple styrenes. The highly competing hydrocarboxylation side reaction was successfully overridden. Good yields of products were obtained under mild reaction conditions at ambient temperature and pressure of CO2. The dual role of formate salt may stimulate the discovery of a range of new transformations under mild and friendly conditions.
Collapse
Affiliation(s)
- Fulin Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiao-Yang Wu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Pan-Pan Gao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Hao Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhu Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shangde Ai
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Gang Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| |
Collapse
|
42
|
Zhang XM, Liu BE, Zhang ZQ, Zhan ZP. Visible-light-promoted regioselective hydrocarboxylation of allenes with formate salt and CO 2. Org Biomol Chem 2024; 22:3245-3248. [PMID: 38567821 DOI: 10.1039/d4ob00343h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Visible-light-promoted hydrocarboxylation of allenes with formate salt and CO2 was developed for the first time using commercially available [Ir(ppy)2(dtbbpy)]PF6 as a photocatalyst. This strategy provides an efficient and practical method to access β,γ-unsaturated linear carboxylic acids in moderate yields with complete regioselectivity.
Collapse
Affiliation(s)
- Xian-Ming Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001 Fujian, People's Republic of China.
| | - Bao-En Liu
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| | - Zhen-Qiang Zhang
- Yunnan Precious Metals Laboratory Company, Ltd, Kunming 650106, Yunnan, People's Republic of China.
| | - Zhuang-Ping Zhan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001 Fujian, People's Republic of China.
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| |
Collapse
|
43
|
Wang ZQ, Deng C, Li B, Luo HQ, Hao P, Liu X, Ma JG, Cheng P. Hierarchical surface-modification of nano-Cu toward one pot H-transfer-coupling-cyclization-CO 2 fixation tandem reactions. MATERIALS HORIZONS 2024; 11:1957-1963. [PMID: 38348621 DOI: 10.1039/d3mh01921g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Fixation of CO2 into dihydroisobenzofuran derivatives has enormous applications in both production of natural products and antidepressant drugs, and reducing the green-house effect. However, the relatively complicated multi-step processes limit the further expansion of such a valuable CO2 conversion strategy. Herein, we hierarchically modify the surface of Cu nanoparticles (NPs) with Ag NPs and the robust metal-organic framework (MOF), ZIF-8, and report the presence of the Cu-Ag yolk-shell nanoalloy based heterogeneous catalysts, Cu@Ag and Cu@Ag@ZIF-8. The latter exhibits a crystalline "raisin bread" structure and specific synergic activity for catalyzing the tandem reactions of intra-molecular H-transfer, C-C and C-O coupling, cyclization, and carboxylation from CO2, leading to the first non-homogeneous preparation of dihydroisobenzofuran derivatives in high yield, selectivity, and recyclability under mild conditions. Theoretical calculations elucidate the tandem reaction pathway synergically catalyzed by Cu@Ag@ZIF-8, which offers insights for designing multiphase catalysts towards both organic synthesis and CO2 fixation through tandem processes in one pot.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- College of Basic Sciences, Shanxi Agricultural University, Jinzhong, 030800, P. R. China
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - ChengHua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Bo Li
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hai-Qiang Luo
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Peng Hao
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao Liu
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jian-Gong Ma
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Peng Cheng
- Department of Chemistry and Key Laboratory of Advanced Energy Material Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
44
|
Zhao L, Xie WJ, Meng ZZ, Li HR, He LN. Electrochemical E-Selective Semireductive Dicarboxylation of Aryl Alkynes with CO 2. Org Lett 2024; 26:3241-3246. [PMID: 38578088 DOI: 10.1021/acs.orglett.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Herein, we report an electrochemical protocol for the dicarboxylation of aryl alkynes using CO2. With a graphite rod as the cathode and Al as the sacrificial anode, a series of valuable butenedioic acids are obtained in moderate to excellent yields with an E/Z ratio up to 50:1. This method features high E-selectivity, high step and atom economy, easy scalability, and a nice substrate scope, which renders it appealing for promising applications in organic synthesis and materials chemistry.
Collapse
Affiliation(s)
- Lan Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 30007, P. R. China
| | - Wen-Jun Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 30007, P. R. China
| | - Zheng-Zheng Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 30007, P. R. China
| | - Hong-Ru Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 30007, P. R. China
- College of Pharmacy, Nankai University, Tianjin 300350, P. R. China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 30007, P. R. China
| |
Collapse
|
45
|
Morales A, Gonçalves C, Sournia-Saquet A, Vendier L, Lledós A, Baslé O, Bontemps S. Single electron reduction of NHC-CO 2-borane compounds. Chem Sci 2024; 15:3165-3173. [PMID: 38425525 PMCID: PMC10901481 DOI: 10.1039/d3sc06325a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
The carbon dioxide radical anion [CO2˙-] is a highly reactive species of fundamental and synthetic interest. However, the direct one-electron reduction of CO2 to generate [CO2˙-] occurs at very negative reduction potentials, which is often a limiting factor for applications. Here, we show that NHC-CO2-BR3 species - generated from the Frustrated Lewis Pair (FLP)-type activation of CO2 by N-heterocyclic carbenes (NHCs) and boranes (BR3) - undergo single electron reduction at a less negative potential than free CO2. A net gain of more than one volt was notably measured with a CAAC-CO2-B(C6F5)3 adduct, which was chemically reduced to afford [CAAC-CO2-B(C6F5)3˙-]. This room temperature stable radical anion was characterized by EPR spectroscopy and by single-crystal X-ray diffraction analysis. Of particular interest, DFT calculations showed that, thanks to the electron withdrawing properties of the Lewis acid, significant unpaired spin density is localised on the carbon atom of the CO2 moiety. Finally, these species were shown to exhibit analogous reactivity to the carbon dioxide radical anion [CO2˙-] toward DMPO. This work demonstrates the advantage provided by FLP systems in the generation and stabilization of [CO2˙-]-like species.
Collapse
Affiliation(s)
- Agustín Morales
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
- Departament de Química, Universitat Autonoma de Barcelona 08193 Cerdanyola del Valles Catalonia Spain
| | - Caroline Gonçalves
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Alix Sournia-Saquet
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Agustí Lledós
- Departament de Química, Universitat Autonoma de Barcelona 08193 Cerdanyola del Valles Catalonia Spain
| | - Olivier Baslé
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
46
|
Gui YY, Chen XW, Mo XY, Yue JP, Yuan R, Liu Y, Liao LL, Ye JH, Yu DG. Cu-Catalyzed Asymmetric Dicarboxylation of 1,3-Dienes with CO 2. J Am Chem Soc 2024; 146:2919-2927. [PMID: 38277794 DOI: 10.1021/jacs.3c14146] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Dicarboxylic acids and derivatives are important building blocks in organic synthesis, biochemistry, and the polymer industry. Although catalytic dicarboxylation with CO2 represents a straightforward and sustainable route to dicarboxylic acids, it is still highly challenging and limited to generation of achiral or racemic dicarboxylic acids. To date, catalytic asymmetric dicarboxylation with CO2 to give chiral dicarboxylic acids has not been reported. Herein, we report the first asymmetric dicarboxylation of 1,3-dienes with CO2 via Cu catalysis. This strategy provides an efficient and environmentally benign route to chiral dicarboxylic acids with high regio-, chemo-, and enantioselectivities. The copper self-relay catalysis, that is, Cu-catalyzed boracarboxylation of 1,3-dienes to give carboxylated allyl boronic ester intermediates and subsequent carboxylation of C-B bonds to give dicarboxylates, is key to the success of this dicarboxylation. Moreover, this protocol exhibits broad substrate scope, good functional group tolerance, easy product derivatizations, and facile synthesis of chiral liquid crystalline polyester and drug-like scaffolds.
Collapse
Affiliation(s)
- Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Yan Mo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rong Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yi Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
47
|
Lan J, Lu X, Ren B, Duo F, Niu X, Si J. Visible-light-driven photocatalytic carboxylation to aromatic carboxylic acids with CO 2. Org Biomol Chem 2024; 22:682-693. [PMID: 38189574 DOI: 10.1039/d3ob01788e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
(Hetero)aromatic carboxylic acids and their derivatives attract attention due to their role in the synthesis of several biologically active molecules, active pharmaceutical ingredients, polymers, etc. Carbon dioxide (CO2) is a prime C1 source for the synthesis of aromatic carboxylic acids because of its nontoxicity, nonflammability, abundance and renewability. Owing to the thermodynamic and chemical inertness of CO2, traditional carboxylation to aromatic carboxylic acids with CO2 is always performed under harsh reaction conditions or using stoichiometric metallic reductants. Visible-light-driven carboxylation with CO2 provides an environmentally benign, mild, and high-efficiency route for the production of aromatic carboxylic acids. This review comprehensively introduces the visible-light-driven preparation of aromatic carboxylic acids through a visible-light-driven oxidative addition and reductive elimination mechanism, binding of aryl (radical) anions which are produced by photoinduced electron transfer (PET) to CO2, binding of carbon dioxide anion radicals (CO2˙-) which are formed by PET to aryl compounds, radical coupling between CO2˙- and aryl radicals, and other mechanisms. Finally, this review provides a summary and the future work direction. This article offers a theoretical guidance for efficient synthesis of aromatic carboxylic acids via photocatalysis.
Collapse
Affiliation(s)
- Jihong Lan
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China.
| | - Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Bo Ren
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Fangfang Duo
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China.
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Jiangju Si
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
48
|
Majhi J, Molander GA. Recent Discovery, Development, and Synthetic Applications of Formic Acid Salts in Photochemistry. Angew Chem Int Ed Engl 2024; 63:e202311853. [PMID: 37812639 DOI: 10.1002/anie.202311853] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The advancement of sustainable photoredox catalysis in synthetic organic chemistry has evolved immensely because of the development of versatile and cost-effective reagents. In recent years, a substantial effort has been dedicated to exploring the utility of formic acid salts in various photochemical reactions. In this context, formates have demonstrated diverse capabilities, functioning as reductants, sources of carbonyl groups, and reagents for hydrogen atom transfer. Notably, the CO2 ⋅- radical anion derived from formate exhibits strong reductant properties for cleaving both C-X and C-O bonds. Moreover, these salts play a pivotal role in carboxylation reactions, further highlighting their significance in a variety of photochemical transformations. The ability of formates to serve as reductants, carbonyl sources, and hydrogen atom transfer reagents reveal exciting possibilities in synthetic organic chemistry. This minireview highlights an array of captivating discoveries, underscoring the crucial role of formates in diverse and distinctive photochemical methods, enabling access to a wide range of value-added compounds.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
49
|
Kang WJ, Zhang Y, Li B, Guo H. Electrophotocatalytic hydrogenation of imines and reductive functionalization of aryl halides. Nat Commun 2024; 15:655. [PMID: 38253534 PMCID: PMC10803379 DOI: 10.1038/s41467-024-45015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The open-shell catalytically active species, like radical cations or radical anions, generated by one-electron transfer of precatalysts are widely used in energy-consuming redox reactions, but their excited-state lifetimes are usually short. Here, a closed-shell thioxanthone-hydrogen anion species (3), which can be photochemically converted to a potent and long-lived reductant, is generated under electrochemical conditions, enabling the electrophotocatalytic hydrogenation. Notably, TfOH can regulate the redox potential of the active species in this system. In the presence of TfOH, precatalyst (1) reduction can occur at low potential, so that competitive H2 evolution can be inhibited, thus effectively promoting the hydrogenation of imines. In the absence of TfOH, the reducing ability of the system can reach a potency even comparable to that of Na0 or Li0, thereby allowing the hydrogenation, borylation, stannylation and (hetero)arylation of aryl halides to construct C-H, C-B, C-Sn, and C-C bonds.
Collapse
Affiliation(s)
- Wen-Jie Kang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China
| | - Yanbin Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
| | - Bo Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91106, USA.
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
| |
Collapse
|
50
|
Wu Z, Zhai S, Luo M, Dong Q, Wu S, Zheng M. Metal-Free Heterogeneous Photocatalysis for Carbocarboxylation of Alkenes: Efficient Synthesis of γ-Amino Carboxylic Derivatives. Chem Asian J 2024:e202301069. [PMID: 38234110 DOI: 10.1002/asia.202301069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
A metal-free heterogeneous protocol is established herein for the synthesis of value-added γ-amino acid scaffolds via carbocarboxylation of alkenes with CO2 and alkylamines under visible light irradiation. The protocol shows broad substrate scope under mild reaction conditions and good stability of the catalyst for recycle tests. Moreover, the methodology could be feasible to the late-stage derivatization of several natural products, enriching the chemical arsenal for practical application.
Collapse
Affiliation(s)
- Ziwei Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Senmao Zhai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meizhen Luo
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Quan Dong
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shiwen Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meifang Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), College of Chemistry, Fuzhou, 350116, P. R. China
| |
Collapse
|