1
|
Savva L, Bryan A, Vinopal D, Gonzalez-Navarro OE, Kosgey Z, Ndung'u KC, Horo JT, Danu KG, Molla M, Alemayehu Y, Hodson DP, Saunders DGO. A portable, nanopore-based genotyping platform for near real-time detection of Puccinia graminis f. sp. tritici lineages and fungicide sensitivity. BMC Genomics 2025; 26:327. [PMID: 40169941 PMCID: PMC11959956 DOI: 10.1186/s12864-025-11428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Fungal plant disease outbreaks are increasing in both scale and frequency, posing severe threats to agroecosystem stability, native biodiversity and food security. Among these, the notorious wheat stem rust fungus, Puccinia graminis f.sp. tritici (Pgt), has threatened wheat production since the earliest days of agriculture. New Pgt strains continue to emerge and quickly spread over vast distances through the airborne dispersal of asexual urediniospores, triggering extensive disease outbreaks as these exotic Pgt strains often overcome resistance in dominant crop varieties of newly affected regions. This highlights the urgent need for a point-of-care, real-time Pgt genotyping platform to facilitate early detection of emerging Pgt strains. RESULTS In this study, we developed a simple amplicon-based re-sequencing platform for rapid genotyping of Pgt isolates. This system is built around a core set of 276 Pgt genes that we found are highly polymorphic between Pgt isolates and showed that the sequence of these genes alone could be used to accurately type Pgt strains to particular lineages. We also developed a simplistic DNA preparation method and an automated bioinformatic pipeline, to enable these Pgt gene markers to be sequenced and analysed rapidly using the MinION nanopore sequencing device. This approach successfully enabled the typing of Pgt strains within approximately 48 h of collecting Pgt-infected wheat samples, even in resource-limited locations in Kenya and Ethiopia. In addition, we incorporated monitoring capabilities for sequence variations in Pgt genes that encode targets of the azole and succinate dehydrogenase inhibitor fungicides, enabling real-time tracking of potential shifts in fungicide sensitivity. CONCLUSION The newly developed Pgt Mobile And Real-time, PLant disEase (MARPLE) diagnostics platform we established, now allows precise typing of individual Pgt strains while simultaneously tracking changes in fungicide sensitivity, providing an early warning system for potential indicators of changes in the Pgt population and emerging fungicide resistance. Further integration of this Pgt MARPLE diagnostics platform into national surveillance programmes will support more informed management decisions and timely responses to Pgt disease outbreaks, helping reduce the devastating crop losses currently caused by this 'cereal killer'.
Collapse
Affiliation(s)
- Loizos Savva
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Anthony Bryan
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Zennah Kosgey
- Kenya Agricultural and Livestock Research Organization (KALRO), Food Crops Research Centre, Njoro, Kenya
| | - Kimani Cyrus Ndung'u
- Kenya Agricultural and Livestock Research Organization (KALRO), Food Crops Research Centre, Njoro, Kenya
| | - Jemal Tola Horo
- Ambo Research Center, Ethiopian Institute of Agricultural Research (EIAR), Ambo, Ethiopia
| | - Kitessa Gutu Danu
- Ambo Research Center, Ethiopian Institute of Agricultural Research (EIAR), Ambo, Ethiopia
| | - Messele Molla
- EIAR, National Agricultural Biotechnology Research Center, Holeta, Ethiopia
| | - Yoseph Alemayehu
- International Maize and Wheat Improvement Center (CIMMYT), Addis Ababa, Ethiopia
| | | | | |
Collapse
|
2
|
Shen T, Hao X, Wang G, Li H, Wang J, Lyu S, Rehman SU, Liang Y, Hua L, Zhang W, Liu Z, Chen S. The wheat Sr8155B1 gene encodes a typical NLR protein that confers resistance to the Ug99 stem rust race group. PLANT COMMUNICATIONS 2025:101296. [PMID: 40040286 DOI: 10.1016/j.xplc.2025.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Affiliation(s)
- Tao Shen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaohua Hao
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Guiping Wang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Hongna Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Jian Wang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Shikai Lyu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Shams Ur Rehman
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Yanyan Liang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Lei Hua
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Zhiyong Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Shisheng Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China.
| |
Collapse
|
3
|
Giolai M, Verweij W, Martin S, Pearson N, Nicholson P, Leggett RM, Clark MD. Measuring air metagenomic diversity in an agricultural ecosystem. Curr Biol 2024; 34:3778-3791.e4. [PMID: 39096906 DOI: 10.1016/j.cub.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2024] [Accepted: 07/04/2024] [Indexed: 08/05/2024]
Abstract
All species shed DNA during life or in death, providing an opportunity to monitor biodiversity via environmental DNA (eDNA). In recent years, combining eDNA, high-throughput sequencing technologies, bioinformatics, and increasingly complete sequence databases has promised a non-invasive and non-destructive environmental monitoring tool. Modern agricultural systems are often large monocultures and so are highly vulnerable to disease outbreaks. Pest and pathogen monitoring in agricultural ecosystems is key for efficient and early disease prevention, lower pesticide use, and better food security. Although the air is rich in biodiversity, it has the lowest DNA concentration of all environmental media and yet is the route for windborne spread of many damaging crop pathogens. Our work suggests that ecosystems can be monitored efficiently using airborne nucleic acid information. Here, we show that the airborne DNA of microbes can be recovered, shotgun sequenced, and taxonomically classified, including down to the species level. We show that by monitoring a field growing key crops we can identify the presence of agriculturally significant pathogens and quantify their changing abundance over a period of 1.5 months, often correlating with weather variables. We add to the evidence that aerial eDNA can be used as a source for biomonitoring in terrestrial ecosystems, specifically highlighting agriculturally relevant species and how pathogen levels correlate with weather conditions. Our ability to detect dynamically changing levels of species and strains highlights the value of airborne eDNA in agriculture, monitoring biodiversity changes, and tracking taxa of interest.
Collapse
Affiliation(s)
- Michael Giolai
- Natural History Museum, London SW7 5BD, UK; Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Walter Verweij
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; Enza Zaden, Enkhuizen 1602 DB, the Netherlands
| | - Samuel Martin
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Neil Pearson
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Paul Nicholson
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
4
|
Li H, Li K, Li H, Yang C, Perera G, Wang G, Lyu S, Hua L, Rehman SU, Zhang Y, Ayliffe M, Yu H, Chen S. Mapping and Candidate Gene Analysis of an All-Stage Stem Rust Resistance Gene in Durum Wheat Landrace PI 94701. PLANTS (BASEL, SWITZERLAND) 2024; 13:2197. [PMID: 39204633 PMCID: PMC11359134 DOI: 10.3390/plants13162197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem rust, poses a significant threat to global wheat production. Genetic resistance offers a cost-effective and sustainable solution. The durum wheat landrace PI 94701 was previously hypothesized to carry two stem rust resistance (Sr) genes, but their chromosomal locations were unknown. In this study, we mapped and characterized an all-stage Sr gene in PI 94701, temporarily designated as SrPI94701. In seedling tests, SrPI94701 was effective against all six Pgt races tested. Using a large segregating population, we mapped SrPI94701 on chromosome arm 5BL within a 0.17-cM region flanked by markers pku69124 and pku69228, corresponding to 1.04 and 2.15 Mb genomic regions in the Svevo and Chinese Spring reference genomes. Within the candidate region, eight genes exhibited differential expression between the Pgt-inoculated resistant and susceptible plants. Among them, two nucleotide-binding leucine-rich repeat (NLR) genes, TraesCS5B03G1334700 and TraesCS5B03G1335100, showed high polymorphism between the parental lines and were upregulated in Pgt-inoculated resistant plants. However, the flanking and completely linked markers developed in this study could not accurately predict the presence of SrPI94701 in a survey of 104 wheat accessions. SrPI94701 is a promising resource for enhancing stem rust resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Hongyu Li
- National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China;
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Kairong Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Chen Yang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Geetha Perera
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Shikai Lyu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Shams ur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Yazhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Michael Ayliffe
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Haitao Yu
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang 261071, China
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| |
Collapse
|
5
|
Upadhaya A, Upadhaya SGC, Brueggeman R. Association mapping with a diverse population of Puccinia graminis f. sp. tritici identified avirulence loci interacting with the barley Rpg1 stem rust resistance gene. BMC Genomics 2024; 25:751. [PMID: 39090588 PMCID: PMC11295639 DOI: 10.1186/s12864-024-10670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of barley and wheat. A diverse sexual Pgt population from the Pacific Northwest (PNW) region of the US contains a high proportion of individuals with virulence on the barley stem rust resistance (R) gene, Rpg1. However, the evolutionary mechanisms of this virulence on Rpg1 are mysterious considering that Rpg1 had not been deployed in the region and the gene had remained remarkably durable in the Midwestern US and prairie provinces of Canada. METHODS AND RESULTS To identify AvrRpg1 effectors, genome wide association studies (GWAS) were performed using 113 Pgt isolates collected from the PNW (n = 89 isolates) and Midwest (n = 24 isolates) regions of the US. Disease phenotype data were generated on two barley lines Morex and the Golden Promise transgenic (H228.2c) that carry the Rpg1 gene. Genotype data was generated by whole genome sequencing (WGS) of 96 isolates (PNW = 89 isolates and Midwest = 7 isolates) and RNA sequencing (RNAseq) data from 17 Midwestern isolates. Utilizing ~1.2 million SNPs generated from WGS and phenotype data (n = 96 isolates) on the transgenic line H228.2c, 53 marker trait associations (MTAs) were identified. Utilizing ~140 K common SNPs generated from combined analysis of WGS and RNAseq data, two significant MTAs were identified using the cv Morex phenotyping data. The 55 MTAs defined two distinct avirulence loci, on supercontig 2.30 and supercontig 2.11 of the Pgt reference genome of Pgt isolate CRL 75-36-700-3. The major avirulence locus designated AvrRpg1A was identified with the GWAS using both barley lines and was delimited to a 35 kb interval on supercontig 2.30 containing four candidate genes (PGTG_10878, PGTG_10884, PGTG_10885, and PGTG_10886). The minor avirulence locus designated AvrRpg1B identified with cv Morex contained a single candidate gene (PGTG_05433). AvrRpg1A haplotype analysis provided strong evidence that a dominant avirulence gene underlies the locus. CONCLUSIONS The association analysis identified strong candidate AvrRpg1 genes. Further analysis to validate the AvrRpg1 genes will fill knowledge gaps in our understanding of rust effector biology and the evolution and mechanism/s of Pgt virulence on Rpg1.
Collapse
Affiliation(s)
- Arjun Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Sudha G C Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
6
|
Lewis CM, Morier-Gxoyiya C, Hubbard A, Nellist CF, Bebber DP, Saunders DGO. Resurgence of wheat stem rust infections in western Europe: causes and how to curtail them. THE NEW PHYTOLOGIST 2024; 243:537-542. [PMID: 38803104 DOI: 10.1111/nph.19864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Ten years ago, (black) stem rust - the most damaging of wheat (Triticum aestivum) rusts - re-emerged in western Europe. Disease incidences have since increased in scale and frequency. Here, we investigated the likely underlying causes and used those to propose urgently needed mitigating actions. We report that the first large-scale UK outbreak of the wheat stem rust fungus, Puccinia graminis f. sp. tritici (Pgt), in 2022 may have been caused by timely arrival of airborne urediniospores from southwest Europe. The drive towards later-maturing wheat varieties in the UK may be exacerbating Pgt incidences, which could have disastrous consequences. Indeed, infection assays showed that two UK Pgt isolates from 2022 could infect over 96% of current UK wheat varieties. We determined that the temperature response data in current disease risk simulation models are outdated. Analysis of germination rates for three current UK Pgt isolates showed substantial variation in temperature response functions, suggesting that the accuracy of disease risk simulations would be substantially enhanced by incorporating data from prevailing Pgt isolates. As Pgt incidences continue to accelerate in western Europe, we advocate for urgent action to curtail Pgt losses and help safeguard future wheat production across the region.
Collapse
Affiliation(s)
- Clare M Lewis
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | | | | | | |
Collapse
|
7
|
Baranova OA, Adonina IG, Sibikeev SN. Molecular cytogenetic characteristics of new spring bread wheat introgressive lines resistant to stem rust. Vavilovskii Zhurnal Genet Selektsii 2024; 28:377-386. [PMID: 39027121 PMCID: PMC11253016 DOI: 10.18699/vjgb-24-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 07/20/2024] Open
Abstract
Anticipatory wheat breeding for pathogen resistance is key to preventing economically significant crop losses caused by diseases. Recently, the harmfulness of a dangerous wheat disease, stem rust, caused by Puccinia graminis f. sp. tritici, was increased in the main grain-producing regions of the Russian Federation. At the same time, importation of the Ug99 race (TTKSK) is still a possibility. In this regard, the transfer of effective resistance genes from related species to the bread wheat breeding material followed by the chromosomal localization of the introgressions and a marker analysis to identify known resistance genes is of great importance. In this work, a comprehensive analysis of ten spring bread wheat introgressive lines of the Federal Center of Agricultural Research of the South-East Region (L657, L664, L758, L935, L960, L968, L971, L995/1, L997 and L1110) was carried out. These lines were obtained with the participation of Triticum dicoccum, T. timopheevii, T. kiharae, Aegilops speltoides, Agropyron elongatum and Secale cereale. In this study, the lines were evaluated for resistance to the Ug99 race (TTKSK) in the Njoro, Kenya. Evaluation of introgression lines in the field for resistance to the Ug99 race (TTKSK) showed that four lines were immune, two were resistant, three were moderately resistant, and one had an intermediate type of response to infection. By cytogenetic analysis of these lines using fluorescent (FISH) and genomic (GISH) in situ hybridization, introgressions from Ae. speltoides (line L664), T. timopheevii (lines L758, L971, L995/1, L997 and L1110), Thinopyrum ponticum = Ag. elongatum (2n = 70) (L664, L758, L960, L971, L997 and L1110), as well as introgressions from T. dicoccum (L657 and L664), T. kiharae (L960) and S. cereale (L935 and L968) were detected. Molecular markers recommended for marker-oriented breeding were used to identify known resistance genes (Sr2, Sr25, Sr32, Sr1A.1R, Sr36, Sr38, Sr39 and Sr47). The Sr36 and Sr25 genes were observed in lines L997 and L1110, while line L664 had the Sr39+Sr47+Sr25 gene combination. In lines L935 and L968 with 3R(3D) substitution from S. cereale, gene resistance was presumably identified as SrSatu. Thus, highly resistant to both local populations of P. graminis and the Ug99 race, bread wheat lines are promising donors for the production of new varieties resistant to stem rust.
Collapse
Affiliation(s)
- O A Baranova
- All-Russian Institute of Plant Protection, St. Petersburg-Pushkin, Russia
| | - I G Adonina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S N Sibikeev
- Federal Center of Agricultural Research of the South-East Region, Saratov, Russia
| |
Collapse
|
8
|
Luo Z, McTaggart A, Schwessinger B. Genome biology and evolution of mating-type loci in four cereal rust fungi. PLoS Genet 2024; 20:e1011207. [PMID: 38498573 PMCID: PMC10977897 DOI: 10.1371/journal.pgen.1011207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/28/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.
Collapse
Affiliation(s)
- Zhenyan Luo
- Research Biology School, Australian National University, Canberra, ACT, Australia
| | - Alistair McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | | |
Collapse
|
9
|
Rodriguez-Algaba J, Villegas D, Cantero-Martínez C, Patpour M, Berlin A, Hovmøller MS, Jin Y, Justesen AF. Recombination in the wheat stem rust pathogen mediated by an indigenous barberry species in Spain. FRONTIERS IN PLANT SCIENCE 2024; 14:1322406. [PMID: 38293628 PMCID: PMC10825791 DOI: 10.3389/fpls.2023.1322406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
The comeback of wheat stem rust in Europe, caused by Puccinia graminis f. sp. tritici, and the prevalence of the alternate (sexual) host in local areas have recently regained attention as a potential threat to European wheat production. The aim of this study was to investigate a potential epidemiological link between the aecia found on an indigenous barberry species and stem rust infections on nearby cereals and grasses. Aecial infections collected from Berberis vulgaris subsp. seroi were inoculated on a panel of susceptible genotypes of major cereal crop species. In total, 67 stem rust progeny isolates were recovered from wheat (51), barley (7), and rye (9), but none from oat, indicating the potential of barberry derived isolates to infect multiple cereals. Molecular genotyping of the progeny isolates and 20 cereal and grass stem rust samples collected at the same locations and year, revealed a clear genetic relatedness between the progeny isolated from barberry and the stem rust infections found on nearby cereal and grass hosts. Analysis of Molecular Variance indicated that variation between the stem rust populations accounted for only 1%. A Principal Components Analysis using the 62 detected multilocus genotypes also demonstrated a low degree of genetic variation among isolates belonging to the two stem rust populations. Lastly, pairwise comparisons based on fixation index (Fst), Nei's genetic distances and number of effective migrants (Nm) revealed low genetic differentiation and high genetic exchange between the two populations. Our results demonstrated a direct epidemiological link and functionality of an indigenous barberry species as the sexual host of P. graminis in Spain, a factor that should be considered when designing future strategies to prevent stem rust in Europe and beyond.
Collapse
Affiliation(s)
- Julian Rodriguez-Algaba
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | - Dolors Villegas
- Sustainable Field Crops, IRTA, Institute of Agrifood Research and Technology, Lleida, Spain
| | | | - Mehran Patpour
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | - Anna Berlin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mogens S. Hovmøller
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | - Yue Jin
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St Paul, MN, United States
| | - Annemarie F. Justesen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
10
|
Terefe TG, Boshoff WHP, Park RF, Pretorius ZA, Visser B. Wheat Stem Rust Surveillance Reveals Two New Races of Puccinia graminis f. sp. tritici in South Africa During 2016 to 2020. PLANT DISEASE 2024; 108:20-29. [PMID: 37580885 DOI: 10.1094/pdis-06-23-1120-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of wheat in South Africa (SA) and is primarily controlled using resistant cultivars. Understanding virulence diversity of Pgt is essential for successful breeding of resistant cultivars. Samples of infected wheat stems were collected across the major wheat-growing regions of SA from 2016 to 2020 to determine the pathogenic variability of Pgt isolates. Seven races were identified from 517 isolates pathotyped. The most frequently found races were 2SA104 (BPGSC + Sr9h,27,Kw) (35% frequency) and 2SA88 (TTKSF + Sr8b) (33%). Race 2SA42 (PTKSK + Sr8b), which was found in 2017, and 2SA5 (BFGSF + Sr9h), identified in 2017, are new races. The Ug99 variant race 2SA42 is similar in its virulence to 2SA107 (PTKST + Sr8b) except for avirulence to Sr24 and virulence to Sr8155B1. Race 2SA5 is closely related in its virulence to existing races that commonly infect triticale. Certain races showed limited geographical distribution. Races 2SA5, 2SA105, and 2SA108 were found only in the Western Cape, whereas 2SA107 and 2SA42 were detected only in the Free State province. The new and existing races were compared using microsatellite (SSR) marker analysis and their virulence on commercial cultivars was also determined. Seedling response of 113 wheat entries against the new races, using 2SA88, 2SA88+9h, 2SA106, and 2SA107 as controls, revealed 2SA107 as the most virulent (67 entries susceptible), followed by 2SA42 (64), 2SA106 (60), 2SA88+9h (59), 2SA88 (25), and 2SA5 (17). Thus, 2SA5 may not pose a significant threat to local wheat production. SSR genotyping revealed that 2SA5 is genetically distinct from all other SA Pgt races.
Collapse
Affiliation(s)
- Tarekegn G Terefe
- Agricultural Research Council-Small Grain, Bethlehem 9700, South Africa
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Robert F Park
- Plant Breeding Institute Cobbitty, The University of Sydney, Narellan, NSW 2567, Australia
| | - Zacharias A Pretorius
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Botma Visser
- Department of Plant Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
11
|
Yazdani M, Rouse MN, Steffenson BJ, Bajgain P, Patpour M, Johansson E, Rahmatov M. Developing adapted wheat lines with broad-spectrum resistance to stem rust: Introgression of Sr59 through backcrossing and selections based on genotyping-by-sequencing data. PLoS One 2023; 18:e0292724. [PMID: 37824577 PMCID: PMC10569509 DOI: 10.1371/journal.pone.0292724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Control of stem rust, caused by Puccinia graminis f.sp. tritici, a highly destructive fungal disease of wheat, faces continuous challenges from emergence of new virulent races across wheat-growing continents. Using combinations of broad-spectrum resistance genes could impart durable stem rust resistance. This study attempted transfer of Sr59 resistance gene from line TA5094 (developed through CSph1bM-induced T2DS·2RL Robertsonian translocation conferring broad-spectrum resistance). Poor agronomic performance of line TA5094 necessitates Sr59 transfer to adapted genetic backgrounds and utility evaluations for wheat improvement. Based on combined stem rust seedling and molecular analyses, 2070 BC1F1 and 1230 BC2F1 plants were derived from backcrossing BAJ#1, KACHU#1, and REEDLING#1 with TA5094. Genotyping-by-sequencing (GBS) results revealed the physical positions of 15,116 SNPs on chromosome 2R. The adapted genotypes used for backcrossing were found not to possess broad-spectrum resistance to selected stem rust races, whereas Sr59-containing line TA5094 showed resistance to all races tested. Stem rust seedling assays combined with kompetitive allele-specific PCR (KASP) marker analysis successfully selected and generated the BC2F2 population, which contained the Sr59 gene, as confirmed by GBS. Early-generation data from backcrossing suggested deviations from the 3:1 segregation, suggesting that multiple genes may contribute to Sr59 resistance reactions. Using GBS marker data (40,584 SNPs in wheat chromosomes) to transfer the recurrent parent background to later-generation populations resulted in average genome recovery of 71.2% in BAJ#1*2/TA5094, 69.8% in KACHU#1*2/TA5094, and 70.5% in REEDLING#1*2/TA5094 populations. GBS data verified stable Sr59 introgression in BC2F2 populations, as evidenced by presence of the Ph1 locus and absence of the 50,936,209 bp deletion in CSph1bM. Combining phenotypic selections, stem rust seedling assays, KASP markers, and GBS data substantially accelerated transfer of broad-spectrum resistance into adapted genotypes. Thus, this study demonstrated that the Sr59 resistance gene can be introduced into elite genetic backgrounds to mitigate stem rust-related yield losses.
Collapse
Affiliation(s)
- Mahboobeh Yazdani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Matthew N. Rouse
- United States Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, United States of America
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States of America
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States of America
| | - Prabin Bajgain
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States of America
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Mahbubjon Rahmatov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
12
|
Prasad P, Thakur R, Bhardwaj SC, Savadi S, Gangwar OP, Lata C, Adhikari S, Kumar S, Kundu S, Manjul AS, Prakasha TL, Navathe S, Hegde GM, Game BC, Mishra KK, Khan H, Gupta V, Mishra CN, Kumar S, Kumar S, Singh G. Virulence and genetic analysis of Puccinia graminis tritici in the Indian sub-continent from 2016 to 2022 and evaluation of wheat varieties for stem rust resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1196808. [PMID: 37521927 PMCID: PMC10376725 DOI: 10.3389/fpls.2023.1196808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023]
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), has re-emerged as one of the major concerns for global wheat production since the evolution of Ug99 and other virulent pathotypes of Pgt from East Africa, Europe, Central Asia, and other regions. Host resistance is the most effective, economic, and eco-friendly approach for managing stem rust. Understanding the virulence nature, genetic diversity, origin, distribution, and evolutionary pattern of Pgt pathotypes over time and space is a prerequisite for effectively managing newly emerging Pgt isolates through host resistance. In the present study, we monitored the occurrence of stem rust of wheat in India and neighboring countries from 2016 to 2022, collected 620 single-pustule isolates of Pgt from six states of India and Nepal, analyzed them on Indian stem rust differentials, and determined their virulence phenotypes and molecular genotypes. The Ug99 type of pathotypes did not occur in India. Pathotypes 11 and 40A were most predominant during these years. Virulence phenotyping of these isolates identified 14 Pgt pathotypes, which were genotyped using 37 Puccinia spp.-specific polymorphic microsatellites, followed by additional phylogenetic analyses using DARwin. These analyses identified three major molecular groups, demonstrating fewer lineages, clonality, and long-distance migration of Pgt isolates in India. Fourteen of the 40 recently released Indian wheat varieties exhibited complete resistance to all 23 Pgt pathotypes at the seedling stage. Twelve Sr genes were postulated in 39 varieties based on their seedling response to Pgt pathotypes. The values of slow rusting parameters i.e. coefficient of infection, area under disease progress curve, and infection rates, assessed at adult plant stage at five geographically different locations during two crop seasons, indicated the slow rusting behavior of several varieties. Six Sr genes (Sr2, Sr57, Sr58, Sr24, Sr31, and Sr38) were identified in 24 wheat varieties using molecular markers closely linked to these genes. These findings will guide future breeding programs toward more effective management of wheat stem rust.
Collapse
Affiliation(s)
- Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, India
| | - Rajnikant Thakur
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, India
| | - S. C. Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, India
| | - Siddanna Savadi
- Division of Crop Improvement, ICAR-Directorate of Cashew Research, Puttur, Karnataka, India
| | - O. P. Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, India
| | - Charu Lata
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, India
| | - Sneha Adhikari
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, India
| | - Sonu Kundu
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, India
| | - A. S. Manjul
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, India
| | - T. L. Prakasha
- ICAR-Indian Agricultural Research Institute, Indore, Regional Station, Madhya Pradesh, India
| | - Sudhir Navathe
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, India
| | - G. M. Hegde
- All India Coordinated Research Project on Wheat & Barley, University of Agricultural Sciences, Dharwad, Karnataka, India
| | - B. C. Game
- Mahatma Phule Krishi Vidyapeeth, Rahuri, Agricultural Research Station, Niphad, Maharashtra, India
| | - K. K. Mishra
- JNKVV, Zonal Agricultural Research Station, Powarkheda, Narmadapuram, Madhya Pradesh, India
| | - Hanif Khan
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Vikas Gupta
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - C. N. Mishra
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Satish Kumar
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Sudheer Kumar
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Gyanendra Singh
- Crop Improvement Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
13
|
Li H, Luo J, Zhang W, Hua L, Li K, Wang J, Xu B, Yang C, Wang G, Rouse MN, Dubcovsky J, Chen S. High-resolution mapping of SrTm4, a recessive resistance gene to wheat stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:120. [PMID: 37103626 PMCID: PMC10140103 DOI: 10.1007/s00122-023-04369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE The diploid wheat recessive stem rust resistance gene SrTm4 was fine-mapped to a 754-kb region on chromosome arm 2AmL and potential candidate genes were identified. Race Ug99 of Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem (or black) rust is one of the most serious threats to global wheat production. The identification, mapping, and deployment of effective stem rust resistance (Sr) genes are critical to reduce this threat. In this study, we generated SrTm4 monogenic lines and found that this gene confers resistance to North American and Chinese Pgt races. Using a large mapping population (9522 gametes), we mapped SrTm4 within a 0.06 cM interval flanked by marker loci CS4211 and 130K1519, which corresponds to a 1.0-Mb region in the Chinese Spring reference genome v2.1. A physical map of the SrTm4 region was constructed with 11 overlapping BACs from the resistant Triticum monococcum PI 306540. Comparison of the 754-kb physical map with the genomic sequence of Chinese Spring and a discontinuous BAC sequence of DV92 revealed a 593-kb chromosomal inversion in PI 306540. Within the candidate region, we identified an L-type lectin-domain containing receptor kinase (LLK1), which was disrupted by the proximal inversion breakpoint, as a potential candidate gene. Two diagnostic dominant markers were developed to detect the inversion breakpoints. In a survey of T. monococcum accessions, we identified 10 domesticated T. monococcum subsp. monococcum genotypes, mainly from the Balkans, carrying the inversion and showing similar mesothetic resistant infection types against Pgt races. The high-density map and tightly linked molecular markers developed in this study are useful tools to accelerate the deployment of SrTm4-mediated resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Jing Luo
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, Davis, CA95616, USA
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Kun Li
- Department of Plant Sciences, University of California, Davis, CA95616, USA
| | - Jian Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Binyang Xu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chen Yang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Matthew N Rouse
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China.
| |
Collapse
|
14
|
Norman M, Bariana H, Bansal U, Periyannan S. The Keys to Controlling Wheat Rusts: Identification and Deployment of Genetic Resistance. PHYTOPATHOLOGY 2023; 113:667-677. [PMID: 36897760 DOI: 10.1094/phyto-02-23-0041-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rust diseases are among the major constraints for wheat production worldwide due to the emergence and spread of highly destructive races of Puccinia. The most common approach to minimize yield losses due to rust is to use cultivars that are genetically resistant. Modern wheat cultivars, landraces, and wild relatives can contain undiscovered resistance genes, which typically encode kinase or nucleotide-binding site leucine rich repeat (NLR) domain containing receptor proteins. Recent research has shown that these genes can provide either resistance in all growth stages (all-stage resistance; ASR) or specially in later growth stages (adult-plant resistance; APR). ASR genes are pathogen and race-specific, meaning can function against selected races of the Puccinia fungus due to the necessity to recognize specific avirulence molecules in the pathogen. APR genes are either pathogen-specific or multipathogen resistant but often race-nonspecific. Prediction of resistance genes through rust infection screening alone remains complex when more than one resistance gene is present. However, breakthroughs during the past half century such as the single-nucleotide polymorphism-based genotyping techniques and resistance gene isolation strategies like mutagenesis, resistance gene enrichment, and sequencing (MutRenSeq), mutagenesis and chromosome sequencing (MutChromSeq), and association genetics combined with RenSeq (AgRenSeq) enables rapid transfer of resistance from source to modern cultivars. There is a strong need for combining multiple genes for better efficacy and longer-lasting resistance. Hence, techniques like gene cassette creation speeds up the gene combination process, but their widespread adoption and commercial use is limited due to their transgenic nature.
Collapse
Affiliation(s)
- Michael Norman
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, ACT 2601, Australia
| | - Harbans Bariana
- School of Science, Western Sydney University, Bourke Road, Richmond, NSW 2753, Australia
| | - Urmil Bansal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Sambasivam Periyannan
- School of Agriculture and Environmental Science & Centre for Crop Health, University of Southern Queensland, Toowoomba, Qld 4350, Australia
| |
Collapse
|
15
|
Hovmøller MS, Thach T, Justesen AF. Global dispersal and diversity of rust fungi in the context of plant health. Curr Opin Microbiol 2023; 71:102243. [PMID: 36462410 DOI: 10.1016/j.mib.2022.102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022]
Abstract
Long-distance dispersal of plant pathogens at the continental scale may have strong implications on plant health, in particular when incursions result in spread of disease to new territories where the disease was previously absent or insignificant. These dispersions may be caused by airborne transmission of spores or accidental spread via human travel and trade. Recent surveillance efforts of cereal rust fungi have demonstrated that incursion of new strains with superior fitness into areas where the disease is already established may have similar implications on plant health. Since dispersal events are highly stochastic, irrespective of transmission mechanism, critical mitigation efforts include preparedness by coordinated pathogen surveillance activities, host crop diversification, and breeding for disease resistance with low vulnerability to sudden changes in the pathogen population.
Collapse
Affiliation(s)
- Mogens S Hovmøller
- Aarhus University, Department of Agroecology, Global Rust Reference Center, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
| | - Tine Thach
- Aarhus University, Department of Agroecology, Global Rust Reference Center, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Annemarie F Justesen
- Aarhus University, Department of Agroecology, Global Rust Reference Center, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| |
Collapse
|
16
|
Abdedayem W, Patpour M, Laribi M, Justesen AF, Kouki H, Fakhfakh M, Hovmøller MS, Yahyaoui AH, Hamza S, Ben M’Barek S. Wheat Stem Rust Detection and Race Characterization in Tunisia. PLANTS (BASEL, SWITZERLAND) 2023; 12:552. [PMID: 36771636 PMCID: PMC9919909 DOI: 10.3390/plants12030552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Climate changes over the past 25 years have led to conducive conditions for invasive and transboundary fungal disease occurrence, including the re-emergence of wheat stem rust disease, caused by Puccinia graminis f.sp. tritici (Pgt) in East Africa, Europe, and the Mediterranean basin. Since 2018, sporadic infections have been observed in Tunisia. In this study, we investigated Pgt occurrence at major Tunisian wheat growing areas. Pgt monitoring, assessment, and sampling from planted trap nurseries at five different locations over two years (2021 and 2022) revealed the predominance of three races, namely TTRTF (Clade III-B), TKKTF (Clade IV-F), and TKTTF (Clade IV-B). Clade III-B was the most prevalent in 2021 as it was detected at all locations, while in 2022 Pgt was only reported at Beja and Jendouba, with the prevalence of Clade IV-B. The low levels of disease incidence during these two years and Pgt population diversity suggest that this fungus most likely originated from exotic incursions and that climate factors could have caused disease establishment in Tunisia. Further evaluation under the artificial disease pressure of Tunisian wheat varieties and weather-based modeling for early disease detection in the Mediterranean area could be helpful in monitoring and predicting wheat stem rust emergence and epidemics.
Collapse
Affiliation(s)
- Wided Abdedayem
- National Agronomic Institute of Tunisia (INAT), 43 Avenue Charles Nicolle, Tunis 1002, Tunisia
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis 1082, Tunisia
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, 4200 Slagelse, Denmark
| | - Marwa Laribi
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis 1082, Tunisia
| | | | - Hajer Kouki
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis 1082, Tunisia
| | - Moez Fakhfakh
- Comptoir Multiservices Agricoles, 82, Avenue Louis Brailles, Tunis 1002, Tunisia
| | | | - Amor H. Yahyaoui
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis 1082, Tunisia
- Borlaug Training Foundation, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Sonia Hamza
- National Agronomic Institute of Tunisia (INAT), 43 Avenue Charles Nicolle, Tunis 1002, Tunisia
| | - Sarrah Ben M’Barek
- CRP Wheat Septoria Precision Phenotyping Platform, Tunis 1082, Tunisia
- Laboratory of ‘Appui à la Durabilité des Systèmes de Production Agricole Dans la Région du Nord-Ouest’, Higher School of Agriculture of Kef (ESAK), Regional Field Crops Research Center of Beja (CRRGC) BP 350, Beja 9000, Tunisia
| |
Collapse
|
17
|
Raza MM, Bebber DP. Climate change and plant pathogens. Curr Opin Microbiol 2022; 70:102233. [PMID: 36370642 DOI: 10.1016/j.mib.2022.102233] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Global food security is threatened by climate change, both directly through responses of crop physiology and productivity, and indirectly through responses of plant-associated microbiota, including plant pathogens. While the interactions between host plants, pathogens and environmental drivers can be complex, recent research is beginning to indicate certain overall patterns in how plant diseases will affect crop production in future. Here, we review the results of three methodological approaches: large-scale observational studies, process-based disease models and experimental comparisons of pathosystems under current and future conditions. We find that observational studies have tended to identify rising temperatures as the primary driver of disease impact. Process-based models suggest that rising temperatures will lead to latitudinal shifts in disease pressure, but drying conditions could mitigate disease risk. Experimental studies suggest that rising atmospheric CO2 will exacerbate disease impacts. Plant diseases may therefore counteract any crop yield increases due to climate change.
Collapse
Affiliation(s)
- Muhammad M Raza
- Department of Mathematics, University of Exeter, UK; Joint Centre for Excellence in Environmental Intelligence, University of Exeter, UK
| | - Daniel P Bebber
- Department of Biosciences, University of Exeter, UK; Global Systems Institute, University of Exeter, UK.
| |
Collapse
|
18
|
Olivera PD, Szabo LJ, Kokhmetova A, Morgounov A, Luster DG, Jin Y. Puccinia graminis f. sp. tritici Population Causing Recent Wheat Stem Rust Epidemics in Kazakhstan Is Highly Diverse and Includes Novel Virulence Pathotypes. PHYTOPATHOLOGY 2022; 112:2403-2415. [PMID: 35671480 DOI: 10.1094/phyto-08-21-0320-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a reemerging disease that caused severe epidemics in northern Kazakhstan and western Siberia in the period of 2015 to 2019. We analyzed 51 stem rust samples collected between 2015 and 2017 in five provinces in Kazakhstan. A total of 112 Pgt races were identified from 208 single-pustule isolates. These races are phenotypically and genotypically diverse, and most of them are likely of sexual origin. No differentiation of phenotypes and single-nucleotide polymorphism genotypes was observed between isolates from Akmola and North Kazakhstan provinces, supporting the idea of a wide dispersal of inoculum in the northern regions of the country. Similarities in virulence profiles with Pgt races previously reported in Siberia, Russia, suggest that northern Kazakhstan and western Siberia constitute a single stem rust epidemiological region. In addition to the races of sexual origin, six races reported in Europe, the Caucasus, and East Africa were detected in Kazakhstan, indicating that this epidemiological region is not isolated, and spore inflow from the west occurs. Virulence alone or in combination to several genes effective against the Ug99 race group was detected, including novel virulence on Sr32 + Sr40 and Sr47. The occurrence of a highly diverse Pgt population with virulence to an important group of Sr genes demonstrated the importance of the pathogen's sexual cycle in generating new and potentially damaging virulence combinations.
Collapse
Affiliation(s)
- P D Olivera
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - L J Szabo
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - A Kokhmetova
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - A Morgounov
- International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
| | - D G Luster
- USDA-ARS Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Y Jin
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| |
Collapse
|
19
|
Karelov A, Kozub N, Sozinova O, Pirko Y, Sozinov I, Yemets A, Blume Y. Wheat Genes Associated with Different Types of Resistance against Stem Rust ( Puccinia graminis Pers.). Pathogens 2022; 11:pathogens11101157. [PMID: 36297214 PMCID: PMC9608978 DOI: 10.3390/pathogens11101157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Stem rust is one wheat's most dangerous fungal diseases. Yield losses caused by stem rust have been significant enough to cause famine in the past. Some races of stem rust are considered to be a threat to food security even nowadays. Resistance genes are considered to be the most rational environment-friendly and widely used way to control the spread of stem rust and prevent yield losses. More than 60 genes conferring resistance against stem rust have been discovered so far (so-called Sr genes). The majority of the Sr genes discovered have lost their effectiveness due to the emergence of new races of stem rust. There are some known resistance genes that have been used for over 50 years and are still effective against most known races of stem rust. The goal of this article is to outline the different types of resistance against stem rust as well as the effective and noneffective genes, conferring each type of resistance with a brief overview of their origin and usage.
Collapse
Affiliation(s)
- Anatolii Karelov
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
- Correspondence: (A.K.); (Y.B.)
| | - Natalia Kozub
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Oksana Sozinova
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Yaroslav Pirko
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Igor Sozinov
- Institute of Plant Protection, National Academy of Agrarian Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine
- Correspondence: (A.K.); (Y.B.)
| |
Collapse
|
20
|
Rodriguez-Algaba J, Hovmøller MS, Schulz P, Hansen JG, Lezáun JA, Joaquim J, Randazzo B, Czembor P, Zemeca L, Slikova S, Hanzalová A, Holdgate S, Wilderspin S, Mascher F, Suffert F, Leconte M, Flath K, Justesen AF. Stem rust on barberry species in Europe: Host specificities and genetic diversity. Front Genet 2022; 13:988031. [PMID: 36246643 PMCID: PMC9554944 DOI: 10.3389/fgene.2022.988031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The increased emergence of cereal stem rust in southern and western Europe, caused by the pathogen Puccinia graminis, and the prevalence of alternate (sexual) host, Berberis species, have regained attention as the sexual host may serve as source of novel pathogen variability that may pose a threat to cereal supply. The main objective of the present study was to investigate the functional role of Berberis species in the current epidemiological situation of cereal stem rust in Europe. Surveys in 11 European countries were carried out from 2018 to 2020, where aecial infections from five barberry species were collected. Phylogenetic analysis of 121 single aecial clusters of diverse origin using the elongation factor 1-α gene indicated the presence of different special forms (aka formae speciales) of P. graminis adapted to different cereal and grass species. Inoculation studies using aecial clusters from Spain, United Kingdom, and Switzerland resulted in 533 stem rust isolates sampled from wheat, barley, rye, and oat, which confirmed the presence of multiple special forms of P. graminis. Microsatellite marker analysis of a subset of 192 sexually-derived isolates recovered on wheat, barley and rye from the three populations confirmed the generation of novel genetic diversity revealed by the detection of 135 multilocus genotypes. Discriminant analysis of principal components resulted in four genetic clusters, which grouped at both local and country level. Here, we demonstrated that a variety of Berberis species may serve as functional alternate hosts for cereal stem rust fungi and highlights the increased risks that the sexual cycle may pose to cereal production in Europe, which calls for new initiatives within rust surveillance, epidemiological research and resistance breeding.
Collapse
Affiliation(s)
- Julian Rodriguez-Algaba
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
- *Correspondence: Julian Rodriguez-Algaba,
| | - Mogens S. Hovmøller
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | - Philipp Schulz
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Institute for Plant Protection in Field Crops and Grassland, Kleinmachnow, Germany
| | - Jens G. Hansen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| | - Juan Antonio Lezáun
- INTIA, Institute for Agrifood Technology and Infrastructures of Navarra, Villava, Navarra, Spain
| | - Jessica Joaquim
- Agroscope, Crop Plant Breeding and Genetic Ressources, Nyon, Switzerland
| | | | - Paweł Czembor
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, Poland
| | - Liga Zemeca
- Institute of Plant Protection Research “Agrihorts”, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | | | - Alena Hanzalová
- Crop Research Institute, Department of Genetics and Plant Breeding Methods, Prague, Czech Republic
| | - Sarah Holdgate
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| | - Sarah Wilderspin
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| | - Fabio Mascher
- Agroscope, Crop Plant Breeding and Genetic Ressources, Nyon, Switzerland
| | - Frederic Suffert
- INRAE (French National Institute for Agriculture Food and Environment), Université Paris-Saclay, Thiverval-Grignon, France
| | - Marc Leconte
- INRAE (French National Institute for Agriculture Food and Environment), Université Paris-Saclay, Thiverval-Grignon, France
| | - Kerstin Flath
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Institute for Plant Protection in Field Crops and Grassland, Kleinmachnow, Germany
| | - Annemarie F. Justesen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
21
|
Garrett KA, Bebber DP, Etherton BA, Gold KM, Plex Sulá AI, Selvaraj MG. Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:357-378. [PMID: 35650670 DOI: 10.1146/annurev-phyto-021021-042636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant pathology has developed a wide range of concepts and tools for improving plant disease management, including models for understanding and responding to new risks from climate change. Most of these tools can be improved using new advances in artificial intelligence (AI), such as machine learning to integrate massive data sets in predictive models. There is the potential to develop automated analyses of risk that alert decision-makers, from farm managers to national plant protection organizations, to the likely need for action and provide decision support for targeting responses. We review machine-learning applications in plant pathology and synthesize ideas for the next steps to make the most of these tools in digital agriculture. Global projects, such as the proposed global surveillance system for plant disease, will be strengthened by the integration of the wide range of new data, including data from tools like remote sensors, that are used to evaluate the risk ofplant disease. There is exciting potential for the use of AI to strengthen global capacity building as well, from image analysis for disease diagnostics and associated management recommendations on farmers' phones to future training methodologies for plant pathologists that are customized in real-time for management needs in response to the current risks. International cooperation in integrating data and models will help develop the most effective responses to new challenges from climate change.
Collapse
Affiliation(s)
- K A Garrett
- Plant Pathology Department, University of Florida, Gainesville, Florida, USA;
- Food Systems Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - D P Bebber
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - B A Etherton
- Plant Pathology Department, University of Florida, Gainesville, Florida, USA;
- Food Systems Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - K M Gold
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Sciences, Cornell AgriTech, Cornell University, Geneva, New York, USA
| | - A I Plex Sulá
- Plant Pathology Department, University of Florida, Gainesville, Florida, USA;
- Food Systems Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - M G Selvaraj
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
22
|
Xia C, Qiu A, Wang M, Liu T, Chen W, Chen X. Current Status and Future Perspectives of Genomics Research in the Rust Fungi. Int J Mol Sci 2022; 23:9629. [PMID: 36077025 PMCID: PMC9456177 DOI: 10.3390/ijms23179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rust fungi in Pucciniales have caused destructive plant epidemics, have become more aggressive with new virulence, rapidly adapt to new environments, and continually threaten global agriculture. With the rapid advancement of genome sequencing technologies and data analysis tools, genomics research on many of the devastating rust fungi has generated unprecedented insights into various aspects of rust biology. In this review, we first present a summary of the main findings in the genomics of rust fungi related to variations in genome size and gene composition between and within species. Then we show how the genomics of rust fungi has promoted our understanding of the pathogen virulence and population dynamics. Even with great progress, many questions still need to be answered. Therefore, we introduce important perspectives with emphasis on the genome evolution and host adaptation of rust fungi. We believe that the comparative genomics and population genomics of rust fungi will provide a further understanding of the rapid evolution of virulence and will contribute to monitoring the population dynamics for disease management.
Collapse
Affiliation(s)
- Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Age Qiu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430, USA
| |
Collapse
|
23
|
Szabo LJ, Olivera PD, Wanyera R, Visser B, Jin Y. Development of a Diagnostic Assay for Differentiation Between Genetic Groups in Clades I, II, III, and IV of Puccinia graminis f. sp. tritici. PLANT DISEASE 2022; 106:2211-2220. [PMID: 35072510 DOI: 10.1094/pdis-10-21-2161-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wheat stem rust has reemerged as a serious disease caused by new variants of Puccinia graminis f. sp. tritici. Variants with significant virulence and broad geographic distribution (Africa, Central Asia, and Europe) include the Ug99 race group, race TTRTF, and TKTTF race group. Genetic analysis has placed isolates representing these critical new virulent races into 12 genetic groups that make up clades I to IV. Development of molecular diagnostic assays for these 12 genetic groups will be an important component of global surveillance efforts. A single-nucleotide polymorphism database was mined for candidate markers that would differentiate between these 12 genetic groups. Thirty-five candidate markers were screened, and a core set of 17 markers was tested against a set of 94 isolates representing a broad range of genotypes and race phenotypes. These core markers were 100% accurate in identifying the 12 genetic groups for 52 isolates in clades I to IV, and no false positives were observed with nontarget isolates. The assay has built-in redundancy so that minor genetic changes or errors in genotyping calling will not affect the accuracy of the results. This assay is also effective in identifying the genetic groups in clade V from Germany and Georgia, the three main subgroups in North American clade VI, and clade VII consisting of race TTTTF found in North and South America. This assay provides a rapid diagnostic tool for both living and nonliving samples to detect these critical new races or race groups of P. graminis f. sp. tritici.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Les J Szabo
- USDA ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Pablo D Olivera
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Ruth Wanyera
- Kenya Agricultural and Livestock Research Organization, Njoro 20107, Kenya
| | - Botma Visser
- Department of Plant Sciences, University of Free State, Bloemfontein 9300, South Africa
| | - Yue Jin
- USDA ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| |
Collapse
|
24
|
Patpour M, Hovmøller MS, Rodriguez-Algaba J, Randazzo B, Villegas D, Shamanin VP, Berlin A, Flath K, Czembor P, Hanzalova A, Sliková S, Skolotneva ES, Jin Y, Szabo L, Meyer KJG, Valade R, Thach T, Hansen JG, Justesen AF. Wheat Stem Rust Back in Europe: Diversity, Prevalence and Impact on Host Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:882440. [PMID: 35720526 PMCID: PMC9202592 DOI: 10.3389/fpls.2022.882440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/03/2022] [Indexed: 05/13/2023]
Abstract
The objective of this study was to investigate the re-emergence of a previously important crop pathogen in Europe, Puccinia graminis f.sp. tritici, causing wheat stem rust. The pathogen has been insignificant in Europe for more than 60 years, but since 2016 it has caused epidemics on both durum wheat and bread wheat in local areas in southern Europe, and additional outbreaks in Central- and West Europe. The prevalence of three distinct genotypes/races in many areas, Clade III-B (TTRTF), Clade IV-B (TKTTF) and Clade IV-F (TKKTF), suggested clonal reproduction and evolution by mutation within these. None of these genetic groups and races, which likely originated from exotic incursions, were detected in Europe prior to 2016. A fourth genetic group, Clade VIII, detected in Germany (2013), was observed in several years in Central- and East Europe. Tests of representative European wheat varieties with prevalent races revealed high level of susceptibility. In contrast, high diversity with respect to virulence and Simple Sequence Repeat (SSR) markers were detected in local populations on cereals and grasses in proximity to Berberis species in Spain and Sweden, indicating that the alternate host may return as functional component of the epidemiology of wheat stem rust in Europe. A geographically distant population from Omsk and Novosibirsk in western Siberia (Russia) also revealed high genetic diversity, but clearly different from current European populations. The presence of Sr31-virulence in multiple and highly diverse races in local populations in Spain and Siberia stress that virulence may emerge independently when large geographical areas and time spans are considered and that Sr31-virulence is not unique to Ug99. All isolates of the Spanish populations, collected from wheat, rye and grass species, were succesfully recovered on wheat, which underline the plasticity of host barriers within P. graminis. The study demonstrated successful alignment of two genotyping approaches and race phenotyping methodologies employed by different laboratories, which also allowed us to line up with previous European and international studies of wheat stem rust. Our results suggest new initiatives within disease surveillance, epidemiological research and resistance breeding to meet current and future challenges by wheat stem rust in Europe and beyond.
Collapse
Affiliation(s)
- Mehran Patpour
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | | | - Biagio Randazzo
- Società Semplice Agricola Randazzo (AS.A.R.), Palermo, Italy
| | - Dolors Villegas
- Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | | | - Anna Berlin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Kerstin Flath
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Field Crops and Grassland, Quedlinburg, Germany
| | - Pawel Czembor
- Plant Breeding & Acclimatization Institute – National Research Institute, Radzików, Poland
| | - Alena Hanzalova
- Department of Genetics and Plant Breeding Methods, Crop Research Institute, Prague, Czechia
| | | | | | - Yue Jin
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, Minneapolis, MN, United States
| | - Les Szabo
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, Minneapolis, MN, United States
| | | | | | - Tine Thach
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Jens G. Hansen
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | |
Collapse
|
25
|
Villegas D, Bartaula R, Cantero‐Martínez C, Luster D, Szabo L, Olivera P, Berlin A, Rodriguez‐Algaba J, Hovmøller MS, McIntosh R, Jin Y. Barberry plays an active role as an alternate host of Puccinia graminis in Spain. PLANT PATHOLOGY 2022; 71:1174-1184. [PMID: 35915821 PMCID: PMC9311844 DOI: 10.1111/ppa.13540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/15/2023]
Abstract
Stem rust, caused by Puccinia graminis, is a destructive group of diseases. The pathogen uses Berberis species as alternate hosts to complete its life cycle. B. vulgaris and the endemic species B. hispanica and B. garciae are present in Spain. The objective of this study was to investigate the functionality of the indigenous barberry as alternate hosts. Field surveys were conducted in 2018 and 2019 in Huesca, Teruel and Albacete provinces of Spain. Aecial samples on barberry were analysed via infection assays and DNA analysis. B. garciae was predominant in Huesca and Teruel provinces, often found in the field margins of cereal crops. Aecial infections on B. garciae were observed in May and uredinial infections on cereal crops in June. Scattered B. hispanica bushes were occasionally found near cereal crops in Albacete, where aecial infections on B. hispanica were observed in June when most cereal crops were mature. Infection assays using aeciospores resulted in stem rust infections on susceptible genotypes of wheat, barley, rye and oat, indicating the presence of the sexual cycle for P. graminis f. sp. tritici, f. sp. secalis and f. sp. avenae. Sequence analyses from aecial samples supported this finding as well as the presence of Puccinia brachypodii. This study provides the first evidence that indigenous Berberis species play an active role in the sexual cycle of P. graminis under natural conditions in Spain.
Collapse
Affiliation(s)
- Dolors Villegas
- IRTAInstitute of Agrifood Research and TechnologyLleidaSpain
| | - Radhika Bartaula
- Department of Plant PathologyUniversity of MinnesotaSt PaulMNUSA
| | | | - Douglas Luster
- USDA‐ARS Foreign Disease‐Weed Science Research UnitFt DetrickMDUSA
| | - Les Szabo
- USDA‐ARS Cereal Disease LaboratoryUniversity of MinnesotaSt PaulMNUSA
| | - Pablo Olivera
- Department of Plant PathologyUniversity of MinnesotaSt PaulMNUSA
| | - Anna Berlin
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Mogens S. Hovmøller
- Department of AgroecologyGlobal Rust Reference CenterAarhus UniversitySlagelseDenmark
| | - Robert McIntosh
- University of SydneyPlant Breeding InstituteSchool of Life and Environmental SciencesCobbittyNew South WalesAustralia
| | - Yue Jin
- USDA‐ARS Cereal Disease LaboratoryUniversity of MinnesotaSt PaulMNUSA
| |
Collapse
|
26
|
Salotti I, Bove F, Rossi V. Development and Validation of a Mechanistic, Weather-Based Model for Predicting Puccinia graminis f. sp. tritici Infections and Stem Rust Progress in Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:897680. [PMID: 35693159 PMCID: PMC9184802 DOI: 10.3389/fpls.2022.897680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 05/09/2023]
Abstract
Stem rust (or black rust) of wheat, caused by Puccinia graminis f. sp. tritici (Pgt), is a re-emerging, major threat to wheat production worldwide. Here, we retrieved, analyzed, and synthetized the available information about Pgt to develop a mechanistic, weather-driven model for predicting stem rust epidemics caused by uredospores. The ability of the model to predict the first infections in a season was evaluated using field data collected in three wheat-growing areas of Italy (Emilia-Romagna, Apulia, and Sardinia) from 2016 to 2021. The model showed good accuracy, with a posterior probability to correctly predict infections of 0.78 and a probability that there was no infection when not predicted of 0.96. The model's ability to predict disease progress during the growing season was also evaluated by using published data obtained from trials in Minnesota, United States, in 1968, 1978, and 1979, and in Pennsylvania, United States, in 1986. Comparison of observed versus predicted data generated a concordance correlation coefficient of 0.96 and an average distance between real data and the fitted line of 0.09. The model could therefore be considered accurate and reliable for predicting epidemics of wheat stem rust and could be tested for its ability to support risk-based control of the disease.
Collapse
Affiliation(s)
- Irene Salotti
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
27
|
Tsushima A, Lewis CM, Flath K, Kildea S, Saunders DGO. Wheat stem rust recorded for the first time in decades in Ireland. PLANT PATHOLOGY 2022; 71:890-900. [PMID: 35873178 PMCID: PMC9303354 DOI: 10.1111/ppa.13532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 05/26/2023]
Abstract
Wheat stem rust, caused by the fungus Puccinia graminis f. sp. tritici (Pgt), occurs in most wheat-growing areas worldwide, and, in western Europe since 2013, has started to re-emerge after many decades of absence. Following this trend across western Europe, in 2020, we also detected and recorded wheat stem rust for the first time in five decades in experimental plots across five locations in Ireland. To examine the potential origin of the Irish Pgt infection in 2020, we carried out transcriptome sequencing on 12 Pgt-infected wheat samples collected across Ireland and compared these to 76 global P. graminis isolates. This analysis identified a close genetic relationship between the Irish Pgt isolates and those from Ethiopia collected in 2015 after a severe stem rust epidemic caused by the TKTTF Pgt race, and with the UK-01 Pgt isolate that was previously assigned to the TKTTF race. Subsequent pathology-based race profiling designated two Irish isolates and recent UK and French Pgt isolates to the TKTTF Pgt race group. This suggests that the Irish Pgt occurrence most probably originated from recent long-distance windborne dispersal of Pgt urediniospores from neighbouring countries in Europe where we confirmed the Pgt TKTTF race continues to be prevalent. The identification of wheat stem rust in Ireland at multiple locations in 2020 illustrates that the disease can occur in Ireland and emphasizes the need to re-initiate local monitoring for this re-emergent threat to wheat production across western Europe.
Collapse
Affiliation(s)
| | | | - Kerstin Flath
- Institute for Plant Protection in Field Crops and GrasslandJulius‐Kuehn‐Institut (JKI)KleinmachnowGermany
| | | | | |
Collapse
|
28
|
Ortiz D, Chen J, Outram MA, Saur IM, Upadhyaya NM, Mago R, Ericsson DJ, Cesari S, Chen C, Williams SJ, Dodds PN. The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface-exposed residue. THE NEW PHYTOLOGIST 2022; 234:592-606. [PMID: 35107838 PMCID: PMC9306850 DOI: 10.1111/nph.18011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 05/28/2023]
Abstract
Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site-directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino-acid variation involving a single substitution of the AvrSr50 surface-exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate-binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.
Collapse
Affiliation(s)
- Diana Ortiz
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- National Research Institute for AgricultureFood and Environment, Genetics and Breeding of Fruit and Vegetables UnitMontfavet84143France
| | - Jian Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Megan A. Outram
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Isabel M.L. Saur
- Department of Plant–Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologne50829Germany
- University of Plant SciencesUniversity of CologneCologne50674Germany
- Cluster of Excellence on Plant SciencesCologne50674Germany
| | - Narayana M. Upadhyaya
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Rohit Mago
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Daniel J. Ericsson
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Australian SynchrotronMacromolecular CrystallographyClaytonVic.3168Australia
| | - Stella Cesari
- PHIM Plant Health InstituteUniversité de MontpellierINRAE, CIRADInstitut AgroIRDMontpellier34980France
| | - Chunhong Chen
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| | - Simon J. Williams
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Peter N. Dodds
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationCanberraACT2601Australia
| |
Collapse
|
29
|
Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat Commun 2022; 13:1607. [PMID: 35338132 PMCID: PMC8956640 DOI: 10.1038/s41467-022-29132-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance. Aegilops sharonensis is a wild diploid relative of wheat. Here, the authors assemble the genome of Ae. sharonensis and use the assembly as an aid to clone the Ae. sharonensis-derived stem rust resistance gene Sr62 in the allohexaploid genome of wheat.
Collapse
|
30
|
Rauf Y, Bajgain P, Rouse MN, Khanzada KA, Bhavani S, Huerta-Espino J, Singh RP, Imtiaz M, Anderson JA. Molecular Characterization of Genomic Regions for Adult Plant Resistance to Stem Rust in a Spring Wheat Mapping Population. PLANT DISEASE 2022; 106:439-450. [PMID: 34353123 DOI: 10.1094/pdis-03-21-0672-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adult plant resistance (APR) to wheat stem rust has been one of the approaches for resistance breeding since the evolution of the Ug99 race group and other races. This study was conducted to dissect and understand the genetic basis of APR to stem rust in spring wheat line 'Copio'. A total of 176 recombinant inbred lines (RILs) from the cross of susceptible parent 'Apav' with Copio were phenotyped for stem rust resistance in six environments. Composite interval mapping using 762 genotyping-by-sequencing markers identified 16 genomic regions conferring stem rust resistance. Assays with gene-linked molecular markers revealed that Copio carried known APR genes Sr2 and Lr46/Yr29/Sr58 in addition to the 2NS/2AS translocation that harbors race-specific genes Sr38, Lr37, and Yr17. Three quantitative trait loci (QTLs) were mapped on chromosomes 2B, two QTLs on chromosomes 3A, 3B, and 6A each, and one QTL on each of chromosomes 2A, 1B, 2D, 4B, 5D, 6D, and 7A. The QTL QSr.umn.5D is potentially a new resistance gene and contributed to quantitative resistance in Copio. The RILs with allelic combinations of Sr2, Sr38, and Sr58 had 27 to 39% less stem rust coefficient of infection in all field environments compared with RILs with none of these genes, and this gene combination was most effective in the U.S. environments. We conclude that Copio carries several genes that provide both race-specific and non-race-specific resistance to diverse races of stem rust fungus and can be used by breeding programs in pyramiding other effective genes to develop durable resistance in wheat.
Collapse
Affiliation(s)
- Yahya Rauf
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Prabin Bajgain
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Matthew N Rouse
- Cereal Disease Lab, United States Department of Agriculture, St. Paul, MN 55108, U.S.A
| | - Khalil A Khanzada
- Cereal Disease Research Institute, Pakistan Agricultural Research Council, University of Karachi 75270, Pakistan
| | - Sridhar Bhavani
- Global Wheat Program, International Maize and Wheat Improvement Center, Mexico City, 06600, Mexico
| | - Julio Huerta-Espino
- Global Wheat Program, International Maize and Wheat Improvement Center, Mexico City, 06600, Mexico
| | - Ravi P Singh
- Global Wheat Program, International Maize and Wheat Improvement Center, Mexico City, 06600, Mexico
| | - Muhammad Imtiaz
- Global Wheat Program, International Maize and Wheat Improvement Center, National Agricultural Research Center, Islamabad 44000, Pakistan
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, U.S.A
| |
Collapse
|
31
|
Upadhaya A, Upadhaya SG, Brueggeman R. The Wheat Stem Rust ( Puccinia graminis f. sp. tritici) Population from Washington Contains the Most Virulent Isolates Reported on Barley. PLANT DISEASE 2022; 106:223-230. [PMID: 34546770 DOI: 10.1094/pdis-06-21-1195-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A diverse sexual population of wheat stem rust, Puccinia graminis f. sp. tritici, exists in the Pacific Northwest region of the United States because of the natural presence of Mahonia spp. that serves as alternate hosts to complete its sexual life cycle. The region appears to be a center of stem rust diversity in North America where novel virulence gene combinations can emerge that could overcome deployed barley and wheat stem rust resistances. A total of 100 single pustule isolates derived from stem rust samples collected from barley in Eastern Washington during the 2019 growing season were assayed for virulence on the two known effective barley stem rust resistance genes/loci, Rpg1 and the rpg4/5-mediated resistance locus (RMRL) at the seedling stage. Interestingly, 99% of the P. graminis f. sp. tritici isolates assayed were virulent on barley variety Morex carrying the Rpg1 gene, and 62% of the isolates were virulent on the variety Golden Promise transformant (H228.2c) that carries a single-copy insertion of the Rpg1 gene from Morex and is more resistant than Morex to many Rpg1 avirulent isolates. Also, 16% of the isolates were virulent on the near isogenic line HQ-1, which carries the RMRL introgression from the barley line Q21861 in the susceptible Harrington background. Alarmingly, 10% of the isolates were virulent on barley line Q21861, which contains both Rpg1 and RMRL. Thus, we report on the first P. graminis f. sp. tritici isolates worldwide with virulence on both Rpg1 and RMRL when stacked together, representing the most virulent P. graminis f. sp. tritici isolates reported on barley.
Collapse
Affiliation(s)
- Arjun Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
| | - Sudha Gc Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
| |
Collapse
|
32
|
Sharma S, Schulthess AW, Bassi FM, Badaeva ED, Neumann K, Graner A, Özkan H, Werner P, Knüpffer H, Kilian B. Introducing Beneficial Alleles from Plant Genetic Resources into the Wheat Germplasm. BIOLOGY 2021; 10:982. [PMID: 34681081 PMCID: PMC8533267 DOI: 10.3390/biology10100982] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022]
Abstract
Wheat (Triticum sp.) is one of the world's most important crops, and constantly increasing its productivity is crucial to the livelihoods of millions of people. However, more than a century of intensive breeding and selection processes have eroded genetic diversity in the elite genepool, making new genetic gains difficult. Therefore, the need to introduce novel genetic diversity into modern wheat has become increasingly important. This review provides an overview of the plant genetic resources (PGR) available for wheat. We describe the most important taxonomic and phylogenetic relationships of these PGR to guide their use in wheat breeding. In addition, we present the status of the use of some of these resources in wheat breeding programs. We propose several introgression schemes that allow the transfer of qualitative and quantitative alleles from PGR into elite germplasm. With this in mind, we propose the use of a stage-gate approach to align the pre-breeding with main breeding programs to meet the needs of breeders, farmers, and end-users. Overall, this review provides a clear starting point to guide the introgression of useful alleles over the next decade.
Collapse
Affiliation(s)
- Shivali Sharma
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Albert W. Schulthess
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco;
| | - Ekaterina D. Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey;
| | - Peter Werner
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Helmut Knüpffer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Benjamin Kilian
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| |
Collapse
|
33
|
Upadhyaya NM, Mago R, Panwar V, Hewitt T, Luo M, Chen J, Sperschneider J, Nguyen-Phuc H, Wang A, Ortiz D, Hac L, Bhatt D, Li F, Zhang J, Ayliffe M, Figueroa M, Kanyuka K, Ellis JG, Dodds PN. Genomics accelerated isolation of a new stem rust avirulence gene-wheat resistance gene pair. NATURE PLANTS 2021; 7:1220-1228. [PMID: 34294906 DOI: 10.1038/s41477-021-00971-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt) is a devastating disease of the global staple crop wheat. Although this disease was largely controlled in the latter half of the twentieth century, new virulent strains of Pgt, such as Ug99, have recently evolved1,2. These strains have caused notable losses worldwide and their continued spread threatens global wheat production. Breeding for disease resistance provides the most cost-effective control of wheat rust diseases3. A number of rust resistance genes have been characterized in wheat and most encode immune receptors of the nucleotide-binding leucine-rich repeat (NLR) class4, which recognize pathogen effector proteins known as avirulence (Avr) proteins5. However, only two Avr genes have been identified in Pgt so far, AvrSr35 and AvrSr50 (refs. 6,7), and none in other cereal rusts8,9. The Sr27 resistance gene was first identified in a wheat line carrying an introgression of the 3R chromosome from Imperial rye10. Although not deployed widely in wheat, Sr27 is widespread in the artificial crop species Triticosecale (triticale), which is a wheat-rye hybrid and is a host for Pgt11,12. Sr27 is effective against Ug99 (ref. 13) and other recent Pgt strains14,15. Here, we identify both the Sr27 gene in wheat and the corresponding AvrSr27 gene in Pgt and show that virulence to Sr27 can arise experimentally and in the field through deletion mutations, copy number variation and expression level polymorphisms at the AvrSr27 locus.
Collapse
Affiliation(s)
- Narayana M Upadhyaya
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Vinay Panwar
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Tim Hewitt
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Ming Luo
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Jian Chen
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jana Sperschneider
- Biological Data Science Institute, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hoa Nguyen-Phuc
- Department of Ecology and Evolutionary Biology, Vietnam National University, Ho Chi Minh, Vietnam
| | - Aihua Wang
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Diana Ortiz
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
- Génétique et Amélioration des Fruits et Légumes, INRA, Montfavet Cedex, France
| | - Luch Hac
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Dhara Bhatt
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Feng Li
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jianping Zhang
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Jeffrey G Ellis
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
34
|
Corredor-Moreno P, Minter F, Davey PE, Wegel E, Kular B, Brett P, Lewis CM, Morgan YML, Macías Pérez LA, Korolev AV, Hill L, Saunders DGO. The branched-chain amino acid aminotransferase TaBCAT1 modulates amino acid metabolism and positively regulates wheat rust susceptibility. THE PLANT CELL 2021; 33:1728-1747. [PMID: 33565586 PMCID: PMC8254495 DOI: 10.1093/plcell/koab049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/02/2021] [Indexed: 05/21/2023]
Abstract
Plant pathogens suppress defense responses to evade recognition and promote successful colonization. Although identifying the genes essential for pathogen ingress has traditionally relied on screening mutant populations, the post-genomic era provides an opportunity to develop novel approaches that accelerate identification. Here, RNA-seq analysis of 68 pathogen-infected bread wheat (Triticum aestivum) varieties, including three (Oakley, Solstice and Santiago) with variable levels of susceptibility, uncovered a branched-chain amino acid aminotransferase (termed TaBCAT1) as a positive regulator of wheat rust susceptibility. We show that TaBCAT1 is required for yellow and stem rust infection and likely functions in branched-chain amino acid (BCAA) metabolism, as TaBCAT1 disruption mutants had elevated BCAA levels. TaBCAT1 mutants also exhibited increased levels of salicylic acid (SA) and enhanced expression of associated defense genes, indicating that BCAA regulation, via TaBCAT1, has a key role in SA-dependent defense activation. We also identified an association between the levels of BCAAs and resistance to yellow rust infection in wheat. These findings provide insight into SA-mediated defense responses in wheat and highlight the role of BCAA metabolism in the defense response. Furthermore, TaBCAT1 could be manipulated to potentially provide resistance to two of the most economically damaging diseases of wheat worldwide.
Collapse
Affiliation(s)
| | | | | | - Eva Wegel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Baldeep Kular
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Paul Brett
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Clare M Lewis
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Luis A Macías Pérez
- John Innes Centre, Norwich Research Park, Norwich, UK
- Aix Marseille Université, CNRS, IRD, College de France, CEREGE, Aix-en-Provence, France
| | | | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Diane G O Saunders
- John Innes Centre, Norwich Research Park, Norwich, UK
- Author for correspondence: (D.G.O.S.)
| |
Collapse
|
35
|
Olivera PD, Bulbula WD, Badebo A, Bockelman HE, Edae EA, Jin Y. Field resistance to wheat stem rust in durum wheat accessions deposited at the USDA National Small Grains Collection. CROP SCIENCE 2021; 61:2565-2578. [PMID: 34413535 PMCID: PMC8361663 DOI: 10.1002/csc2.20466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/15/2021] [Indexed: 05/31/2023]
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is a re-emerging disease, posing a significant threat to durum wheat production worldwide. The limited number of stem rust resistance genes in modern cultivars compels us to identify and incorporate new effective genes in durum wheat breeding programs. We evaluated 8,245 spring durum wheat accessions deposited at the USDA National Small Grains Collection (NSGC) for resistance in field stem rust nurseries in Debre Zeit, Ethiopia and St. Paul, MN (USA). A higher level of disease development was observed at the Debre Zeit nursery compared with St. Paul, and the effective alleles of Sr13 in this nursery did not display the level of resistance observed at the St. Paul nursery. Four hundred and ninety-one (∽6%) accessions exhibited resistant to moderately susceptible responses after three field evaluations at Debre Zeit and two at St. Paul. Nearly 70% of these accessions originated from Ethiopia, Mexico, Egypt, and USA. Eight additional countries, namely Portugal, Turkey, Italy, Canada, Chile, Australia, Syria, and Tunisia contributed to 19% of the resistant to moderately susceptible entries. Among the 491 resistant to moderately susceptible accessions, 53.8% (n = 265) were landraces, and 28.4% (n = 139) and 11.4% (n = 55) were breeding lines and cultivars, respectively. Breeding lines and cultivars displayed a higher level and frequency of resistance than the landraces. We concluded that a large number of durum wheat accessions from diverse origins deposited at the NSGC can be exploited for diversifying and improving stem rust resistance in wheat.
Collapse
Affiliation(s)
- Pablo D. Olivera
- Dep. of Plant PathologyUniv. of MinnesotaSt. PaulMinnesota55108USA
| | - Worku D. Bulbula
- Dep. of Plant PathologyUniv. of MinnesotaSt. PaulMinnesota55108USA
- Ethiopian Institute of Agricultural ResearchAddis AbabaEthiopia
| | | | - Harold E. Bockelman
- USDA‐Agricultural Research ServiceSmall Grains and Potato Germplasm Research UnitAberdeenIdaho83210USA
| | - Erena A. Edae
- Dep. of Plant PathologyUniv. of MinnesotaSt. PaulMinnesota55108USA
| | - Yue Jin
- USDA‐Agricultural Research ServiceCereal Disease LabSt. PaulMinnesota55108USA
| |
Collapse
|
36
|
Gill BK, Klindworth DL, Rouse MN, Zhang J, Zhang Q, Sharma JS, Chu C, Long Y, Chao S, Olivera PD, Friesen TL, Zhong S, Jin Y, Faris JD, Fiedler JD, Elias EM, Liu S, Cai X, Xu SS. Function and evolution of allelic variations of Sr13 conferring resistance to stem rust in tetraploid wheat (Triticum turgidum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1674-1691. [PMID: 33825238 PMCID: PMC8362117 DOI: 10.1111/tpj.15263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/18/2021] [Indexed: 05/26/2023]
Abstract
The resistance gene Sr13 is one of the most important genes in durum wheat for controlling stem rust caused by Puccinia graminis f. sp. tritici (Pgt). The Sr13 functional gene CNL13 has haplotypes R1, R2 and R3. The R1/R3 and R2 haplotypes were originally designated as alleles Sr13a and Sr13b, respectively. To detect additional Sr13 alleles, we developed Kompetitive allele specific PCR (KASP™) marker KASPSr13 and four semi-thermal asymmetric reverse PCR markers, rwgsnp37-rwgsnp40, based on the CNL13 sequence. These markers were shown to detect R1, R2 and R3 haplotypes in a panel of diverse tetraploid wheat accessions. We also observed the presence of Sr13 in durum line CAT-A1, although it lacked any of the known haplotypes. Sequence analysis revealed that CNL13 of CAT-A1 differed from the susceptible haplotype S1 by a single nucleotide (C2200T) in the leucine-rich repeat region and differed from the other three R haplotypes by one or two additional nucleotides, confirming that CAT-A1 carries a new (R4) haplotype. Stem rust tests on the monogenic, transgenic and mutant lines showed that R1 differed from R3 in its susceptibility to races TCMJC and THTSC, whereas R4 differed from all other haplotypes for susceptibility to TTKSK, TPPKC and TCCJC. Based on these differences, we designate the R1, R3 and R4 haplotypes as alleles Sr13a, Sr13c and Sr13d, respectively. This study indicates that Sr13d may be the primitive functional allele originating from the S1 haplotype via a point mutation, with the other three R alleles probably being derived from Sr13d through one or two additional point mutations.
Collapse
Affiliation(s)
- Baljeet K. Gill
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Daryl L. Klindworth
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | | | - Jinglun Zhang
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Qijun Zhang
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Jyoti S. Sharma
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | | | - Yunming Long
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Shiaoman Chao
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Pablo D. Olivera
- Department of Plant PathologyUniversity of MinnesotaSt PaulMN55108USA
| | - Timothy L. Friesen
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Shaobin Zhong
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108USA
| | - Yue Jin
- USDA‐ARSCereal Disease LaboratorySt PaulMN55108USA
| | - Justin D. Faris
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Jason D. Fiedler
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Elias M. Elias
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Shuyu Liu
- Texas A&M AgriLife ResearchAmarilloTX79106USA
| | - Xiwen Cai
- Department of Plant SciencesNorth Dakota State UniversityFargoND58108USA
| | - Steven S. Xu
- USDA‐ARSCereal Crops Research UnitEdward T. Schafer Agricultural Research CenterFargoND58102USA
| |
Collapse
|
37
|
Miedaner T, Juroszek P. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1771-1785. [PMID: 33715023 PMCID: PMC8205889 DOI: 10.1007/s00122-021-03807-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/25/2021] [Indexed: 05/07/2023]
Abstract
Wheat productivity is threatened by global climate change. In several parts of NW Europe it will get warmer and dryer during the main crop growing period. The resulting likely lower realized on-farm crop yields must be kept by breeding for resistance against already existing and emerging diseases among other measures. Multi-disease resistance will get especially crucial. In this review, we focus on disease resistance breeding approaches in wheat, especially related to rust diseases and Fusarium head blight, because simulation studies of potential future disease risk have shown that these diseases will be increasingly relevant in the future. The long-term changes in disease occurrence must inevitably lead to adjustments of future resistance breeding strategies, whereby stability and durability of disease resistance under heat and water stress will be important in the future. In general, it would be important to focus on non-temperature sensitive resistance genes/QTLs. To conclude, research on the effects of heat and drought stress on disease resistance reactions must be given special attention in the future.
Collapse
Affiliation(s)
- Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Peter Juroszek
- Central Institute for Decision Support Systems in Crop Protection (ZEPP), 55545, Bad Kreuznach, Germany
| |
Collapse
|
38
|
Sinha P, Chen X. Potential Infection Risks of the Wheat Stripe Rust and Stem Rust Pathogens on Barberry in Asia and Southeastern Europe. PLANTS 2021; 10:plants10050957. [PMID: 34064962 PMCID: PMC8151100 DOI: 10.3390/plants10050957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Barberry (Berberis spp.) is an alternate host for both the stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), and the stem rust pathogen, P. graminis f. sp. tritici (Pgt), infecting wheat. Infection risk was assessed to determine whether barberry could be infected by either of the pathogens in Asia and Southeastern Europe, known for recurring epidemics on wheat and the presence of barberry habitats. For assessing infection risk, mechanistic infection models were used to calculate infection indices for both pathogens on barberry following a modeling framework. In East Asia, Bhutan, China, and Nepal were found to have low risks of barberry infection by Pst but high risks by Pgt. In Central Asia, Azerbaijan, Iran, Kazakhstan, southern Russia, and Uzbekistan were identified to have low to high risks of barberry infection for both Pst and Pgt. In Northwest Asia, risk levels of both pathogens in Turkey and the Republic of Georgia were determined to be high to very high. In Southwest Asia, no or low risk was found. In Southeastern Europe, similar high or very high risks for both pathogens were noted for all countries. The potential risks of barberry infection by Pst and/or Pgt should provide guidelines for monitoring barberry infections and could be valuable for developing rust management programs in these regions. The framework used in this study may be useful to predict rust infection risk in other regions.
Collapse
Affiliation(s)
- Parimal Sinha
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- US Department of Agriculture—Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
- Correspondence: ; Tel.: +1-509-335-8086
| |
Collapse
|
39
|
Colque-Little C, Abondano MC, Lund OS, Amby DB, Piepho HP, Andreasen C, Schmöckel S, Schmid K. Genetic variation for tolerance to the downy mildew pathogen Peronospora variabilis in genetic resources of quinoa (Chenopodium quinoa). BMC PLANT BIOLOGY 2021; 21:41. [PMID: 33446098 PMCID: PMC7809748 DOI: 10.1186/s12870-020-02804-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) is an ancient grain crop that is tolerant to abiotic stress and has favorable nutritional properties. Downy mildew is the main disease of quinoa and is caused by infections of the biotrophic oomycete Peronospora variabilis Gaüm. Since the disease causes major yield losses, identifying sources of downy mildew tolerance in genetic resources and understanding its genetic basis are important goals in quinoa breeding. RESULTS We infected 132 South American genotypes, three Danish cultivars and the weedy relative C. album with a single isolate of P. variabilis under greenhouse conditions and observed a large variation in disease traits like severity of infection, which ranged from 5 to 83%. Linear mixed models revealed a significant effect of genotypes on disease traits with high heritabilities (0.72 to 0.81). Factors like altitude at site of origin or seed saponin content did not correlate with mildew tolerance, but stomatal width was weakly correlated with severity of infection. Despite the strong genotypic effects on mildew tolerance, genome-wide association mapping with 88 genotypes failed to identify significant marker-trait associations indicating a polygenic architecture of mildew tolerance. CONCLUSIONS The strong genetic effects on mildew tolerance allow to identify genetic resources, which are valuable sources of resistance in future quinoa breeding.
Collapse
Affiliation(s)
- Carla Colque-Little
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegaard Allé 13, DK-2630, Taastrup, Denmark
| | - Miguel Correa Abondano
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstrasse 21, D-70599, Stuttgart, Germany
| | - Ole Søgaard Lund
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegaard Allé 13, DK-2630, Taastrup, Denmark
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegaard Allé 13, DK-2630, Taastrup, Denmark
| | - Hans-Peter Piepho
- Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 21, D-70599, Stuttgart, Germany
| | - Christian Andreasen
- Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegaard Allé 13, DK-2630, Taastrup, Denmark
| | - Sandra Schmöckel
- Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 21, D-70599, Stuttgart, Germany
| | - Karl Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstrasse 21, D-70599, Stuttgart, Germany.
| |
Collapse
|
40
|
Luo M, Xie L, Chakraborty S, Wang A, Matny O, Jugovich M, Kolmer JA, Richardson T, Bhatt D, Hoque M, Patpour M, Sørensen C, Ortiz D, Dodds P, Steuernagel B, Wulff BBH, Upadhyaya NM, Mago R, Periyannan S, Lagudah E, Freedman R, Lynne Reuber T, Steffenson BJ, Ayliffe M. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat Biotechnol 2021; 39:561-566. [PMID: 33398152 DOI: 10.1038/s41587-020-00770-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/12/2020] [Indexed: 01/08/2023]
Abstract
Breeding wheat with durable resistance to the fungal pathogen Puccinia graminis f. sp. tritici (Pgt), a major threat to cereal production, is challenging due to the rapid evolution of pathogen virulence. Increased durability and broad-spectrum resistance can be achieved by introducing more than one resistance gene, but combining numerous unlinked genes by breeding is laborious. Here we generate polygenic Pgt resistance by introducing a transgene cassette of five resistance genes into bread wheat as a single locus and show that at least four of the five genes are functional. These wheat lines are resistant to aggressive and highly virulent Pgt isolates from around the world and show very high levels of resistance in the field. The simple monogenic inheritance of this multigene locus greatly simplifies its use in breeding. However, a new Pgt isolate with virulence to several genes at this locus suggests gene stacks will need strategic deployment to maintain their effectiveness.
Collapse
Affiliation(s)
- Ming Luo
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australia
| | - Liqiong Xie
- School of Life Science and Technology, Xinjiang University, Urumqi, China
| | | | - Aihua Wang
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australia
| | - Oadi Matny
- Department of Plant Pathology, Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Michelle Jugovich
- Department of Plant Pathology, Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | | | | | - Dhara Bhatt
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australia
| | - Mohammad Hoque
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australia
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Chris Sørensen
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Diana Ortiz
- Genetics and Breeding of Fruit and Vegetables Unit, National Research Institute for Agriculture, Food and Environment, Montfavet, France
| | - Peter Dodds
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australia
| | | | | | | | - Rohit Mago
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australia
| | | | - Evans Lagudah
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australia
| | | | - T Lynne Reuber
- 2Blades Foundation, Evanston, IL, USA.,Enko Chem, Woburn, MA, USA
| | - Brian J Steffenson
- Department of Plant Pathology, Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Michael Ayliffe
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, Australia.
| |
Collapse
|
41
|
Kelbin VN, Skolotneva ES, Salina EA. Challenges and prospects for developing genetic resistance in common wheat against stem rust in Western Siberia. Vavilovskii Zhurnal Genet Selektsii 2020; 24:821-828. [PMID: 35087994 PMCID: PMC8763719 DOI: 10.18699/vj20.679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Современные исследования проблемы устойчивости мягкой пшеницы к стеблевой ржавчине
включают два основных направления: оценку устойчивости коллекций мягкой пшеницы к заболеванию с
помощью молекулярных маркеров к известным генам устойчивости в дополнение к полевому скринингу материала и лабораторным тестам к образцам различных популяций гриба; поиск источников и доноров новых
генов и генных локусов, в том числе среди культурных и дикорастущих родичей пшеницы. Для достижения
адекватного генетического контроля заболевания важен интегральный подход, включающий как данные об
источниках устойчивости, так и актуальные сведения о действующих в регионе патогенных популяциях, их
расовом составе и динамике генов вирулентности. Результаты анализа экспериментальных данных полевого
скрининга устойчивости к стеблевой ржавчине сортов мягкой пшеницы из коллекции питомников CIMMYT
в условиях Омской и Новосибирской областей, а также лабораторного тестирования образцов инфекции на
международном наборе пшеничных линий-дифференциаторов позволяют предполагать, что на территории
Западной Сибири и Алтайского края существует обособленная, «азиатская», популяция Puccinia graminis f. sp.
tritici. При этом практический интерес для современных программ опережающей селекции пшеницы на иммунитет к стеблевой ржавчине в условиях Западной Сибири представляют гены устойчивости Sr2, Sr6Ai#2,
Sr24, Sr25, Sr26, Sr31, Sr39, Sr40, Sr44 и Sr57. В настоящем обзоре проанализированы источники генов, сохраняющих эффективность к западносибирской популяции P. graminis, с целью упрощения первичного этапа отбора селекционного материала для создания устойчивого генотипа путем пирамидирования генов. Описаны
основные требования, предъявляемые к фитопатологическому тестированию селекционного материала.
Составлен список молекулярных маркеров к указанным генам устойчивости – как широко применяющихся
в маркер-ориентированной селекции, так и требующих верификации.
Collapse
Affiliation(s)
- V. N. Kelbin
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - E. S. Skolotneva
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - E. A. Salina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
42
|
Miller ME, Nazareno ES, Rottschaefer SM, Riddle J, Dos Santos Pereira D, Li F, Nguyen-Phuc H, Henningsen EC, Persoons A, Saunders DGO, Stukenbrock E, Dodds PN, Kianian SF, Figueroa M. Increased virulence of Puccinia coronata f. sp.avenae populations through allele frequency changes at multiple putative Avr loci. PLoS Genet 2020; 16:e1009291. [PMID: 33370783 PMCID: PMC7793281 DOI: 10.1371/journal.pgen.1009291] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/08/2021] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Pathogen populations are expected to evolve virulence traits in response to resistance deployed in agricultural settings. However, few temporal datasets have been available to characterize this process at the population level. Here, we examined two temporally separated populations of Puccinia coronata f. sp. avenae (Pca), which causes crown rust disease in oat (Avena sativa) sampled from 1990 to 2015. We show that a substantial increase in virulence occurred from 1990 to 2015 and this was associated with a genetic differentiation between populations detected by genome-wide sequencing. We found strong evidence for genetic recombination in these populations, showing the importance of the alternate host in generating genotypic variation through sexual reproduction. However, asexual expansion of some clonal lineages was also observed within years. Genome-wide association analysis identified seven Avr loci associated with virulence towards fifteen Pc resistance genes in oat and suggests that some groups of Pc genes recognize the same pathogen effectors. The temporal shift in virulence patterns in the Pca populations between 1990 and 2015 is associated with changes in allele frequency in these genomic regions. Nucleotide diversity patterns at a single Avr locus corresponding to Pc38, Pc39, Pc55, Pc63, Pc70, and Pc71 showed evidence of a selective sweep associated with the shift to virulence towards these resistance genes in all 2015 collected isolates.
Collapse
Affiliation(s)
- Marisa E. Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eric S. Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Susan M. Rottschaefer
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jakob Riddle
- USDA-ARS Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - Danilo Dos Santos Pereira
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, Plon, Germany
- Christian-Albrechts University of Kiel, Kiel Germany
| | - Feng Li
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Hoa Nguyen-Phuc
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eva C. Henningsen
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Antoine Persoons
- INRA/Universite de Lorraine Interactions Abres/Microorganismes, Champenoux, France
| | | | - Eva Stukenbrock
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, Plon, Germany
- Christian-Albrechts University of Kiel, Kiel Germany
| | - Peter N. Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australia
| | - Shahryar F. Kianian
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
- USDA-ARS Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australia
| |
Collapse
|
43
|
van der Walt ZAP, Prins R, Wessels E, Bender CM, Visser B, Boshoff WH. Accomplishments in wheat rust research in South Africa. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/7688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Rust diseases, although seasonal, have been severe constraints in wheat production in South Africa for almost 300 years. Rust research gained momentum with the institution of annual surveys in the 1980s, followed by race identification, an understanding of rust epidemiology, and eventually a focused collaboration amongst pathologists, breeders and geneticists. Diversity in South African populations of Puccinia triticina, P. graminis f. sp. tritici and P. striiformis f. sp. tritici has been described and isolates are available to accurately phenotype wheat germplasm and study pathogen populations at national, regional and global levels. Sources of resistance have been, and still are, methodically analysed and molecular marker systems were developed to incorporate, stack and verify complex resistance gene combinations in breeding lines and cultivars. Vigilance, capacity, new technologies, collaboration and sustained funding are critical for maintaining and improving the current research impetus for future management of these important diseases.
Collapse
Affiliation(s)
| | - Renée Prins
- CenGen (Pty) Ltd., Worcester, South Africa
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Cornel M. Bender
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Botma Visser
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Willem H.P. Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
44
|
Karasov TL, Shirsekar G, Schwab R, Weigel D. What natural variation can teach us about resistance durability. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:89-98. [PMID: 32535454 DOI: 10.1016/j.pbi.2020.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Breeding a crop variety to be resistant to a pathogen usually takes years. This is problematic because pathogens, with short generation times and fluid genomes, adapt quickly to overcome resistance. The triumph of the pathogen is not inevitable, however, as there are numerous examples of durable resistance, particularly in wild plants. Which factors then contribute to such resistance stability over millennia? We review current knowledge of wild and agricultural pathosystems, detailing the importance of genetic, species and spatial heterogeneity in the prevention of pathogen outbreaks. We also highlight challenges associated with increasing resistance diversity in crops, both in light of pathogen (co-)evolution and breeding practices. Historically it has been difficult to incorporate heterogeneity into agriculture due to reduced efficiency in harvesting. Recent advances implementing computer vision and automation in agricultural production may improve our ability to harvest mixed genotype and mixed species plantings, thereby increasing resistance durability.
Collapse
Affiliation(s)
- Talia L Karasov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
45
|
Abstract
Climate change has significantly altered species distributions in the wild and has the potential to affect the interactions between pests and diseases and their human, animal and plant hosts. While several studies have projected changes in disease distributions in the future, responses to historical climate change are poorly understood. Such analyses are required to dissect the relative contributions of climate change, host availability and dispersal to the emergence of pests and diseases. Here, we model the influence of climate change on the most damaging disease of a major tropical food plant, Black Sigatoka disease of banana. Black Sigatoka emerged from Asia in the late twentieth Century and has recently completed its invasion of Latin American and Caribbean banana-growing areas. We parametrize an infection model with published experimental data and drive the model with hourly microclimate data from a global climate reanalysis dataset. We define infection risk as the sum of the number of modelled hourly spore cohorts that infect a leaf over a time interval. The model shows that infection risk has increased by a median of 44.2% across banana-growing areas of Latin America and the Caribbean since the 1960s, due to increasing canopy wetness and improving temperature conditions for the pathogen. Thus, while increasing banana production and global trade have probably facilitated Black Sigatoka establishment and spread, climate change has made the region increasingly conducive for plant infection. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
- Daniel P Bebber
- Department of Biosciences, University of Exeter , EX4 4QD Exeter , UK
| |
Collapse
|
46
|
Kangara N, Kurowski TJ, Radhakrishnan GV, Ghosh S, Cook NM, Yu G, Arora S, Steffenson BJ, Figueroa M, Mohareb F, Saunders DGO, Wulff BBH. Mutagenesis of Puccinia graminis f. sp. tritici and Selection of Gain-of-Virulence Mutants. FRONTIERS IN PLANT SCIENCE 2020; 11:570180. [PMID: 33072145 PMCID: PMC7533539 DOI: 10.3389/fpls.2020.570180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/19/2020] [Indexed: 05/08/2023]
Abstract
Wheat stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), is regaining prominence due to the recent emergence of virulent isolates and epidemics in Africa, Europe and Central Asia. The development and deployment of wheat cultivars with multiple stem rust resistance (Sr) genes stacked together will provide durable resistance. However, certain disease resistance genes can suppress each other or fail in particular genetic backgrounds. Therefore, the function of each Sr gene must be confirmed after incorporation into an Sr-gene stack. This is difficult when using pathogen disease assays due to epistasis from recognition of multiple avirulence (Avr) effectors. Heterologous delivery of single Avr effectors can circumvent this limitation, but this strategy is currently limited by the paucity of cloned Pgt Avrs. To accelerate Avr gene cloning, we outline a procedure to develop a mutant population of Pgt spores and select for gain-of-virulence mutants. We used ethyl methanesulphonate (EMS) to mutagenize urediniospores and create a library of > 10,000 independent mutant isolates that were combined into 16 bulks of ~658 pustules each. We sequenced random mutants and determined the average mutation density to be 1 single nucleotide variant (SNV) per 258 kb. From this, we calculated that a minimum of three independently derived gain-of-virulence mutants is required to identify a given Avr gene. We inoculated the mutant library onto plants containing Sr43, Sr44, or Sr45 and obtained 9, 4, and 14 mutants with virulence toward Sr43, Sr44, or Sr45, respectively. However, only mutants identified on Sr43 and Sr45 maintained their virulence when reinolculated onto the lines from which they were identified. We further characterized 8 mutants with virulence toward Sr43. These also maintained their virulence profile on the stem rust international differential set containing 20 Sr genes, indicating that they were most likely not accidental contaminants. In conclusion, our method allows selecting for virulent mutants toward targeted resistance (R) genes. The development of a mutant library from as little as 320 mg spores creates a resource that enables screening against several R genes without the need for multiple rounds of spore multiplication and mutagenesis.
Collapse
Affiliation(s)
| | - Tomasz J. Kurowski
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford, United Kingdom
| | | | - Sreya Ghosh
- Crop Genetics Department, John Innes Centre, Norwich, United Kingdom
| | - Nicola M. Cook
- Crop Genetics Department, John Innes Centre, Norwich, United Kingdom
| | - Guotai Yu
- Crop Genetics Department, John Innes Centre, Norwich, United Kingdom
| | - Sanu Arora
- Crop Genetics Department, John Innes Centre, Norwich, United Kingdom
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Melania Figueroa
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, NSW, Australia
| | - Fady Mohareb
- The Bioinformatics Group, Cranfield Soil and Agrifood Institute, Cranfield University, Bedford, United Kingdom
- *Correspondence: Brande B. H. Wulff, ; Diane G. O. Saunders, ; Fady Mohareb,
| | - Diane G. O. Saunders
- Crop Genetics Department, John Innes Centre, Norwich, United Kingdom
- *Correspondence: Brande B. H. Wulff, ; Diane G. O. Saunders, ; Fady Mohareb,
| | - Brande B. H. Wulff
- Crop Genetics Department, John Innes Centre, Norwich, United Kingdom
- *Correspondence: Brande B. H. Wulff, ; Diane G. O. Saunders, ; Fady Mohareb,
| |
Collapse
|
47
|
Chen S, Rouse MN, Zhang W, Zhang X, Guo Y, Briggs J, Dubcovsky J. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. THE NEW PHYTOLOGIST 2020; 225:948-959. [PMID: 31487050 DOI: 10.1111/nph.16169] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/28/2019] [Indexed: 05/18/2023]
Abstract
Wheat stem rust, caused by Puccinia graminis Pers. f. sp. tritici (Pgt), is a devastating fungal disease threatening global wheat production. The present paper reports the identification of stem rust resistance gene Sr60, a race-specific gene from diploid wheat Triticum monococcum L. that encodes a protein with two putative kinase domains. This gene, designated as WHEAT TANDEM KINASE 2 (WTK2), confers intermediate levels of resistance to Pgt. WTK2 was identified by map-based cloning and validated by transformation of a c.10-kb genomic sequence including WTK2 into susceptible common wheat variety Fielder (Triticum aestivum L.). Transformation of Fielder with WTK2 was sufficient to confer Pgt resistance. Sr60 transcripts were transiently upregulated 1 d post-inoculation with Pgt, but not in mock-inoculated plants. The upregulation of Sr60 was associated with stable upregulation of several pathogenesis-related genes. The Sr60-resistant haplotype found in T. monococcum was not found in polyploid wheat, suggesting an opportunity to introduce a novel resistance gene. Sr60 was successfully introgressed into hexaploid wheat, and we developed a diagnostic molecular marker to accelerate its deployment and pyramiding with other resistance genes. The cloned Sr60 also can be a useful component of transgenic cassettes including other resistance genes with complementary resistance profiles.
Collapse
Affiliation(s)
- Shisheng Chen
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, 261000, China
| | - Matthew N Rouse
- USDA-ARS Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St Paul, MN, 55108, USA
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Xiaoqin Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yan Guo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Jordan Briggs
- USDA-ARS Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St Paul, MN, 55108, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| |
Collapse
|
48
|
Olivera PD, Sikharulidze Z, Dumbadze R, Szabo LJ, Newcomb M, Natsarishvili K, Rouse MN, Luster DG, Jin Y. Presence of a Sexual Population of Puccinia graminis f. sp. tritici in Georgia Provides a Hotspot for Genotypic and Phenotypic Diversity. PHYTOPATHOLOGY 2019; 109:2152-2160. [PMID: 31339468 DOI: 10.1094/phyto-06-19-0186-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is a re-emerging disease exemplified by recent epidemics caused by new virulent races. Understanding the sources and origins of genetic variations in the pathogen populations globally can facilitate the development of better strategies in disease management. We analyzed 68 wheat stem rust samples collected between 2013 and 2015 from Georgia where stem rust incidences are frequent and the alternate host, common barberry, is present. A total of 116 single-pustule isolates were derived and evaluated on stem rust differential lines to determine the virulence phenotypes and 23 races were identified, many of which were detected for the first time. Unique virulence combinations including, Sr22+Sr24 and Sr13b+Sr35+Sr37 were detected. These virulence combinations pose new challenges to breeding programs because many of these genes are used in breeding for resistance to the Ug99 race group. Sixty-one isolates were genotyped using a custom single-nucleotide polymorphism chip and 17 genotypes were identified. The 2013 isolates contained 11 multilocus genotypes compared with isolates of 2014 and 2015, with five and three genotypes, respectively. The higher levels of virulence and genotypic diversity observed in the 2013 samples strongly indicated that sexual recombination occurs in the Georgian P. graminis f. sp. tritici population, and that the Caucasus region of Eurasia may be an important source of new races.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Pablo D Olivera
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Zoya Sikharulidze
- Batumi Shota Rustaveli State University, Institute of Phytopathology and Biodiversity, Kobuleti, Adjara, Georgia, U.S.A
| | - Rusudan Dumbadze
- Batumi Shota Rustaveli State University, Institute of Phytopathology and Biodiversity, Kobuleti, Adjara, Georgia, U.S.A
| | - Les J Szabo
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Maria Newcomb
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Ketino Natsarishvili
- Batumi Shota Rustaveli State University, Institute of Phytopathology and Biodiversity, Kobuleti, Adjara, Georgia, U.S.A
| | - Matthew N Rouse
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Douglas G Luster
- U.S. Department of Agriculture- Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Yue Jin
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, U.S.A
| |
Collapse
|
49
|
Identification of Stem Rust Resistance Genes in the Winter Wheat Collection from Southern Russia. PLANTS 2019; 8:plants8120559. [PMID: 31801237 PMCID: PMC6963428 DOI: 10.3390/plants8120559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 01/21/2023]
Abstract
The high yield potential of winter wheats cannot be realized due to disease pressure under field conditions. One of the most harmful of such diseases is stem rust, hence the constant search for sources of resistance and the development of new varieties resistant to stem rust is of great relevance. This study deals with the identification of stem rust resistance genes in a collection of winter wheats grown in Southern Russia. This genepool has not been studied yet. A total of 620 samples of winter soft wheat from various ecological and geographical zones were tested under field conditions. To identify the specific genes or alleles responsible for resistance, all samples were genotyped using PCR. As a result, the groups of resistant samples, carrying the Sr2, Sr31, Sr38 and Sr44 genes in various combinations, were identified. Most of the stem rust resistance was provided by the presence of the effective Sr44 gene. This information can be used in the future breeding work for stem rust resistance.
Collapse
|
50
|
Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation. Nat Commun 2019; 10:5068. [PMID: 31699975 PMCID: PMC6838127 DOI: 10.1038/s41467-019-12927-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/03/2019] [Indexed: 01/04/2023] Open
Abstract
Parasexuality contributes to diversity and adaptive evolution of haploid (monokaryotic) fungi. However, non-sexual genetic exchange mechanisms are not defined in dikaryotic fungi (containing two distinct haploid nuclei). Newly emerged strains of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), such as Ug99, are a major threat to global food security. Here, we provide genomics-based evidence supporting that Ug99 arose by somatic hybridisation and nuclear exchange between dikaryons. Fully haplotype-resolved genome assembly and DNA proximity analysis reveal that Ug99 shares one haploid nucleus genotype with a much older African lineage of Pgt, with no recombination or chromosome reassortment. These findings indicate that nuclear exchange between dikaryotes can generate genetic diversity and facilitate the emergence of new lineages in asexual fungal populations.
Collapse
|