1
|
Sánchez KI, Recknagel H, Elmer KR, Avila LJ, Morando M. Tracing evolutionary trajectories in the presence of gene flow in South American temperate lizards (Squamata: Liolaemus kingii group). Evolution 2024; 78:716-733. [PMID: 38262697 DOI: 10.1093/evolut/qpae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Evolutionary processes behind lineage divergence often involve multidimensional differentiation. However, in the context of recent divergences, the signals exhibited by each dimension may not converge. In such scenarios, incomplete lineage sorting, gene flow, and scarce phenotypic differentiation are pervasive. Here, we integrated genomic (RAD loci of 90 individuals), phenotypic (linear and geometric traits of 823 and 411 individuals, respectively), spatial, and climatic data to reconstruct the evolutionary history of a speciation continuum of liolaemid lizards (Liolaemus kingii group). Specifically, we (a) inferred the population structure of the group and contrasted it with the phenotypic variability; (b) assessed the role of postdivergence gene flow in shaping phylogeographic and phenotypic patterns; and (c) explored ecogeographic drivers of diversification across time and space. We inferred eight genomic clusters exhibiting leaky genetic borders coincident with geographic transitions. We also found evidence of postdivergence gene flow resulting in transgressive phenotypic evolution in one species. Predicted ancestral niches unveiled suitable areas in southern and eastern Patagonia during glacial and interglacial periods. Our study underscores integrating different data and model-based approaches to determine the underlying causes of diversification, a challenge faced in the study of recently diverged groups. We also highlight Liolaemus as a model system for phylogeographic and broader evolutionary studies.
Collapse
Affiliation(s)
- Kevin I Sánchez
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Hans Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
- Departamento de Biología y Ambiente, Universidad Nacional de la Patagonia San Juan Bosco, Sede Puerto Madryn, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
2
|
Tensen L, Fischer K. Evaluating hybrid speciation and swamping in wild carnivores with a decision-tree approach. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14197. [PMID: 37811741 DOI: 10.1111/cobi.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 10/10/2023]
Abstract
Hybridization is an important evolutionary force with a principal role in the origin of new species, known as hybrid speciation. However, ongoing hybridization can create hybrid swamping, in which parental genomes are completely lost. This can become a biodiversity threat if it involves species that have adapted to certain environmental conditions and occur nowhere else. Because conservation scientists commonly have a negative attitude toward hybrids, it is important to improve understanding of the influence of interspecific gene flow on the persistence of species. We reviewed the literature on species hybridization to build a list of all known cases in the order Carnivora. To examine the relative impact, we also noted level of introgression, whether fertile offspring were produced, and whether there was mention of negative or positive evolutionary effects (hybrid speciation and swamping). To evaluate the conservation implications of hybrids, we developed a decision-making tree with which to determine which actions should be taken to manage hybrid species. We found 53 hybrids involving 68 unique taxa, which is roughly 23% of all carnivore species. They mainly involved monophyletic (83%) and sympatric species (75%). For 2 species, the outcome of the assessment was to eliminate or restrict the hybrids: Ethiopian wolf (Canis simensis) and Scottish wildcat (Felis silvestris silvestris). Both species hybridize with their domestic conspecifics. For all other cases, we suggest hybrids be protected in the same manner as native species. We found no evidence of genomic extinction in Carnivora. To the contrary, some species appear to be of hybrid origin, such as the Asiatic black bear (Ursus thibetanus) and African golden wolf (Canis lupaster). Other positive outcomes of hybridization are novel genetic diversity, adaptation to extreme environments, and increased reproductive fitness. These outcomes are particularly valuable for counterbalancing genetic drift and enabling adaptive introgression in a human-dominated world.
Collapse
Affiliation(s)
- Laura Tensen
- Institute for Integrated Natural Sciences, Department of Zoology, University of Koblenz, Koblenz, Germany
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Klaus Fischer
- Institute for Integrated Natural Sciences, Department of Zoology, University of Koblenz, Koblenz, Germany
| |
Collapse
|
3
|
Pečnerová P, Lord E, Garcia-Erill G, Hanghøj K, Rasmussen MS, Meisner J, Liu X, van der Valk T, Santander CG, Quinn L, Lin L, Liu S, Carøe C, Dalerum F, Götherström A, Måsviken J, Vartanyan S, Raundrup K, Al-Chaer A, Rasmussen L, Hvilsom C, Heide-Jørgensen MP, Sinding MHS, Aastrup P, Van Coeverden de Groot PJ, Schmidt NM, Albrechtsen A, Dalén L, Heller R, Moltke I, Siegismund HR. Population genomics of the muskox' resilience in the near absence of genetic variation. Mol Ecol 2024; 33:e17205. [PMID: 37971141 DOI: 10.1111/mec.17205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.
Collapse
Affiliation(s)
- Patrícia Pečnerová
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Zoo, Frederiksberg, Denmark
| | - Edana Lord
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Genís Garcia-Erill
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Malthe Sebro Rasmussen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiaodong Liu
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tom van der Valk
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Cindy G Santander
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Long Lin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Dalerum
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Biodiversity Research Institute (CSIC-UO-PA), Mieres, Spain
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Johannes Måsviken
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A.N.A. Shilo, Russian Academy of Sciences, Magadan, Russia
| | | | - Amal Al-Chaer
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Linett Rasmussen
- Copenhagen Zoo, Frederiksberg, Denmark
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mads Peter Heide-Jørgensen
- Greenland Institute of Natural Resources, Nuuk, Greenland
- Greenland Institute of Natural Resources, Copenhagen, Denmark
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Peter Aastrup
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Niels Martin Schmidt
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Redlef Siegismund
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Li G, Chen X, Li X, Liang Y, Li X, Liang W, Yan Z, Wang Y, Wang Y, Luo J, Guo XF, Zhu XT. Analyzing the Evolution and Host Adaptation of the Rabies Virus from the Perspective of Codon Usage Bias. Transbound Emerg Dis 2023; 2023:4667253. [PMID: 40303686 PMCID: PMC12016951 DOI: 10.1155/2023/4667253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 05/02/2025]
Abstract
Rabies virus (RABV) is a highly pathogenic virus that causes a fatal disease in humans and other mammals, but the mechanism of its evolution, spread, and spillover remains unknown. In this study, we analyzed the codon usage pattern of 2,018 RABV full-length genome sequences from 79 countries collected between 1931 and 2021 to provide an insight into its molecular evolution and unravel its unknown host-adapted pattern. We found that RABV exhibited a weak codon usage bias, with a preference for the codons ending in A (28.10 ± 0.01) or U (26.43 ± 0.02). Moreover, natural selection plays a major role in shaping the codon usage bias of the RABV. Notably, nearly half of the 18 codons in the virus were best matched to the hosts' most abundant isoacceptor tRNAs, which might account for the wide range of RABV hosts. Furthermore, significant differences were observed in the codon usage patterns of RABV for different host species, suggesting that codon usage bias may be influenced by host-specific factors. In conclusion, our study reveals codon usage patterns of RABV that may help in the development of control strategies and effective vaccines and therapies against this deadly virus.
Collapse
Affiliation(s)
- Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xuhong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yinyi Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weiheng Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yueming Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Feng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- South China Biological Medicine, Guangzhou 511300, China
| | - Xiu-Tong Zhu
- South China Biological Medicine, Guangzhou 511300, China
| |
Collapse
|
5
|
Tukhbatullin A, Ermakov O, Kapustina S, Starikov V, Tambovtseva V, Titov S, Brandler O. Surrounded by Kindred: Spermophilus major Hybridization with Other Spermophilus Species in Space and Time. BIOLOGY 2023; 12:880. [PMID: 37372163 DOI: 10.3390/biology12060880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Among the numerous described cases of hybridization in mammals, the most intriguing are (a) cases of introgressive hybridization deeply affecting the evolutionary history of species, and (b) models involving not a pair of species but a multi-species complex. Therefore, the hybridization history of the russet ground squirrel Spermophilus major, whose range has repeatedly changed due to climatic fluctuations and now borders the ranges of four related species, is of great interest. The main aims of this study were to determine the direction and intensity of gene introgression, the spatial depth of the infiltration of extraneous genes into the S. major range, and to refine the hypothesis of the hybridogenic replacement of mitochondrial genomes in the studied group. Using phylogenetic analysis of the variability of mitochondrial (CR, cytb) and nuclear (SmcY, BGN, PRKCI, c-myc, i6p53) markers, we determined the contribution of neighboring species to the S. major genome. We showed that 36% of S. major individuals had extraneous alleles. All peripheral species that were in contact with S. major contributed towards its genetic variability. We also proposed a hypothesis for the sequence and localization of serial hybridization events. Our assessment of the S. major genome implications of introgression highlights the importance of implementing conservation measures to protect this species.
Collapse
Affiliation(s)
- Andrey Tukhbatullin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Oleg Ermakov
- Faculty of Physics, Mathematics and Natural Sciences, Belinsky Institute of Teacher Education, Penza State University, Lermontov Str. 37, Penza 440026, Russia
| | - Svetlana Kapustina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Vladimir Starikov
- Department of Biology and Biotechnology, Institute of Natural and Technical Sciences, Surgut State University, Lenin Avenue 1, Surgut 628412, Russia
| | - Valentina Tambovtseva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Sergey Titov
- Faculty of Physics, Mathematics and Natural Sciences, Belinsky Institute of Teacher Education, Penza State University, Lermontov Str. 37, Penza 440026, Russia
| | - Oleg Brandler
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| |
Collapse
|
6
|
da Silva Coelho FA, Gill S, Tomlin CM, Papavassiliou M, Farley SD, Cook JA, Sonsthagen SA, Sage GK, Heaton TH, Talbot SL, Lindqvist C. Ancient bears provide insights into Pleistocene ice age refugia in Southeast Alaska. Mol Ecol 2023. [PMID: 37096383 DOI: 10.1111/mec.16960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
During the Late Pleistocene, major parts of North America were periodically covered by ice sheets. However, there are still questions about whether ice-free refugia were present in the Alexander Archipelago along the Southeast (SE) Alaska coast during the last glacial maximum (LGM). Numerous subfossils have been recovered from caves in SE Alaska, including American black (Ursus americanus) and brown (U. arctos) bears, which today are found in the Alexander Archipelago but are genetically distinct from mainland bear populations. Hence, these bear species offer an ideal system to investigate long-term occupation, potential refugial survival and lineage turnover. Here, we present genetic analyses based on 99 new complete mitochondrial genomes from ancient and modern brown and black bears spanning the last ~45,000 years. Black bears form two SE Alaskan subclades, one preglacial and another postglacial, that diverged >100,000 years ago. All postglacial ancient brown bears are closely related to modern brown bears in the archipelago, while a single preglacial brown bear is found in a distantly related clade. A hiatus in the bear subfossil record around the LGM and the deep split of their pre- and postglacial subclades fail to support a hypothesis of continuous occupancy in SE Alaska throughout the LGM for either species. Our results are consistent with an absence of refugia along the SE Alaska coast, but indicate that vegetation quickly expanded after deglaciation, allowing bears to recolonize the area after a short-lived LGM peak.
Collapse
Affiliation(s)
| | - Stephanie Gill
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Crystal M Tomlin
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Sean D Farley
- Alaska Department of Fish and Game, Anchorage, Alaska, USA
| | - Joseph A Cook
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Sarah A Sonsthagen
- U.S. Geological Survey, Nebraska Cooperative Fish and Wildlife Research Unit, University of Nebraska-Lincoln, School of Natural Resources, Lincoln, Nebraska, USA
| | - George K Sage
- Far Northwestern Institute of Art and Science, Anchorage, Alaska, USA
| | - Timothy H Heaton
- Department of Earth Sciences, University of South Dakota, Vermillion, South Dakota, USA
| | - Sandra L Talbot
- Far Northwestern Institute of Art and Science, Anchorage, Alaska, USA
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
7
|
Szatmári L, Cserkész T, Laczkó L, Lanszki J, Pertoldi C, Abramov AV, Elmeros M, Ottlecz B, Hegyeli Z, Sramkó G. A comparison of microsatellites and genome-wide SNPs for the detection of admixture brings the first molecular evidence for hybridization between Mustela eversmanii and M. putorius (Mustelidae, Carnivora). Evol Appl 2021; 14:2286-2304. [PMID: 34603499 PMCID: PMC8477604 DOI: 10.1111/eva.13291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022] Open
Abstract
Introgressive hybridization can pose a serious threat to endangered species which have an overlapping distribution such as in the case of two polecat species, Mustela eversmanii and M. putorius, in Europe. The population size of steppe polecat is known to continuously shrink, whereas its sister species, the European polecat, is still somehow widespread. In this study, we perform an analysis using microsatellite (SSR) and genomic (SNP) data sets to identify natural hybrids between polecats. Four populations were genotyped for eight polymorphic SSR loci, and thousands of unlinked SNPs were generated using a reduced-representation sequencing approach, RADseq, to characterize the genetic make-up of allopatric populations and to identify hybrids in the sympatric area. We applied standard population genetic analyses to characterize the populations based on their SSR allelic frequency. Only a single sample out of 48 sympatric samples showed exact intermediacy that we identified as an F1 hybrid. Additionally, one specimen was indicated in the genomic data sets as backcrossed. Other backcrosses, indicated by SSRs, were not validated by SNPs, which highlights the higher efficacy of the genomic method to identify backcrossed individuals. The low frequency of hybridization suggests that the difference in habitat preference of the two species may act as a barrier to admixture. Therefore, it is apparently unlikely that polecat populations are threatened by significant introgression. The two species showed a clear genetic differentiation using both techniques. We found higher genetic diversity values in the sympatric steppe polecat population than in the other studies on polecat populations. Although M. putorius is a hunted species in most countries, genetic diversity values indicate worse conditions in Europe than in the protected sibling species M. eversmanii. Suspending hunting and providing protected status of the former seems to be reasonable and timely.
Collapse
Affiliation(s)
- Lajos Szatmári
- MTA-DE "Lendület" Evolutionary Phylogenomics Research Group Debrecen Hungary
- Department of Botany University of Debrecen Debrecen Hungary
| | - Tamás Cserkész
- Department of Zoology Hungarian Natural History Museum Budapest Hungary
- Bükk Mammalogical Society Eger Hungary
| | - Levente Laczkó
- MTA-DE "Lendület" Evolutionary Phylogenomics Research Group Debrecen Hungary
- Department of Botany University of Debrecen Debrecen Hungary
| | - József Lanszki
- Carnivore Ecology Research Group Szent István University, Kaposvár Campus Kaposvár Hungary
| | - Cino Pertoldi
- Department of Chemistry and Bioscience Aalborg University Aalborg Øst Denmark
- Aalborg Zoo Aalborg Denmark
| | - Alexei V Abramov
- Zoological Institute Russian Academy of Sciences Saint Petersburg Russia
| | - Morten Elmeros
- Department of Bioscience - Wildlife Ecology Aarhus University Rønde Denmark
| | | | - Zsolt Hegyeli
- Milvus Group Bird and Nature Protection Association Tîrgu Mureș Romania
| | - Gábor Sramkó
- MTA-DE "Lendület" Evolutionary Phylogenomics Research Group Debrecen Hungary
- Department of Botany University of Debrecen Debrecen Hungary
| |
Collapse
|
8
|
McDonough MM, Ferguson AW, Dowler RC, Gompper ME, Maldonado JE. Phylogenomic systematics of the spotted skunks (Carnivora, Mephitidae, Spilogale): Additional species diversity and Pleistocene climate change as a major driver of diversification. Mol Phylogenet Evol 2021; 167:107266. [PMID: 34302947 DOI: 10.1016/j.ympev.2021.107266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/28/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Four species of spotted skunks (Carnivora, Mephitidae, Spilogale) are currently recognized: Spilogale angustifrons, S. gracilis, S. putorius, and S. pygmaea. Understanding species boundaries within this group is critical for effective conservation given that regional populations or subspecies (e.g., S. p. interrupta) have experienced significant population declines. Further, there may be currently unrecognized diversity within this genus as some taxa (e.g., S. angustifrons) and geographic regions (e.g., Central America) never have been assessed using DNA sequence data. We analyzed species limits and diversification patterns in spotted skunks using multilocus nuclear (ultraconserved elements) and mitochondrial (whole mitogenomes and single gene analysis) data sets from broad geographic sampling representing all currently recognized species and subspecies. We found a high degree of genetic divergence among Spilogale that reflects seven distinct species and eight unique mitochondrial lineages. Initial divergence between S. pygmaea and all other Spilogale occurred in the Early Pliocene (∼ 5.0 million years ago). Subsequent diversification of the remaining Spilogale into an "eastern" and a "western" lineage occurred during the Early Pleistocene (∼1.5 million years ago). These two lineages experienced temporally coincident patterns of diversification at ∼0.66 and ∼0.35 million years ago into two and ultimately three distinct evolutionary units, respectively. Diversification was confined almost entirely within the Pleistocene during a timeframe characterized by alternating glacial-interglacial cycles, with the origin of this diversity occurring in northeastern Mexico and the southwestern United States of America. Mitochondrial-nuclear discordance was recovered across three lineages in geographic regions consistent with secondary contact, including a distinct mitochondrial lineage confined to the Sonoran Desert. Our results have direct consequences for conservation of threatened populations, or species, as well as for our understanding of the evolution of delayed implantation in this enigmatic group of small carnivores.
Collapse
Affiliation(s)
- Molly M McDonough
- Chicago State University Department of Biological Sciences 9501 S. King Drive, WSC 290 Chicago, IL 60628-1598.
| | - Adam W Ferguson
- Gantz Family Collection Center Field Museum 1400 South Lake Shore Drive Chicago, IL 60605
| | - Robert C Dowler
- Department of Biology Angelo State University ASU Station 10890 San Angelo, TX 76909
| | - Matthew E Gompper
- Department of Fish, Wildlife, and Conservation Ecology New Mexico State University Las Cruces, NM 88003
| | - Jesús E Maldonado
- Center for Conservation Genomics Smithsonian Conservation Biology Institute National Zoological Park PO Box 37012 MRC 5503 Washington, DC 20013
| |
Collapse
|
9
|
Krejsa DM, Talbot SL, Sage GK, Sonsthagen SA, Jung TS, Magoun AJ, Cook JA. Dynamic landscapes in northwestern North America structured populations of wolverines (Gulo gulo). J Mammal 2021. [DOI: 10.1093/jmammal/gyab045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Cyclic climatic and glacial fluctuations of the Late Quaternary produced a dynamic biogeographic history for high latitudes. To refine our understanding of this history in northwestern North America, we explored geographic structure in a wide-ranging carnivore, the wolverine (Gulo gulo). We examined genetic variation in populations across mainland Alaska, coastal Southeast Alaska, and mainland western Canada using nuclear microsatellite genotypes and sequence data from the mitochondrial DNA (mtDNA) control region and Cytochrome b (Cytb) gene. Data from maternally inherited mtDNA reflect stable populations in Northwest Alaska, suggesting the region harbored wolverine populations since at least the Last Glacial Maximum (LGM; 21 Kya), consistent with their persistence in the fossil record of Beringia. Populations in Southeast Alaska are characterized by minimal divergence, with no genetic signature of long-term refugial persistence (consistent with the lack of pre-Holocene fossil records there). The Kenai Peninsula population exhibits mixed signatures depending on marker type: mtDNA data indicate stability (i.e., historical persistence) and include a private haplotype, whereas biparentally inherited microsatellites exhibit relatively low variation and a lack of private alleles consistent with a more recent Holocene colonization of the peninsula. Our genetic work is largely consistent with the early 20th century taxonomic hypothesis that wolverines on the Kenai Peninsula belong to a distinct subspecies. Our finding of significant genetic differentiation of wolverines inhabiting the Kenai Peninsula, coupled with the peninsula’s burgeoning human population and the wolverine’s known sensitivity to anthropogenic impacts, provides valuable foundational data that can be used to inform conservation and management prescriptions for wolverines inhabiting these landscapes.
Collapse
Affiliation(s)
- Dianna M Krejsa
- Department of Biology and Angelo State Natural History Collections, Angelo State University, ASU Station 10890, San Angelo, TX 76909-0890, USA
| | - Sandra L Talbot
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508, USA
| | - George K Sage
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508, USA
| | | | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, YT, Y1A 2C6, Canada
| | - Audrey J Magoun
- Wildlife Research and Management, 3680 Non Road, Fairbanks, AK 99709, USA
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Quilodrán CS, Montoya-Burgos JI, Currat M. Harmonizing hybridization dissonance in conservation. Commun Biol 2020; 3:391. [PMID: 32694629 PMCID: PMC7374702 DOI: 10.1038/s42003-020-1116-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
A dramatic increase in the hybridization between historically allopatric species has been induced by human activities. However, the notion of hybridization seems to lack consistency in two respects. On the one hand, it is inconsistent with the biological species concept, which does not allow for interbreeding between species, and on the other hand, it is considered either as an evolutionary process leading to the emergence of new biodiversity or as a cause of biodiversity loss, with conservation implications. In the first case, we argue that conservation biology should avoid the discussion around the species concept and delimit priorities of conservation units based on the impact on biodiversity if taxa are lost. In the second case, we show that this is not a paradox but an intrinsic property of hybridization, which should be considered in conservation programmes. We propose a novel view of conservation guidelines, in which human-induced hybridization may also be a tool to enhance the likelihood of adaptation to changing environmental conditions or to increase the genetic diversity of taxa affected by inbreeding depression. The conservation guidelines presented here represent a guide for the development of programmes aimed at protecting biodiversity as a dynamic evolutionary system.
Collapse
Affiliation(s)
- Claudio S Quilodrán
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
- Laboratory of Anthropology, Genetics and Peopling History, Anthropology Unit, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
| | - Juan I Montoya-Burgos
- Laboratory of Vertebrate Evolution, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Anthropology Unit, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| |
Collapse
|
11
|
Canuti M, Todd M, Monteiro P, Van Osch K, Weir R, Schwantje H, Britton AP, Lang AS. Ecology and Infection Dynamics of Multi-Host Amdoparvoviral and Protoparvoviral Carnivore Pathogens. Pathogens 2020; 9:pathogens9020124. [PMID: 32075256 PMCID: PMC7168296 DOI: 10.3390/pathogens9020124] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
Amdoparvovirus and Protoparvovirus are monophyletic viral genera that infect carnivores. We performed surveillance for and sequence analyses of parvoviruses in mustelids in insular British Columbia to investigate parvoviral maintenance and cross-species transmission among wildlife. Overall, 19.1% (49/256) of the tested animals were parvovirus-positive. Aleutian mink disease virus (AMDV) was more prevalent in mink (41.6%, 32/77) than martens (3.1%, 4/130), feline panleukopenia virus (FPV) was more prevalent in otters (27.3%, 6/22) than mink (5.2%, 4/77) or martens (2.3%, 3/130), and canine parvovirus 2 (CPV-2) was found in one mink, one otter, and zero ermines (N = 27). Viruses were endemic and bottleneck events, founder effects, and genetic drift generated regional lineages. We identified two local closely related AMDV lineages, one CPV-2 lineage, and five FPV lineages. Highly similar viruses were identified in different hosts, demonstrating cross-species transmission. The likelihood for cross-species transmission differed among viruses and some species likely represented dead-end spillover hosts. We suggest that there are principal maintenance hosts (otters for FPV, raccoons for CPV-2/FPV, mink for AMDV) that enable viral persistence and serve as sources for other susceptible species. In this multi-host system, viral and host factors affect viral persistence and distribution, shaping parvoviral ecology and evolution, with implications for insular carnivore conservation.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada
- Correspondence: (M.C.); (A.S.L.); Tel.: +1-709-864-8761 (M.C.); +1-709-864-7517 (A.S.L.)
| | - Melissa Todd
- British Columbia Ministry of Forests, Lands, Natural Resource Operations, and Rural Development, Coast Area Research Section, Suite 103-2100 Labieux Rd., Nanaimo, BC V9T 6E9, Canada; (M.T.); (P.M.); (K.V.O.)
| | - Paige Monteiro
- British Columbia Ministry of Forests, Lands, Natural Resource Operations, and Rural Development, Coast Area Research Section, Suite 103-2100 Labieux Rd., Nanaimo, BC V9T 6E9, Canada; (M.T.); (P.M.); (K.V.O.)
| | - Kalia Van Osch
- British Columbia Ministry of Forests, Lands, Natural Resource Operations, and Rural Development, Coast Area Research Section, Suite 103-2100 Labieux Rd., Nanaimo, BC V9T 6E9, Canada; (M.T.); (P.M.); (K.V.O.)
| | - Richard Weir
- British Columbia Ministry of Environment and Climate Change Strategy, PO Box 9338 STN Prov Govt, Victoria, BC V8W 9M2, Canada;
| | - Helen Schwantje
- British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Wildlife Health Program, Wildlife and Habitat Branch, 2080 Labieux Rd., Nanaimo, BC V9T 6J9, Canada;
| | - Ann P. Britton
- Animal Health Center, British Columbia Ministry of Agriculture, 1767 Angus Campbell Rd., Abbotsford, BC V3G 2M3, Canada;
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada
- Correspondence: (M.C.); (A.S.L.); Tel.: +1-709-864-8761 (M.C.); +1-709-864-7517 (A.S.L.)
| |
Collapse
|
12
|
Conservation Genomics in a Changing Arctic. Trends Ecol Evol 2019; 35:149-162. [PMID: 31699414 DOI: 10.1016/j.tree.2019.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/25/2022]
Abstract
Although logistically challenging to study, the Arctic is a bellwether for global change and is becoming a model for questions pertinent to the persistence of biodiversity. Disruption of Arctic ecosystems is accelerating, with impacts ranging from mixing of biotic communities to individual behavioral responses. Understanding these changes is crucial for conservation and sustainable economic development. Genomic approaches are providing transformative insights into biotic responses to environmental change, but have seen limited application in the Arctic due to a series of limitations. To meet the promise of genome analyses, we urge rigorous development of biorepositories from high latitudes to provide essential libraries to improve the conservation, monitoring, and management of Arctic ecosystems through genomic approaches.
Collapse
|
13
|
Chattopadhyay B, Garg KM, Ray R, Rheindt FE. Fluctuating fortunes: genomes and habitat reconstructions reveal global climate-mediated changes in bats' genetic diversity. Proc Biol Sci 2019; 286:20190304. [PMID: 31530139 PMCID: PMC6784725 DOI: 10.1098/rspb.2019.0304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Over the last approximately 2.6 Myr, Earth's climate has been dominated by cyclical ice ages that have profoundly affected species' population sizes, but the impact of impending anthropogenic climate change on species' extinction potential remains a worrying problem. We investigated 11 bat species from different taxonomic, ecological and geographical backgrounds using combined information from palaeoclimatic habitat reconstructions and genomes to analyse biotic impacts of historic climate change. We discover tightly correlated fluctuations between species' historic distribution and effective population size, identify frugivores as particularly susceptible to global warming, pinpoint large insectivores as having overall low effective population size and flag the onset of the Holocene (approx. 10-12 000 years ago) as the period with the generally lowest effective population sizes across the last approximately 1 Myr. Our study shows that combining genomic and palaeoclimatological approaches reveals effects of climatic shifts on genetic diversity and may help predict impacts of future climate change.
Collapse
Affiliation(s)
| | - Kritika M. Garg
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Rajasri Ray
- Center for Ecological Sciences, Indian Institute of Science, Bangalore, 560012 Karnataka, India
- Centre for Studies in Ethnobiology, Biodiversity and Sustainability (CEiBa), BG Road, Mokdumpur, Malda-732103 West Bengal, India
| | - Frank E. Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
14
|
Sawyer YE, MacDonald SO, Lessa EP, Cook JA. Living on the edge: Exploring the role of coastal refugia in the Alexander Archipelago of Alaska. Ecol Evol 2019; 9:1777-1797. [PMID: 30847072 PMCID: PMC6392352 DOI: 10.1002/ece3.4861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Although islands are of long-standing interest to biologists, only a handful of studies have investigated the role of climatic history in shaping evolutionary diversification in high-latitude archipelagos. In this study of the Alexander Archipelago (AA) of Southeast Alaska, we address the impact of glacial cycles on geographic genetic structure for three mammals co-distributed along the North Pacific Coast. We examined variation in mitochondrial and nuclear loci for long-tailed voles (Microtus longicaudus), northwestern deermice (Peromyscus keeni), and dusky shrews (Sorex monticola), and then tested hypotheses derived from Species Distribution Models, reconstructions of paleoshorelines, and island area and isolation. In all three species, we identified paleoendemic clades that likely originated in coastal refugia, a finding consistent with other paleoendemic lineages identified in the region such as ermine. Although there is spatial concordance at the regional level for endemism, finer scale spatial and temporal patterns are less clearly defined. Demographic expansion across the region for these distinctive clades is also evident and highlights the dynamic history of Late Quaternary contraction and expansion that characterizes high-latitude species.
Collapse
Affiliation(s)
- Yadéeh E. Sawyer
- Department of Biology and Museum of Southwestern BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Stephen O. MacDonald
- Department of Biology and Museum of Southwestern BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Enrique P. Lessa
- Departamento de Ecología y Evolución, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
| | - Joseph A. Cook
- Department of Biology and Museum of Southwestern BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| |
Collapse
|
15
|
Taylor SA, Larson EL. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat Ecol Evol 2019; 3:170-177. [DOI: 10.1038/s41559-018-0777-y] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 01/27/2023]
|
16
|
Colella JP, Johnson EJ, Cook JA. Reconciling molecules and morphology in North AmericanMartes. J Mammal 2018. [DOI: 10.1093/jmammal/gyy140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jocelyn P Colella
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Ellie J Johnson
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|