1
|
Lee J, Lee MJ, Jung MJ, Kim YB, Roh SW, Ryu BH, Jeon CO, Choi HJ, Whon TW, Lee SH. Unravelling the key factors for the dominance of Leuconostoc starters during kimchi fermentation. NPJ Sci Food 2025; 9:61. [PMID: 40280915 PMCID: PMC12032216 DOI: 10.1038/s41538-025-00415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Recent studies aim to prevent kimchi spoilage and enhance the sensory and nutritional qualities using lactic acid bacteria, particularly Leuconostoc species, as kimchi starters. However, the factors enabling the successful adaptation and predominance of Leuconostoc species remain unclear. This study investigates the factors that contribute to the successful adaptation of Leuconostoc starter strains WiKim32, WiKim33, WiKim0121 and CBA3628 during kimchi fermentation using a comprehensive multi-omics approach. Our findings reveal that ATP-dependent molecular chaperones, which respond to cold and acidic kimchi environments, play crucial roles in successfully adapting Leuconostoc starter strains. Moreover, genes involved in carbohydrate metabolic pathways enhance ATP production, thereby supporting chaperone activity and bacterial growth. This study highlights the practical use of Leuconostoc starter strains WiKim32, WiKim33 and WiKim0121 and identifies essential factors for their successful adaptation and predominance during kimchi fermentation.
Collapse
Affiliation(s)
- Jisu Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Min Ji Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Mi-Ja Jung
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Yeon Bee Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Seong Woon Roh
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, 13486, Republic of Korea
| | - Byung Hee Ryu
- Jongga R&D Production Division Kimchi R&D Team, Global Kimchi Division, Daesang Corporation, Seoul, 03130, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hak-Jong Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Se Hee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.
| |
Collapse
|
2
|
Qian Y, Liu T, Yang L, Meng X, Jia F, Liu Z. Electroactivity of Shewanella putrefaciens induced by shrimp matrix: Catalyst for spoilage acceleration. Int J Food Microbiol 2025; 434:111119. [PMID: 40049065 DOI: 10.1016/j.ijfoodmicro.2025.111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/26/2025]
Abstract
The bacterium Shewanella is commonly found in fishery products along the whole cold chain transportation system and poses a significant threat to public health and the global economy due to its propensity for contaminating food and causing spoilage. In this research, four specific spoilage organisms (SSO) (Shewanella spp.) isolated from various refrigerated aquatic products were found to exhibit electrochemical properties. When modifying the conventional microbial fuel cells with shrimp meat extract as the donor-acceptor, an interesting result was found in the current output of the "shrimp battery", where it exhibits a significant activation effect and the accumulation of total volatile basic nitrogen, Trimethylamine N-oxide and bioamines. The transcriptomic analysis reveals that the extracellular electron transport pathway of Shewanella putrefaciens-329 in aquatic environments underwent a transfer from Mtr cluster to cbb3-type, with its metabolic focus transitioning toward the accumulation of amines, sulfides, and biofilms. Our findings demonstrate that the electrochemical characteristics of Shewanella in aquatic environments play a crucial role in accelerating low-temperature spoilage of aquatic products, thereby offering a novel target for mitigating the detrimental loss of aquatic products caused by Shewanella.
Collapse
Affiliation(s)
- Yilin Qian
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Taige Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Liu Yang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China
| | - Fei Jia
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China.
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266404, China.
| |
Collapse
|
3
|
Zeng K, Zhang FY, Wu MZ, Yuan HM, Du SK, Ying JC, Zhang Y, Wang LL, Zhao R, Guan DW. Microbiota signature of the lung as the promising bioindicator for drowning diagnosis and postmortem submersion interval estimation. Int J Legal Med 2025. [DOI: 10.1007/s00414-025-03458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
|
4
|
Cobe BL, Dey S, Minasov G, Inniss N, Satchell KJF, Cianciotto NP. Bactericidal effectors of the Stenotrophomonas maltophilia type IV secretion system: functional definition of the nuclease TfdA and structural determination of TfcB. mBio 2024; 15:e0119824. [PMID: 38832773 PMCID: PMC11253643 DOI: 10.1128/mbio.01198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).
Collapse
Affiliation(s)
- Brandi L. Cobe
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Supratim Dey
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicole Inniss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Buschi E, Dell’Anno A, Tangherlini M, Candela M, Rampelli S, Turroni S, Palladino G, Esposito E, Martire ML, Musco L, Stefanni S, Munari C, Fiori J, Danovaro R, Corinaldesi C. Resistance to freezing conditions of endemic Antarctic polychaetes is enhanced by cryoprotective proteins produced by their microbiome. SCIENCE ADVANCES 2024; 10:eadk9117. [PMID: 38905343 PMCID: PMC11192080 DOI: 10.1126/sciadv.adk9117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
The microbiome plays a key role in the health of all metazoans. Whether and how the microbiome favors the adaptation processes of organisms to extreme conditions, such as those of Antarctica, which are incompatible with most metazoans, is still unknown. We investigated the microbiome of three endemic and widespread species of Antarctic polychaetes: Leitoscoloplos geminus, Aphelochaeta palmeri, and Aglaophamus trissophyllus. We report here that these invertebrates contain a stable bacterial core dominated by Meiothermus and Anoxybacillus, equipped with a versatile genetic makeup and a unique portfolio of proteins useful for coping with extremely cold conditions as revealed by pangenomic and metaproteomic analyses. The close phylosymbiosis between Meiothermus and Anoxybacillus and these Antarctic polychaetes indicates a connection with their hosts that started in the past to support holobiont adaptation to the Antarctic Ocean. The wide suite of bacterial cryoprotective proteins found in Antarctic polychaetes may be useful for the development of nature-based biotechnological applications.
Collapse
Affiliation(s)
- Emanuela Buschi
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Erika Esposito
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luigi Musco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Sergio Stefanni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Cristina Munari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
6
|
Marszalek J, De Los Rios P, Cyr D, Mayer MP, Adupa V, Andréasson C, Blatch GL, Braun JEA, Brodsky JL, Bukau B, Chapple JP, Conz C, Dementin S, Genevaux P, Genest O, Goloubinoff P, Gestwicki J, Hammond CM, Hines JK, Ishikawa K, Joachimiak LA, Kirstein J, Liberek K, Mokranjac D, Nillegoda N, Ramos CHI, Rebeaud M, Ron D, Rospert S, Sahi C, Shalgi R, Tomiczek B, Ushioda R, Ustyantseva E, Ye Y, Zylicz M, Kampinga HH. J-domain proteins: From molecular mechanisms to diseases. Cell Stress Chaperones 2024; 29:21-33. [PMID: 38320449 PMCID: PMC10939069 DOI: 10.1016/j.cstres.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024] Open
Abstract
J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.
Collapse
Affiliation(s)
- Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland; Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland
| | - Douglas Cyr
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Vasista Adupa
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm S-10691, Sweden
| | - Gregory L Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; The Vice Chancellery, The University of Notre Dame Australia, Fremantle, Western Australia, Australia; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Janice E A Braun
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - J Paul Chapple
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Charlotte Conz
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sébastien Dementin
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, Marseille 13402, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Olivier Genest
- Aix Marseille Univ, CNRS, BIP UMR 7281, IMM, 31 Chemin Joseph Aiguier, Marseille 13402, France
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, Lausanne University, Lausanne 1015, Switzerland
| | - Jason Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94308, USA
| | - Colin M Hammond
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Molecular & Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Koji Ishikawa
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX, USA; Peter O'Donnell Jr Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Janine Kirstein
- Leibniz Institute on Aging - Fritz Lipmann Institute and Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, Jena 07745, Germany
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Dejana Mokranjac
- LMU Munich, Biocenter-Cell Biology, Großhadernerstr. 2, Planegg-Martinsried 82152, Germany
| | - Nadinath Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; Centre for Dementia and Brain Repair at the Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Mathieu Rebeaud
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne CH 1015, Switzerland
| | - David Ron
- University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India; IISER Bhopal, Room Number 117, AB3, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, Gdansk 80-307, Poland
| | - Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Elizaveta Ustyantseva
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yihong Ye
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maciej Zylicz
- Foundation for Polish Science, Warsaw 02-611, Poland
| | - Harm H Kampinga
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Weber L, Gilat A, Maillot N, Byrne D, Arnoux P, Giudici-Orticoni MT, Méjean V, Ilbert M, Genest O, Rosenzweig R, Dementin S. Bacterial adaptation to cold: Conservation of a short J-domain co-chaperone and its protein partners in environmental proteobacteria. Environ Microbiol 2023; 25:2447-2464. [PMID: 37549929 DOI: 10.1111/1462-2920.16478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Bacterial genomes are a huge reservoir of genes encoding J-domain protein co-chaperones that recruit the molecular chaperone DnaK to assist protein substrates involved in survival, adaptation, or fitness. The atc operon of the aquatic mesophilic bacterium Shewanella oneidensis encodes the proteins AtcJ, AtcA, AtcB, and AtcC, and all of them, except AtcA, are required for growth at low temperatures. AtcJ is a short J-domain protein that interacts with DnaK, but also with AtcC through its 21 amino acid C-terminal domain. This interaction network is critical for cold growth. Here, we show that AtcJ represents a subfamily of short J-domain proteins that (i) are found in several environmental, mostly aquatic, β- or ɣ-proteobacteria and (ii) contain a conserved PX7 W motif in their C-terminal extension. Using a combination of NMR, biochemical and genetic approaches, we show that the hydrophobic nature of the tryptophan of the S. oneidensis AtcJ PX7 W motif determines the strong AtcJ-AtcC interaction essential for cold growth. The AtcJ homologues are encoded by operons containing at least the S. oneidensis atcA, atcB, and atcC homologues. These findings suggest a conserved network of DnaK and Atc proteins necessary for low-temperature growth and, given the variation in the atc operons, possibly for other biological functions.
Collapse
Affiliation(s)
- Lana Weber
- Laboratory of Bioenergetics and Protein Engineering (BIP UMR 7281), Aix-Marseille University, French National Center for Scientific Research (CNRS), Marseille, France
| | - Atar Gilat
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nathanael Maillot
- Laboratory of Bioenergetics and Protein Engineering (BIP UMR 7281), Aix-Marseille University, French National Center for Scientific Research (CNRS), Marseille, France
| | - Deborah Byrne
- Protein Expression Facility, Aix-Marseille University, French National Center for Scientific Research (CNRS), IMM FR3479, Marseille, France
| | - Pascal Arnoux
- Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM UMR7265), Aix-Marseille University, French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Saint Paul-Lez-Durance, France
| | - Marie-Thérèse Giudici-Orticoni
- Laboratory of Bioenergetics and Protein Engineering (BIP UMR 7281), Aix-Marseille University, French National Center for Scientific Research (CNRS), Marseille, France
| | - Vincent Méjean
- Laboratory of Bioenergetics and Protein Engineering (BIP UMR 7281), Aix-Marseille University, French National Center for Scientific Research (CNRS), Marseille, France
| | - Marianne Ilbert
- Laboratory of Bioenergetics and Protein Engineering (BIP UMR 7281), Aix-Marseille University, French National Center for Scientific Research (CNRS), Marseille, France
| | - Olivier Genest
- Laboratory of Bioenergetics and Protein Engineering (BIP UMR 7281), Aix-Marseille University, French National Center for Scientific Research (CNRS), Marseille, France
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sébastien Dementin
- Laboratory of Bioenergetics and Protein Engineering (BIP UMR 7281), Aix-Marseille University, French National Center for Scientific Research (CNRS), Marseille, France
| |
Collapse
|
8
|
Son Y, Min J, Shin Y, Park W. Morphological and physiological adaptations of psychrophilic Pseudarthrobacter psychrotolerans YJ56 under temperature stress. Sci Rep 2023; 13:14970. [PMID: 37697016 PMCID: PMC10495460 DOI: 10.1038/s41598-023-42179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Both culture-independent and culture-dependent analyses using Nanopore-based 16S rRNA sequencing showed that short-term exposure of Antarctic soils to low temperature increased biomass with lower bacterial diversity and maintained high numbers of the phylum Proteobacteria, Firmicute, and Actinobacteria including Pseudarthrobacter species. The psychrophilic Pseudarthrobacter psychrotolerans YJ56 had superior growth at 13 °C, but could not grow at 30 °C, compared to other bacteria isolated from the same Antarctic soil. Unlike a single rod-shaped cell at 13 °C, strain YJ56 at 25 °C was morphologically shifted into a filamentous bacterium with several branches. Comparative genomics of strain YJ56 with other genera in the phylum Actinobacteria indicate remarkable copy numbers of rimJ genes that are possibly involved in dual functions, acetylation of ribosomal proteins, and stabilization of ribosomes by direct binding. Our proteomic data suggested that Actinobacteria cells experienced physiological stresses at 25 °C, showing the upregulation of chaperone proteins, GroEL and catalase, KatE. Level of proteins involved in the assembly of 50S ribosomal proteins and L29 in 50S ribosomal proteins increased at 13 °C, which suggested distinct roles of many ribosomal proteins under different conditions. Taken together, our data highlights the cellular filamentation and protein homeostasis of a psychrophilic YJ56 strain in coping with high-temperature stress.
Collapse
Affiliation(s)
- Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonjae Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Nava-Ramírez T, Gutiérrez-Terrazas S, Hansberg W. The Molecular Chaperone Mechanism of the C-Terminal Domain of Large-Size Subunit Catalases. Antioxidants (Basel) 2023; 12:antiox12040839. [PMID: 37107214 PMCID: PMC10135305 DOI: 10.3390/antiox12040839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
Large-size subunit catalases (LSCs) have an additional C-terminal domain (CT) that is structurally similar to Hsp31 and DJ-1 proteins, which have molecular chaperone activity. The CT of LSCs derives from a bacterial Hsp31 protein. There are two CT dimers with inverted symmetry in LSCs, one dimer in each pole of the homotetrameric structure. We previously demonstrated the molecular chaperone activity of the CT of LSCs. Like other chaperones, LSCs are abundant proteins that are induced under stress conditions and during cell differentiation in bacteria and fungi. Here, we analyze the mechanism of the CT of LSCs as an unfolding enzyme. The dimeric form of catalase-3 (CAT-3) CT (TDC3) of Neurospora crassa presented the highest activity as compared to its monomeric form. A variant of the CAT-3 CT lacking the last 17 amino acid residues (TDC3Δ17aa), a loop containing hydrophobic and charged amino acid residues only, lost most of its unfolding activity. Substituting charged for hydrophobic residues or vice versa in this C-terminal loop diminished the molecular chaperone activity in all the mutant variants analyzed, indicating that these amino acid residues play a relevant role in its unfolding activity. These data suggest that the general unfolding mechanism of CAT-3 CT involves a dimer with an inverted symmetry, and hydrophobic and charged amino acid residues. Each tetramer has four sites of interaction with partially unfolded or misfolded proteins. LSCs preserve their catalase activity under different stress conditions and, at the same time, function as unfolding enzymes.
Collapse
|
10
|
Mukhia S, Kumar A, Kumar R. Antioxidant prodigiosin-producing cold-adapted Janthinobacterium sp. ERMR3:09 from a glacier moraine: Genomic elucidation of cold adaptation and pigment biosynthesis. Gene X 2023; 857:147178. [PMID: 36627092 DOI: 10.1016/j.gene.2023.147178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023] Open
Abstract
Janthinobacterium from cold niches has been studied broadly for bioactive violacein production. However, reports on the atypical red-pigmented Janthinobacterium strains are shallow. The bioactive red prodigiosin pigment has immense pharmacological significance, including antioxidant, antimicrobial and anticancer potential. Here, we report the first complete genome of a prodigiosin-producing Janthinobacterium sp. ERMR3:09 from Sikkim Himalaya in an attempt to elucidate its cold adaptation and prodigiosin biosynthesis. Nanopore sequencing and Flye assembly of the ERMR3:09 genome resulted in a single contig of 6,262,330 bp size and 62.26% GC content. Phylogenomic analysis and genome indices indicate that ERMR3:09 is a potentially novel species of the genus Janthinobacterium. The multicopy cold-responsive genes and gene upregulation under cold stress denoted its cold adaptation mechanisms. Genome analysis identified the unique genes, gene cluster and pathway for prodigiosin biosynthesis in ERMR3:09. Considering the notable antioxidant activity, it can be the next powerhouse of bioactive prodigiosin production.
Collapse
Affiliation(s)
- Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur-176061, Himachal Pradesh, India; Department of Microbiology, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur-176061, Himachal Pradesh, India.
| |
Collapse
|
11
|
Zhang R, Malinverni D, Cyr DM, Rios PDL, Nillegoda NB. J-domain protein chaperone circuits in proteostasis and disease. Trends Cell Biol 2023; 33:30-47. [PMID: 35729039 PMCID: PMC9759622 DOI: 10.1016/j.tcb.2022.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/27/2022]
Abstract
The J-domain proteins (JDP) form the largest protein family among cellular chaperones. In cooperation with the Hsp70 chaperone system, these co-chaperones orchestrate a plethora of distinct functions, including those that help maintain cellular proteostasis and development. JDPs evolved largely through the fusion of a J-domain with other protein subdomains. The highly conserved J-domain facilitates the binding and activation of Hsp70s. How JDPs (re)wire Hsp70 chaperone circuits and promote functional diversity remains insufficiently explained. Here, we discuss recent advances in our understanding of the JDP family with a focus on the regulation built around J-domains to ensure correct pairing and assembly of JDP-Hsp70 machineries that operate on different clientele under various cellular growth conditions.
Collapse
Affiliation(s)
- Ruobing Zhang
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia
| | - Duccio Malinverni
- MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas M Cyr
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
12
|
de Francisco Martínez P, Morgante V, González-Pastor JE. Isolation of novel cold-tolerance genes from rhizosphere microorganisms of Antarctic plants by functional metagenomics. Front Microbiol 2022; 13:1026463. [DOI: 10.3389/fmicb.2022.1026463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
The microorganisms that thrive in Antarctica, one of the coldest environments on the planet, have developed diverse adaptation mechanisms to survive in these extreme conditions. Through functional metagenomics, in this work, 29 new genes related to cold tolerance have been isolated and characterized from metagenomic libraries of microorganisms from the rhizosphere of two Antarctic plants. Both libraries were hosted in two cold-sensitive strains of Escherichia coli: DH10B ΔcsdA and DH10B ΔcsdA Δrnr. The csdA gene encodes a DEAD-box RNA helicase and rnr gene encodes an exoribonuclease, both essential for cold-adaptation. Cold-tolerance tests have been carried out in solid and liquid media at 15°C. Among the cold-tolerance genes identified, 12 encode hypothetical and unknown proteins, and 17 encode a wide variety of different proteins previously related to other well-characterized ones involved in metabolism reactions, transport and membrane processes, or genetic information processes. Most of them have been connected to cold-tolerance mechanisms. Interestingly, 13 genes had no homologs in E. coli, thus potentially providing entirely new adaptation strategies for this bacterium. Moreover, ten genes also conferred resistance to UV-B radiation, another extreme condition in Antarctica.
Collapse
|
13
|
Uncoupling the Hsp90 and DnaK chaperone activities revealed the in vivo relevance of their collaboration in bacteria. Proc Natl Acad Sci U S A 2022; 119:e2201779119. [PMID: 36070342 PMCID: PMC9478669 DOI: 10.1073/pnas.2201779119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperone proteins are essential in all living cells to ensure protein homeostasis. Hsp90 is a major adenosine triphosphate (ATP)-dependent chaperone highly conserved from bacteria to eukaryotes. Recent studies have shown that bacterial Hsp90 is essential in some bacteria in stress conditions and that it participates in the virulence of pathogenic bacteria. In vitro, bacterial Hsp90 directly interacts and collaborates with the Hsp70 chaperone DnaK to reactivate model substrate proteins; however, it is still unknown whether this collaboration is relevant in vivo with physiological substrates. Here, we used site-directed mutagenesis on Hsp90 to impair DnaK binding, thereby uncoupling the chaperone activities. We tested the mutants in vivo in two bacterial models in which Hsp90 has known physiological functions. We found that the Hsp90 point mutants were defective to support (1) growth under heat stress and activation of an essential Hsp90 client in the aquatic bacterium Shewanella oneidensis and (2) biosynthesis of the colibactin toxin involved in the virulence of pathogenic Escherichia coli. Our study therefore demonstrates the essentiality of the direct collaboration between Hsp90 and DnaK in vivo in bacteria to support client folding. It also suggests that this collaboration already functional in bacteria has served as an evolutionary basis for a more complex Hsp70-Hsp90 collaboration found in eukaryotes.
Collapse
|
14
|
Heat, cold, acid, and bile salt induced differential proteomic responses of a novel potential probiotic Lactococcus garvieae C47 isolated from camel milk. Food Chem 2022; 397:133774. [PMID: 35905615 DOI: 10.1016/j.foodchem.2022.133774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Probiotics encounter various stresses during food processing and digestion. This study evaluated the differential proteomic responses of a newly identified potential probiotic lactic acid bacteria, Lactococcus garvieae, isolated from camel milk. Lc. garvieae C47 was exposed to heat, cold, acid, and bile conditions, and stress-responsive proteins were identified. The proteomic analysis was done using 2D-IEF SDS PAGE and nano-LC-MS/MS. Out of 91 differentially expressed proteins, 20 upregulated and 27 downregulated proteins were shared among the stresses. The multivariate data analysis revealed abundance of elongation factor Ts (spot C42), uridine phosphorylase, fructose-bisphosphate aldolase, peptidase T, cobalt ECF transporter T component CbiQ, UDP-N-acetylmuramate-l-alanine ligase, uncharacterized protein, aspartokinase, chaperone protein DnaK, IGP synthase cyclase subunit, probable nicotinate-nucleotide adenylyltransferase, NADH-quinone oxidoreductase, holo-[acyl-carrier-protein] synthase, l-lactate dehydrogenase, and uncharacterized protein. The maximum number of differentially expressed proteins belonged to carbohydrate and protein metabolism, which indicates Lc. garvieae shifts towards growth and energy metabolism for resistance against stress conditions.
Collapse
|
15
|
Busi SB, Bourquin M, Fodelianakis S, Michoud G, Kohler TJ, Peter H, Pramateftaki P, Styllas M, Tolosano M, De Staercke V, Schön M, de Nies L, Marasco R, Daffonchio D, Ezzat L, Wilmes P, Battin TJ. Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nat Commun 2022; 13:2168. [PMID: 35444202 PMCID: PMC9021309 DOI: 10.1038/s41467-022-29914-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
In glacier-fed streams, ecological windows of opportunity allow complex microbial biofilms to develop and transiently form the basis of the food web, thereby controlling key ecosystem processes. Using metagenome-assembled genomes, we unravel strategies that allow biofilms to seize this opportunity in an ecosystem otherwise characterized by harsh environmental conditions. We observe a diverse microbiome spanning the entire tree of life including a rich virome. Various co-existing energy acquisition pathways point to diverse niches and the exploitation of available resources, likely fostering the establishment of complex biofilms during windows of opportunity. The wide occurrence of rhodopsins, besides chlorophyll, highlights the role of solar energy capture in these biofilms while internal carbon and nutrient cycling between photoautotrophs and heterotrophs may help overcome constraints imposed by oligotrophy in these habitats. Mechanisms potentially protecting bacteria against low temperatures and high UV-radiation are also revealed and the selective pressure of this environment is further highlighted by a phylogenomic analysis differentiating important components of the glacier-fed stream microbiome from other ecosystems. Our findings reveal key genomic underpinnings of adaptive traits contributing to the success of complex biofilms to exploit environmental opportunities in glacier-fed streams, which are now rapidly changing owing to global warming.
Collapse
Affiliation(s)
- Susheel Bhanu Busi
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Massimo Bourquin
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stilianos Fodelianakis
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Grégoire Michoud
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tyler J Kohler
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hannes Peter
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michail Styllas
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Tolosano
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vincent De Staercke
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martina Schön
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura de Nies
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Leïla Ezzat
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paul Wilmes
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Tom J Battin
- River Ecosystems Laboratory, Center for Alpine and Polar Environmental Research (ALPOLE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
16
|
Mukhia S, Kumar A, Kumari P, Kumar R, Kumar S. Multilocus sequence based identification and adaptational strategies of Pseudomonas sp. from the supraglacial site of Sikkim Himalaya. PLoS One 2022; 17:e0261178. [PMID: 35073328 PMCID: PMC8786180 DOI: 10.1371/journal.pone.0261178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
Microorganisms inhabiting the supraglacial ice are biotechnologically significant as they are equipped with unique adaptive features in response to extreme environmental conditions of high ultraviolet radiations and frequent freeze-thaw. In the current study, we obtained eleven strains of Pseudomonas from the East Rathong supraglacial site in Sikkim Himalaya that showed taxonomic ambiguity in terms of species affiliation. Being one of the most complex and diverse genera, deciphering the correct taxonomy of Pseudomonas species has always been challenging. So, we conducted multilocus sequence analysis (MLSA) using five housekeeping genes, which concluded the taxonomic assignment of these strains to Pseudomonas antarctica. This was further supported by the lesser mean genetic distances with P. antarctica (0.73%) compared to P. fluorescens (3.65%), and highest ANI value of ~99 and dDDH value of 91.2 of the representative strains with P. antarctica PAMC 27494. We examined the multi-tolerance abilities of these eleven Pseudomonas strains. Indeed the studied strains displayed significant tolerance to freezing for 96 hours compared to the mesophilic control strain, while except for four strains, seven strains exhibited noteworthy tolerance to UV-C radiations. The genome-based findings revealed many cold and radiation resistance-associated genes that supported the physiological findings. Further, the bacterial strains produced two or more cold-active enzymes in plate-based assays. Owing to the polyadaptational attributes, the strains ERGC3:01 and ERGC3:05 could be most promising for bioprospection.
Collapse
Affiliation(s)
- Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Poonam Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
17
|
Baig MA, Turner MS, Liu SQ, Al-Nabulsi AA, Shah NP, Ayyash MM. Potential Probiotic Pediococcus pentosaceus M41 Modulates Its Proteome Differentially for Tolerances Against Heat, Cold, Acid, and Bile Stresses. Front Microbiol 2021; 12:731410. [PMID: 34721329 PMCID: PMC8548654 DOI: 10.3389/fmicb.2021.731410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Probiotics containing functional food confer health benefits in addition to their nutritional properties. In this study, we have evaluated the differential proteomic responses of a potential novel probiotic Pediococcus pentosaceus M41 under heat, cold, acid, and bile stress conditions. We identified stress response proteins that could provide tolerances against these stresses and could be used as probiotic markers for evaluating stress tolerance. Pediococcus pentosaceus M41 was exposed for 2 h to each condition: 50°C (heat stress), 4°C (cold stress), pH 3.0 (acid stress) and 0.05% bile (bile stress). Proteomic analysis was carried out using 2D-IEF SDS PAGE and LC-MS/MS. Out of 60 identified proteins, 14 upregulated and 6 downregulated proteins were common among all the stress conditions. These proteins were involved in different biological functions such as translation-related proteins, carbohydrate metabolism (phosphoenolpyruvate phosphotransferase), histidine biosynthesis (imidazole glycerol phosphate synthase) and cell wall synthesis (tyrosine-protein kinase CapB). Proteins such as polysaccharide deacetylase, lactate oxidase, transcription repressor NrdR, dihydroxyacetone kinase were upregulated under three out of the four stress conditions. The differential expression of these proteins might be responsible for tolerance and protection of P. pentosaceus M41 against different stress conditions.
Collapse
Affiliation(s)
- Mohd Affan Baig
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mark S. Turner
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Mayer MP. The Hsp70-Chaperone Machines in Bacteria. Front Mol Biosci 2021; 8:694012. [PMID: 34164436 PMCID: PMC8215388 DOI: 10.3389/fmolb.2021.694012] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
The ATP-dependent Hsp70s are evolutionary conserved molecular chaperones that constitute central hubs of the cellular protein quality surveillance network. None of the other main chaperone families (Tig, GroELS, HtpG, IbpA/B, ClpB) have been assigned with a comparable range of functions. Through a multitude of functions Hsp70s are involved in many cellular control circuits for maintaining protein homeostasis and have been recognized as key factors for cell survival. Three mechanistic properties of Hsp70s are the basis for their high versatility. First, Hsp70s bind to short degenerate sequence motifs within their client proteins. Second, Hsp70 chaperones switch in a nucleotide-controlled manner between a state of low affinity for client proteins and a state of high affinity for clients. Third, Hsp70s are targeted to their clients by a large number of cochaperones of the J-domain protein (JDP) family and the lifetime of the Hsp70-client complex is regulated by nucleotide exchange factors (NEF). In this review I will discuss advances in the understanding of the molecular mechanism of the Hsp70 chaperone machinery focusing mostly on the bacterial Hsp70 DnaK and will compare the two other prokaryotic Hsp70s HscA and HscC with DnaK.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany
| |
Collapse
|
19
|
Ba M, Paillat M, Tronche N, Vigneron-Bouquet A, Latifi A. [Role of chaperons in bacterial adaptive mechanisms]. Med Sci (Paris) 2021; 37:293-297. [PMID: 33739279 DOI: 10.1051/medsci/2021020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Moly Ba
- Master 2 Microbiologie intégrative et fondamentale, Aix Marseille Université, Marseille, France
| | - Maëlle Paillat
- Master 2 Microbiologie intégrative et fondamentale, Aix Marseille Université, Marseille, France
| | - Nolan Tronche
- Master 2 Microbiologie intégrative et fondamentale, Aix Marseille Université, Marseille, France
| | - Amélie Vigneron-Bouquet
- Master 2 Microbiologie intégrative et fondamentale, Aix Marseille Université, Marseille, France
| | - Amel Latifi
- Master 2 Microbiologie intégrative et fondamentale, Aix Marseille Université, Marseille, France
| |
Collapse
|
20
|
van Oosten-Hawle P, Bergink S, Blagg B, Brodsky J, Edkins A, Freeman B, Genest O, Hendershot L, Kampinga H, Johnson J, De Maio A, Masison D, Morano K, Multhoff G, Prodromou C, Prahlad V, Scherz-Shouval R, Zhuravleva A, Mollapour M, Truman AW. First Virtual International Congress on Cellular and Organismal Stress Responses, November 5-6, 2020. Cell Stress Chaperones 2021; 26:289-295. [PMID: 33559835 PMCID: PMC7871303 DOI: 10.1007/s12192-021-01192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
Members of the Cell Stress Society International (CSSI), Patricija van Oosten-Hawle (University of Leeds, UK), Mehdi Mollapour (SUNY Upstate Medical University, USA), Andrew Truman (University of North Carolina at Charlotte, USA) organized a new virtual meeting format which took place on November 5-6, 2020. The goal of this congress was to provide an international platform for scientists to exchange data and ideas among the Cell Stress and Chaperones community during the Covid-19 pandemic. Here we will highlight the summary of the meeting and acknowledge those who were honored by the CSSI.
Collapse
Affiliation(s)
- Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, AV, 9713, The Netherlands
| | - Brian Blagg
- Department of Chemistry & Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, USA
| | - Jeff Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrienne Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Brian Freeman
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Olivier Genest
- Aix Marseille University, CNRS, BIP UMR, 7281, Marseille, France
| | - Linda Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Harm Kampinga
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Jill Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844, USA
| | - Antonio De Maio
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr, Room 324, Bethesda, MD, 20892, USA
| | - Kevin Morano
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), 81675, Munich, Germany
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), 81675, Munich, Germany
| | - Chris Prodromou
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Zhuravleva
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
21
|
Modulation of the RNA polymerase activity by AtcB, a protein associated with a DnaK chaperone network in Shewanella oneidensis. Biochem Biophys Res Commun 2020; 535:66-72. [PMID: 33341675 DOI: 10.1016/j.bbrc.2020.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022]
Abstract
Bacteria possess several molecular pathways to adapt to changing environments and to stress conditions. One of these pathways involves a complex network of chaperone proteins that together control proteostasis. In the aquatic bacterium Shewanella oneidensis, we have recently identified a previously unknown co-chaperone of the DnaK/Hsp70 chaperone system, AtcJ, that is essential for adaptation to low temperatures. AtcJ is encoded in the atcJABC operon, whose products, together with DnaK, form a protein network allowing growth at low temperature. However, how these proteins allow cold adaptation is unknown. Here, we found that AtcB directly interacts with the RNA polymerase and decreases its activity. In addition, AtcB overproduction prevents bacterial growth due to RNA polymerase inhibition. Together, these results suggest that the Atc proteins could direct the DnaK chaperone to the RNA polymerase to sustain life at low temperatures.
Collapse
|
22
|
Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R. Psychrophilic Pseudomonas helmanticensis proteome under simulated cold stress. Cell Stress Chaperones 2020; 25:1025-1032. [PMID: 32683538 PMCID: PMC7591641 DOI: 10.1007/s12192-020-01139-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Himalayan mountains are distinctly characterized for their unique climatic and topographic variations; therefore, unraveling the cold-adaptive mechanisms and processes of native life forms is always being a matter of concern for scientific community. In this perspective, the proteomic response of psychrophilic diazotroph Pseudomonas helmanticensis was studied towards low-temperature conditions. LC-MS-based analysis revealed that most of the differentially expressed proteins providing cold stress resistance were molecular chaperons and cold shock proteins. Enzymes involved in proline, polyamines, unsaturated fatty acid biosynthesis, ROS-neutralizing pathways, and arginine degradation were upregulated. However, proteins involved in the oxidative pathways of energy generation were severalfold downregulated. Besides these, the upregulation of uncharacterized proteins at low temperature suggests the expression of novel proteins by P. helmanticensis for cold adaptation. Protein interaction network of P. helmanticensis under cold revealed that Tif, Tig, DnaK, and Adk were crucial proteins involved in cold adaptation. Conclusively, this study documents the proteome and protein-protein interaction network of the Himalayan psychrophilic P. helmanticensis under cold stress.
Collapse
Affiliation(s)
- Saurabh Kumar
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Amit Yadav
- National Centre for Microbial Resource, National Centre for Cell Science, First floor, Central tower, Sai Trinity building, Pashan, Pune, Maharashtra, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, First floor, Central tower, Sai Trinity building, Pashan, Pune, Maharashtra, India
| | - Reeta Goel
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India.
| |
Collapse
|
23
|
Nava-Ramírez T, Hansberg W. Chaperone activity of large-size subunit catalases. Free Radic Biol Med 2020; 156:99-106. [PMID: 32502516 DOI: 10.1016/j.freeradbiomed.2020.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Large-size subunit catalases (LSCs) have a C-terminal domain that is structurally similar to DJ-1 and Hsp31 proteins, which have well documented molecular chaperone activity. Like chaperones, LSCs are abundant proteins that are induced under stress conditions and during cell differentiation in different microorganisms. Here we document that the C-terminal domain of LSCs assist other proteins to preserve their active conformation. Heat, urea, or H2O2 denaturation of alcohol dehydrogenase was prevented by LSCs or the C-terminal domain of Catalase-3 (TDC3); in contrast, small-size subunit catalases (SSCs) or LSCs without the C-terminal domain (C3ΔTD or C63) did not have this effect. Similar results were obtained if the alcohol dehydrogenase was previously denatured by heat and then the different catalases or truncated enzymes were added. The TDC3 also protected both the C3ΔTD and the bovine liver catalase from heat denaturation. The chaperone activity of CAT-3 or the TDC3 increased survival of E. coli under different stress conditions whereas the C3ΔTD did not. It is concluded that the C-terminal domain of LSCs has a chaperone activity that is instrumental for cellular resistance to stress conditions, such as oxidative stress that leads to cell differentiation in filamentous fungi.
Collapse
Affiliation(s)
- Teresa Nava-Ramírez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Mexico
| | - Wilhelm Hansberg
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Mexico.
| |
Collapse
|
24
|
Barriot R, Latour J, Castanié-Cornet MP, Fichant G, Genevaux P. J-Domain Proteins in Bacteria and Their Viruses. J Mol Biol 2020; 432:3771-3789. [DOI: 10.1016/j.jmb.2020.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
|
25
|
Lemaire ON, Méjean V, Iobbi-Nivol C. The Shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems. FEMS Microbiol Rev 2020; 44:155-170. [DOI: 10.1093/femsre/fuz031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT
The Gram-negative Shewanella bacterial genus currently includes about 70 species of mostly aquatic γ-proteobacteria, which were isolated around the globe in a multitude of environments such as surface freshwater and the deepest marine trenches. Their survival in such a wide range of ecological niches is due to their impressive physiological and respiratory versatility. Some strains are among the organisms with the highest number of respiratory systems, depending on a complex and rich metabolic network. Implicated in the recycling of organic and inorganic matter, they are important components of organism-rich oxic/anoxic interfaces, but they also belong to the microflora of a broad group of eukaryotes from metazoans to green algae. Examples of long-term biological interactions like mutualism or pathogeny have been described, although molecular determinants of such symbioses are still poorly understood. Some of these bacteria are key organisms for various biotechnological applications, especially the bioremediation of hydrocarbons and metallic pollutants. The natural ability of these prokaryotes to thrive and detoxify deleterious compounds explains their use in wastewater treatment, their use in energy generation by microbial fuel cells and their importance for resilience of aquatic ecosystems.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| |
Collapse
|