1
|
Meza-Torres J, Tinevez JY, Crouzols A, Mary H, Kim M, Hunault L, Chamorro-Rodriguez S, Lejal E, Altamirano-Silva P, Groussard D, Gobaa S, Peltier J, Chassaing B, Dupuy B. Clostridioides difficile binary toxin CDT induces biofilm-like persisting microcolonies. Gut Microbes 2025; 17:2444411. [PMID: 39719371 DOI: 10.1080/19490976.2024.2444411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Clinical symptoms of Clostridioides difficile infection (CDI) range from diarrhea to pseudomembranous colitis. A major challenge in managing CDI is the high rate of relapse. Several studies correlate the production of CDT binary toxin by clinical strains of C. difficile with higher relapse rates. Although the mechanism of action of CDT on host cells is known, its exact contribution to CDI is still unclear. To understand the physiological role of CDT during CDI, we established two hypoxic relevant intestinal models, Transwell and Microfluidic Intestine-on-Chip systems. Both were challenged with the epidemic strain UK1 CDT+ and its isogenic CDT- mutant. We report that CDT induces mucin-associated microcolonies that increase C. difficile colonization and display biofilm-like properties by enhancing C. difficile resistance to vancomycin. Importantly, biofilm-like microcolonies were also observed in the cecum and colon of infected mice. Hence, our study shows that CDT induces biofilm-like microcolonies, increasing C. difficile persistence and risk of relapse.
Collapse
Affiliation(s)
- Jazmin Meza-Torres
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Jean-Yves Tinevez
- Image Analysis Hub, Department of Cell Biology and Infection, Institut Pasteur, Université Paris Cité, Paris, France
| | - Aline Crouzols
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Héloïse Mary
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Minhee Kim
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Lise Hunault
- Antibodies in Therapy and Pathology, Department of Immunology, Institut Pasteur, Paris, France
| | - Susan Chamorro-Rodriguez
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Emilie Lejal
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | | | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Benoit Chassaing
- Microbiome-Host Interactions, Department of Microbiology, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Bruno Dupuy
- Pathogenesis of Bacterial Anaerobes, Department of Microbiology, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| |
Collapse
|
2
|
Wetzel D, Rizvi A, Edwards AN, McBride SM. A Metabolite Dehydrogenase Pathway Represses Sporulation of Clostridioides difficile. Anaerobe 2025:102971. [PMID: 40349827 DOI: 10.1016/j.anaerobe.2025.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Clostridioides difficile is a major gastrointestinal pathogen that is transmitted as a dormant spore. As an intestinal pathogen, C. difficile must contend with variable environmental conditions, including fluctuations in pH and nutrient availability. Nutrition and pH both influence growth and spore formation, but how pH and nutrition jointly influence sporulation are not known. OBJECTIVES In this study, we investigated the dual impact of pH and pH-dependent metabolism on C. difficile sporulation. METHODS We examined the impacts of pH and the metabolite acetoin on C. difficile growth, gene expression, and sporulation. RESULTS We found that expression of the predicted acetoin dehydrogenase operon, CD0035-CD0039, was pH-dependent and repressed by acetoin and pyruvate. Regulation of the C. difficile CD0035-CD0039 locus is distinct from characterized orthologous systems and appears to involve a co-transcribed DeoR-family regulator, rather than a sigma54-dependent activator. In addition, an CD0036 null mutant produced significantly more spores and initiated sporulation earlier than the parent strain. However, unlike other Firmicutes, growth and culture density of C. difficile was not increased by acetoin availability or disruption of the dehydrogenase pathway. CONCLUSIONS Together, these results indicate that acetoin, pH, and the CD0036-CD0039 dehydrogenase pathway play important roles in nutritional repression of sporulation in C. difficile. However, the data do not support the involvement of the CD0036-CD0039 pathway in acetoin metabolism and acetoin is not a significant stationary phase energy source for C. difficile.
Collapse
Affiliation(s)
- Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine; Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Arshad Rizvi
- Department of Microbiology and Immunology, Emory University School of Medicine
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine
| |
Collapse
|
3
|
da Silva GC, Rossi CC. The Arms Race Between Actinobacillus pleuropneumoniae and Its Genetic Environment: A Comprehensive Analysis of Its Defensome and Mobile Genetic Elements. Mol Microbiol 2025. [PMID: 40317571 DOI: 10.1111/mmi.15374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Actinobacillus pleuropneumoniae is the causative agent of pleuropneumonia in swine, a highly contagious and economically significant disease. The genetic variability of A. pleuropneumoniae complicates disease control efforts, as it enables rapid adaptation to various stressors, including antimicrobial treatments. To better understand the molecular mechanisms underlying this adaptability, we investigated the role of the bacterial defensome and its relationship with mobile genetic elements (MGEs), such as prophages, plasmids, and integrative conjugative elements (ICEs). Using bioinformatic tools, we identified a diverse and rich defensome in A. pleuropneumoniae, with an average of 16 different defense systems per strain. We found that CRISPR-Cas systems, along with other defense mechanisms, are actively involved in restricting the entry of foreign genetic material, playing a crucial role in bacterial adaptation. Additionally, we characterized several novel prophages and examined their distribution across different strains, revealing their potential contribution to the bacterium's evolutionary success. Our findings underscore the complex interplay between the bacterium's defense systems and MGEs, shedding light on how A. pleuropneumoniae maintains genetic diversity while also safeguarding itself against external threats. These insights provide a better understanding of the genetic factors that influence the pathogen's adaptability and highlight potential avenues for more effective disease control strategies.
Collapse
Affiliation(s)
| | - Ciro César Rossi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
4
|
Oliveira Paiva AM, Courtin P, Charpentier G, Oueled-Chama I, Soutourina O, Chapot-Chartier MP, Peltier J. The l,d-transpeptidation pathway is inhibited by antibiotics of the β-lactam class in Clostridioides difficile. iScience 2025; 28:112227. [PMID: 40224013 PMCID: PMC11986978 DOI: 10.1016/j.isci.2025.112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 02/06/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The resistance of Clostridioides difficile to the β-lactam antibiotics cephalosporins, which target the peptidoglycan (PG) assembly, is a leading contributor to the development of C. difficile infections. C. difficile has an original PG structure with a predominance of 3→3 cross-links generated by l,d-transpeptidases (LDTs). C. difficile forms spores and we show that the spore cortex PG contains exclusively 3→3 cross-links. PG and spore cortex of C. difficile cells were largely unaffected by the deletion of the three predicted LDTs, revealing the implication of a new family of LDTs. The d,d-carboxypeptidases producing the essential LDT substrate were inactivated by cephalosporins, resulting in the inhibition of the l,d-transpeptidation pathway. In contrast, the participation of penicillin-binding proteins (PBPs) to PG cross-linking increased in the presence of the antibiotics. Our findings highlight that cephalosporin resistance is not primarily mediated by LDTs and illustrate the plasticity of the PG biosynthesis machinery in C. difficile.
Collapse
Affiliation(s)
- Ana M. Oliveira Paiva
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pascal Courtin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Glenn Charpentier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Imane Oueled-Chama
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - Johann Peltier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
5
|
Lotoux A, Caulat L, Martins Alves C, Alves Feliciano C, Morvan C, Folgosa F, Martin-Verstraete I. Defense arsenal of the strict anaerobe Clostridioides difficile against reactive oxygen species encountered during its infection cycle. mBio 2025; 16:e0375324. [PMID: 40111048 PMCID: PMC11980386 DOI: 10.1128/mbio.03753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Clostridioides difficile, a strict anaerobe, is the major cause of antibiotic-associated diarrhea. This enteropathogen must adapt to oxidative stress mediated by reactive oxygen species (ROS), notably those released by the neutrophils and macrophages recruited to the site of infection or those endogenously produced upon high oxygen (O2) exposure. C. difficile uses a superoxide reductase, Sor, and several peroxidases to detoxify ROS. We showed that Sor has a superoxide reductase activity in vitro and protects the bacterium from exposure to menadione, a superoxide donor. After confirming the peroxidase activity of the rubrerythrin, Rbr, we showed that this enzyme together with the peroxiredoxin, Bcp, plays a central role in the detoxification of H2O2 and promotes the survival of C. difficile in the presence of not only H2O2 but also air or 4% O2. Under high O2 concentrations encountered in the gastrointestinal tract, the bacterium generated endogenous H2O2. The two O2 reductases, RevRbr2 and FdpF, have also a peroxidase activity and participate in H2O2 resistance. The CD0828 gene, which also contributes to H2O2 protection, forms an operon with rbr, sor, and perR encoding a H2O2-sensing repressor. The expression of the genes encoding the ROS reductases and the CD0828 protein was induced upon exposure to either H2O2 or air. We showed that the induction of the rbr operon is mediated not only by PerR but also by OseR, a recently identified O2-responsive regulator of C. difficile, and indirectly by σB, the sigma factor of the stress response, whereas the expression of bcp is only controlled by σB. IMPORTANCE ROS plays a fundamental role in intestinal homeostasis, limiting the proliferation of pathogenic bacteria. Clostridioides difficile is an important enteropathogen that induces an intense immune response, characterized by the massive recruitment of immune cells responsible for secreting ROS, mainly H2O2 and superoxide. We showed in this work that ROS exposure leads to the production of an armada of enzymes involved in ROS detoxification. This includes a superoxide reductase and four peroxidases, Rbr, Bcp, revRbr2, and FdpF. These enzymes likely contribute to the survival of vegetative cells of C. difficile in the colon during the host immune response. Distinct regulations are also observed for the genes encoding the ROS detoxification enzymes allowing a fine tuning of the adaptive response to ROS exposure. Understanding the mechanisms of ROS protection during infection could shed light on how C. difficile survives under conditions of an exacerbated inflammatory response.
Collapse
Affiliation(s)
- Aurélie Lotoux
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, Île-de-France, France
| | - Léo Caulat
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, Île-de-France, France
| | - Catarina Martins Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Lisbon, Portugal
| | - Carolina Alves Feliciano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Lisbon, Portugal
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, Île-de-France, France
| | - Filipe Folgosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Lisbon, Portugal
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, Île-de-France, France
- Institut Universitaire de France, Paris, Île-de-France, France
| |
Collapse
|
6
|
Kreis V, Toffano-Nioche C, Denève-Larrazet C, Marvaud JC, Garneau JR, Dumont F, van Dijk EL, Jaszczyszyn Y, Boutserin A, D'Angelo F, Gautheret D, Kansau I, Janoir C, Soutourina O. Dual RNA-seq study of the dynamics of coding and non-coding RNA expression during Clostridioides difficile infection in a mouse model. mSystems 2024; 9:e0086324. [PMID: 39601557 DOI: 10.1128/msystems.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Clostridioides difficile is the leading cause of healthcare-associated diarrhea in industrialized countries. Many questions remain to be answered about the mechanisms governing its interaction with the host during infection. Non-coding RNAs (ncRNAs) contribute to shape virulence in many pathogens and modulate host responses; however, their role in C. difficile infection (CDI) has not been explored. To better understand the dynamics of ncRNA expression contributing to C. difficile infectious cycle and host response, we used a dual RNA-seq approach in a conventional murine model. From the pathogen side, this transcriptomic analysis revealed the upregulation of virulence factors, metabolism, and sporulation genes, as well as the identification of 61 ncRNAs differentially expressed during infection that correlated with the analysis of available raw RNA-seq data sets from two independent studies. From these data, we identified 118 potential new transcripts in C. difficile, including 106 new ncRNA genes. From the host side, we observed the induction of several pro-inflammatory pathways, and among the 185 differentially expressed ncRNAs, the overexpression of microRNAs (miRNAs) previously associated to inflammatory responses or unknown long ncRNAs and miRNAs. A particular host gene expression profile could be associated to the symptomatic infection. In accordance, the metatranscriptomic analysis revealed specific microbiota changes accompanying CDI and specific species associated with symptomatic infection in mice. This first adaptation of in vivo dual RNA-seq to C. difficile contributes to unravelling the regulatory networks involved in C. difficile infectious cycle and host response and provides valuable resources for further studies of RNA-based mechanisms during CDI.IMPORTANCEClostridioides difficile is a major cause of nosocomial infections associated with antibiotic therapy classified as an urgent antibiotic resistance threat. This pathogen interacts with host and gut microbial communities during infection, but the mechanisms of these interactions remain largely to be uncovered. Noncoding RNAs contribute to bacterial virulence and host responses, but their expression has not been explored during C. difficile infection. We took advantage of the conventional mouse model of C. difficile infection to look simultaneously to the dynamics of gene expression in pathogen, its host, and gut microbiota composition, providing valuable resources for future studies. We identified a number of ncRNAs that could mediate the adaptation of C. difficile inside the host and the crosstalk with the host immune response. Promising inflammation markers and potential therapeutic targets emerged from this work open new directions for RNA-based and microbiota-modulatory strategies to improve the efficiency of C. difficile infection treatments.
Collapse
Affiliation(s)
- Victor Kreis
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Claire Toffano-Nioche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | | | | | | | - Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anaïs Boutserin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Francesca D'Angelo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Daniel Gautheret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Imad Kansau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Orsay, France
| | - Claire Janoir
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Orsay, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
7
|
Shore SFH, Leinberger FH, Fozo EM, Berghoff BA. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. EcoSal Plus 2024; 12:eesp00252022. [PMID: 38767346 PMCID: PMC11636113 DOI: 10.1128/ecosalplus.esp-0025-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Toxin-antitoxin systems are ubiquitous in the prokaryotic world and widely distributed among chromosomes and mobile genetic elements. Several different toxin-antitoxin system types exist, but what they all have in common is that toxin activity is prevented by the cognate antitoxin. In type I toxin-antitoxin systems, toxin production is controlled by an RNA antitoxin and by structural features inherent to the toxin messenger RNA. Most type I toxins are small membrane proteins that display a variety of cellular effects. While originally discovered as modules that stabilize plasmids, chromosomal type I toxin-antitoxin systems may also stabilize prophages, or serve important functions upon certain stress conditions and contribute to population-wide survival strategies. Here, we will describe the intricate RNA-based regulation of type I toxin-antitoxin systems and discuss their potential biological functions.
Collapse
Affiliation(s)
- Selene F. H. Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
8
|
Badilla Lobo A, Soutourina O, Peltier J. The current riboswitch landscape in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001508. [PMID: 39405103 PMCID: PMC11477304 DOI: 10.1099/mic.0.001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. Clostridioides difficile, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating C. difficile infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in C. difficile, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for C. difficile infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.
Collapse
Affiliation(s)
- Adriana Badilla Lobo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Johann Peltier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Arrowsmith TJ, Xu X, Xu S, Usher B, Stokes P, Guest M, Bronowska AK, Genevaux P, Blower TR. Inducible auto-phosphorylation regulates a widespread family of nucleotidyltransferase toxins. Nat Commun 2024; 15:7719. [PMID: 39231966 PMCID: PMC11375011 DOI: 10.1038/s41467-024-51934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Nucleotidyltransferases (NTases) control diverse physiological processes, including RNA modification, DNA replication and repair, and antibiotic resistance. The Mycobacterium tuberculosis NTase toxin family, MenT, modifies tRNAs to block translation. MenT toxin activity can be stringently regulated by diverse MenA antitoxins. There has been no unifying mechanism linking antitoxicity across MenT homologues. Here we demonstrate through structural, biochemical, biophysical and computational studies that despite lacking kinase motifs, antitoxin MenA1 induces auto-phosphorylation of MenT1 by repositioning the MenT1 phosphoacceptor T39 active site residue towards bound nucleotide. Finally, we expand this predictive model to explain how unrelated antitoxin MenA3 is similarly able to induce auto-phosphorylation of cognate toxin MenT3. Our study reveals a conserved mechanism for the control of tuberculosis toxins, and demonstrates how active site auto-phosphorylation can regulate the activity of widespread NTases.
Collapse
Affiliation(s)
| | - Xibing Xu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Shangze Xu
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ben Usher
- Department of Biosciences, Durham University, Durham, UK
| | - Peter Stokes
- Department of Chemistry, Durham University, Durham, UK
| | - Megan Guest
- Department of Biosciences, Durham University, Durham, UK
| | - Agnieszka K Bronowska
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Tim R Blower
- Department of Biosciences, Durham University, Durham, UK.
| |
Collapse
|
10
|
Brehm JN, Sorg JA. Theophylline-based control of repA on a Clostridioides difficile plasmid for use in allelic exchange. Anaerobe 2024; 88:102858. [PMID: 38692475 PMCID: PMC11984826 DOI: 10.1016/j.anaerobe.2024.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Historically, mutagenesis in the non-model enteropathogenic bacterium Clostridioides difficile has been challenging. Developing a versatile and reliable method of generating targeted mutations in C. difficile is important to further our understanding of its pathogenesis. Some of the most common targeted mutagenesis systems rely on allelic exchange mediated by either uracil auxotrophy combined with a toxic uracil precursor, a toxin/anti-toxin system, group II introns, or CRISPR/Cas mutagenesis. However, each of these methods suffers from its own issues. Here, we develop and test an allelic exchange strategy which better facilitates screening for integration and selecting for excision than previous systems. This is achieved by controlling plasmid replication with a theophylline-dependent riboswitch cloned upstream of repA, the gene whose product controls plasmid replication. This allows efficient mutant generation, can be performed in a wild-type strain of C. difficile, does not have the off-target effects inherent to group II introns, and alleviates the problem of testing multiple gRNA targets in CRISPR mutagenesis.
Collapse
Affiliation(s)
- Joshua N Brehm
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
11
|
Kempher ML, Shadid TM, Larabee JL, Ballard JD. A sequence invariable region in TcdB2 is required for toxin escape from Clostridioides difficile. J Bacteriol 2024; 206:e0009624. [PMID: 38888328 PMCID: PMC11323933 DOI: 10.1128/jb.00096-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Sequence differences among the subtypes of Clostridioides difficile toxin TcdB (2,366 amino acids) are broadly distributed across the entire protein, with the notable exception of 76 residues at the protein's carboxy terminus. This sequence invariable region (SIR) is identical at the DNA and protein level among the TcdB variants, suggesting this string of amino acids has undergone selective pressure to prevent alterations. The functional role of the SIR domain in TcdB has not been determined. Analysis of a recombinantly constructed TcdB mutant lacking the SIR domain did not identify changes in TcdB's enzymatic or cytopathic activities. To further assess the SIR region, we constructed a C. difficile strain with the final 228 bp deleted from the tcdB gene, resulting in the production of a truncated form of TcdB lacking the SIR (TcdB2∆2291-2366). Using a combination of approaches, we found in the absence of the SIR sequence TcdB2∆2291-2366 retained cytotoxic activity but was not secreted from C. difficile. TcdB2∆2291-2366 was not released from the cell under autolytic conditions, indicating the SIR is involved in a more discrete step in toxin escape from the bacterium. Fractionation experiments combined with antibody detection found that TcdB2∆2291-2366 accumulates at the cell membrane but is unable to complete steps in secretion beyond this point. These data suggest conservation of the SIR domain across variants of TcdB could be influenced by the sequence's role in efficient escape of the toxin from C. difficile. IMPORTANCE Clostridioides difficile is a leading cause of antibiotic associated disease in the United States. The primary virulence factors produced by C. difficile are two large glucosylating toxins TcdA and TcdB. To date, several sequence variants of TcdB have been identified that differ in various functional properties. Here, we identified a highly conserved region among TcdB subtypes that is required for release of the toxin from C. difficile. This study reveals a putative role for the longest stretch of invariable sequence among TcdB subtypes and provides new details regarding toxin release into the extracellular environment. Improving our understanding of the functional roles of the conserved regions of TcdB variants aids in the development of new, broadly applicable strategies to treat CDI.
Collapse
Affiliation(s)
- Megan L. Kempher
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
- Department of
Chemistry and Biochemistry, University of
Oklahoma, Norman,
Oklahoma, USA
| | - Tyler M. Shadid
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| | - Jason L. Larabee
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| | - Jimmy D. Ballard
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| |
Collapse
|
12
|
Malik A, Oludiran A, Poudel A, Alvarez OB, Woodward C, Purcell EB. RelQ-mediated alarmone signalling regulates growth, stress-induced biofilm formation and spore accumulation in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001479. [PMID: 39028551 PMCID: PMC11317968 DOI: 10.1099/mic.0.001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The bacterial stringent response (SR) is a conserved transcriptional reprogramming pathway mediated by the nucleotide signalling alarmones, (pp)pGpp. The SR has been implicated in antibiotic survival in Clostridioides difficile, a biofilm- and spore-forming pathogen that causes resilient, highly recurrent C. difficile infections. The role of the SR in other processes and the effectors by which it regulates C. difficile physiology are unknown. C. difficile RelQ is a clostridial alarmone synthetase. Deletion of relQ dysregulates C. difficile growth in unstressed conditions, affects susceptibility to antibiotic and oxidative stressors and drastically reduces biofilm formation. While wild-type C. difficile displays increased biofilm formation in the presence of sublethal stress, the ΔrelQ strain cannot upregulate biofilm production in response to stress. Deletion of relQ slows spore accumulation in planktonic cultures but accelerates it in biofilms. This work establishes biofilm formation and spore accumulation as alarmone-mediated processes in C. difficile and reveals the importance of RelQ in stress-induced biofilm regulation.
Collapse
Affiliation(s)
- Areej Malik
- Biomedical Sciences Program, Old Dominion University, Norfolk, Virginia, 23529, USA
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Adenrele Oludiran
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Asia Poudel
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Orlando Berumen Alvarez
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Charles Woodward
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Erin B. Purcell
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| |
Collapse
|
13
|
Hussain H, Nubgan A, Rodríguez C, Imwattana K, Knight DR, Parthala V, Mullany P, Goh S. Removal of mobile genetic elements from the genome of Clostridioides difficile and the implications for the organism's biology. Front Microbiol 2024; 15:1416665. [PMID: 38966395 PMCID: PMC11222575 DOI: 10.3389/fmicb.2024.1416665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Clostridioides difficile is an emerging pathogen of One Health significance. Its highly variable genome contains mobile genetic elements (MGEs) such as transposons and prophages that influence its biology. Systematic deletion of each genetic element is required to determine their precise role in C. difficile biology and contribution to the wider mobilome. Here, Tn5397 (21 kb) and ϕ027 (56 kb) were deleted from C. difficile 630 and R20291, respectively, using allele replacement facilitated by CRISPR-Cas9. The 630 Tn5397 deletant transferred PaLoc at the same frequency (1 × 10-7) as 630 harboring Tn5397, indicating that Tn5397 alone did not mediate conjugative transfer of PaLoc. The R20291 ϕ027 deletant was sensitive to ϕ027 infection, and contained two unexpected features, a 2.7 kb remnant of the mutagenesis plasmid, and a putative catalase gene adjacent to the deleted prophage was also deleted. Growth kinetics of R20291 ϕ027 deletant was similar to wild type (WT) in rich medium but marginally reduced compared with WT in minimal medium. This work indicates the commonly used pMTL8000 plasmid series works well for CRISPR-Cas9-mediated gene deletion, resulting in the largest deleted locus (56.8 kb) described in C. difficile. Removal of MGEs was achieved by targeting conjugative/integrative regions to promote excision and permanent loss. The deletants created will be useful strains for investigating Tn5397 or ϕ027 prophage contribution to host virulence, fitness, and physiology, and a platform for other mutagenesis studies aimed at functional gene analysis without native transposon or phage interference in C. difficile 630 and R20291.
Collapse
Affiliation(s)
- Haitham Hussain
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Amer Nubgan
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Daniel R. Knight
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Valerija Parthala
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Peter Mullany
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Shan Goh
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
14
|
Saunier M, Fortier LC, Soutourina O. RNA-based regulation in bacteria-phage interactions. Anaerobe 2024; 87:102851. [PMID: 38583547 DOI: 10.1016/j.anaerobe.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Interactions of bacteria with their viruses named bacteriophages or phages shape the bacterial genome evolution and contribute to the diversity of phages. RNAs have emerged as key components of several anti-phage defense systems in bacteria including CRISPR-Cas, toxin-antitoxin and abortive infection. Frequent association with mobile genetic elements and interplay between different anti-phage defense systems are largely discussed. Newly discovered defense systems such as retrons and CBASS include RNA components. RNAs also perform their well-recognized regulatory roles in crossroad of phage-bacteria regulatory networks. Both regulatory and defensive function can be sometimes attributed to the same RNA molecules including CRISPR RNAs. This review presents the recent advances on the role of RNAs in the bacteria-phage interactions with a particular focus on clostridial species including an important human pathogen, Clostridioides difficile.
Collapse
Affiliation(s)
- Marion Saunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
15
|
DiCandia MA, Edwards AN, Alcaraz YB, Monteiro MP, Lee CD, Vargas Cuebas G, Bagchi P, McBride SM. A conserved switch controls virulence, sporulation, and motility in C. difficile. PLoS Pathog 2024; 20:e1012224. [PMID: 38739653 PMCID: PMC11115286 DOI: 10.1371/journal.ppat.1012224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Spore formation is required for environmental survival and transmission of the human enteropathogenic Clostridioides difficile. In all bacterial spore formers, sporulation is regulated through activation of the master response regulator, Spo0A. However, the factors and mechanisms that directly regulate C. difficile Spo0A activity are not defined. In the well-studied Bacillus species, Spo0A is directly inactivated by Spo0E, a small phosphatase. To understand Spo0E function in C. difficile, we created a null mutation of the spo0E ortholog and assessed sporulation and physiology. The spo0E mutant produced significantly more spores, demonstrating Spo0E represses C. difficile sporulation. Unexpectedly, the spo0E mutant also exhibited increased motility and toxin production, and enhanced virulence in animal infections. We uncovered that Spo0E interacts with both Spo0A and the toxin and motility regulator, RstA. Direct interactions between Spo0A, Spo0E, and RstA constitute a previously unknown molecular switch that coordinates sporulation with motility and toxin production. Reinvestigation of Spo0E function in B. subtilis revealed that Spo0E induced motility, demonstrating Spo0E regulation of motility and sporulation among divergent species. Further, 3D structural analyses of Spo0E revealed specific and exclusive interactions between Spo0E and binding partners in C. difficile and B. subtilis that provide insight into the conservation of this regulatory mechanism among different species.
Collapse
Affiliation(s)
- Michael A. DiCandia
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Ysabella B. Alcaraz
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Marcos P. Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Cheyenne D. Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Germán Vargas Cuebas
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, United States of America
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| |
Collapse
|
16
|
Lee CD, Rizvi A, McBride SM. KipOTIA detoxifies 5-oxoproline and promotes the growth of Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592088. [PMID: 38746432 PMCID: PMC11092664 DOI: 10.1101/2024.05.01.592088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clostridioides difficile is an anaerobic enteric pathogen that disseminates in the environment as a dormant spore. For C. difficile and other sporulating bacteria, the initiation of sporulation is a regulated process that prevents spore formation under favorable growth conditions. In Bacillus subtilis , one such mechanism for preventing sporulation is the Kinase Inhibitory Protein, KipI, which impedes activation of the main sporulation kinase. In addition, KipI functions as part of a complex that detoxifies the intermediate metabolite, 5-oxoproline (OP), a harmful by-product of glutamic acid. In this study, we investigate the orthologous Kip proteins in C. difficile to determine their roles in the regulation of sporulation and metabolism. Using deletion mutants in kipIA and the full kipOTIA operon, we show that unlike in B. subtilis, the Kip proteins have no significant impact on sporulation. However, we found that the kip operon encodes a functional oxoprolinase that facilitates detoxification of OP. Further, our data demonstrate that KipOTIA not only detoxifies OP, but also allows OP to be used as a nutrient source that supports the robust growth of C. difficile , thereby facilitating the conversion of a toxic byproduct of metabolism into an effective energy source.
Collapse
|
17
|
Wetzel D, Carter ZA, Monteiro MP, Edwards AN, Scharer CD, McBride SM. The pH-responsive SmrR-SmrT system modulates C. difficile antimicrobial resistance, spore formation, and toxin production. Infect Immun 2024; 92:e0046123. [PMID: 38345371 PMCID: PMC10929453 DOI: 10.1128/iai.00461-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance.IMPORTANCEClostridioides difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT, on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.
Collapse
Affiliation(s)
- Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Zavier A. Carter
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Marcos P. Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Ipoutcha T, Racharaks R, Huttelmaier S, Wilson CJ, Ozer EA, Hartmann EM. A synthetic biology approach to assemble and reboot clinically relevant Pseudomonas aeruginosa tailed phages. Microbiol Spectr 2024; 12:e0289723. [PMID: 38294230 PMCID: PMC10913387 DOI: 10.1128/spectrum.02897-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024] Open
Abstract
The rise in the frequency of antibiotic resistance has made bacterial infections, specifically Pseudomonas aeruginosa, a cause for greater concern. Phage therapy is a promising solution that uses naturally isolated phages to treat bacterial infections. Ecological limitations, which stipulate a discrete host range and the inevitable evolution of resistance, may be overcome through a better understanding of phage biology and the utilization of engineered phages. In this study, we developed a synthetic biology approach to construct tailed phages that naturally target clinically relevant strains of Pseudomonas aeruginosa. As proof of concept, we successfully cloned and assembled the JG024 and DMS3 phage genomes in yeast using transformation-associated recombination cloning and rebooted these two phage genomes in two different strains of P. aeruginosa. We identified factors that affected phage reboot efficiency like the phage species or the presence of antiviral defense systems in the bacterial strain. We have successfully extended this method to two other phage species and observed that the method enables the reboot of phages that are naturally unable to infect the strain used for reboot. This research represents a critical step toward the construction of clinically relevant, engineered P. aeruginosa phages.IMPORTANCEPseudomonas aeruginosa is a bacterium responsible for severe infections and a common major complication in cystic fibrosis. The use of antibiotics to treat bacterial infections has become increasingly difficult as antibiotic resistance has become more prevalent. Phage therapy is an alternative solution that is already being used in some European countries, but its use is limited by the narrow host range due to the phage receptor specificity, the presence of antiviral defense systems in the bacterial strain, and the possible emergence of phage resistance. In this study, we demonstrate the use of a synthetic biology approach to construct and reboot clinically relevant P. aeruginosa tailed phages. This method enables a significant expansion of possibilities through the construction of engineered phages for therapy applications.
Collapse
Affiliation(s)
- Thomas Ipoutcha
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Ratanachat Racharaks
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Stefanie Huttelmaier
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Cole J. Wilson
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
19
|
Bonabal S, Darfeuille F. Preventing toxicity in toxin-antitoxin systems: An overview of regulatory mechanisms. Biochimie 2024; 217:95-105. [PMID: 37473832 DOI: 10.1016/j.biochi.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Toxin-antitoxin systems (TAs) are generally two-component genetic modules present in almost every prokaryotic genome. The production of the free and active toxin is able to disrupt key cellular processes leading to the growth inhibition or death of its host organism in absence of its cognate antitoxin. The functions attributed to TAs rely on this lethal phenotype ranging from mobile genetic elements stabilization to phage defense. Their abundance in prokaryotic genomes as well as their lethal potential make them attractive targets for new antibacterial strategies. The hijacking of TAs requires a deep understanding of their regulation to be able to design such approach. In this review, we summarize the accumulated knowledge on how bacteria cope with these toxic genes in their genome. The characterized TAs can be grouped based on the way they prevent toxicity. Some systems rely on a tight control of the expression to prevent the production of the toxin while others control the activity of the toxin at the post-translational level.
Collapse
Affiliation(s)
- Simon Bonabal
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33000, Bordeaux, France
| | - Fabien Darfeuille
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33000, Bordeaux, France.
| |
Collapse
|
20
|
Anjou C, Lotoux A, Zhukova A, Royer M, Caulat LC, Capuzzo E, Morvan C, Martin-Verstraete I. The multiplicity of thioredoxin systems meets the specific lifestyles of Clostridia. PLoS Pathog 2024; 20:e1012001. [PMID: 38330058 PMCID: PMC10880999 DOI: 10.1371/journal.ppat.1012001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/21/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Cells are unceasingly confronted by oxidative stresses that oxidize proteins on their cysteines. The thioredoxin (Trx) system, which is a ubiquitous system for thiol and protein repair, is composed of a thioredoxin (TrxA) and a thioredoxin reductase (TrxB). TrxAs reduce disulfide bonds of oxidized proteins and are then usually recycled by a single pleiotropic NAD(P)H-dependent TrxB (NTR). In this work, we first analyzed the composition of Trx systems across Bacteria. Most bacteria have only one NTR, but organisms in some Phyla have several TrxBs. In Firmicutes, multiple TrxBs are observed only in Clostridia, with another peculiarity being the existence of ferredoxin-dependent TrxBs. We used Clostridioides difficile, a pathogenic sporulating anaerobic Firmicutes, as a model to investigate the biological relevance of TrxB multiplicity. Three TrxAs and three TrxBs are present in the 630Δerm strain. We showed that two systems are involved in the response to infection-related stresses, allowing the survival of vegetative cells exposed to oxygen, inflammation-related molecules and bile salts. A fourth TrxB copy present in some strains also contributes to the stress-response arsenal. One of the conserved stress-response Trx system was found to be present both in vegetative cells and in the spores and is under a dual transcriptional control by vegetative cell and sporulation sigma factors. This Trx system contributes to spore survival to hypochlorite and ensure proper germination in the presence of oxygen. Finally, we found that the third Trx system contributes to sporulation through the recycling of the glycine-reductase, a Stickland pathway enzyme that allows the consumption of glycine and contributes to sporulation. Altogether, we showed that Trx systems are produced under the control of various regulatory signals and respond to different regulatory networks. The multiplicity of Trx systems and the diversity of TrxBs most likely meet specific needs of Clostridia in adaptation to strong stress exposure, sporulation and Stickland pathways.
Collapse
Affiliation(s)
- Cyril Anjou
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Aurélie Lotoux
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Marie Royer
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Léo C. Caulat
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Elena Capuzzo
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
21
|
Sapa D, Brosse A, Coullon H, Péan de Ponfilly G, Candela T, Le Monnier A. A Streamlined Method to Obtain Biologically Active TcdA and TcdB Toxins from Clostridioides difficile. Toxins (Basel) 2024; 16:38. [PMID: 38251254 PMCID: PMC10821508 DOI: 10.3390/toxins16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
The major virulence factors of Clostridioides difficile (C. difficile) are enterotoxins A (TcdA) and B (TcdB). The study of toxins is a crucial step in exploring the virulence of this pathogen. Currently, the toxin purification process is either laborious and time-consuming in C. difficile or performed in heterologous hosts. Therefore, we propose a streamlined method to obtain functional toxins in C. difficile. Two C. difficile strains were generated, each harboring a sequence encoding a His-tag at the 3' end of C. difficile 630∆erm tcdA or tcdB genes. Each toxin gene is expressed using the Ptet promoter, which is inducible by anhydro-tetracycline. The obtained purification yields were 0.28 mg and 0.1 mg per liter for rTcdA and rTcdB, respectively. In this study, we successfully developed a simple routine method that allows the production and purification of biologically active rTcdA and rTcdB toxins with similar activities compared to native toxins.
Collapse
Affiliation(s)
- Diane Sapa
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
| | - Anaïs Brosse
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
| | - Héloïse Coullon
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
| | - Gauthier Péan de Ponfilly
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
- Service de Microbiologie Clinique, GH Paris Saint-Joseph, 75674 Paris, France
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
| | - Alban Le Monnier
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
- Service de Microbiologie Clinique, GH Paris Saint-Joseph, 75674 Paris, France
| |
Collapse
|
22
|
Muzyukina P, Shkaruta A, Guzman NM, Andreani J, Borges AL, Bondy-Denomy J, Maikova A, Semenova E, Severinov K, Soutourina O. Identification of an anti-CRISPR protein that inhibits the CRISPR-Cas type I-B system in Clostridioides difficile. mSphere 2023; 8:e0040123. [PMID: 38009936 PMCID: PMC10732046 DOI: 10.1128/msphere.00401-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Clostridioides difficile is the widespread anaerobic spore-forming bacterium that is a major cause of potentially lethal nosocomial infections associated with antibiotic therapy worldwide. Due to the increase in severe forms associated with a strong inflammatory response and higher recurrence rates, a current imperative is to develop synergistic and alternative treatments for C. difficile infections. In particular, phage therapy is regarded as a potential substitute for existing antimicrobial treatments. However, it faces challenges because C. difficile has highly active CRISPR-Cas immunity, which may be a specific adaptation to phage-rich and highly crowded gut environment. To overcome this defense, C. difficile phages must employ anti-CRISPR mechanisms. Here, we present the first anti-CRISPR protein that inhibits the CRISPR-Cas defense system in this pathogen. Our work offers insights into the interactions between C. difficile and its phages, paving the way for future CRISPR-based applications and development of effective phage therapy strategies combined with the engineering of virulent C. difficile infecting phages.
Collapse
Affiliation(s)
- Polina Muzyukina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anton Shkaruta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Noemi M. Guzman
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Adair L. Borges
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Anna Maikova
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Konstantin Severinov
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
- Institute of Molecular Genetics, Kurchatov National Research Center, Moscow, Russia
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
23
|
Hastie JL, Carmichael HL, Werner BM, Dunbar KE, Carlson PE. Clostridioides difficile utilizes siderophores as an iron source and FhuDBGC contributes to ferrichrome uptake. J Bacteriol 2023; 205:e0032423. [PMID: 37971230 PMCID: PMC10729759 DOI: 10.1128/jb.00324-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE This study is the first example of C. difficile growing with siderophores as the sole iron source and describes the characterization of the ferric hydroxamate uptake ABC transporter (FhuDBGC). This transporter shows specificity to the siderophore ferrichrome. While not required for pathogenesis, this transporter highlights the redundancy in iron acquisition mechanisms that C. difficile uses to compete for iron during an infection.
Collapse
Affiliation(s)
- Jessica L. Hastie
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Silver Spring, Maryland, USA
| | - Hannah L. Carmichael
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Silver Spring, Maryland, USA
| | - Bailey M. Werner
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Silver Spring, Maryland, USA
| | - Kristin E. Dunbar
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Silver Spring, Maryland, USA
| | - Paul E. Carlson
- Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Bacterial Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Silver Spring, Maryland, USA
| |
Collapse
|
24
|
Auria E, Deschamps J, Briandet R, Dupuy B. Extracellular succinate induces spatially organized biofilm formation in Clostridioides difficile. Biofilm 2023; 5:100125. [PMID: 37214349 PMCID: PMC10192414 DOI: 10.1016/j.bioflm.2023.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Clostridioides difficile infection associated to gut microbiome dysbiosis is the leading cause for nosocomial diarrhea. The ability of C. difficile to form biofilms has been progressively linked to its pathogenesis as well as its persistence in the gut. Although C. difficile has been reported to form biofilms in an increasing number of conditions, little is known about how these biofilms are formed in the gut and what factors may trigger their formation. Here we report that succinate, a metabolite abundantly produced by the dysbiotic gut microbiota, induces in vitro biofilm formation of C. difficile strains. We characterized the morphology and spatial composition of succinate-induced biofilms, and compared to non-induced or deoxycholate (DCA) induced biofilms. Biofilms induced by succinate are significantly thicker, structurally more complex, and poorer in proteins and exopolysaccharides (EPS). We then applied transcriptomics and genetics to characterize the early stages of succinate-induced biofilm formation and we showed that succinate-induced biofilm results from major metabolic shifts and cell-wall composition changes. Similar to DCA-induced biofilms, biofilms induced by succinate depend on the presence of a rapidly metabolized sugar. Finally, although succinate can be consumed by the bacteria, we found that the extracellular succinate is in fact responsible for the induction of biofilm formation through complex regulation involving global metabolic regulators and the osmotic stress response. Thus, our work suggests that as a gut signal, succinate may drive biofilm formation and help persistence of C. difficile in the gut, increasing the risk of relapse.
Collapse
Affiliation(s)
- Emile Auria
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Julien Deschamps
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Romain Briandet
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| |
Collapse
|
25
|
Wetzel D, Carter ZA, Monteiro MP, Edwards AN, McBride SM. The pH-responsive SmrR-SmrT system modulates C. difficile antimicrobial resistance, spore formation, and toxin production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565354. [PMID: 37961610 PMCID: PMC10635087 DOI: 10.1101/2023.11.02.565354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT ) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance. IMPORTANCE C. difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.
Collapse
|
26
|
Brantl S, Ul Haq I. Small proteins in Gram-positive bacteria. FEMS Microbiol Rev 2023; 47:fuad064. [PMID: 38052429 PMCID: PMC10730256 DOI: 10.1093/femsre/fuad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Small proteins comprising less than 100 amino acids have been often ignored in bacterial genome annotations. About 10 years ago, focused efforts started to investigate whole peptidomes, which resulted in the discovery of a multitude of small proteins, but only a number of them have been characterized in detail. Generally, small proteins can be either membrane or cytosolic proteins. The latter interact with larger proteins, RNA or even metal ions. Here, we summarize our current knowledge on small proteins from Gram-positive bacteria with a special emphasis on the model organism Bacillus subtilis. Our examples include membrane-bound toxins of type I toxin-antitoxin systems, proteins that block the assembly of higher order structures, regulate sporulation or modulate the RNA degradosome. We do not consider antimicrobial peptides. Furthermore, we present methods for the identification and investigation of small proteins.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| | - Inam Ul Haq
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| |
Collapse
|
27
|
Lacotte PA, Denis-Quanquin S, Chatonnat E, Le Bris J, Leparfait D, Lequeux T, Martin-Verstraete I, Candela T. The absence of surface D-alanylation, localized on lipoteichoic acid, impacts the Clostridioides difficile way of life and antibiotic resistance. Front Microbiol 2023; 14:1267662. [PMID: 37965542 PMCID: PMC10642750 DOI: 10.3389/fmicb.2023.1267662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction The dlt operon encodes proteins responsible for the esterification of positively charged D-alanine on the wall teichoic acids and lipoteichoic acids of Gram-positive bacteria. This structural modification of the bacterial anionic surface in several species has been described to alter the physicochemical properties of the cell-wall. In addition, it has been linked to reduced sensibilities to cationic antimicrobial peptides and antibiotics. Methods We studied the D-alanylation of Clostridioides difficile polysaccharides with a complete deletion of the dltDABCoperon in the 630 strain. To look for D-alanylation location, surface polysaccharides were purified and analyzed by NMR. Properties of the dltDABCmutant and the parental strains, were determined for bacterial surface's hydrophobicity, motility, adhesion, antibiotic resistance. Results We first confirmed the role of the dltDABCoperon in D-alanylation. Then, we established the exclusive esterification of D-alanine on C. difficile lipoteichoic acid. Our data also suggest that D-alanylation modifies the cell-wall's properties, affecting the bacterial surface's hydrophobicity, motility, adhesion to biotic and abiotic surfaces,and biofilm formation. In addition, our mutant exhibitedincreased sensibilities to antibiotics linked to the membrane, especially bacitracin. A specific inhibitor DLT-1 of DltA reduces the D-alanylation rate in C. difficile but the inhibition was not sufficient to decrease the antibiotic resistance against bacitracin and vancomycin. Conclusion Our results suggest the D-alanylation of C. difficile as an interesting target to tackle C. difficile infections.
Collapse
Affiliation(s)
- Pierre-Alexandre Lacotte
- Micalis Institute, Université Paris-Saclay, INRAE AgroParisTech, Jouy-en-Josas, France
- Institut Pasteur, Université Paris Cité, UMR6047 CNRS, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | | | - Eva Chatonnat
- Institut Pasteur, Université Paris Cité, UMR6047 CNRS, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
| | - Julie Le Bris
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS UMR3525, Université Paris Cité, Paris, France
| | - David Leparfait
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR6507, ENSICAEN, UNICAEN, CNRS, Caen, France
| | - Thierry Lequeux
- Normandie Université, Laboratoire de Chimie Moléculaire et Thioorganique LCMT UMR6507, ENSICAEN, UNICAEN, CNRS, Caen, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR6047 CNRS, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, France
- Institut Universitaire de France, Paris, France
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
28
|
Rizvi A, Vargas-Cuebas G, Edwards AN, DiCandia MA, Carter ZA, Lee CD, Monteiro MP, McBride SM. Glycine fermentation by C. difficile promotes virulence and spore formation, and is induced by host cathelicidin. Infect Immun 2023; 91:e0031923. [PMID: 37754683 PMCID: PMC10580938 DOI: 10.1128/iai.00319-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Clostridioides difficile is a leading cause of antibiotic-associated diarrheal disease. C. difficile colonization, growth, and toxin production in the intestine is strongly associated with its ability to use amino acids to generate energy, but little is known about the impact of specific amino acids on C. difficile pathogenesis. The amino acid glycine is enriched in the dysbiotic gut and is suspected to contribute to C. difficile infection. We hypothesized that the use of glycine as an energy source contributes to colonization of the intestine and pathogenesis of C. difficile. To test this hypothesis, we deleted the glycine reductase (GR) genes grdAB, rendering C. difficile unable to ferment glycine, and investigated the impact on growth and pathogenesis. Our data show that the grd pathway promotes growth, toxin production, and sporulation. Glycine fermentation also had a significant impact on toxin production and pathogenesis of C. difficile in the hamster model of disease. Furthermore, we determined that the grd locus is regulated by host cathelicidin (LL-37) and the cathelicidin-responsive regulator, ClnR, indicating that the host peptide signals to control glycine catabolism. The induction of glycine fermentation by LL-37 demonstrates a direct link between the host immune response and the bacterial reactions of toxin production and spore formation.
Collapse
Affiliation(s)
- Arshad Rizvi
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Germán Vargas-Cuebas
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Michael A. DiCandia
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Zavier A. Carter
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Cheyenne D. Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Marcos P. Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Rubio-Mendoza D, Martínez-Meléndez A, Maldonado-Garza HJ, Córdova-Fletes C, Garza-González E. Review of the Impact of Biofilm Formation on Recurrent Clostridioides difficile Infection. Microorganisms 2023; 11:2525. [PMID: 37894183 PMCID: PMC10609348 DOI: 10.3390/microorganisms11102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile infection (CDI) may recur in approximately 10-30% of patients, and the risk of recurrence increases with each successive recurrence, reaching up to 65%. C. difficile can form biofilm with approximately 20% of the bacterial genome expressed differently between biofilm and planktonic cells. Biofilm plays several roles that may favor recurrence; for example, it may act as a reservoir of spores, protect the vegetative cells from the activity of antibiotics, and favor the formation of persistent cells. Moreover, the expression of several virulence genes, including TcdA and TcdB toxins, has been associated with recurrence. Several systems and structures associated with adhesion and biofilm formation have been studied in C. difficile, including cell-wall proteins, quorum sensing (including LuxS and Agr), Cyclic di-GMP, type IV pili, and flagella. Most antibiotics recommended for the treatment of CDI do not have activity on spores and do not eliminate biofilm. Therapeutic failure in R-CDI has been associated with the inadequate concentration of drugs in the intestinal tract and the antibiotic resistance of a biofilm. This makes it challenging to eradicate C. difficile in the intestine, complicating antibacterial therapies and allowing non-eliminated spores to remain in the biofilm, increasing the risk of recurrence. In this review, we examine the role of biofilm on recurrence and the challenges of treating CDI when the bacteria form a biofilm.
Collapse
Affiliation(s)
- Daira Rubio-Mendoza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Adrián Martínez-Meléndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - Héctor Jesús Maldonado-Garza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Carlos Córdova-Fletes
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Elvira Garza-González
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| |
Collapse
|
30
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Edwards AN, McBride SM. The RgaS-RgaR two-component system promotes Clostridioides difficile sporulation through a small RNA and the Agr1 system. PLoS Genet 2023; 19:e1010841. [PMID: 37844084 PMCID: PMC10602386 DOI: 10.1371/journal.pgen.1010841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/26/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
The ability to form a dormant spore is essential for the survival of the anaerobic pathogen, Clostridioides difficile, outside of the mammalian gastrointestinal tract. The initiation of sporulation is governed by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple sporulation factors control Spo0A phosphorylation; however, this regulatory pathway is not well defined in C. difficile. We discovered that RgaS and RgaR, a conserved orphan histidine kinase and orphan response regulator, function together as a cognate two-component regulatory system to directly activate transcription of several genes. One of these targets, agrB1D1, encodes gene products that synthesize and export a small quorum-sensing peptide, AgrD1, which positively influences expression of early sporulation genes. Another target, a small regulatory RNA now known as SpoZ, impacts later stages of sporulation through a small hypothetical protein and an additional, unknown regulatory mechanism(s). Unlike Agr systems in many organisms, AgrD1 does not activate the RgaS-RgaR two-component system, and thus, is not responsible for autoregulating its own production. Altogether, we demonstrate that C. difficile utilizes a conserved two-component system that is uncoupled from quorum-sensing to promote sporulation through two distinct regulatory pathways.
Collapse
Affiliation(s)
- Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| |
Collapse
|
32
|
DiBenedetto NV, Oberkampf M, Cersosimo L, Yeliseyev V, Bry L, Peltier J, Dupuy B. The TcdE holin drives toxin secretion and virulence in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558055. [PMID: 37745472 PMCID: PMC10516005 DOI: 10.1101/2023.09.16.558055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Clostridioides difficile is the leading cause of healthcare associated infections. The Pathogenicity Locus (PaLoc) toxins TcdA and TcdB promote host disease. These toxins lack canonical N-terminal signal sequences for translocation across the bacterial membrane, suggesting alternate mechanisms of release, which have included targeted secretion and passive release from cell lysis. While the holin TcdE has been implicated in TcdA and TcdB release, its role in vivo remains unknown. Here, we show profound reductions in toxin secretion in ΔtcdE mutants in the highly virulent strains UK1 (epidemic ribotype 027, Clade 3) and VPI10463 (ribotype 087, Clade 1). Notably, tcdE deletion in either strain rescued highly susceptible gnotobiotic mice from lethal infection by reducing acute extracellular toxin to undetectable levels, limiting mucosal damage, and enabling long-term survival, in spite of continued toxin gene expression in ΔtcdE mutants. Our findings confirm TcdE's critical functions in vivo for toxin secretion and C. difficile virulence.
Collapse
Affiliation(s)
- N V DiBenedetto
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Oberkampf
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - L Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V Yeliseyev
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Peltier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - B Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| |
Collapse
|
33
|
Hsueh BY, Ferrell MJ, Sanath-Kumar R, Bedore AM, Waters CM. Replication cycle timing determines phage sensitivity to a cytidine deaminase toxin/antitoxin bacterial defense system. PLoS Pathog 2023; 19:e1011195. [PMID: 37683045 PMCID: PMC10511110 DOI: 10.1371/journal.ppat.1011195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/20/2023] [Accepted: 07/21/2023] [Indexed: 09/10/2023] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous two-gene loci that bacteria use to regulate cellular processes such as phage defense. Here, we demonstrate the mechanism by which a novel type III TA system, avcID, is activated and confers resistance to phage infection. The toxin of the system (AvcD) is a deoxycytidylate deaminase that converts deoxycytidines (dC) to dexoyuridines (dU), while the RNA antitoxin (AvcI) inhibits AvcD activity. We have shown that AvcD deaminated dC nucleotides upon phage infection, but the molecular mechanism that activated AvcD was unknown. Here we show that the activation of AvcD arises from phage-induced inhibition of host transcription, leading to degradation of the labile AvcI. AvcD activation and nucleotide depletion not only decreases phage replication but also increases the formation of defective phage virions. Surprisingly, infection of phages such as T7 that are not inhibited by AvcID also lead to AvcI RNA antitoxin degradation and AvcD activation, suggesting that depletion of AvcI is not sufficient to confer protection against some phage. Rather, our results support that phage with a longer replication cycle like T5 are sensitive to AvcID-mediated protection while those with a shorter replication cycle like T7 are resistant.
Collapse
Affiliation(s)
- Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Micah J. Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Ram Sanath-Kumar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Amber M. Bedore
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
34
|
Shahbazi S, Shivaee A, Nasiri M, Mirshekar M, Sabzi S, Sariani OK. Zinc oxide nanoparticles impact the expression of the genes involved in toxin-antitoxin systems in multidrug-resistant Acinetobacter baumannii. J Basic Microbiol 2023; 63:1007-1015. [PMID: 36086811 DOI: 10.1002/jobm.202200382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
The aim of this study was to investigate the effect of zinc oxide nanoparticles (ZnO-NPs) on the expression of genes involved in toxin-antitoxin (TA) systems in multidrug-resistant (MDR) Acinetobacter baumannii. Seventy clinical isolates of A. baumannii were collected from variuos clinical samples. Antimicrobial susceptibility test was determined by disk diffusion. Type II TA system-related genes including GNAT, XRE-like, hipA, hipB, hicA, hicB were screened using polymerase chain reaction (PCR). ZnO-NPs prepared and characterized by field emission scanning electron microscopy and X-ray diffraction. MIC of ZnO-NPs of A. baumannii isolates was performed using the microdilution method. The expression of type II TA systems-related genes were assessed with and without exposure to ZnO-NPs using real-time PCR. The highest rate of resistance and sensitivity was observed against cefepime (77.14%), and ampicillin/sulbactam (42.85%), respectively. All A. baumannii isolates were considered as MDR. In this study, three TA loci were identified for A. baumannii including GNAT/XRE-like, HicA/HicB, and HipA/HipB and their prevalence was 100%, 42%, and 27.1%, respectively. There was no significant relationship between the prevalence of these systems and the origin of A. baumannii. Our data showed significant correlations between the presence of HicA/HicB system and resistance to ceftazidime, meropenem, imipenem, and cefepime (p < 0.05), and the presence of HipA/HipB system and resistance to ceftazidime, meropenem, imipenem, and cefepime (p < 0.05). In presence of ZnO-NPs, the expression of all studied genes decreased. GNAT and hicB showed the highest and lowest expression changes by 2.4 folds (p < 0.001) and 1.3 folds (p < 0.05), respectively. This study demonstrates the promising potential of nanoparticles to impact the expression of the genes involved in TA Systems. So, the application of ZnO-NPs may be helpful to design target-based strategies towards MDRs pathogens for empowered clinical applications by microbiologists and nanotechnologists.
Collapse
Affiliation(s)
- Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Shivaee
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nasiri
- Department of Genetics, College of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Maryam Mirshekar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sabzi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Omid K Sariani
- Department of Genetics, College of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
35
|
Cersosimo LM, Graham M, Monestier A, Pavao A, Worley JN, Peltier J, Dupuy B, Bry L. Central in vivo mechanisms by which C. difficile's proline reductase drives efficient metabolism, growth, and toxin production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541423. [PMID: 37292778 PMCID: PMC10245720 DOI: 10.1101/2023.05.19.541423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clostridioides difficile (CD) is a sporulating and toxin-producing nosocomial pathogen that opportunistically infects the gut, particularly in patients with depleted microbiota after antibiotic exposure. Metabolically, CD rapidly generates energy and substrates for growth from Stickland fermentations of amino acids, with proline being a preferred reductive substrate. To investigate the in vivo effects of reductive proline metabolism on C. difficile's virulence in an enriched gut nutrient environment, we evaluated wild-type and isogenic ΔprdB strains of ATCC43255 on pathogen behaviors and host outcomes in highly susceptible gnotobiotic mice. Mice infected with the ΔprdB mutant demonstrated extended survival via delayed colonization, growth and toxin production but ultimately succumbed to disease. In vivo transcriptomic analyses demonstrated how the absence of proline reductase activity more broadly disrupted the pathogen's metabolism including failure to recruit oxidative Stickland pathways, ornithine transformations to alanine, and additional pathways generating growth-promoting substrates, contributing to delayed growth, sporulation, and toxin production. Our findings illustrate the central role for proline reductase metabolism to support early stages of C. difficile colonization and subsequent impact on the pathogen's ability to rapidly expand and cause disease.
Collapse
Affiliation(s)
- Laura M. Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Madeline Graham
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Auriane Monestier
- Department of Microbiology, Institut Pasteur, Paris, France
- I2BC, Université Paris-Saclay, Saclay, France
| | - Aidan Pavao
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| | - Jay N. Worley
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
- National Center for Biotechnology Information, NIH, Bethesda, MD, USA
| | | | - Bruno Dupuy
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women’s Hospital, Harvard Medical School. Boston, MA 02115
| |
Collapse
|
36
|
Wetzel D, Rizvi A, Edwards AN, McBride SM. The predicted acetoin dehydrogenase pathway represses sporulation of Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551048. [PMID: 37546766 PMCID: PMC10402147 DOI: 10.1101/2023.07.28.551048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Clostridioides difficile is a major gastrointestinal pathogen that is transmitted as a dormant spore. As an intestinal pathogen, C. difficile must contend with variable environmental conditions, including fluctuations in pH and nutrient availability. Nutrition and pH both influence growth and spore formation, but how pH and nutrition jointly influence sporulation are not known. In this study, we investigated the dual impact of pH and pH-dependent metabolism on C. difficile sporulation. Specifically, we examined the impacts of pH and the metabolite acetoin on C. difficile growth and sporulation. We found that expression of the predicted acetoin dehydrogenase operon, acoRABCL , was pH-dependent and regulated by acetoin. Regulation of the C. difficile aco locus is distinct from other characterized systems and appears to involve a co-transcribed DeoR-family regulator rather than the sigma 54 -dependent activator. In addition, an acoA null mutant produced significantly more spores and initiated sporulation earlier than the parent strain. However, unlike other Firmicutes, growth and culture density of C. difficile was not increased by acetoin availability or disruption of the aco pathway. Together, these results indicate that acetoin, pH, and the aco pathway play important roles in nutritional repression of sporulation in C. difficile , but acetoin metabolism does not support cell growth as a stationary phase energy source. IMPORTANCE Clostridioides difficile, or C. diff , is an anaerobic bacterium that lives within the gut of many mammals and causes infectious diarrhea. C. difficile is able to survive outside of the gut and transmit to new hosts by forming dormant spores. It is known that the pH of the intestine and the nutrients available both affect the growth and sporulation of C. diffiicile, but the specific conditions that result in sporulation in the host are not clear. In this study, we investigated how pH and the metabolite acetoin affect the ability of C. difficile to grow, proliferate, and form spores. We found that a mutant lacking the predicted acetoin metabolism pathway form more spores, but their growth is not impacted. These results show that C. difficile uses acetoin differently than many other species and that acetoin has an important role as an environmental metabolite that influences spore formation.
Collapse
|
37
|
Olaitan AO, Dureja C, Youngblom MA, Topf MA, Shen WJ, Gonzales-Luna AJ, Deshpande A, Hevener KE, Freeman J, Wilcox MH, Palmer KL, Garey KW, Pepperell CS, Hurdle JG. Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile. Nat Commun 2023; 14:4130. [PMID: 37438331 DOI: 10.1038/s41467-023-39429-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
Severe outbreaks and deaths have been linked to the emergence and global spread of fluoroquinolone-resistant Clostridioides difficile over the past two decades. At the same time, metronidazole, a nitro-containing antibiotic, has shown decreasing clinical efficacy in treating C. difficile infection (CDI). Most metronidazole-resistant C. difficile exhibit an unusual resistance phenotype that can only be detected in susceptibility tests using molecularly intact heme. Here, we describe the mechanism underlying this trait. We find that most metronidazole-resistant C. difficile strains carry a T-to-G mutation (which we term PnimBG) in the promoter of gene nimB, resulting in constitutive transcription. Silencing or deleting nimB eliminates metronidazole resistance. NimB is related to Nim proteins that are known to confer resistance to nitroimidazoles. We show that NimB is a heme-dependent flavin enzyme that degrades nitroimidazoles to amines lacking antimicrobial activity. Furthermore, occurrence of the PnimBG mutation is associated with a Thr82Ile substitution in DNA gyrase that confers fluoroquinolone resistance in epidemic strains. Our findings suggest that the pandemic of fluoroquinolone-resistant C. difficile occurring over the past few decades has also been characterized by widespread resistance to metronidazole.
Collapse
Affiliation(s)
- Abiola O Olaitan
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Chetna Dureja
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Madison A Youngblom
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Madeline A Topf
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Wan-Jou Shen
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Aditi Deshpande
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jane Freeman
- Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Kelli L Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA.
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA.
| |
Collapse
|
38
|
Edwards AN, McBride SM. The RgaS-RgaR two-component system promotes Clostridioides difficile sporulation through a small RNA and the Agr1 system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546640. [PMID: 37425791 PMCID: PMC10327067 DOI: 10.1101/2023.06.26.546640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The ability to form a dormant spore is essential for the survival of the anaerobic, gastrointestinal pathogen Clostridioides difficile outside of the mammalian gastrointestinal tract. The initiation of sporulation is governed by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple sporulation factors control Spo0A phosphorylation; however, this regulatory pathway is not well defined in C. difficile. We discovered that RgaS and RgaR, a conserved orphan histidine kinase and orphan response regulator, function together as a cognate two-component regulatory system to directly activate transcription of several genes. One of these targets, agrB1D1, encodes gene products that synthesize and export a small quorum-sensing peptide, AgrD1, which positively influences expression of early sporulation genes. Another target, a small regulatory RNA now known as SrsR, impacts later stages of sporulation through an unknown regulatory mechanism(s). Unlike Agr systems in many organisms, AgrD1 does not activate the RgaS-RgaR two-component system, and thus, is not responsible for autoregulating its own production. Altogether, we demonstrate that C. difficile utilizes a conserved two-component system that is uncoupled from quorum-sensing to promote sporulation through two distinct regulatory pathways.
Collapse
Affiliation(s)
- Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
39
|
Boss L, Kędzierska B. Bacterial Toxin-Antitoxin Systems' Cross-Interactions-Implications for Practical Use in Medicine and Biotechnology. Toxins (Basel) 2023; 15:380. [PMID: 37368681 DOI: 10.3390/toxins15060380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely present in bacterial genomes. They consist of stable toxins and unstable antitoxins that are classified into distinct groups based on their structure and biological activity. TA systems are mostly related to mobile genetic elements and can be easily acquired through horizontal gene transfer. The ubiquity of different homologous and non-homologous TA systems within a single bacterial genome raises questions about their potential cross-interactions. Unspecific cross-talk between toxins and antitoxins of non-cognate modules may unbalance the ratio of the interacting partners and cause an increase in the free toxin level, which can be deleterious to the cell. Moreover, TA systems can be involved in broadly understood molecular networks as transcriptional regulators of other genes' expression or modulators of cellular mRNA stability. In nature, multiple copies of highly similar or identical TA systems are rather infrequent and probably represent a transition stage during evolution to complete insulation or decay of one of them. Nevertheless, several types of cross-interactions have been described in the literature to date. This implies a question of the possibility and consequences of the TA system cross-interactions, especially in the context of the practical application of the TA-based biotechnological and medical strategies, in which such TAs will be used outside their natural context, will be artificially introduced and induced in the new hosts. Thus, in this review, we discuss the prospective challenges of system cross-talks in the safety and effectiveness of TA system usage.
Collapse
Affiliation(s)
- Lidia Boss
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Barbara Kędzierska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| |
Collapse
|
40
|
Obana N, Takada H, Crowe-McAuliffe C, Iwamoto M, Egorov AA, Wu KJY, Chiba S, Murina V, Paternoga H, Tresco BIC, Nomura N, Myers AG, Atkinson G, Wilson DN, Hauryliuk V. Genome-encoded ABCF factors implicated in intrinsic antibiotic resistance in Gram-positive bacteria: VmlR2, Ard1 and CplR. Nucleic Acids Res 2023; 51:4536-4554. [PMID: 36951104 PMCID: PMC10201436 DOI: 10.1093/nar/gkad193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Genome-encoded antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F subfamily (ARE-ABCFs) mediate intrinsic resistance in diverse Gram-positive bacteria. The diversity of chromosomally-encoded ARE-ABCFs is far from being fully experimentally explored. Here we characterise phylogenetically diverse genome-encoded ABCFs from Actinomycetia (Ard1 from Streptomyces capreolus, producer of the nucleoside antibiotic A201A), Bacilli (VmlR2 from soil bacterium Neobacillus vireti) and Clostridia (CplR from Clostridium perfringens, Clostridium sporogenes and Clostridioides difficile). We demonstrate that Ard1 is a narrow spectrum ARE-ABCF that specifically mediates self-resistance against nucleoside antibiotics. The single-particle cryo-EM structure of a VmlR2-ribosome complex allows us to rationalise the resistance spectrum of this ARE-ABCF that is equipped with an unusually long antibiotic resistance determinant (ARD) subdomain. We show that CplR contributes to intrinsic pleuromutilin, lincosamide and streptogramin A resistance in Clostridioides, and demonstrate that C. difficile CplR (CDIF630_02847) synergises with the transposon-encoded 23S ribosomal RNA methyltransferase Erm to grant high levels of antibiotic resistance to the C. difficile 630 clinical isolate. Finally, assisted by uORF4u, our novel tool for detection of upstream open reading frames, we dissect the translational attenuation mechanism that controls the induction of cplR expression upon an antibiotic challenge.
Collapse
Affiliation(s)
- Nozomu Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
| | - Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caillan Crowe-McAuliffe
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Mizuki Iwamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Artyom A Egorov
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kelvin J Y Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | | | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Ben I C Tresco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Nobuhiko Nomura
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Andrew G Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- University of Tartu, Institute of Technology, Tartu, Estonia
- Science for Life Laboratory, Lund, Sweden
| |
Collapse
|
41
|
Millard J, Agius A, Zhang Y, Soucaille P, Minton NP. Exploitation of a Type 1 Toxin-Antitoxin System as an Inducible Counter-Selective Marker for Genome Editing in the Acetogen Eubacterium limosum. Microorganisms 2023; 11:1256. [PMID: 37317230 DOI: 10.3390/microorganisms11051256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Targeted mutations in the anaerobic methylotroph Eubacterium limosum have previously been obtained using CRISPR-based mutagenesis methods. In this study, a RelB-family toxin from Eubacterium callanderi was placed under the control of an anhydrotetracycline-sensitive promoter, forming an inducible counter-selective system. This inducible system was coupled with a non-replicative integrating mutagenesis vector to create precise gene deletions in Eubacterium limosum B2. The genes targeted in this study were those encoding the histidine biosynthesis gene hisI, the methanol methyltransferase and corrinoid protein mtaA and mtaC, and mtcB, encoding an Mttb-family methyltransferase which has previously been shown to demethylate L-carnitine. A targeted deletion within hisI brought about the expected histidine auxotrophy, and deletions of mtaA and mtaC both abolished autotrophic growth on methanol. Deletion of mtcB was shown to abolish the growth of E. limosum on L-carnitine. After an initial selection step to isolate transformant colonies, only a single induction step was required to obtain mutant colonies for the desired targets. The combination of an inducible counter-selective marker and a non-replicating integrative plasmid allows for quick gene editing of E. limosum.
Collapse
Affiliation(s)
- James Millard
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alexander Agius
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Philippe Soucaille
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Institut National des Sciences Appliquées, Toulouse Biotechnology Institute (TBI), Université de Toulouse, 31400 Toulouse, France
| | - Nigel Peter Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
42
|
Pavao A, Girinathan B, Peltier J, Altamirano Silva P, Dupuy B, Muti IH, Malloy C, Cheng LL, Bry L. Elucidating dynamic anaerobe metabolism with HRMAS 13C NMR and genome-scale modeling. Nat Chem Biol 2023; 19:556-564. [PMID: 36894723 PMCID: PMC10154198 DOI: 10.1038/s41589-023-01275-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
Anaerobic microbial metabolism drives critical functions within global ecosystems, host-microbiota interactions, and industrial applications, yet remains ill-defined. Here we advance a versatile approach to elaborate cellular metabolism in obligate anaerobes using the pathogen Clostridioides difficile, an amino acid and carbohydrate-fermenting Clostridia. High-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy of C. difficile, grown with fermentable 13C substrates, informed dynamic flux balance analysis (dFBA) of the pathogen's genome-scale metabolism. Analyses identified dynamic recruitment of oxidative and supporting reductive pathways, with integration of high-flux amino acid and glycolytic metabolism at alanine's biosynthesis to support efficient energy generation, nitrogen handling and biomass generation. Model predictions informed an approach leveraging the sensitivity of 13C NMR spectroscopy to simultaneously track cellular carbon and nitrogen flow from [U-13C]glucose and [15N]leucine, confirming the formation of [13C,15N]alanine. Findings identify metabolic strategies used by C. difficile to support its rapid colonization and expansion in gut ecosystems.
Collapse
Affiliation(s)
- Aidan Pavao
- Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brintha Girinathan
- Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ginkgo Bioworks, The Innovation and Design Building, Boston, MA, USA
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
- Institute for Integrative Biology of the Cell (I2BC), 91198, University of Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pamela Altamirano Silva
- Centre for Investigations in Tropical Diseases, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Isabella H Muti
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig Malloy
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leo L Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Clinical Microbiology Laboratory, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Panwar S, Kumari S, Verma J, Bakshi S, Narendrakumar L, Paul D, Das B. Toxin-linked mobile genetic elements in major enteric bacterial pathogens. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e5. [PMID: 39295911 PMCID: PMC11406385 DOI: 10.1017/gmb.2023.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 12/31/2022] [Accepted: 02/24/2023] [Indexed: 09/21/2024]
Abstract
One of the fascinating outcomes of human microbiome studies adopting multi-omics technology is its ability to decipher millions of microbial encoded functions in the most complex and crowded microbial ecosystem, including the human gastrointestinal (GI) tract without cultivating the microbes. It is well established that several functions that modulate the human metabolism, nutrient assimilation, immunity, infections, disease severity and therapeutic efficacy of drugs are mostly of microbial origins. In addition, these microbial functions are dynamic and can disseminate between microbial taxa residing in the same ecosystem or other microbial ecosystems through horizontal gene transfer. For clinicians and researchers alike, understanding the toxins, virulence factors and drug resistance traits encoded by the microbes associated with the human body is of utmost importance. Nevertheless, when such traits are genetically linked with mobile genetic elements (MGEs) that make them transmissible, it creates an additional burden to public health. This review mainly focuses on the functions of gut commensals and the dynamics and crosstalk between commensal and pathogenic bacteria in the gut. Also, the review summarises the plethora of MGEs linked with virulence genes present in the genomes of various enteric bacterial pathogens, which are transmissible among other pathogens and commensals.
Collapse
Affiliation(s)
- Shruti Panwar
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Shashi Kumari
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyoti Verma
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Susmita Bakshi
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Lekshmi Narendrakumar
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Deepjyoti Paul
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Bhabatosh Das
- Functional Genomics Laboratory, Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
44
|
Malet-Villemagne J, Yucheng L, Evanno L, Denis-Quanquin S, Hugonnet JE, Arthur M, Janoir C, Candela T. Polysaccharide II Surface Anchoring, the Achilles' Heel of Clostridioides difficile. Microbiol Spectr 2023; 11:e0422722. [PMID: 36815772 PMCID: PMC10100865 DOI: 10.1128/spectrum.04227-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Cell wall glycopolymers (CWPGs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. These polymers, pillars for proteins and S-layer, are essential for the bacterial surface setup, could be essential for growth, and, in pathogens, participate most often in virulence. CWGPs are covalently anchored to peptidoglycan by proteins that belong to the LytR-CpsA-PSr (LCP) family. This anchoring, important for growth, was reported as essential for some bacteria such as Bacillus subtilis, but the reason why CWGP anchoring is essential remains unknown. We studied LcpA and LcpB of Clostridioides difficile and showed that they have a redundant activity. To delete both lcp genes, we set up the first conditional-lethal mutant method in C. difficile and showed that polysaccharide II (PSII) anchoring at the bacterial surface is essential for C. difficile survival. In the conditional-lethal mutant, C. difficile morphology was impaired, suggesting that peptidoglycan synthesis was affected. Because Lcp proteins are transferring CWPGs from the C55-undecaprenyl phosphate (also needed in the peptidoglycan synthesis process), we assumed that there was competition between PSII and peptidoglycan synthesis pathways. We confirmed that UDP-MurNAc-pentapeptide precursor was accumulated, showing that peptidoglycan synthesis was blocked. Our results provide an explanation for the essentiality of PSII anchoring in C. difficile and suggest that the essentiality of the anchoring of CWPGs in other bacteria can also be explained by the blocking of peptidoglycan synthesis. To conclude, our results suggest that Lcps are potential new targets to combat C. difficile infection. IMPORTANCE Cell wall glycopolymers (CWGPs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. CWGP anchoring to peptidoglycan is important for growth and virulence. We set up the first conditional-lethal mutant method in Clostridioides difficile to study LcpA and LcpB involved in the anchoring of CWPGs to peptidoglycan. This study offers new tools to reveal the role of essential genes in C. difficile. LcpA and LcpB activity was shown to be essential, suggesting that they are potential new targets to combat C. difficile infection. In this study, we also showed that there is competition between the polysaccharide II synthesis pathway and peptidoglycan synthesis that probably exists in other Gram-positive bacteria. A better understanding of these mechanisms allows us to define the Lcp proteins as a therapeutic target for potential design of novel antibiotics against pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
| | - Liang Yucheng
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Laurent Evanno
- Biomolécules: Conception, Isolement et Synthèse (BioCIS), Université Paris-Saclay, CNRS, Orsay, France
| | | | - Jean-Emmanuel Hugonnet
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Michel Arthur
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Claire Janoir
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
45
|
Hsueh BY, Sanath-Kumar R, Bedore AM, Waters CM. Time to lysis determines phage sensitivity to a cytidine deaminase toxin/antitoxin bacterial defense system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527960. [PMID: 36798279 PMCID: PMC9934689 DOI: 10.1101/2023.02.09.527960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous two-gene loci that bacteria use to regulate cellular processes such as phage defense. Here, we demonstrate the mechanism by which a novel type III TA system, avcID , is activated and confers resistance to phage infection. The toxin of the system (AvcD) is a deoxycytidylate deaminase that converts deoxycytidines (dC) to dexoyuridines (dU), while the RNA antitoxin (AvcI) inhibits AvcD activity. We have shown that AvcD deaminated dC nucleotides upon phage infection, but the molecular mechanism that activated AvcD was unknown. Here we show that the activation of AvcD arises from phage-induced shutoff of host transcription, leading to degradation of the labile AvcI. AvcD activation and nucleotide depletion not only decreases phage replication but also increases the formation of defective phage virions. Surprisingly, infection of phages such as T7 that are not inhibited by AvcID also lead to AvcI RNA antitoxin degradation and AvcD activation, suggesting that depletion of AvcI is not sufficient to confer protection against some phage. Rather, our results support that phage with a longer lysis time like T5 are sensitive to AvcID-mediated protection while those with a shorter lysis time like T7 are resistant. AUTHOR’S SUMMARY Numerous diverse antiphage defense systems have been discovered in the past several years, but the mechanisms of how these systems are activated upon phage infection and why these systems protect against some phage but not others are poorly understood. The AvcID toxin-antitoxin phage defense system depletes nucleotides of the dC pool inside the host upon phage infection. We show that phage inhibition of host cell transcription activates this system by depleting the AvcI inhibitory sRNA, which inhibits production of phage and leads to the formation of defective virions. Additionally, we determined that phage lysis time is a key factor that influences sensitivity to AvcID with faster replicating phage exhibiting resistance to its effects. This study has implications for understanding the factors that influence bacterial host/phage dynamics.
Collapse
Affiliation(s)
- Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA, 48824
| | - Ram Sanath-Kumar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA, 48824
| | - Amber M. Bedore
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA, 48824
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA, 48824
| |
Collapse
|
46
|
Oberkampf M, Hamiot A, Altamirano-Silva P, Bellés-Sancho P, Tremblay YDN, DiBenedetto N, Seifert R, Soutourina O, Bry L, Dupuy B, Peltier J. c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by Clostridioides difficile. Sci Signal 2022; 15:eabn8171. [PMID: 36067333 PMCID: PMC9831359 DOI: 10.1126/scisignal.abn8171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To colonize the host and cause disease, the human enteropathogen Clostridioides difficile must sense, respond, and adapt to the harsh environment of the gastrointestinal tract. We showed that the production and degradation of cyclic diadenosine monophosphate (c-di-AMP) were necessary during different phases of C. difficile growth, environmental adaptation, and infection. The production of this nucleotide second messenger was essential for growth because it controlled the uptake of potassium and also contributed to biofilm formation and cell wall homeostasis, whereas its degradation was required for osmotolerance and resistance to detergents and bile salts. The c-di-AMP binding transcription factor BusR repressed the expression of genes encoding the compatible solute transporter BusAA-AB. Compared with the parental strain, a mutant lacking BusR was more resistant to hyperosmotic and bile salt stresses, whereas a mutant lacking BusAA was more susceptible. A short exposure of C. difficile cells to bile salts decreased intracellular c-di-AMP concentrations, suggesting that changes in membrane properties induce alterations in the intracellular c-di-AMP concentration. A C. difficile strain that could not degrade c-di-AMP failed to persist in a mouse gut colonization model as long as the wild-type strain did. Thus, the production and degradation of c-di-AMP in C. difficile have pleiotropic effects, including the control of osmolyte uptake to confer osmotolerance and bile salt resistance, and its degradation is important for host colonization.
Collapse
Affiliation(s)
- Marine Oberkampf
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Audrey Hamiot
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Paula Bellés-Sancho
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Yannick D. N. Tremblay
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Roland Seifert
- Institute of Pharmacology and Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Clinical Microbiology Laboratory, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bruno Dupuy
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Johann Peltier
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
47
|
Qiu J, Zhai Y, Wei M, Zheng C, Jiao X. Toxin–antitoxin systems: Classification, biological roles, and applications. Microbiol Res 2022; 264:127159. [DOI: 10.1016/j.micres.2022.127159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
|
48
|
Reyes Ruiz LM, King KA, Agosto-Burgos C, Gamez IS, Gadda NC, Garrett EM, Tamayo R. Coordinated modulation of multiple processes through phase variation of a c-di-GMP phosphodiesterase in Clostridioides difficile. PLoS Pathog 2022; 18:e1010677. [PMID: 35789350 PMCID: PMC9286219 DOI: 10.1371/journal.ppat.1010677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/15/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
The opportunistic nosocomial pathogen Clostridioides difficile exhibits phenotypic heterogeneity through phase variation, a stochastic, reversible process that modulates expression. In C. difficile, multiple sequences in the genome undergo inversion through site-specific recombination. Two such loci lie upstream of pdcB and pdcC, which encode phosphodiesterases (PDEs) that degrade the signaling molecule c-di-GMP. Numerous phenotypes are influenced by c-di-GMP in C. difficile including cell and colony morphology, motility, colonization, and virulence. In this study, we aimed to assess whether PdcB phase varies, identify the mechanism of regulation, and determine the effects on intracellular c-di-GMP levels and regulated phenotypes. We found that expression of pdcB is heterogeneous and the orientation of the invertible sequence, or ‘pdcB switch’, determines expression. The pdcB switch contains a promoter that when properly oriented promotes pdcB expression. Expression is augmented by an additional promoter upstream of the pdcB switch. Mutation of nucleotides at the site of recombination resulted in phase-locked strains with significant differences in pdcB expression. Characterization of these mutants showed that the pdcB locked-ON mutant has reduced intracellular c-di-GMP compared to the locked-OFF mutant, consistent with increased and decreased PdcB activity, respectively. These alterations in c-di-GMP had concomitant effects on multiple known c-di-GMP regulated processes, indicating that phase variation of PdcB allows C. difficile to coordinately diversify multiple phenotypes in the population to enhance survival. Phase variation is a mechanism by which many bacteria introduce phenotypic heterogeneity into a population as a bet-hedging strategy to help ensure survival under detrimental conditions. In C. difficile, the intracellular signaling molecule c-di-GMP regulates production of flagella, toxins, adhesins, and other factors that impact virulence. C. difficile encodes multiple c-di-GMP synthases and hydrolases that modulate intracellular c-di-GMPs and control these processes. Here, we show that production of a c-di-GMP hydrolytic enzyme, PdcB, undergoes phase variation in C. difficile. We generated phase-locked mutants unable to phase vary and found that PdcB affects global intracellular c-di-GMP levels, swimming and surface motility, and biofilm formation. These findings suggest that phase variation of PdcB enables C. difficile to coordinately regulate the production multiple factors by generating heterogeneity in intracellular c-di-GMP levels among bacteria in the population.
Collapse
Affiliation(s)
- Leila M. Reyes Ruiz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Kathleen A. King
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Christian Agosto-Burgos
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Isabella S. Gamez
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Nicole C. Gadda
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Elizabeth M. Garrett
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
49
|
LeRoux M, Srikant S, Teodoro GIC, Zhang T, Littlehale ML, Doron S, Badiee M, Leung AKL, Sorek R, Laub MT. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat Microbiol 2022; 7:1028-1040. [PMID: 35725776 PMCID: PMC9250638 DOI: 10.1038/s41564-022-01153-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/18/2022] [Indexed: 01/03/2023]
Abstract
Toxin-antitoxin (TA) systems are broadly distributed, yet poorly conserved, genetic elements whose biological functions are unclear and controversial. Some TA systems may provide bacteria with immunity to infection by their ubiquitous viral predators, bacteriophages. To identify such TA systems, we searched bioinformatically for those frequently encoded near known phage defence genes in bacterial genomes. This search identified homologues of DarTG, a recently discovered family of TA systems whose biological functions and natural activating conditions were unclear. Representatives from two different subfamilies, DarTG1 and DarTG2, strongly protected E. coli MG1655 against different phages. We demonstrate that for each system, infection with either RB69 or T5 phage, respectively, triggers release of the DarT toxin, a DNA ADP-ribosyltransferase, that then modifies viral DNA and prevents replication, thereby blocking the production of mature virions. Further, we isolated phages that have evolved to overcome DarTG defence either through mutations to their DNA polymerase or to an anti-DarT factor, gp61.2, encoded by many T-even phages. Collectively, our results indicate that phage defence may be a common function for TA systems and reveal the mechanism by which DarTG systems inhibit phage infection.
Collapse
Affiliation(s)
- Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sriram Srikant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megan L Littlehale
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Department of Genetic Medicine, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
50
|
Akimova NI, Bekker OB, Danilenko VN. Functional Significance of Mycolicibacterium smegmatis Toxin–Antitoxin Module in Resistance to Antibiotics and Oxidative Stress. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|