1
|
Cleaver A, Luo R, Smith OB, Murphy L, Schwessinger B, Brock J. High-throughput optimisation of protein secretion in yeast via an engineered biosensor. Trends Biotechnol 2025; 43:838-867. [PMID: 39674781 DOI: 10.1016/j.tibtech.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/16/2024]
Abstract
Secretion of high-value proteins and enzymes is fundamental to the synthetic biology economy, allowing continuous fermentation during production and protein purification without cell lysis. Most eukaryotic protein secretion is encoded by an N-terminal signal peptide (SP); however, the strong impact of SP sequence variation on the secretion efficiency of a given protein is not well defined. Despite high natural SP sequence diversity, most recombinant protein secretion systems use only a few well-characterised SPs. Additionally, the selection of promoters and terminators can significantly affect secretion efficiency, yet screening numerous genetic constructs for optimal sequences remains inefficient. Here, we adapted a yeast G-protein-coupled receptor (GPCR) biosensor, to measure the concentration of a peptide tag that is co-secreted with any protein of interest (POI). Thus, protein secretion efficiency can be quantified via induction of a fluorescent reporter that is upregulated downstream of receptor activation. This enabled high-throughput screening of over 6000 combinations of promoters, SPs, and terminators, assembled using one-pot Combinatorial Golden Gate cloning. We demonstrate this biosensor can quickly identify best combinations for secretion and quantify secretion levels. Our results highlight the importance of SP optimisation as an initial step in designing heterologous protein expression strategies, demonstrating the value of high-throughput screening (HTS) approaches for maximising secretion efficiency.
Collapse
Affiliation(s)
- Alexandra Cleaver
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Runpeng Luo
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Oliver B Smith
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Lydia Murphy
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Joseph Brock
- Research School of Biology, Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
2
|
Li J, Duran C, Pogrányi B, Cornish KAS, Cartwright J, Osuna S, Unsworth WP, Grogan G. Divergent Oxidation Reactions of E- and Z-Allylic Primary Alcohols by an Unspecific Peroxygenase. Angew Chem Int Ed Engl 2025; 64:e202422241. [PMID: 39655807 DOI: 10.1002/anie.202422241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Unspecific peroxygenases (UPOs) catalyze the selective oxygenation of organic substrates using only hydrogen peroxide as the external oxidant. The PaDa-I variant of the UPO from Agrocybe aegerita catalyses the oxidation of Z- and E-allylic alcohols with complementary selectivity, giving epoxide and carboxylic acid/aldehyde products respectively. Both reactions can be performed on preparative scale with isolated yields up to 80 %, and the epoxidations proceed with excellent enantioselectivity (>99 % ee). The divergent reactions can also be used to transform E/Z mixtures of allylic alcohols, enabling both product series to be isolated from a single reaction. The utility of the epoxidation method is exemplified in the total synthesis of both enantiomers of the insect pheromone disparlure, including a highly enantioselective gram-scale transformation. These reactions provide further evidence for the potential of UPOs as catalysts for the scalable preparation of important oxygenated intermediates.
Collapse
Affiliation(s)
- Jiacheng Li
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| | - Cristina Duran
- Institut de Química Computacional i Catàlisi and Departament de Química, c/ Maria Aurèlia, Capmany 69, 17003, Girona, Spain
| | - Balázs Pogrányi
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| | - Katy A S Cornish
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
- Department of Biology, University of York, Heslington, YO10 5DD, York, U.K
| | - Jared Cartwright
- Department of Biology, University of York, Heslington, YO10 5DD, York, U.K
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química, c/ Maria Aurèlia, Capmany 69, 17003, Girona, Spain
- ICREA, Pg. Lluís, Companys 23, 08010, Barcelona, Spain
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| |
Collapse
|
3
|
Kong D, Wang L, Yuan Y, Xia W, Liu Z, Shi M, Wu J. Review of key issues and potential strategies in bio-degradation of polyolefins. BIORESOURCE TECHNOLOGY 2024; 414:131557. [PMID: 39357608 DOI: 10.1016/j.biortech.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Polyolefins are the most widely used plastic product and a major contributor to white pollution. Currently, studies on polyolefin degradation systems are mainly focused on microorganisms and some redox enzymes, and there is a serious black-box phenomenon. The use of polyolefin-degrading enzymes is limited because of the small number of enzymes; in addition, the catalytic efficiency of these enzymes is poor and their catalytic mechanism is unclear, which leads to the incomplete degradation of polyolefins to produce microplastics. In this review, three questions are addressed: the generation and degradation of action targets that promote the degradation of polyolefins, the different modes by which enzymes bind substrates and their application scenarios, and possible multienzyme systems in a unified system. This review will be valuable for mining or modifying polyolefin degradation enzymes and constructing polyolefins degradation systems and may provide novel ideas and opportunities for polyolefin degradation.
Collapse
Affiliation(s)
- Demin Kong
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuan Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhanzhi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Meng Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
4
|
Sánchez-Moreno I, Fernandez-Garcia A, Mateljak I, Gomez de Santos P, Hofrichter M, Kellner H, Sanz-Aparicio J, Alcalde M. Structural Insights and Reaction Profile of a New Unspecific Peroxygenase from Marasmius wettsteinii Produced in a Tandem-Yeast Expression System. ACS Chem Biol 2024; 19:2240-2253. [PMID: 39367827 PMCID: PMC11925332 DOI: 10.1021/acschembio.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Fungal unspecific peroxygenases (UPOs) are gaining momentum in synthetic chemistry. Of special interest is the UPO from Marasmius rotula (MroUPO), which shows an exclusive repertoire of oxyfunctionalizations, including the terminal hydroxylation of alkanes, the α-oxidation of fatty acids and the C-C cleavage of corticosteroids. However, the lack of heterologous expression systems to perform directed evolution has impeded its engineering for practical applications. Here, we introduce a close ortholog of MroUPO, a UPO gene from Marasmius wettsteinii (MweUPO-1), that has a similar reaction profile to MroUPO and for which we have set up a directed evolution platform based on tandem-yeast expression. Recombinant MweUPO-1 was produced at high titers in the bioreactor (0.7 g/L) and characterized at the biochemical and atomic levels. The conjunction of soaking crystallographic experiments at a resolution up to 1.6 Å together with the analysis of reaction patterns sheds light on the substrate preferences of this promiscuous biocatalyst.
Collapse
Affiliation(s)
| | - Angela Fernandez-Garcia
- Department
of Crystallography & Structural Biology, Institute of Physical Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
| | - Ivan Mateljak
- EvoEnzyme
S.L., C/Faraday 7, Parque
Científico de Madrid, 28049 Madrid, Spain
| | | | - Martin Hofrichter
- Department
of Bio- and Environmental Sciences TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Harald Kellner
- Department
of Bio- and Environmental Sciences TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Julia Sanz-Aparicio
- Department
of Crystallography & Structural Biology, Institute of Physical Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis,
CSIC, 28049 Madrid, Spain
| |
Collapse
|
5
|
Song JZ, Wang CQ, Yu GS, Sun Z, Wu AH, Chi ZM, Liu GL. Simultaneous production of biosurfactant and extracellular unspecific peroxygenases by Moesziomyces aphidis XM01 enables an efficient strategy for crude oil degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134437. [PMID: 38691934 DOI: 10.1016/j.jhazmat.2024.134437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Crude oil is a hazardous pollutant that poses significant and lasting harm to human health and ecosystems. In this study, Moesziomyces aphidis XM01, a biosurfactant mannosylerythritol lipids (MELs)-producing yeast, was utilized for crude oil degradation. Unlike most microorganisms relying on cytochrome P450, XM01 employed two extracellular unspecific peroxygenases, MaUPO.1 and MaUPO.2, with preference for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes respectively, thus facilitating efficient crude oil degradation. The MELs produced by XM01 exhibited a significant emulsification activity of 65.9% for crude oil and were consequently supplemented in an "exogenous MELs addition" strategy to boost crude oil degradation, resulting in an optimal degradation ratio of 72.3%. Furthermore, a new and simple "pre-MELs production" strategy was implemented, achieving a maximum degradation ratio of 95.9%. During this process, the synergistic up-regulation of MaUPO.1, MaUPO.1 and the key MELs synthesis genes contributed to the efficient degradation of crude oil. Additionally, the phylogenetic and geographic distribution analysis of MaUPO.1 and MaUPO.1 revealed their wide occurrence among fungi in Basidiomycota and Ascomycota, with high transcription levels across global ocean, highlighting their important role in biodegradation of crude oil. In conclusion, M. aphidis XM01 emerges as a novel yeast for efficient and eco-friendly crude oil degradation.
Collapse
Affiliation(s)
- Ji-Zheng Song
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chu-Qi Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guan-Shuo Yu
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhe Sun
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ai-Hua Wu
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhen-Ming Chi
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China
| | - Guang-Lei Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Giorgianni A, Zenone A, Sützl L, Csarman F, Ludwig R. Exploring class III cellobiose dehydrogenase: sequence analysis and optimized recombinant expression. Microb Cell Fact 2024; 23:146. [PMID: 38783303 PMCID: PMC11112829 DOI: 10.1186/s12934-024-02420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Cellobiose dehydrogenase (CDH) is an extracellular fungal oxidoreductase with multiple functions in plant biomass degradation. Its primary function as an auxiliary enzyme of lytic polysaccharide monooxygenase (LPMO) facilitates the efficient depolymerization of cellulose, hemicelluloses and other carbohydrate-based polymers. The synergistic action of CDH and LPMO that supports biomass-degrading hydrolases holds significant promise to harness renewable resources for the production of biofuels, chemicals, and modified materials in an environmentally sustainable manner. While previous phylogenetic analyses have identified four distinct classes of CDHs, only class I and II have been biochemically characterized so far. RESULTS Following a comprehensive database search aimed at identifying CDH sequences belonging to the so far uncharacterized class III for subsequent expression and biochemical characterization, we have curated an extensive compilation of putative CDH amino acid sequences. A sequence similarity network analysis was used to cluster them into the four distinct CDH classes. A total of 1237 sequences encoding putative class III CDHs were extracted from the network and used for phylogenetic analyses. The obtained phylogenetic tree was used to guide the selection of 11 cdhIII genes for recombinant expression in Komagataella phaffii. A small-scale expression screening procedure identified a promising cdhIII gene originating from the plant pathogen Fusarium solani (FsCDH), which was selected for expression optimization by signal peptide shuffling and subsequent production in a 5-L bioreactor. The purified FsCDH exhibits a UV-Vis spectrum and enzymatic activity similar to other characterized CDH classes. CONCLUSION The successful production and functional characterization of FsCDH proved that class III CDHs are catalytical active enzymes resembling the key properties of class I and class II CDHs. A detailed biochemical characterization based on the established expression and purification strategy can provide new insights into the evolutionary process shaping CDHs and leading to their differentiation into the four distinct classes. The findings have the potential to broaden our understanding of the biocatalytic application of CDH and LPMO for the oxidative depolymerization of polysaccharides.
Collapse
Affiliation(s)
- Angela Giorgianni
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Alice Zenone
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Leander Sützl
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Florian Csarman
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria.
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| |
Collapse
|
7
|
Zhao LX, Zou SP, Shen Q, Xue YP, Zheng YG. Enhancing the expression of the unspecific peroxygenase in Komagataella phaffii through a combination strategy. Appl Microbiol Biotechnol 2024; 108:320. [PMID: 38709366 DOI: 10.1007/s00253-024-13166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.
Collapse
Affiliation(s)
- Li-Xiang Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
8
|
Fu X, Lin K, Zhang X, Guo Z, Kang L, Li A. Identification, heterologous expression and characterization of a new unspecific peroxygenase from Marasmius fiardii PR-910. BIORESOUR BIOPROCESS 2024; 11:33. [PMID: 38647936 PMCID: PMC10992195 DOI: 10.1186/s40643-024-00751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Unspecific peroxygenases (UPOs) are glycosylated enzymes that provide an efficient method for oxyfunctionalizing a variety of substrates using only hydrogen peroxide (H2O2) as the oxygen donor. However, their poor heterologous expression has hindered their practical application. Here, a novel UPO from Marasmius fiardii PR910 (MfiUPO) was identified and heterologously expressed in Pichia pastoris. By employing a two-copy expression cassette, the protein titer reached 1.18 g L-1 in a 5 L bioreactor, marking the highest record. The glycoprotein rMfiUPO exhibited a smeared band in the 40 to 55 kDa range and demonstrated hydroxylation, epoxidation and alcohol oxidation. Moreover, the peroxidative activity was enhanced by 150% after exposure to 50% (v/v) acetone for 40 h. A semi-preparative production of 4-OH-β-ionone on a 100 mL scale resulted in a 54.2% isolated yield with 95% purity. With its high expression level, rMfiUPO is a promising candidate as an excellent parental template for enhancing desirable traits such as increased stability and selectivity through directed evolution, thereby meeting the necessary criteria for practical application.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Kexin Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Zhiyong Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Lixin Kang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China.
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
9
|
Schmitz F, Röder A, Hoffrogge M, Urlacher VB, Koschorreck K. Agar plate-based activity assay for easy and fast screening of recombinant Pichia pastoris expressing unspecific peroxygenases. Biotechnol J 2024; 19:e2300421. [PMID: 38044796 DOI: 10.1002/biot.202300421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Unspecific peroxygenases (UPOs) are promising biocatalysts that catalyze oxyfunctionalization reactions without the need for costly cofactors. Pichia pastoris (reclassified as Komagataella phaffii) is considered an attractive host for heterologous expression of UPOs. However, integration of UPO-expression cassettes into the genome via a single cross-over yields recombinant Pichia transformants with different UPO gene copy numbers resulting in different expression levels. Selection of the most productive Pichia transformants by a commonly used screening in liquid medium in 96-well plates is laborious and lasts up to 5 days. In this work, we developed a simple two-step agar plate-based assay to screen P. pastoris transformants for UPO activity with less effort, within shorter time, and without automated screening devices. After cell growth and protein expression on agar plates supplemented with methanol and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), an additional top agar layer supplemented with ABTS and peroxide is added. UPO activity is visualized within 15 min by formation of green zones around UPO-secreting P. pastoris transformants. The assay was validated with two UPOs, AbrUPO from Aspergillus brasiliensis and evolved PaDa-I from Agrocybe aegerita. The assay results were confirmed in a quantitative 96-deep well plate screening in liquid medium.
Collapse
Affiliation(s)
- Fabian Schmitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Annika Röder
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Maike Hoffrogge
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| |
Collapse
|
10
|
Qin X, Jiang Y, Yao F, Chen J, Kong F, Zhao P, Jin L, Cong Z. Anchoring a Structurally Editable Proximal Cofactor-like Module to Construct an Artificial Dual-center Peroxygenase. Angew Chem Int Ed Engl 2023; 62:e202311259. [PMID: 37713467 DOI: 10.1002/anie.202311259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
A recent novel strategy for constructing artificial metalloenzymes (ArMs) that target new-to-nature functions uses dual-functional small molecules (DFSMs) with catalytic and anchoring groups for converting P450BM3 monooxygenase into a peroxygenase. However, this process requires excess DFSMs (1000 equivalent of P450) owing to their low binding affinity for P450, thus severely limiting its practical application. Herein, structural optimization of the DFSM-anchoring group considerably enhanced their binding affinity by three orders of magnitude (Kd ≈10-8 M), thus approximating native cofactors, such as FMN or FAD in flavoenzymes. An artificial cofactor-driven peroxygenase was thus constructed. The co-crystal structure of P450BM3 bound to a DFSM clearly revealed a precatalytic state in which the DFSM participates in H2 O2 activation, thus facilitating peroxygenase activity. Moreover, the increased binding affinity substantially decreases the DFSM load to as low as 2 equivalents of P450, while maintaining increased activity. Furthermore, replacement of catalytic groups showed disparate selectivity and activity for various substrates. This study provides an unprecedented approach for assembling ArMs by binding editable organic cofactors as a co-catalytic center, thereby increasing the catalytic promiscuity of P450 enzymes.
Collapse
Affiliation(s)
- Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Fuquan Yao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| | - Fanhui Kong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Panxia Zhao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Longyi Jin
- Department of Chemistry, Yanbian University, Yanji, 133002, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, 266101, China
| |
Collapse
|
11
|
Li H, Zhang Y, Huang Y, Duan P, Ge R, Han X, Zhang W. A Simple Access to γ- and ε-Keto Arenes via Enzymatic Divergent C─H Bond Oxyfunctionalization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304605. [PMID: 37870171 PMCID: PMC10700168 DOI: 10.1002/advs.202304605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Performing divergent C─H bond functionalization on molecules with multiple reaction sites is a significant challenge in organic chemistry. Biocatalytic oxyfunctionalization reactions of these compounds to the corresponding ketones/aldehydes are typically hindered by selectivity issues. To address these challenges, the catalytic performance of oxidoreductases is explored. The results show that combining the peroxygenase-catalyzed propargylic C─H bond oxidation with the Old Yellow Enzyme-catalyzed reduction of conjugated C─C triple bonds in one-pot enables the regio- and chemoselective oxyfunctionalization of sp3 C─H bonds that are distant from benzylic sites. This enzymatic approach yielded a variety of γ-keto arenes with diverse structural and electronic properties in yields of up to 99% and regioselectivity of 100%, which are difficult to achieve using other chemocatalysis and enzymes. By adjusting the C─C triple bond, the carbonyl group's position can be further tuned to yield ε-keto arenes. This enzymatic approach can be combined with other biocatalysts to establish new synthetic pathways for accessing various challenging divergent C─H bond functionalization reactions.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yalan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Peigao Duan
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Ran Ge
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Xiaofeng Han
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
- National Innovation Center for Synthetic Biotechnology32 West 7th AvenueTianjin300308China
| |
Collapse
|
12
|
Swoboda A, Pfeifenberger LJ, Duhović Z, Bürgler M, Oroz-Guinea I, Bangert K, Weißensteiner F, Parigger L, Ebner K, Glieder A, Kroutil W. Enantioselective High-Throughput Assay Showcased for the Identification of (R)- as well as (S)-Selective Unspecific Peroxygenases for C-H Oxidation. Angew Chem Int Ed Engl 2023; 62:e202312721. [PMID: 37743348 DOI: 10.1002/anie.202312721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Identifying (bio)catalysts displaying high enantio-/stereoselectivity is a fundamental prerequisite for the advancement of asymmetric catalysis. Herein, a high-throughput, stereoselective screening assay is reported that gives information on enantioselectivity, stereopreference and activity as showcased for peroxygenase-catalyzed hydroxylation. The assay is based on spectrophotometric analysis of the simultaneous formation of NAD(P)H from the alcohol dehydrogenase catalyzed enantioselective oxidation of the sec-alcohol product formed in the peroxygenase reaction. The assay was applied to investigate a library comprising 44 unspecific peroxygenases (UPOs) containing 25 UPOs not reported yet. Thereby, previously non-described wild-type UPOs displaying (S)- as well as (R)-stereoselectivity for the hydroxylation of representative model substrates were identified, reaching up to 98 % ee for the (R)- and 94 % ee for the (S)-enantiomer. Homology models with concomitant docking studies indicated the structural reason for the observed complementary stereopreference.
Collapse
Affiliation(s)
- Alexander Swoboda
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Lukas Johannes Pfeifenberger
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Zerina Duhović
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Moritz Bürgler
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Isabel Oroz-Guinea
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Klara Bangert
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | | | - Lena Parigger
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Katharina Ebner
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Anton Glieder
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Wolfgang Kroutil
- Austrian Center of Industrial Biotechnology (ACIB GmbH) c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria
| |
Collapse
|
13
|
Dietz N, Wan L, Münch J, Weissenborn MJ. Secretion and directed evolution of unspecific peroxygenases in S. cerevisiae. Methods Enzymol 2023; 693:267-306. [PMID: 37977733 DOI: 10.1016/bs.mie.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Yeast-based secretion systems are advantageous for engineering highly interesting enzymes that are not or barely producible in E. coli. The herein-presented production setup facilitates high-throughput screening as no cell lysis is required. All techniques are described in detail, with access to freely available online tools and all vectors have been made available on the non-profit plasmid repository AddGene. We describe the method for UPOs as a model enzyme, showcasing their secretion, detection, and evolution using S. cerevisiae. Additional material to transfer this to P. pastoris has been published by our group previously (Püllmann & Weissenborn, 2021).
Collapse
Affiliation(s)
- Niklas Dietz
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany
| | - Li Wan
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany
| | - Judith Münch
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany
| | - Martin J Weissenborn
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany.
| |
Collapse
|
14
|
Püllmann P, Homann D, Karl TA, König B, Weissenborn MJ. Light-Controlled Biocatalysis by Unspecific Peroxygenases with Genetically Encoded Photosensitizers. Angew Chem Int Ed Engl 2023; 62:e202307897. [PMID: 37597259 DOI: 10.1002/anie.202307897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Fungal unspecific peroxygenases (UPOs) have gained substantial attention for their versatile oxyfunctionalization chemistry paired with impressive catalytic capabilities. A major drawback, however, remains their sensitivity towards their co-substrate hydrogen peroxide, necessitating the use of smart in situ hydrogen peroxide generation methods to enable efficient catalysis setups. Herein, we introduce flavin-containing protein photosensitizers as a new general tool for light-controlled in situ hydrogen peroxide production. By genetically fusing flavin binding fluorescent proteins and UPOs, we have created two virtually self-sufficient photo-enzymes (PhotUPO). Subsequent testing of a versatile substrate panel with the two divergent PhotUPOs revealed two stereoselective conversions. The catalytic performance of the fusion protein was optimized through enzyme and substrate loading variation, enabling up to 24300 turnover numbers (TONs) for the sulfoxidation of methyl phenyl sulfide. The PhotUPO concept was upscaled to a 100 mg substrate preparative scale, enabling the extraction of enantiomerically pure alcohol products.
Collapse
Affiliation(s)
- Pascal Püllmann
- Research Group Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Present address: Molecular Design and Engineering, Bayer AG, Aprather Weg 18 A, 42113, Wuppertal, Germany
| | - Dominik Homann
- Research Group Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Tobias A Karl
- Institute for Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Burkhard König
- Institute for Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Martin J Weissenborn
- Research Group Bioorganic Chemistry, Leibniz Institute for Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| |
Collapse
|
15
|
Zhao X, Yu H, Liang Q, Zhou J, Li J, Du G, Chen J. Stepwise Optimization of Inducible Expression System for the Functional Secretion of Horseradish Peroxidase in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4059-4068. [PMID: 36821527 DOI: 10.1021/acs.jafc.2c09117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Horseradish peroxidase (HRP) is a plant-derived glycoprotein that can be developed as a food additive to cross-link proteins or biopolymers. Although Saccharomyces cerevisiae has advantages in the production of food-grade HRP, the low expressional level and inefficient secretion hindered its application values. After comparing the effects of constitutive and inducible expression on cell growth, the strength of HRP expression was roughly tuned by replacing core regions of the promoter in the GAL80-knockout strain and further finely tuned by terminator screening. Additionally, the most suitable signal peptide was selected, and the pre-peptide with pro-peptides was modified to balance the transport of HRP in the endoplasmic reticulum. The extracellular HRP activity of the best strain reached 13 506 U/L at the fermenter level, 330-fold higher than the previous result of 41 U/L in S. cerevisiae. The strategy can be applied to alleviate the inhibition of cell growth caused by the expression of toxic proteins and improve their secretion.
Collapse
Affiliation(s)
- Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Haibo Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qingfeng Liang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Discovery and Heterologous Expression of Unspecific Peroxygenases. Catalysts 2023. [DOI: 10.3390/catal13010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Since 2004, unspecific peroxygenases, in short UPOs (EC. 1.11.2.1), have been explored. UPOs are closing a gap between P450 monooxygenases and chloroperoxidases. These enzymes are highly active biocatalysts for the selective oxyfunctionalisation of C–H, C=C and C-C bonds. UPOs are secreted fungal proteins and Komagataella phaffii (Pichia pastoris) is an ideal host for high throughput screening approaches and UPO production. Heterologous overexpression of 26 new UPOs by K. phaffii was performed in deep well plate cultivation and shake flask cultivation up to 50 mL volume. Enzymes were screened using colorimetric assays with 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (DMP), naphthalene and 5-nitro-1,3-benzodioxole (NBD) as reporter substrates. The PaDa-I (AaeUPO mutant) and HspUPO were used as benchmarks to find interesting new enzymes with complementary activity profiles as well as good producing strains. Herein we show that six UPOs from Psathyrella aberdarensis, Coprinopsis marcescibilis, Aspergillus novoparasiticus, Dendrothele bispora and Aspergillus brasiliensis are particularly active.
Collapse
|
17
|
Robinson WXQ, Mielke T, Melling B, Cuetos A, Parkin A, Unsworth WP, Cartwright J, Grogan G. Comparing the Catalytic and Structural Characteristics of a 'Short' Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli. Chembiochem 2023; 24:e202200558. [PMID: 36374006 PMCID: PMC10098773 DOI: 10.1002/cbic.202200558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Unspecific peroxygenases (UPOs) have emerged as valuable tools for the oxygenation of non-activated carbon atoms, as they exhibit high turnovers, good stability and depend only on hydrogen peroxide as the external oxidant for activity. However, the isolation of UPOs from their natural fungal sources remains a barrier to wider application. We have cloned the gene encoding an 'artificial' peroxygenase (artUPO), close in sequence to the 'short' UPO from Marasmius rotula (MroUPO), and expressed it in both the yeast Pichia pastoris and E. coli to compare the catalytic and structural characteristics of the enzymes produced in each system. Catalytic efficiency for the UPO substrate 5-nitro-1,3-benzodioxole (NBD) was largely the same for both enzymes, and the structures also revealed few differences apart from the expected glycosylation of the yeast enzyme. However, the glycosylated enzyme displayed greater stability, as determined by nano differential scanning fluorimetry (nano-DSF) measurements. Interestingly, while artUPO hydroxylated ethylbenzene derivatives to give the (R)-alcohols, also given by a variant of the 'long' UPO from Agrocybe aegerita (AaeUPO), it gave the opposite (S)-series of sulfoxide products from a range of sulfide substrates, broadening the scope for application of the enzymes. The structures of artUPO reveal substantial differences to that of AaeUPO, and provide a platform for investigating the distinctive activity of this and related'short' UPOs.
Collapse
Affiliation(s)
- Wendy X. Q. Robinson
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Tamara Mielke
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Benjamin Melling
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Anibal Cuetos
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Alison Parkin
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - William P. Unsworth
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | | | - Gideon Grogan
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
18
|
Walter RM, Zemella A, Schramm M, Kiebist J, Kubick S. Vesicle-based cell-free synthesis of short and long unspecific peroxygenases. Front Bioeng Biotechnol 2022; 10:964396. [PMID: 36394036 PMCID: PMC9663805 DOI: 10.3389/fbioe.2022.964396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Unspecific peroxygenases (UPOs, EC 1.11.2.1) are fungal enzymes that catalyze the oxyfunctionalization of non-activated hydrocarbons, making them valuable biocatalysts. Despite the increasing interest in UPOs that has led to the identification of thousands of putative UPO genes, only a few of these have been successfully expressed and characterized. There is currently no universal expression system in place to explore their full potential. Cell-free protein synthesis has proven to be a sophisticated technique for the synthesis of difficult-to-express proteins. In this work, we aimed to establish an insect-based cell-free protein synthesis (CFPS) platform to produce UPOs. CFPS relies on translationally active cell lysates rather than living cells. The system parameters can thus be directly manipulated without having to account for cell viability, thereby making it highly adaptable. The insect-based lysate contains translocationally active, ER-derived vesicles, called microsomes. These microsomes have been shown to allow efficient translocation of proteins into their lumen, promoting post-translational modifications such as disulfide bridge formation and N-glycosylations. In this study the ability of a redox optimized, vesicle-based, eukaryotic CFPS system to synthesize functional UPOs was explored. The influence of different reaction parameters as well as the influence of translocation on enzyme activity was evaluated for a short UPO from Marasmius rotula and a long UPO from Agrocybe aegerita. The capability of the CFPS system described here was demonstrated by the successful synthesis of a novel UPO from Podospora anserina, thus qualifying CFPS as a promising tool for the identification and evaluation of novel UPOs and variants thereof.
Collapse
Affiliation(s)
- Ruben Magnus Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Marina Schramm
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jan Kiebist
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry – Biochemistry, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Potsdam, Germany
| |
Collapse
|
19
|
Ma Y, Liang H, Zhao Z, Wu B, Lan D, Hollmann F, Wang Y. A Novel Unspecific Peroxygenase from Galatian marginata for Biocatalytic Oxyfunctionalization Reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Malcı K, Watts E, Roberts TM, Auxillos JY, Nowrouzi B, Boll HO, Nascimento CZSD, Andreou A, Vegh P, Donovan S, Fragkoudis R, Panke S, Wallace E, Elfick A, Rios-Solis L. Standardization of Synthetic Biology Tools and Assembly Methods for Saccharomyces cerevisiae and Emerging Yeast Species. ACS Synth Biol 2022; 11:2527-2547. [PMID: 35939789 PMCID: PMC9396660 DOI: 10.1021/acssynbio.1c00442] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
As redesigning organisms using engineering principles
is one of
the purposes of synthetic biology (SynBio), the standardization of
experimental methods and DNA parts is becoming increasingly a necessity.
The synthetic biology community focusing on the engineering of Saccharomyces cerevisiae has been in the foreground in this
area, conceiving several well-characterized SynBio toolkits widely
adopted by the community. In this review, the molecular methods and
toolkits developed for S. cerevisiae are discussed
in terms of their contributions to the required standardization efforts.
In addition, the toolkits designed for emerging nonconventional yeast
species including Yarrowia lipolytica, Komagataella
phaffii, and Kluyveromyces marxianus are
also reviewed. Without a doubt, the characterized DNA parts combined
with the standardized assembly strategies highlighted in these toolkits
have greatly contributed to the rapid development of many metabolic
engineering and diagnostics applications among others. Despite the
growing capacity in deploying synthetic biology for common yeast genome
engineering works, the yeast community has a long journey to go to
exploit it in more sophisticated and delicate applications like bioautomation.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Emma Watts
- School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3JW Edinburgh, United Kingdom
| | | | - Jamie Yam Auxillos
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Heloísa Oss Boll
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Federal District 70910-900, Brazil
| | | | - Andreas Andreou
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Peter Vegh
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sophie Donovan
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Rennos Fragkoudis
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Edward Wallace
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
21
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
22
|
Néron S, Morency M, Chen L, Maris T, Rochefort D, Iftimie R, Wuest JD. Diphenoquinones Redux. J Org Chem 2022; 87:7673-7695. [PMID: 35667025 DOI: 10.1021/acs.joc.2c00260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzoquinones can undergo reversible reductions and are attractive candidates for use as active materials in green carbon-based batteries. Related compounds of potential utility include 4,4'-diphenoquinones, which have extended quinonoid structures with two carbonyl groups in different rings. Diphenoquinones are a poorly explored class of compounds, but a wide variety can be synthesized, isolated, crystallized, and fully characterized. Experimental and computational approaches have established that typical 4,4'-diphenoquinones have nearly planar cores in which two cyclohexadienone rings are joined by an unusually long interannular C═C bond. Derivatives unsubstituted at the 3,3',5,5'-positions react readily by hydration, dimerization, and other processes. Association of diphenoquinones in the solid state normally produces chains or sheets held together by multiple C-H···O interactions, giving structures that differ markedly from those of the corresponding 4,4'-dihydroxybiphenyls. Electrochemical studies in solution and in the solid state show that diphenoquinones are reduced rapidly and reversibly at potentials higher than those of analogous benzoquinones. Together, these results help bring diphenoquinones into the mainstream of modern chemistry and provide a foundation for developing redox-active derivatives for use in carbon-based electrochemical devices.
Collapse
Affiliation(s)
- Sébastien Néron
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Mathieu Morency
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Liguo Chen
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Thierry Maris
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Dominic Rochefort
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Radu Iftimie
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - James D Wuest
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
23
|
Mahor D, Cong Z, Weissenborn MJ, Hollmann F, Zhang W. Valorization of Small Alkanes by Biocatalytic Oxyfunctionalization. CHEMSUSCHEM 2022; 15:e202101116. [PMID: 34288540 DOI: 10.1002/cssc.202101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of alkanes into valuable chemical products is a vital reaction in organic synthesis. This reaction, however, is challenging, owing to the inertness of C-H bonds. Transition metal catalysts for C-H functionalization are frequently explored. Despite chemical alternatives, nature has also evolved powerful oxidative enzymes (e. g., methane monooxygenases, cytochrome P450 oxygenases, peroxygenases) that are capable of transforming C-H bonds under very mild conditions, with only the use of molecular oxygen or hydrogen peroxide as electron acceptors. Although progress in alkane oxidation has been reviewed extensively, little attention has been paid to small alkane oxidation. The latter holds great potential for the manufacture of chemicals. This Minireview provides a concise overview of the most relevant enzyme classes capable of small alkanes (C<6 ) oxyfunctionalization, describes the essentials of the catalytic mechanisms, and critically outlines the current state-of-the-art in preparative applications.
Collapse
Affiliation(s)
- Durga Mahor
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Indian Institute of Science Education and Research Berhampur, Odisha, 760010, India
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Martin J Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale), Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Wuyuan Zhang
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
24
|
Structural Characterization of Two Short Unspecific Peroxygenases: Two Different Dimeric Arrangements. Antioxidants (Basel) 2022; 11:antiox11050891. [PMID: 35624755 PMCID: PMC9137552 DOI: 10.3390/antiox11050891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are extracellular fungal enzymes of biotechnological interest as self-sufficient (and more stable) counterparts of cytochrome P450 monooxygenases, the latter being present in most living cells. Expression hosts and structural information are crucial for exploiting UPO diversity (over eight thousand UPO-type genes were identified in sequenced genomes) in target reactions of industrial interest. However, while many thousands of entries in the Protein Data Bank include molecular coordinates of P450 enzymes, only 19 entries correspond to UPO enzymes, and UPO structures from only two species (Agrocybe aegerita and Hypoxylon sp.) have been published to date. In the present study, two UPOs from the basidiomycete Marasmius rotula (rMroUPO) and the ascomycete Collariella virescens (rCviUPO) were crystallized after sequence optimization and Escherichia coli expression as active soluble enzymes. Crystals of rMroUPO and rCviUPO were obtained at sufficiently high resolution (1.45 and 1.95 Å, respectively) and the corresponding structures were solved by molecular replacement. The crystal structures of the two enzymes (and two mutated variants) showed dimeric proteins. Complementary biophysical and molecular biology studies unveiled the diverse structural bases of the dimeric nature of the two enzymes. Intermolecular disulfide bridge and parallel association between two α-helices, among other interactions, were identified at the dimer interfaces. Interestingly, one of the rCviUPO variants incorporated the ability to produce fatty acid diepoxides—reactive compounds with valuable cross-linking capabilities—due to removal of the enzyme C-terminal tail located near the entrance of the heme access channel. In conclusion, different dimeric arrangements could be described in (short) UPO crystal structures.
Collapse
|
25
|
Surfing the wave of oxyfunctionalization chemistry by engineering fungal unspecific peroxygenases. Curr Opin Struct Biol 2022; 73:102342. [PMID: 35240455 DOI: 10.1016/j.sbi.2022.102342] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 11/20/2022]
Abstract
The selective insertion of oxygen into non-activated organic molecules has to date been considered of utmost importance to synthesize existing and next generation industrial chemicals or pharmaceuticals. In this respect, the minimal requirements and high activity of fungal unspecific peroxygenases (UPOs) situate them as the jewel in the crown of C-H oxyfunctionalization biocatalysts. Although their limited availability and development has hindered their incorporation into industry, the conjunction of directed evolution and computational design is approaching UPOs to practical applications. In this review, we will address the most recent advances in UPO engineering, both of the long and short UPO families, while discussing the future prospects in this fast-moving field of research.
Collapse
|
26
|
Jankowski N, Koschorreck K. Agar plate assay for rapid screening of aryl-alcohol oxidase mutant libraries in Pichia pastoris. J Biotechnol 2022; 346:47-51. [PMID: 35122934 DOI: 10.1016/j.jbiotec.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 11/16/2022]
Abstract
Directed evolution is a powerful tool for developing biocatalysts with tailor-made properties for biocatalytic applications. High-throughput activity screening of large mutant libraries generated by e.g. means of directed evolution is usually performed in 96-well microtiter plates requiring, however, time-consuming and laborious enzyme expression, cell harvesting and activity measurements. In addition, automated liquid handling systems are needed to cope with the high number of colonies to be screened. Herein, we developed an agar plate-based assay for simple and fast screening of H2O2-producing aryl-alcohol oxidase (AAO) mutant libraries in Pichia pastoris. Buffered minimal methanol agar plates were supplemented with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), horseradish peroxidase (HRP) and the target substrate. AAO activity is visualized by formation of green zones around AAO-secreting P. pastoris colonies due to ABTS oxidation by HRP which is fueled with H2O2 by AAO in course of substrate oxidation. Colonies were screened within 24h for AAO activity using different AAO substrates like veratryl alcohol, p-anisyl alcohol or trans,trans-2,4-hexadien-1-ol and even low AAO activity towards 5-hydroxymethylfurfural could be detected within 48h. The developed agar plate-based assay can be extended to other substrates and might also be applied for fast and substrate-specific screening of other H2O2-producing oxidases in P. pastoris.
Collapse
Affiliation(s)
- Nina Jankowski
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
27
|
Cell-Free Protein Synthesis with Fungal Lysates for the Rapid Production of Unspecific Peroxygenases. Antioxidants (Basel) 2022; 11:antiox11020284. [PMID: 35204167 PMCID: PMC8868270 DOI: 10.3390/antiox11020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Unspecific peroxygenases (UPOs, EC 1.11.2.1) are fungal biocatalysts that have attracted considerable interest for application in chemical syntheses due to their ability to selectively incorporate peroxide-oxygen into non-activated hydrocarbons. However, the number of available and characterized UPOs is limited, as it is difficult to produce these enzymes in homologous or hetero-logous expression systems. In the present study, we introduce a third approach for the expression of UPOs: cell-free protein synthesis using lysates from filamentous fungi. Biomass of Neurospora crassa and Aspergillus niger, respectively, was lysed by French press and tested for translational activity with a luciferase reporter enzyme. The upo1 gene from Cyclocybe (Agrocybe) aegerita (encoding the main peroxygenase, AaeUPO) was cell-free expressed with both lysates, reaching activities of up to 105 U L−1 within 24 h (measured with veratryl alcohol as substrate). The cell-free expressed enzyme (cfAaeUPO) was successfully tested in a substrate screening that included prototypical UPO substrates, as well as several pharmaceuticals. The determined activities and catalytic performance were comparable to that of the wild-type enzyme (wtAaeUPO). The results presented here suggest that cell-free expression could become a valuable tool to gain easier access to the immense pool of putative UPO genes and to expand the spectrum of these sought-after biocatalysts.
Collapse
|
28
|
Hofrichter M, Kellner H, Herzog R, Karich A, Kiebist J, Scheibner K, Ullrich R. Peroxide-Mediated Oxygenation of Organic Compounds by Fungal Peroxygenases. Antioxidants (Basel) 2022; 11:163. [PMID: 35052667 PMCID: PMC8772875 DOI: 10.3390/antiox11010163] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
Unspecific peroxygenases (UPOs), whose sequences can be found in the genomes of thousands of filamentous fungi, many yeasts and certain fungus-like protists, are fascinating biocatalysts that transfer peroxide-borne oxygen (from H2O2 or R-OOH) with high efficiency to a wide range of organic substrates, including less or unactivated carbons and heteroatoms. A twice-proline-flanked cysteine (PCP motif) typically ligates the heme that forms the heart of the active site of UPOs and enables various types of relevant oxygenation reactions (hydroxylation, epoxidation, subsequent dealkylations, deacylation, or aromatization) together with less specific one-electron oxidations (e.g., phenoxy radical formation). In consequence, the substrate portfolio of a UPO enzyme always combines prototypical monooxygenase and peroxidase activities. Here, we briefly review nearly 20 years of peroxygenase research, considering basic mechanistic, molecular, phylogenetic, and biotechnological aspects.
Collapse
Affiliation(s)
- Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Robert Herzog
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Alexander Karich
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Jan Kiebist
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; (J.K.); (K.S.)
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| | - Katrin Scheibner
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; (J.K.); (K.S.)
| | - René Ullrich
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| |
Collapse
|
29
|
Regioselective and Stereoselective Epoxidation of n-3 and n-6 Fatty Acids by Fungal Peroxygenases. Antioxidants (Basel) 2021; 10:antiox10121888. [PMID: 34942990 PMCID: PMC8698580 DOI: 10.3390/antiox10121888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Epoxide metabolites from n-3 and n-6 polyunsaturated fatty acids arouse interest thanks to their physiological and pharmacological activities. Their chemical synthesis has significant drawbacks, and enzymes emerge as an alternative with potentially higher selectivity and greener nature. Conversion of eleven eicosanoid, docosanoid, and other n-3/n-6 fatty acids into mono-epoxides by fungal unspecific peroxygenases (UPOs) is investigated, with emphasis on the Agrocybe aegerita (AaeUPO) and Collariella virescens (rCviUPO) enzymes. GC-MS revealed the strict regioselectivity of the n-3 and n-6 reactions with AaeUPO and rCviUPO, respectively, yielding 91%-quantitative conversion into mono-epoxides at the last double bond. Then, six of these mono-epoxides were obtained at mg-scale, purified and further structurally characterized by 1H, 13C and HMBC NMR. Moreover, chiral HPLC showed that the n-3 epoxides were also formed (by AaeUPO) with total S/R enantioselectivity (ee > 99%) while the n-6 epoxides (from rCviUPO reactions) were formed in nearly racemic mixtures. The high regio- and enantioselectivity of several of these reactions unveils the synthetic utility of fungal peroxygenases in fatty acid epoxidation.
Collapse
|
30
|
Grogan G. Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions. JACS AU 2021; 1:1312-1329. [PMID: 34604841 PMCID: PMC8479775 DOI: 10.1021/jacsau.1c00251] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/15/2023]
Abstract
The selective oxygenation of nonactivated carbon atoms is an ongoing synthetic challenge, and biocatalysts, particularly hemoprotein oxygenases, continue to be investigated for their potential, given both their sustainable chemistry credentials and also their superior selectivity. However, issues of stability, activity, and complex reaction requirements often render these biocatalytic oxygenations problematic with respect to scalable industrial processes. A continuing focus on Cytochromes P450 (P450s), which require a reduced nicotinamide cofactor and redox protein partners for electron transport, has now led to better catalysts and processes with a greater understanding of process requirements and limitations for both in vitro and whole-cell systems. However, the discovery and development of unspecific peroxygenases (UPOs) has also recently provided valuable complementary technology to P450-catalyzed reactions. UPOs need only hydrogen peroxide to effect oxygenations but are hampered by their sensitivity to peroxide and also by limited selectivity. In this Perspective, we survey recent developments in the engineering of proteins, cells, and processes for oxygenations by these two groups of hemoproteins and evaluate their potential and relative merits for scalable reactions.
Collapse
|
31
|
Rotilio L, Swoboda A, Ebner K, Rinnofner C, Glieder A, Kroutil W, Mattevi A. Structural and biochemical studies enlighten the unspecific peroxygenase from Hypoxylon sp. EC38 as an efficient oxidative biocatalyst. ACS Catal 2021; 11:11511-11525. [PMID: 34540338 DOI: 10.1021/acscatal.1c03065] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unspecific peroxygenases (UPO) are glycosylated fungal enzymes that can selectively oxidize C-H bonds. UPOs employ hydrogen peroxide as oxygen donor and reductant. With such an easy-to-handle co-substrate and without the need of a reducing agent, UPOs are emerging as convenient oxidative biocatalysts. Here, an unspecific peroxygenase from Hypoxylon sp. EC38 (HspUPO) was identified in an activity-based screen of six putative peroxygenase enzymes that were heterologously expressed in Pichia pastoris. The enzyme was found to tolerate selected organic solvents such as acetonitrile and acetone. HspUPO is a versatile catalyst performing various reactions, such as the oxidation of prim- and sec-alcohols, epoxidations and hydroxylations. Semi-preparative biotransformations were demonstrated for the non-enantioselective oxidation of racemic 1-phenylethanol rac -1b (TON = 13000), giving the product with 88% isolated yield, and the oxidation of indole 6a to give indigo 6b (TON = 2800) with 98% isolated yield. HspUPO features a compact and rigid three-dimensional conformation that wraps around the heme and defines a funnel-shaped tunnel that leads to the heme iron from the protein surface. The tunnel extends along a distance of about 12 Å with a fairly constant diameter in its innermost segment. Its surface comprises both hydrophobic and hydrophilic groups for dealing with small-to-medium size substrates of variable polarities. The structural investigation of several protein-ligand complexes revealed that the active site of HspUPO is accessible to molecules of varying bulkiness and polarity with minimal or no conformational changes, explaining the relatively broad substrate scope of the enzyme. With its convenient expression system, robust operational properties, relatively small size, well-defined structural features, and diverse reaction scope, HspUPO is an exploitable candidate for peroxygenase-based biocatalysis.
Collapse
Affiliation(s)
- Laura Rotilio
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Alexander Swoboda
- Austrian Centre of Industrial Biotechnology, c/o Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Katharina Ebner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Claudia Rinnofner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology, c/o Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Gaz, BioTechMed Graz, Heinrichstraße 28, 8010 Graz, Austria
- Field of Excellence BioHealth-University of Graz, 8010 Graz, Austria
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
32
|
Li Y, Yuan B, Sun Z, Zhang W. C–H bond functionalization reactions enabled by photobiocatalytic cascades. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
The functional expression in yeast of two unusual acidic peroxygenases from Candolleomyces aberdarensis by adopting evolved secretion mutations. Appl Environ Microbiol 2021; 87:e0087821. [PMID: 34288703 DOI: 10.1128/aem.00878-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal unspecific peroxygenases (UPOs) are emergent biocatalysts that perform highly selective C-H oxyfunctionalizations of organic compounds, yet their heterologous production at high levels is required for their practical use in synthetic chemistry. Here, we achieved functional expression in yeast of two new unusual acidic peroxygenases from Candolleomyces (Psathyrella) aberdarensis (PabUPO) and their production at large scale in bioreactor. Our strategy was based on adopting secretion mutations from Agrocybe aegerita UPO mutant -PaDa-I variant- designed by directed evolution for functional expression in yeast, which belongs to the same phylogenetic family as PabUPOs -long-type UPOs- and that shares 65% sequence identity. After replacing the native signal peptides by the evolved leader sequence from PaDa-I, we constructed and screened site-directed recombination mutant libraries yielding two recombinant PabUPOs with expression levels of 5.4 and 14.1 mg/L in S. cerevisiae. These variants were subsequently transferred to P. pastoris for overproduction in fed-batch bioreactor, boosting expression levels up to 290 mg/L with the highest volumetric activity achieved to date for a recombinant peroxygenase (60,000 U/L, with veratryl alcohol as substrate). With a broad pH activity profile, ranging from 2.0 to 9.0, these highly secreted, active and stable peroxygenases are promising tools for future engineering endeavors, as well as for their direct application in different industrial and environmental settings. IMPORTANCE In this work, we incorporated several secretion mutations from an evolved fungal peroxygenase to enhance the production of active and stable forms of two unusual acidic peroxygenases. The tandem-yeast expression system based on S. cerevisiae for directed evolution and P. pastoris for overproduction in a ∼300 mg/L scale, is a versatile tool to generate UPO variants. By employing this approach, we foresee that acidic UPO variants will be more readily engineered in the near future and adapted to practical enzyme cascade reactions that can be performed over a broad pH range to oxyfunctionalize a variety of organic compounds.
Collapse
|
34
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
35
|
Kinner A, Rosenthal K, Lütz S. Identification and Expression of New Unspecific Peroxygenases - Recent Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2021; 9:705630. [PMID: 34307325 PMCID: PMC8293615 DOI: 10.3389/fbioe.2021.705630] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
In 2004, the fungal heme-thiolate enzyme subfamily of unspecific peroxygenases (UPOs) was first described in the basidiomycete Agrocybe aegerita. As UPOs naturally catalyze a broad range of oxidative transformations by using hydrogen peroxide as electron acceptor and thus possess a great application potential, they have been extensively studied in recent years. However, despite their versatility to catalyze challenging selective oxyfunctionalizations, the availability of UPOs for potential biotechnological applications is restricted. Particularly limiting are the identification of novel natural biocatalysts, their production, and the description of their properties. It is hence of great interest to further characterize the enzyme subfamily as well as to identify promising new candidates. Therefore, this review provides an overview of the state of the art in identification, expression, and screening approaches of fungal UPOs, challenges associated with current protein production and screening strategies, as well as potential solutions and opportunities.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
36
|
Knorrscheidt A, Soler J, Hünecke N, Püllmann P, Garcia-Borràs M, Weissenborn MJ. Accessing Chemo- and Regioselective Benzylic and Aromatic Oxidations by Protein Engineering of an Unspecific Peroxygenase. ACS Catal 2021; 11:7327-7338. [PMID: 34631225 PMCID: PMC8496131 DOI: 10.1021/acscatal.1c00847] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/21/2021] [Indexed: 01/12/2023]
Abstract
![]()
Unspecific
peroxygenases (UPOs) enable oxyfunctionalizations of
a broad substrate range with unparalleled activities. Tailoring these
enzymes for chemo- and regioselective transformations represents a
grand challenge due to the difficulties in their heterologous productions.
Herein, we performed protein engineering in Saccharomyces
cerevisiae using the MthUPO from Myceliophthora thermophila. More than 5300 transformants
were screened. This protein engineering led to a significant reshaping
of the active site as elucidated by computational modelling. The reshaping
was responsible for the increased oxyfunctionalization activity, with
improved kcat/Km values of up to 16.5-fold for the model substrate 5-nitro-1,3-benzodioxole.
Moreover, variants were identified with high chemo- and regioselectivities
in the oxyfunctionalization of aromatic and benzylic carbons, respectively.
The benzylic hydroxylation was demonstrated to perform with enantioselectivities
of up to 95% ee. The proposed evolutionary protocol
and rationalization of the enhanced activities and selectivities acquired
by MthUPO variants represent a step forward toward
the use and implementation of UPOs in biocatalytic synthetic pathways
of industrial interest.
Collapse
Affiliation(s)
- Anja Knorrscheidt
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Jordi Soler
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Nicole Hünecke
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Pascal Püllmann
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Martin J. Weissenborn
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany
| |
Collapse
|