1
|
Khan MS, Qureshi N, Khan R, Son YO, Maqbool T. CRISPR/Cas9-Based therapeutics as a promising strategy for management of Alzheimer's disease: progress and prospects. Front Cell Neurosci 2025; 19:1578138. [PMID: 40260080 PMCID: PMC12009953 DOI: 10.3389/fncel.2025.1578138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
CRISPR/Cas9 technology has revolutionized genetic and biomedical research in recent years. It enables editing and modulation of gene function with an unparalleled precision and effectiveness. Among the various applications and prospects of this technology, the opportunities it offers in unraveling the molecular underpinnings of a myriad of central nervous system diseases, including neurodegenerative disorders, psychiatric conditions, and developmental abnormalities, are unprecedented. In this review, we highlight the applications of CRISPR/Cas9-based therapeutics as a promising strategy for management of Alzheimer's disease and transformative impact of this technology on AD research. Further, we emphasize the role of CRISPR/Cas9 in generating accurate AD models for identification of novel therapeutic targets, besides the role of CRISPR-based therapies aimed at correcting AD-associated mutations and modulating the neurodegenerative processes. Furthermore, various delivery systems are reviewed and potential of the non-viral nanotechnology-based carriers for overcoming the critical limitations of effective delivery systems for CRISPR/Cas9 is discussed. Overall, this review highlights the promise and prospects of CRISPR/Cas9 technology for unraveling the intricate molecular processes underlying the development of AD, discusses its limitations, ethical concerns and several challenges including efficient delivery across the BBB, ensuring specificity, avoiding off-target effects. This article can be helpful in better understanding the applications of CRISPR/Cas9 based therapeutic approaches and the way forward utilizing enormous potential of this technology in targeted, gene-specific treatments that could change the trajectory of this debilitating and incurable illness.
Collapse
Affiliation(s)
- Mohamad Sultan Khan
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Nousheen Qureshi
- Department of Higher Education, Government of Jammu and Kashmir, Srinagar, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
2
|
Guo Y, Zhao X. CRISPR-based genetic screens in human pluripotent stem cells derived neurons and brain organoids. Cell Tissue Res 2025; 399:1-8. [PMID: 39585363 DOI: 10.1007/s00441-024-03934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Recent large-scale genome-wide association and single-cell RNA sequencing (scRNA-seq) studies have uncovered disease-associated genetic risk factors and cell type-specific genetic alterations. However, our understanding of how these genetic variants cause diseases and the underlying mechanisms remains largely unknown. Functional genomics screens using CRISPR-based technologies offer an effective tool for studying genes relevant to disease phenotypes. Here, we summarize recent CRISPR-based functional genomics screen approaches applied to human pluripotent stem cell (hPSC)-derived neurons and brain organoids. These screens have identified genes crucial for neurogenesis, neuronal survival, morphological development, and migration. Combining CRISPR-based genetic screens with scRNA-seq, researchers have revealed downstream genes and cellular pathways impacted by these genetic variants in human neural cells, providing new insights into the pathogenesis of neurodevelopmental disorders, such as microcephaly and autism spectrum disorders. Finally, we discuss current challenges and future directions for using CRISPR-based screens in furthering our understanding of neurological diseases and developing potential therapeutic strategies. Despite challenges, CRISPR-based screens have enormous potential for advancing the therapeutic development of many diseases.
Collapse
Affiliation(s)
- Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
3
|
Straiton J. CRISPR screens in neurological research: exploring the functional basis of aging and disease. Biotechniques 2025; 77:1-4. [PMID: 39898861 DOI: 10.1080/07366205.2025.2457889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
|
4
|
Yu Q, Zhang T, He T, Yang Y, Zhang W, Kang Y, Wu Z, Xie W, Zheng J, Qian Q, Li G, Zhang D, Mao Q, Gao Z, Wang X, Shi X, Huang S, Guo H, Zhang H, Chen L, Li X, Deng D, Zhang L, Tong Y, Yao W, Gao X, Tian H. Altered epitopes enhance macrophage-mediated anti-tumour immunity to low-immunogenic tumour mutations. Immunology 2024; 173:654-671. [PMID: 39174487 DOI: 10.1111/imm.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
Personalized neoantigen therapy has shown long-term and stable efficacy in specific patient populations. However, not all patients have sufficient levels of neoantigens for treatment. Although somatic mutations are commonly found in tumours, a significant portion of these mutations do not trigger an immune response. Patients with low mutation burdens continue to exhibit unresponsiveness to this treatment. We propose a design paradigm for neoantigen vaccines by utilizing the highly immunogenic unnatural amino acid p-nitrophenylalanine (pNO2Phe) for sequence alteration of somatic mutations that failed to generate neoepitopes. This enhances the immunogenicity of the mutations and transforms it into a suitable candidate for immunotherapy. The nitrated altered epitope vaccines designed according to this paradigm is capable of activating circulating CD8+ T cells and inducing immune cross-reactivity against autologous mutated epitopes in different MHC backgrounds (H-2Kb, H-2Kd, and human HLA-A02:01), leading to the elimination of tumour cells carrying the mutation. After immunization with the altered epitopes, tumour growth was significantly inhibited. It is noteworthy that nitrated epitopes induce tumour-infiltrating macrophages to differentiate into the M1 phenotype, surprisingly enhancing the MHC II molecule presenting pathway of macrophages. Nitrated epitope-treated macrophages have the potential to cross-activate CD4+ and CD8+ T cells, which may explain why pNO2Phe can enhance the immunogenicity of epitopes. Meanwhile, the immunosuppressive microenvironment of the tumour is altered due to the activation of macrophages. The nitrated neoantigen vaccine strategy enables the design of vaccines targeting non-immunogenic tumour mutations, expanding the pool of potential peptides for personalized and shared novel antigen therapy. This approach provides treatment opportunities for patients previously ineligible for new antigen vaccine therapy.
Collapse
Affiliation(s)
- Qiumin Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tingran Zhang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tiandi He
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wanli Zhang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanliang Kang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zijie Wu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbin Xie
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiaxue Zheng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qianqian Qian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Guozhi Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Di Zhang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qiuli Mao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zheng Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaoning Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xupeiyao Shi
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shitong Huang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hanlin Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haoyu Zhang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lingxiao Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ximing Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Danni Deng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, China
| | - Li Zhang
- Department of General Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Samelson AJ, Ariqat N, McKetney J, Rohanitazangi G, Bravo CP, Bose R, Travaglini KJ, Lam VL, Goodness D, Dixon G, Marzette E, Jin J, Tian R, Tse E, Abskharon R, Pan H, Carroll EC, Lawrence RE, Gestwicki JE, Eisenberg D, Kanaan NM, Southworth DR, Gross JD, Gan L, Swaney DL, Kampmann M. CRISPR screens in iPSC-derived neurons reveal principles of tau proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.16.545386. [PMID: 37398204 PMCID: PMC10312804 DOI: 10.1101/2023.06.16.545386] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Aggregation of the protein tau defines tauopathies, which include Alzheimer's disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to tau aggregation and subsequent dysfunction and death, but the underlying mechanisms are unknown. To systematically uncover the cellular factors controlling the accumulation of tau aggregates in human neurons, we conducted a genome-wide CRISPRi-based modifier screen in iPSC-derived neurons. The screen uncovered expected pathways, including autophagy, but also unexpected pathways, including UFMylation and GPI anchor synthesis. We discover that the E3 ubiquitin ligase CUL5SOCS4 is a potent modifier of tau levels in human neurons, ubiquitinates tau, and is a correlated with vulnerability to tauopathies in mouse and human. Disruption of mitochondrial function promotes proteasomal misprocessing of tau, which generates tau proteolytic fragments like those in disease and changes tau aggregation in vitro. These results reveal new principles of tau proteostasis in human neurons and pinpoint potential therapeutic targets for tauopathies.
Collapse
Affiliation(s)
- Avi J Samelson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Nabeela Ariqat
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Justin McKetney
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Gita Rohanitazangi
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Celeste Parra Bravo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rudra Bose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | | | - Victor L Lam
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Darrin Goodness
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Gary Dixon
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Emily Marzette
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Julianne Jin
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Ruilin Tian
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, UCLA, Los Angeles, CA USA
| | - Henry Pan
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Emma C Carroll
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Chemistry, San José State University, San José, CA, USA
| | - Rosalie E Lawrence
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute UCSF, San Francisco, CA, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - David Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, UCLA, Los Angeles, CA USA
- Howard Hughes Medical Institute UCLA, Los Angeles, CA, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Daniel R Southworth
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Danielle L Swaney
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Zhou H, Ye P, Xiong W, Duan X, Jing S, He Y, Zeng Z, Wei Y, Ye Q. Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges. Stem Cell Res Ther 2024; 15:218. [PMID: 39026343 PMCID: PMC11264826 DOI: 10.1186/s13287-024-03831-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Due to the rapid development of stem cell technology, there have been tremendous advances in molecular biological and pathological research, cell therapy as well as organoid technologies over the past decades. Advances in genome editing technology, particularly the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-related protein 9 (Cas9), have further facilitated the rapid development of stem cell researches. The CRISPR-Cas9 technology now goes beyond creating single gene editing to enable the inhibition or activation of endogenous gene loci by fusing inhibitory (CRISPRi) or activating (CRISPRa) domains with deactivated Cas9 proteins (dCas9). These tools have been utilized in genome-scale CRISPRi/a screen to recognize hereditary modifiers that are synergistic or opposing to malady mutations in an orderly and fair manner, thereby identifying illness mechanisms and discovering novel restorative targets to accelerate medicinal discovery investigation. However, the application of this technique is still relatively rare in stem cell research. There are numerous specialized challenges in applying large-scale useful genomics approaches to differentiated stem cell populations. Here, we present the first comprehensive review on CRISPR-based functional genomics screening in the field of stem cells, as well as practical considerations implemented in a range of scenarios, and exploration of the insights of CRISPR-based screen into cell fates, disease mechanisms and cell treatments in stem cell models. This review will broadly benefit scientists, engineers and medical practitioners in the areas of stem cell research.
Collapse
Affiliation(s)
- Heng Zhou
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Wei Xiong
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xingxiang Duan
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Shuili Jing
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 430064, Hubei, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Qingsong Ye
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
7
|
Franks SN, Heon-Roberts R, Ryan BJ. CRISPRi: a way to integrate iPSC-derived neuronal models. Biochem Soc Trans 2024; 52:539-551. [PMID: 38526223 PMCID: PMC11088925 DOI: 10.1042/bst20230190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
The genetic landscape of neurodegenerative diseases encompasses genes affecting multiple cellular pathways which exert effects in an array of neuronal and glial cell-types. Deconvolution of the roles of genes implicated in disease and the effects of disease-associated variants remains a vital step in the understanding of neurodegeneration and the development of therapeutics. Disease modelling using patient induced pluripotent stem cells (iPSCs) has enabled the generation of key cell-types associated with disease whilst maintaining the genomic variants that predispose to neurodegeneration. The use of CRISPR interference (CRISPRi), alongside other CRISPR-perturbations, allows the modelling of the effects of these disease-associated variants or identifying genes which modify disease phenotypes. This review summarises the current applications of CRISPRi in iPSC-derived neuronal models, such as fluorescence-activated cell sorting (FACS)-based screens, and discusses the future opportunities for disease modelling, identification of disease risk modifiers and target/drug discovery in neurodegeneration.
Collapse
Affiliation(s)
- Sarah N.J. Franks
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Rachel Heon-Roberts
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| | - Brent J. Ryan
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
8
|
Halder A, Drummond E. Strategies for translating proteomics discoveries into drug discovery for dementia. Neural Regen Res 2024; 19:132-139. [PMID: 37488854 PMCID: PMC10479849 DOI: 10.4103/1673-5374.373681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 07/26/2023] Open
Abstract
Tauopathies, diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of frontotemporal dementia, make up the vast majority of dementia cases. Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments, ongoing progress is required to ensure these are effective, economical, and accessible for the globally ageing population. As such, continued identification of new potential drug targets and biomarkers is critical. "Big data" studies, such as proteomics, can generate information on thousands of possible new targets for dementia diagnostics and therapeutics, but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development. In this review, we discuss current tauopathy biomarkers and therapeutics, and highlight areas in need of improvement, particularly when addressing the needs of frail, comorbid and cognitively impaired populations. We highlight biomarkers which have been developed from proteomic data, and outline possible future directions in this field. We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development, and demonstrate its application to our group's recent tau interactome dataset as an example.
Collapse
Affiliation(s)
- Aditi Halder
- School of Medical Sciences and Brain & Mind Center, University of Sydney, NSW, Sydney, Australia
- Department of Aged Care, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Eleanor Drummond
- School of Medical Sciences and Brain & Mind Center, University of Sydney, NSW, Sydney, Australia
| |
Collapse
|
9
|
Xu M, Liu Q, Bi R, Li Y, Li H, Kang WB, Yan Z, Zheng Q, Sun C, Ye M, Xiang BL, Luo XJ, Li M, Zhang DF, Yao YG. Coexistence of Multiple Functional Variants and Genes Underlies Genetic Risk Locus 11p11.2 of Alzheimer's Disease. Biol Psychiatry 2023; 94:743-759. [PMID: 37290560 DOI: 10.1016/j.biopsych.2023.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Genome-wide association studies have identified dozens of genetic risk loci for Alzheimer's disease (AD), yet the underlying causal variants and biological mechanisms remain elusive, especially for loci with complex linkage disequilibrium and regulation. METHODS To fully untangle the causal signal at a single locus, we performed a functional genomic study of 11p11.2 (the CELF1/SPI1 locus). Genome-wide association study signals at 11p11.2 were integrated with datasets of histone modification, open chromatin, and transcription factor binding to distill potentially functional variants (fVars). Their allelic regulatory activities were confirmed by allele imbalance, reporter assays, and base editing. Expressional quantitative trait loci and chromatin interaction data were incorporated to assign target genes to fVars. The relevance of these genes to AD was assessed by convergent functional genomics using bulk brain and single-cell transcriptomic, epigenomic, and proteomic datasets of patients with AD and control individuals, followed by cellular assays. RESULTS We found that 24 potential fVars, rather than a single variant, were responsible for the risk of 11p11.2. These fVars modulated transcription factor binding and regulated multiple genes by long-range chromatin interactions. Besides SPI1, convergent evidence indicated that 6 target genes (MTCH2, ACP2, NDUFS3, PSMC3, C1QTNF4, and MADD) of fVars were likely to be involved in AD development. Disruption of each gene led to cellular amyloid-β and phosphorylated tau changes, supporting the existence of multiple likely causal genes at 11p11.2. CONCLUSIONS Multiple variants and genes at 11p11.2 may contribute to AD risk. This finding provides new insights into the mechanistic and therapeutic challenges of AD.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Qianjin Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Hongli Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Wei-Bo Kang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhongjiang Yan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Quanzhen Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Chunli Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Bo-Lin Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
10
|
Kalamakis G, Platt RJ. CRISPR for neuroscientists. Neuron 2023:S0896-6273(23)00306-9. [PMID: 37201524 DOI: 10.1016/j.neuron.2023.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Genome engineering technologies provide an entry point into understanding and controlling the function of genetic elements in health and disease. The discovery and development of the microbial defense system CRISPR-Cas yielded a treasure trove of genome engineering technologies and revolutionized the biomedical sciences. Comprising diverse RNA-guided enzymes and effector proteins that evolved or were engineered to manipulate nucleic acids and cellular processes, the CRISPR toolbox provides precise control over biology. Virtually all biological systems are amenable to genome engineering-from cancer cells to the brains of model organisms to human patients-galvanizing research and innovation and giving rise to fundamental insights into health and powerful strategies for detecting and correcting disease. In the field of neuroscience, these tools are being leveraged across a wide range of applications, including engineering traditional and non-traditional transgenic animal models, modeling disease, testing genomic therapies, unbiased screening, programming cell states, and recording cellular lineages and other biological processes. In this primer, we describe the development and applications of CRISPR technologies while highlighting outstanding limitations and opportunities.
Collapse
Affiliation(s)
- Georgios Kalamakis
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland; NCCR MSE, Mattenstrasse 24a, 4058 Basel, Switzerland; Botnar Research Center for Child Health, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
11
|
Ahmed M, Muffat J, Li Y. Understanding neural development and diseases using CRISPR screens in human pluripotent stem cell-derived cultures. Front Cell Dev Biol 2023; 11:1158373. [PMID: 37101616 PMCID: PMC10123288 DOI: 10.3389/fcell.2023.1158373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
The brain is arguably the most complex part of the human body in form and function. Much remains unclear about the molecular mechanisms that regulate its normal and pathological physiology. This lack of knowledge largely stems from the inaccessible nature of the human brain, and the limitation of animal models. As a result, brain disorders are difficult to understand and even more difficult to treat. Recent advances in generating human pluripotent stem cells (hPSCs)-derived 2-dimensional (2D) and 3-dimensional (3D) neural cultures have provided an accessible system to model the human brain. Breakthroughs in gene editing technologies such as CRISPR/Cas9 further elevate the hPSCs into a genetically tractable experimental system. Powerful genetic screens, previously reserved for model organisms and transformed cell lines, can now be performed in human neural cells. Combined with the rapidly expanding single-cell genomics toolkit, these technological advances culminate to create an unprecedented opportunity to study the human brain using functional genomics. This review will summarize the current progress of applying CRISPR-based genetic screens in hPSCs-derived 2D neural cultures and 3D brain organoids. We will also evaluate the key technologies involved and discuss their related experimental considerations and future applications.
Collapse
Affiliation(s)
- Mai Ahmed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Seah C, Huckins LM, Brennand KJ. Stem Cell Models for Context-Specific Modeling in Psychiatric Disorders. Biol Psychiatry 2023; 93:642-650. [PMID: 36658083 DOI: 10.1016/j.biopsych.2022.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023]
Abstract
Genome-wide association studies reveal the complex polygenic architecture underlying psychiatric disorder risk, but there is an unmet need to validate causal variants, resolve their target genes(s), and explore their functional impacts on disorder-related mechanisms. Disorder-associated loci regulate transcription of target genes in a cell type- and context-specific manner, which can be measured through expression quantitative trait loci. In this review, we discuss methods and insights from context-specific modeling of genetically and environmentally regulated expression. Human induced pluripotent stem cell-derived cell type and organoid models have uncovered context-specific psychiatric disorder associations by investigating tissue-, cell type-, sex-, age-, and stressor-specific genetic regulation of expression. Techniques such as massively parallel reporter assays and pooled CRISPR (clustered regularly interspaced short palindromic repeats) screens make it possible to functionally fine-map genome-wide association study loci and validate their target genes at scale. Integration of disorder-associated contexts with these patient-specific human induced pluripotent stem cell models makes it possible to uncover gene by environment interactions that mediate disorder risk, which will ultimately improve our ability to diagnose and treat psychiatric disorders.
Collapse
Affiliation(s)
- Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
13
|
Hu LT, Xie XY, Zhou GF, Wen QX, Song L, Luo B, Deng XJ, Pan QL, Chen GJ. HMGCS2-Induced Autophagic Degradation of Tau Involves Ketone Body and ANKRD24. J Alzheimers Dis 2023; 91:407-426. [PMID: 36442191 DOI: 10.3233/jad-220640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Accumulation of hyperphosphorylated Tau (pTau) contributes to the formation of neurofibrillary tangles in Alzheimer's disease (AD), and targeting Tau/pTau metabolism has emerged as a therapeutic approach. We have previously reported that mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2 (HMGCS2) is involved in AD by promoting autophagic clearance of amyloid-β protein precursor via ketone body-associated mechanism, whether HMGCS2 may also regulate Tau metabolism remains elusive. OBJECTIVE The present study was to investigate the role of HMGCS2 in Tau/p degradation. METHODS The protein levels of Tau and pTau including pT217 and pT181, as well as autophagic markers LAMP1 and LC3-II were assessed by western blotting. The differentially regulated genes by HMGCS2 were analyzed by RNA sequencing. Autophagosomes were assessed by transmission electron microscopy. RESULTS HMGCS2 significantly decreased Tau/pTau levels, which was paralleled by enhanced formation of autophagic vacuoles and prevented by autophagic regulators chloroquine, bafilomycin A1, 3-methyladenine, and rapamycin. Moreover, HMGCS2-induced alterations of LAMP1/LC3-II and Tau/pTau levels were mimicked by ketone body acetoacetate or β-hydroxybutyrate. Further RNA-sequencing identified ankyrin repeat domain 24 (ANKRD24) as a target gene of HMGCS2, and silencing of ANKRD24 reduced LAMP1/LC3-II levels, which was accompanied by the altered formation of autophagic vacuoles, and diminished the effect of HMGCS2 on Tau/pTau. CONCLUSION HMGCS2 promoted autophagic clearance of Tau/pTau, in which ketone body and ANKRD24 played an important role.
Collapse
Affiliation(s)
- Li-Tian Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qiu-Ling Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Leng K, Kampmann M. Towards elucidating disease-relevant states of neurons and glia by CRISPR-based functional genomics. Genome Med 2022; 14:130. [PMID: 36401300 PMCID: PMC9673433 DOI: 10.1186/s13073-022-01134-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Our understanding of neurological diseases has been tremendously enhanced over the past decade by the application of new technologies. Genome-wide association studies have highlighted glial cells as important players in diseases. Single-cell profiling technologies are providing descriptions of disease states of neurons and glia at unprecedented molecular resolution. However, significant gaps remain in our understanding of the mechanisms driving disease-associated cell states, and how these states contribute to disease. These gaps in our understanding can be bridged by CRISPR-based functional genomics, a powerful approach to systematically interrogate gene function. In this review, we will briefly review the current literature on neurological disease-associated cell states and introduce CRISPR-based functional genomics. We discuss how advances in CRISPR-based screens, especially when implemented in the relevant brain cell types or cellular environments, have paved the way towards uncovering mechanisms underlying neurological disease-associated cell states. Finally, we will delineate current challenges and future directions for CRISPR-based functional genomics to further our understanding of neurological diseases and potential therapeutic strategies.
Collapse
Affiliation(s)
- Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Ogasawara T, Watanabe J, Adachi R, Ono Y, Kamimura Y, Muramoto T. CRISPR/Cas9-based genome-wide screening of Dictyostelium. Sci Rep 2022; 12:11215. [PMID: 35780186 PMCID: PMC9250498 DOI: 10.1038/s41598-022-15500-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Genome-wide screening is powerful method used to identify genes and pathways associated with a phenotype of interest. The simple eukaryote Dictyostelium discoideum has a unique life cycle and is often used as a crucial research model for a wide range of biological processes and rare metabolites. To address the inadequacies of conventional genetic screening approaches, we developed a highly efficient CRISPR/Cas9-based genome-wide screening system for Dictyostelium. A genome-wide library of 27,405 gRNAs and a kinase library of 4,582 gRNAs were compiled and mutant pools were generated. The resulting mutants were screened for defects in cell growth and more than 10 candidate genes were identified. Six of these were validated and five recreated mutants presented with growth abnormalities. Finally, the genes implicated in developmental defects were screened to identify the unknown genes associated with a phenotype of interest. These findings demonstrate the potential of the CRISPR/Cas9 system as an efficient genome-wide screening method.
Collapse
Affiliation(s)
- Takanori Ogasawara
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Jun Watanabe
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Remi Adachi
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yusuke Ono
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
16
|
A human tau seeded neuronal cell model recapitulates molecular responses associated with Alzheimer's disease. Sci Rep 2022; 12:2673. [PMID: 35177665 PMCID: PMC8854741 DOI: 10.1038/s41598-022-06411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Cellular models recapitulating features of tauopathies are useful tools to investigate the causes and consequences of tau aggregation and the identification of novel treatments. We seeded rat primary cortical neurons with tau isolated from Alzheimer’s disease brains to induce a time-dependent increase in endogenous tau inclusions. Transcriptomics of seeded and control cells identified 1075 differentially expressed genes (including 26 altered at two time points). These were enriched for lipid/steroid metabolism and neuronal/glial cell development genes. 50 genes were correlated with tau inclusion formation at both transcriptomic and proteomic levels, including several microtubule and cytoskeleton-related proteins such as Tubb2a, Tubb4a, Nefl and Snca. Several genes (such as Fyn kinase and PTBP1, a tau exon 10 repressor) interact directly with or regulate tau. We conclude that this neuronal model may be a suitable platform for high-throughput screens for target or hit compound identification and validation.
Collapse
|
17
|
Tan YJ, Wong BYX, Vaidyanathan R, Sreejith S, Chia SY, Kandiah N, Ng ASL, Zeng L. Altered Cerebrospinal Fluid Exosomal microRNA Levels in Young-Onset Alzheimer's Disease and Frontotemporal Dementia. J Alzheimers Dis Rep 2021; 5:805-813. [PMID: 34870106 PMCID: PMC8609483 DOI: 10.3233/adr-210311] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: micro-RNAs (miRNAs) are stable, small, non-coding RNAs enriched in exosomes. Their variation in levels according to different disease etiologies have made them a promising diagnostic biomarker for neurodegenerative diseases such as Alzheimer’s disease (AD). Altered expression of miR-320a, miR-328-3p, and miR-204-5p have been reported in AD and frontotemporal dementia (FTD). Objective: To determine their reliability, we aimed to examine the expression of three exosomal miRNAs isolated from cerebrospinal fluid (CSF) of patients with young-onset AD and FTD (< 65 years), correlating with core AD biomarkers and cognitive scores. Methods: Exosomes were first isolated from CSF samples of 48 subjects (8 controls, 28 AD, and 12 FTD), followed by RNA extraction and quantitative PCR to measure the expression of miR-320a, miR-328-3p, and miR-204-5p. Results: Expression of all three markers (miR-320a (p = 0.005), miR-328-3p (p = 0.049), and miR-204-5p (p = 0.036)) were significantly lower in AD versus controls. miR-320a was reduced in FTD versus controls (p = 0.049) and miR-328-3p was lower in AD versus FTD (p = 0.054). Notably, lower miR-328-3p levels could differentiate AD from FTD and controls with an AUC of 0.702, 95% CI: 0.534– 0.870, and showed significant correlation with lower CSF Aβ42 levels (r = 0.359, p = 0.029). Pathway enrichment analysis identified potential targets of miR-328-3p implicated in the AMPK signaling pathway linked to amyloid-β and tau metabolism in AD. Conclusion: Overall, we demonstrated miR-320a and miR-204-5p as reliable biomarkers for AD and FTD and report miR-328-3p as a novel AD biomarker.
Collapse
Affiliation(s)
- Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | - Benjamin Y X Wong
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore
| | | | - Sivaramapanicker Sreejith
- Biomedical Institute for Global Health Research & Technology (BIGHEART), National University of Singapore, Singapore
| | - Sook Yoong Chia
- Neural Stem Cell Research Lab, Department of Research, National Neuroscience Institute, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Department of Research, National Neuroscience Institute, Singapore.,Neuroscience and Behavioural Disorders Unit, Duke-NUS Medical School, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore
| |
Collapse
|