1
|
Yi Q, Xiong L. From sensory organs to internal pathways: A comprehensive review of amino acid sensing in Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2025; 303:111828. [PMID: 39983896 DOI: 10.1016/j.cbpa.2025.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Organisms require various nutrients to provide energy, support growth, and maintain metabolic balance. Amino acid is among the most basic nutrients, serving as fundamental building blocks for protein synthesis while playing vital roles in growth, development, and reproduction. Understanding the mechanisms by which organisms perceive amino acids is key to unraveling how they select appropriate food sources and adapt to environmental challenges. The fruit fly, Drosophila melanogaster, serves as a powerful model for understanding fundamental genetic and physiological processes. This review focuses on recent advances in amino acid sensing mechanisms in Drosophila melanogaster and their relevance to feeding behavior, nutrient homeostasis, and adaptive responses, and integrates insights into peripheral sensory systems, such as the legs and proboscis, as well as internal regulatory mechanisms within the gut, fat body, and brain. It highlights key molecular players, including ionotropic receptors, gut-derived hormones, neuropeptides, and the microbiome-gut-brain axis. Additionally, the manuscript identifies knowledge gaps and proposes directions for future research, providing a comprehensive overview of this dynamic field.
Collapse
Affiliation(s)
- Quan Yi
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liangyao Xiong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Atif M, Lee Y. Taste detection of flonicamid in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104302. [PMID: 40112957 DOI: 10.1016/j.ibmb.2025.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Flonicamid, a widely used insecticide, presents an intriguing question: does it function as an antifeedant by directly activating bitter-sensing gustatory receptor neurons (GRNs) in Drosophila melanogaster. Here, we found that electrophysiological recordings revealed that S-type labellar sensilla exhibited strong neuronal responses to flonicamid, while inhibition of bitter-sensing GRNs nullified this response. Genetic screening identified Gr28b, Gr93a, and Gr98b as essential gustatory receptors for flonicamid detection. Isoform-specific rescue experiments confirmed that Gr28b.a is responsible for restoring sensory responses in Gr28b mutants. Proboscis extension response assays demonstrated that wild-type flies avoided flonicamid, whereas Gr28b, Gr93a, and Gr98b mutants failed to. Functional rescue of these mutants restored the behavioral response, confirming the involvement of these receptors in mediating gustatory aversion. Our findings uncover a novel sensory mechanism for detecting flonicamid through specific gustatory receptors and highlight their potential as molecular targets for insect control strategies.
Collapse
Affiliation(s)
- Muhammad Atif
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
3
|
Nhuchhen Pradhan R, Montell C, Lee Y. Cholesterol taste avoidance in Drosophila melanogaster. eLife 2025; 14:RP106256. [PMID: 40244888 PMCID: PMC12005718 DOI: 10.7554/elife.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.
Collapse
Affiliation(s)
- Roshani Nhuchhen Pradhan
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| |
Collapse
|
4
|
Shrestha B, Sang J, Rimal S, Lee Y. Pharyngeal neuronal mechanisms governing sour taste perception in Drosophila melanogaster. eLife 2024; 13:RP101439. [PMID: 39660835 PMCID: PMC11634064 DOI: 10.7554/elife.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.
Collapse
Affiliation(s)
- Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Jiun Sang
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Suman Rimal
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Luo Y, Talross GJS, Carlson JR. Function and evolution of Ir52 receptors in mate detection in Drosophila. Curr Biol 2024; 34:5395-5408.e6. [PMID: 39471807 PMCID: PMC11614688 DOI: 10.1016/j.cub.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/11/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Identifying a suitable mating partner is an ancient and critical biological problem. How a fruit fly distinguishes a fly of the same species from flies of innumerable related species remains unclear. We analyze the Ir52 receptors, expressed in taste neurons on the fly legs and encoded by a cluster of genes. We find that the cluster shows dynamic evolution, rapidly expanding and contracting over evolutionary time. We develop a novel in vivo expression system and find that Ir52 receptors respond differently to pheromone extracts of different fly species. The receptors are activated by some compounds and inhibited by others, with different receptors showing distinct response profiles. Circuit mapping shows that Ir52 neurons are pre-synaptic to sexually dimorphic neurons that overlap with neurons acting in courtship behavior. Our results support a model in which Ir52 receptors detect information about the species of a potential mating partner.
Collapse
Affiliation(s)
- Yichen Luo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
6
|
Sang J, Lee Y. Age-dependent switched taste behavior to ribose. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104194. [PMID: 39406300 DOI: 10.1016/j.ibmb.2024.104194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Chemical detection is vital for animal survival, aiding in avoiding toxins and selecting nutritious foods. While Drosophila larvae exhibit appetitive feeding behavior toward ribose, an important sugar for RNA, nucleotide, and nucleoside synthesis, how adult Drosophila perceives ribose remains unclear. Through behavioral and electrophysiological investigations, we unexpectedly discovered that adult flies actively avoid ribose. Our external electrophysiological analysis revealed that ribose is detected through bitter-sensing gustatory receptor neurons in S-type sensilla, suggesting its perception as a bitter compound. Additionally, we identify painless as crucial for both ribose aversion and the neuronal response to ribose.
Collapse
Affiliation(s)
- Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
7
|
Pandey P, Shrestha B, Lee Y. Avoiding alkaline taste through ionotropic receptors. iScience 2024; 27:110087. [PMID: 38947501 PMCID: PMC11214294 DOI: 10.1016/j.isci.2024.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Taste organs contain distinct gustatory receptors that help organisms differentiate between nourishing and potentially harmful foods. The detection of high pH levels plays a crucial role in food selection, but the specific gustatory receptors responsible for perceiving elevated pH in foods have remained unknown. By using Drosophila melanogaster as a model organism, we have uncovered the involvement of ionotropic receptors (IRs) in avoiding high-pH foods. Our study involved a combination of behavioral tests and electrophysiological analyses, which led to the identification of six Irs from bitter-sensing gustatory receptor neurons essential for rejecting food items with elevated pH levels. Using the same methodology, our study reevaluated the significance of Alka and OtopLa. The findings highlight that Alka, in conjunction with IRs, is crucial for detecting alkaline substances, whereas OtopLa does not contribute to this process. Overall, our study offers valuable insights into the intricate mechanisms governing taste perception in organisms.
Collapse
Affiliation(s)
- Prakash Pandey
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
8
|
Pradhan RN, Shrestha B, Lee Y. Avoiding cantharidin through ionotropic receptors. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133497. [PMID: 38278077 DOI: 10.1016/j.jhazmat.2024.133497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
The discernment and aversion of noxious gustatory stimuli profoundly influence homeostasis maintenance and survival of fauna. Cantharidin, a purported aphrodisiac, is a monoterpenoid compound secreted by many species of blister beetle, particularly by the Spanish fly, Lytta vesicatoria. Although the various advantageous functions of cantharidin have been described, its taste analysis and toxic properties in animalshave been rarely explored. Our study using Drosophila melanogaster examines the taste properties of cantharidin along with its potential hazardous effect in the internal organs of animals. Here, we find that cantharidin activates bitter taste receptors. Our findings show that specific ionotropic receptors (IR7g, IR51b, and IR94f) in labellar bitter-sensing neurons, along with co-receptors IR25a and IR76b, are responsible for detecting cantharidin. By introducing the IR7g and IR51b in sweet and bitter neurons, naturally expressing IR76b and IR25a, we show that these genes are sufficient for cantharidin perception. Moreover, we witness the deleterious ramifications of cantharidin on survival and visceral integrities, shedding light on its hazardous effect.
Collapse
Affiliation(s)
- Roshani Nhuchhen Pradhan
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
9
|
Liang Z, Wilson CE, Teng B, Kinnamon SC, Liman ER. The proton channel OTOP1 is a sensor for the taste of ammonium chloride. Nat Commun 2023; 14:6194. [PMID: 37798269 PMCID: PMC10556057 DOI: 10.1038/s41467-023-41637-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
Ammonium (NH4+), a breakdown product of amino acids that can be toxic at high levels, is detected by taste systems of organisms ranging from C. elegans to humans and has been used for decades in vertebrate taste research. Here we report that OTOP1, a proton-selective ion channel expressed in sour (Type III) taste receptor cells (TRCs), functions as sensor for ammonium chloride (NH4Cl). Extracellular NH4Cl evoked large dose-dependent inward currents in HEK-293 cells expressing murine OTOP1 (mOTOP1), human OTOP1 and other species variants of OTOP1, that correlated with its ability to alkalinize the cell cytosol. Mutation of a conserved intracellular arginine residue (R292) in the mOTOP1 tm 6-tm 7 linker specifically decreased responses to NH4Cl relative to acid stimuli. Taste responses to NH4Cl measured from isolated Type III TRCs, or gustatory nerves were strongly attenuated or eliminated in an Otop1-/- mouse strain. Behavioral aversion of mice to NH4Cl, reduced in Skn-1a-/- mice lacking Type II TRCs, was entirely abolished in a double knockout with Otop1. These data together reveal an unexpected role for the proton channel OTOP1 in mediating a major component of the taste of NH4Cl and a previously undescribed channel activation mechanism.
Collapse
Affiliation(s)
- Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Program in Neuroscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Courtney E Wilson
- Department of Otolaryngology, University of Colorado Medical School, 12700 E 19(th) Avenue, MS 8606, Aurora, CO, 80045, USA
| | - Bochuan Teng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Program in Neuroscience, University of Southern California, Los Angeles, CA, 90089, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sue C Kinnamon
- Department of Otolaryngology, University of Colorado Medical School, 12700 E 19(th) Avenue, MS 8606, Aurora, CO, 80045, USA
| | - Emily R Liman
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
10
|
Pradhan RN, Shrestha B, Lee Y. Molecular Basis of Hexanoic Acid Taste in Drosophila melanogaster. Mol Cells 2023; 46:451-460. [PMID: 37202372 PMCID: PMC10336273 DOI: 10.14348/molcells.2023.0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Animals generally prefer nutrients and avoid toxic and harmful chemicals. Recent behavioral and physiological studies have identified that sweet-sensing gustatory receptor neurons (GRNs) in Drosophila melanogaster mediate appetitive behaviors toward fatty acids. Sweet-sensing GRN activation requires the function of the ionotropic receptors IR25a, IR56d, and IR76b, as well as the gustatory receptor GR64e. However, we reveal that hexanoic acid (HA) is toxic rather than nutritious to D. melanogaster. HA is one of the major components of the fruit Morinda citrifolia (noni). Thus, we analyzed the gustatory responses to one of major noni fatty acids, HA, via electrophysiology and proboscis extension response (PER) assay. Electrophysiological tests show this is reminiscent of arginine-mediated neuronal responses. Here, we determined that a low concentration of HA induced attraction, which was mediated by sweet-sensing GRNs, and a high concentration of HA induced aversion, which was mediated by bitter-sensing GRNs. We also demonstrated that a low concentration of HA elicits attraction mainly mediated by GR64d and IR56d expressed by sweet-sensing GRNs, but a high concentration of HA activates three gustatory receptors (GR32a, GR33a, and GR66a) expressed by bitter-sensing GRNs. The mechanism of sensing HA is biphasic in a dose dependent manner. Furthermore, HA inhibit sugar-mediated activation like other bitter compounds. Taken together, we discovered a binary HA-sensing mechanism that may be evolutionarily meaningful in the foraging niche of insects.
Collapse
Affiliation(s)
| | - Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
11
|
Shrestha B, Aryal B, Lee Y. The taste of vitamin C in Drosophila. EMBO Rep 2023; 24:e56319. [PMID: 37114473 PMCID: PMC10240197 DOI: 10.15252/embr.202256319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamins are essential micronutrients, but the mechanisms of vitamin chemoreception in animals are poorly understood. Here, we provide evidence that vitamin C doubles starvation resistance and induces egg laying in Drosophila melanogaster. Our behavioral analyses of genetically engineered and anatomically ablated flies show that fruit flies sense vitamin C via sweet-sensing gustatory receptor neurons (GRNs) in the labellum. Using a behavioral screen and in vivo electrophysiological analyses of ionotropic receptors (IRs) and sweet-sensing gustatory receptors (GRs), we find that two broadly tuned IRs (i.e., IR25a and IR76b) and five GRs (i.e., GR5a, GR61a, GR64b, GR64c, and GR64e) are essential for vitamin C detection. Thus, vitamin C is directly detected by the fly labellum and requires at least two distinct receptor types. Next, we expand our electrophysiological study to test attractive tastants such as sugars, carboxylic acids, and glycerol. Our analysis elucidates the molecular basis of chemoreception in sweet-sensing GRNs.
Collapse
Affiliation(s)
- Bhanu Shrestha
- Department of Bio & Fermentation Convergence TechnologyKookmin UniversitySeoulKorea
| | - Binod Aryal
- Department of Bio & Fermentation Convergence TechnologyKookmin UniversitySeoulKorea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence TechnologyKookmin UniversitySeoulKorea
| |
Collapse
|
12
|
Molecular sensors in the taste system of Drosophila. Genes Genomics 2023; 45:693-707. [PMID: 36828965 DOI: 10.1007/s13258-023-01370-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Most animals, including humans and insects, consume foods based on their senses. Feeding is mostly regulated by taste and smell. Recent insect studies shed insight into the cross-talk between taste and smell, sweetness and temperature, sweetness and texture, and other sensory modality pairings. Five canonical tastes include sweet, umami, bitter, salty, and sour. Furthermore, other receptors that mediate the detection of noncanonical sensory attributes encoded by taste stimuli, such as Ca2+, Zn2+, Cu2+, lipid, and carbonation, have been characterized. Deorphanizing receptors and interactions among different modalities are expanding the taste field. METHODS Our study explores the taste system of Drosophila melanogaster and perception processing in insects to broaden the neuroscience of taste. Attractive and aversive taste cues and their chemoreceptors are categorized as tables. In addition, we summarize the recent progress in animal behavior as affected by the integration of multisensory information in relation to different gustatory receptor neuronal activations, olfaction, texture, and temperature. We mainly focus on peripheral responses and insect decision-making. CONCLUSION Drosophila is an excellent model animal to study the cellular and molecular mechanism of the taste system. Despite the divergence in the receptors to detect chemicals, taste research in the fruit fly can offer new insights into the many different taste sensors of animals and how to test the interaction among different sensory modalities.
Collapse
|
13
|
Dey M, Ganguly A, Dahanukar A. An inhibitory mechanism for suppressing high salt intake in Drosophila. Chem Senses 2023; 48:bjad014. [PMID: 37201555 PMCID: PMC10413321 DOI: 10.1093/chemse/bjad014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 05/20/2023] Open
Abstract
High concentrations of dietary salt are harmful to health. Like most animals, Drosophila melanogaster are attracted to foods that have low concentrations of salt, but show strong taste avoidance of high salt foods. Salt in known on multiple classes of taste neurons, activating Gr64f sweet-sensing neurons that drive food acceptance and 2 others (Gr66a bitter and Ppk23 high salt) that drive food rejection. Here we find that NaCl elicits a bimodal dose-dependent response in Gr64f taste neurons, which show high activity with low salt and depressed activity with high salt. High salt also inhibits the sugar response of Gr64f neurons, and this action is independent of the neuron's taste response to salt. Consistent with the electrophysiological analysis, feeding suppression in the presence of salt correlates with inhibition of Gr64f neuron activity, and remains if high salt taste neurons are genetically silenced. Other salts such as Na2SO4, KCl, MgSO4, CaCl2, and FeCl3 act on sugar response and feeding behavior in the same way. A comparison of the effects of various salts suggests that inhibition is dictated by the cationic moiety rather than the anionic component of the salt. Notably, high salt-dependent inhibition is not observed in Gr66a neurons-response to a canonical bitter tastant, denatonium, is not altered by high salt. Overall, this study characterizes a mechanism in appetitive Gr64f neurons that can deter ingestion of potentially harmful salts.
Collapse
Affiliation(s)
- Manali Dey
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, United States
| | - Anindya Ganguly
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, United States
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, United States
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, United States
| |
Collapse
|
14
|
Clark JT, Ganguly A, Ejercito J, Luy M, Dahanukar A, Ray A. Chemosensory detection of aversive concentrations of ammonia and basic volatile amines in insects. iScience 2022; 26:105777. [PMID: 36594011 PMCID: PMC9804102 DOI: 10.1016/j.isci.2022.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Basic volatiles like ammonia are found in insect environments, and at high concentrations cause an atypical action potential burst, followed by inhibition in multiple classes of olfactory receptor neurons (ORNs) in Drosophila melanogaster. During the period of inhibition, ORNs are unable to fire action potentials to their ligands but continue to display receptor potentials. An increase in calcium is also observed in antennal cells of Drosophila and Aedes aegypti. In the gustatory system, ammonia inhibits sugar and salt responses in a dose-dependent manner. Other amines show similar effects in both gustatory and olfactory neurons, correlated with basicity. The concentrations that inhibit neurons reduce proboscis extension to sucrose in Drosophila. In Aedes, a brief exposure to volatile ammonia abolishes attraction to human skin odor for several minutes. These findings reveal an effect that prevents detection of attractive ligands in the olfactory and gustatory systems and has potential in insect control.
Collapse
Affiliation(s)
- Jonathan Trevorrow Clark
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Anindya Ganguly
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Jadrian Ejercito
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Matthew Luy
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA,Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Anandasankar Ray
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA,Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA,Corresponding author
| |
Collapse
|
15
|
Aryal B, Dhakal S, Shrestha B, Sang J, Nhuchhen Pradhan R, Lee Y. Protocol for binary food choice assays using Drosophila melanogaster. STAR Protoc 2022; 3:101410. [PMID: 35620079 PMCID: PMC9127214 DOI: 10.1016/j.xpro.2022.101410] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Food preference is a fundamental behavior for animals to choose nutritious foods while rejecting foods containing toxins. Here, we describe binary food choice assays using Drosophila melanogaster, which are straightforward approaches for the characterization of two-way choice tastants. We detail the preparation of flies and dye-containing food, followed by the binary-choice feeding assays and the determination of the preference index (PI). This protocol is simple, sensitive, and reproducible in qualitatively detecting attractive or aversive characteristics toward any two-way choice tastants. For complete details on the use and execution of this protocol, please refer to Aryal et al. (2022). Protocol for qualitatively analyzing food preferences in Drosophila A simple, sensitive, and reproducible binary food choice assay Determination of preference index using dye-containing foods Appropriate for any behavioral taste analysis of fly models
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Subash Dhakal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Jiun Sang
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Roshani Nhuchhen Pradhan
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
- Corresponding author
| |
Collapse
|
16
|
Aryal B, Lee Y. Histamine avoidance through three gustatory receptors in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103760. [PMID: 35346814 DOI: 10.1016/j.ibmb.2022.103760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Histamine is a fermented food product that exerts adverse health effects on animals when consumed in high amounts. This biogenic amine is fermented by microorganisms from histidine through the activity of histidine decarboxylase. Drosophila melanogaster can discriminate histidine and histamine using GR22e and IR76b in bitter-sensing gustatory receptor neurons (GRNs). In this study, RNA interference screens were conducted to examine 28 uncharacterized gustatory receptor genes using electrophysiology and behavioral experiments, including the binary food choice and proboscis extension response assays. GR9a and GR98a were first identified as specific histamine receptors by evaluating newly generated null mutants and recovery experiments by expressing their wild-type cDNA in the bitter-sensing GRNs. We further determined that histamine sensation was mainly mediated by the labellum but not by the legs, as demonstrated by the proboscis extension response assay. Our findings indicated that toxic histamine directly activates bitter-sensing GRNs in S-type sensilla, and this response is mediated by the GR9a, GR22e, and GR98a gustatory receptors.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
17
|
Aryal B, Dhakal S, Shrestha B, Lee Y. Molecular and neuronal mechanisms for amino acid taste perception in the Drosophila labellum. Curr Biol 2022; 32:1376-1386.e4. [PMID: 35176225 DOI: 10.1016/j.cub.2022.01.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022]
Abstract
Amino acids are essential nutrients that act as building blocks for protein synthesis. Recent studies in Drosophila have demonstrated that glycine, phenylalanine, and threonine elicit attraction, whereas tryptophan elicits aversion at ecologically relevant concentrations. Here, we demonstrated that eight amino acids, including arginine, glycine, alanine, serine, phenylalanine, threonine, cysteine, and proline, differentially stimulate feeding behavior by activating sweet-sensing gustatory receptor neurons (GRNs) in L-type and S-type sensilla. In turn, this process is mediated by three GRs (GR5a, GR61a, and GR64f), as well as two broadly required ionotropic receptors (IRs), IR25a and IR76b. However, GR5a, GR61a, and GR64f are only required for sensing amino acids in the sweet-sensing GRNs of L-type sensilla. This suggests that amino acid sensing in different type sensilla occurs through dual mechanisms. Furthermore, our findings indicated that ecologically relevant high concentrations of arginine, lysine, proline, valine, tryptophan, isoleucine, and leucine elicit aversive responses via bitter-sensing GRNs, which are mediated by three IRs (IR25a, IR51b, and IR76b). More importantly, our results demonstrate that arginine, lysine, and proline induce biphasic responses in a concentration-dependent manner. Therefore, amino acid detection in Drosophila occurs through two classes of receptors that activate two sets of sensory neurons in physiologically distinct pathways, which ultimately mediates attraction or aversion behaviors.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Subash Dhakal
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Bhanu Shrestha
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea; Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|