1
|
Li G, Rong J, Xu X, Kwak E, Wang S, Qu G, Lin S, Peng G. Distinct Effects between Polystyrene Micro- and Nanoplastics: Exacerbation of Adverse Outcomes in Inflammatory Bowel Disease-like Zebrafish and Mice. ACS NANO 2025; 19:15081-15099. [PMID: 40198662 DOI: 10.1021/acsnano.5c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Numerous studies have demonstrated that micro- and nanoplastics can induce adverse effects in both zebrafish and mice, primarily targeting the intestine in oral exposure scenarios. Organisms under disease conditions are suggested to exhibit increased susceptibility to environmental pollutants, with inflammatory bowel disease (IBD) serving as a relevant model for understanding toxicity initiated in a diseased intestine. Here, we compared the adverse outcomes of polystyrene micro- (PSMPs) and nanoplastics (PSNPs) in both normal and IBD-like zebrafish and mouse models. We found that in zebrafish, no significant difference in mortality was elicited by the two particles, while IBD-like fish exhibited greater susceptibility to exposure. Conversely, transcriptomic analysis of surviving fish revealed that PSNPs disrupted metabolic pathways, particularly galactose metabolism, and induced more pronounced apoptosis in intestinal epithelial cells compared to PSMPs in IBD-like fish. These effects were further associated with an increase in the genus Flavobacterium. Similarly, in IBD-like mice, PSNPs induced a more significant increase in crypt length than control mice and more severe histological injury and greater disruptions in gut microbial diversity compared to PSMPs, mirroring the findings in zebrafish. Notably, two shared pathways, glycosphingolipid synthesis (globo and isoglobo series) and NOD-like receptor signaling, were identified in response to PSNP and PSMP exposure in two models, respectively, along with a consistent decline in Firmicutes abundance. These findings suggest that smaller-sized PSNPs may pose higher environmental and health risks compared to larger-sized PSMPs, providing key insights into the interactions between polystyrene particles and compromised biological systems and their resulting adverse outcomes.
Collapse
Affiliation(s)
- Guanhao Li
- College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Jinyu Rong
- College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Xueran Xu
- College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Eunbi Kwak
- College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Guotao Peng
- College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Mikhail SG, O'Dwyer DN. The lung microbiome in interstitial lung disease. Breathe (Sheff) 2025; 21:240167. [PMID: 40255291 PMCID: PMC12004254 DOI: 10.1183/20734735.0167-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/17/2025] [Indexed: 04/22/2025] Open
Abstract
Interstitial lung disease (ILD) is a heterogeneous chronic form of lung disease. The pathogenesis of ILD is poorly understood and a common form of ILD, idiopathic pulmonary fibrosis (IPF) is associated with poor prognosis. There is evidence for substantial dysregulated immune responses in ILD. The microbiome is a key regulator of the immune response, and the lung microbiome correlates with alveolar immunity and clinical outcomes in ILD. Most observational lung microbiome studies have been conducted in patients with IPF. A consistent observation in these studies is that the bacterial burden of the lung is elevated in patients with IPF and predicts mortality. However, our understanding of the mechanism is incomplete and our understanding of the role of the lung microbiome in other forms of ILD is limited. The microbiomes of the oropharynx and gut may have implications for the lung microbiome and pulmonary immunity in ILD but require substantial further research. Here, we discuss the studies supporting a role for the lung microbiome in the pathogenesis of IPF, and briefly describe the putative role of the oral-lung axis and the gut-lung axis in ILD.
Collapse
Affiliation(s)
- Sheridan G. Mikhail
- Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N. O'Dwyer
- Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Dept. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Ma B, Samavati L, Drake WP. Sarcoidosis resolvers and progressors demonstrate distinct systemic metabolomic profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642370. [PMID: 40161640 PMCID: PMC11952421 DOI: 10.1101/2025.03.10.642370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sarcoidosis is an idiopathic syndrome with striking disparities in clinical outcome. We have previously identified immune distinctions between sarcoidosis clinical cohorts that either resolve or progress. A significantly higher percentage of Programmed Death 1 (PD-1)+Th17 cells was present in sarcoidosis and IPF subjects experiencing disease progression. Metabolites, or bioactive compounds, have been shown to interact with immune cells, such as Th17 cells by regulating cellular processes such as proliferation, signaling and differentiation. Metabolomic analysis was conducted on two subject cohorts: Sarcoidosis (n=19) and healthy controls (n=23). Sarcoidosis subjects were further subdivided by clinical outcome and prior to therapeutic initiation: disease progression or clinical resolution. Metabolites are considered significant if they had a fold change greater than two and a p-value is <0.05 in pairwise 2-sample t-tests. Multiple group comparison was performed using ANOVA and Tukey's honestly significance difference post hoc tests to identify statistically different pairwise differences. Progressors exhibit significantly elevated serum levels of trimethylamine N-oxide (TMAO) and taurine, with reduced glycerate, alanine, and proline concentrations (Figure 1A-C). TMAO is elevated in sarcoidosis progressors relative to resolvers. Taurine levels are also significantly elevated in progressors, comparing to resolvers. The significant reductions in glycerate, alanine, and proline in progressors compared to resolvers, along with elevated TMAO, point to disruptions in core metabolic pathways, including glycolysis, pyruvate metabolism, and collagen synthesis, that underlie bioenergetic dysfunction, altered amino acid utilization, and impaired tissue repair.
Collapse
|
4
|
Patel SK, Gooya M, Guo Q, Noel S, Rabb H. The microbiome and acute organ injury: focus on kidneys. Nephrol Dial Transplant 2025; 40:423-434. [PMID: 39251400 PMCID: PMC11879008 DOI: 10.1093/ndt/gfae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 09/11/2024] Open
Abstract
The microbiome of critically ill patients is significantly altered by both effects of the illnesses and clinical interventions provided during intensive care. Studies have shown that manipulating the microbiome can prevent or modulate complications of critical illness in experimental models and preliminary clinical trials. This review aims to discuss general concepts about the microbiome, including mechanisms of modifying acute organ dysfunction. The focus will be on the effects of microbiome modulation during experimental acute kidney injury (excluding septic acute kidney injury) and comparison with other experimental acute organ injuries commonly seen in critically ill patients.
Collapse
Affiliation(s)
| | - Mahta Gooya
- Division of Nephrology, Johns Hopkins University, Baltimore, MD, USA
| | - Qisen Guo
- Division of Nephrology, Johns Hopkins University, Baltimore, MD, USA
| | - Sanjeev Noel
- Division of Nephrology, Johns Hopkins University, Baltimore, MD, USA
| | - Hamid Rabb
- Division of Nephrology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Yu Y, Fang J, Li Y, Wang X, Zhang J, Wang J, Sun B. The Novel Effect and Potential Mechanism of Lactoferrin on Organ Fibrosis Prevention. Nutrients 2025; 17:197. [PMID: 39796631 PMCID: PMC11723014 DOI: 10.3390/nu17010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Organ fibrosis is gradually becoming a human health and safety problem, and various organs of the body are likely to develop fibrosis. The ultimate pathological feature of numerous chronic diseases is fibrosis, and few interventions are currently available to specifically target the pathogenesis of fibrosis. The medical detection of organ fibrosis has gradually matured. However, there is currently no effective treatment method for these diseases. Therefore, we need to strive for developing effective and reliable drugs or substances to treat and prevent fibrotic diseases. Lactoferrin (LF) is a multifunctional glycoprotein with many pathological and physiologically active effects, such as antioxidant, anti-inflammatory and antimicrobial effects, and it protects against pathological and physiological conditions in various disease models. This review summarizes the effects and underlying mechanisms of LF in preventing organ fibrosis. As a naturally active substance, LF can be used as a promising and effective drug for the prevention and remission of fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jingjie Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.F.); (Y.L.); (X.W.); (B.S.)
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (J.F.); (Y.L.); (X.W.); (B.S.)
| | | |
Collapse
|
6
|
Göktürk K, Tülek B, Kanat F, Maçin S, Arslan U, Shahbazova M, Göktürk Ö. Gut microbiota profiles of patients with idiopathic pulmonary fibrosis. Exp Lung Res 2024; 50:278-289. [PMID: 39644491 DOI: 10.1080/01902148.2024.2437377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Purpose/Aim: Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pneumonia. Multiple genetic factors, environmental exposures, micro-aspirations secondary to gastroesophageal reflux, age, sex, smoking habit, and infections contribute to its etiology; consequently, its pathogenesis remains unclear. The homeostasis of gut microbiota, including bacteria, archaea, and fungi, can influence the functions of both the intestine and remote organs. There are still many unknowns regarding the effects and mechanisms of gut microbiota dysbiosis on the development of IPF. In this study, we aimed to characterize the gut microbiota of patients with IPF compared with that of healthy controls. Furthermore, we assessed the effects of antifibrotic drugs on gut dysbiosis. Materials and Methods: This study involved 12 patients with IPF receiving antifibrotic drug therapy, 12 patients with IPF not receiving antifibrotic drug therapy, and 8 healthy controls. The clinical parameters of the patients were recorded, and DNA extracted from stool samples was subjected to 16S ribosomal RNA gene sequencing of the V1-V9 hypervariable regions. Results: Campylobacterota species were detected in the patient groups but not in the control group. Staphylococcales and Gemellaceae species were not detected in the IPF groups; however, a significant relationship was observed in the control group. In the IPF groups, Actinobacteria, Bifidobacteriales, Burkholderiales, Bacteroidaceae, Dorea, Fusicatenibacter, and Ruminococcus -gauvreauii abundance was low and Enterobacterales, Erysipelotrichaceae, Holdemanella, and Alloprevotella abundance was high compared with those in the control group. When the IPF group using antifibrotic drugs and that not using antifibrotic drugs were compared, only Lachnospiraceae UCG 004 abundance was found to be lower in the patient group receiving antifibrotic drugs. Conclusions: Patients with IPF exhibit higher or lower abundance of certain taxa compared to healthy controls, providing novel perspectives on the pathogenesis and treatment of various illnesses. Examining changes in intestinal microbiota during treatment may guide the clinical strategy for managing adverse effects.
Collapse
Affiliation(s)
- Kerim Göktürk
- Medicine Department of Chest Diseases, Ankara 29 May State Hospital, Ankara, Turkey
| | - Baykal Tülek
- Faculty of Medicine Department of Chest Diseases, Selcuk University, Konya, Turkey
| | - Fikret Kanat
- Faculty of Medicine Department of Chest Diseases, Selcuk University, Konya, Turkey
| | - Salih Maçin
- Faculty of Medicine Department of Microbiology, Selcuk University, Konya, Turkey
| | - Uğur Arslan
- Faculty of Medicine Department of Microbiology, Selcuk University, Konya, Turkey
| | - Masma Shahbazova
- Faculty of Medicine Department of Microbiology, Selcuk University, Konya, Turkey
| | - Özge Göktürk
- Medicine Department of Allergy Immunology, Sanatorium Atatürk Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
7
|
Chioma OS, Wiggins Z, Rea S, Drake WP. Infectious and non-infectious precipitants of sarcoidosis. J Autoimmun 2024; 149:103239. [PMID: 38821769 PMCID: PMC11607178 DOI: 10.1016/j.jaut.2024.103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024]
Abstract
Sarcoidosis is a chronic inflammatory disease that can affect any organ in the body. Its exact cause remains unknown, but it is believed to result from a combination of genetic and environmental factors. Some potential causes of sarcoidosis include genetics, environmental triggers, immune system dysfunction, the gut microbiome, sex, and race/ethnicity. Genetic mutations are associated with protection against disease progression or an increased susceptibility to more severe disease, while exposure to certain chemicals, bacteria, viruses, or allergens can trigger the formation of immune cell congregations (granulomas) in different organs. Dysfunction of the immune system, including autoimmune reactions, may also contribute. The gut microbiome and factors such as being female or having African American, Scandinavian, Irish, or Puerto Rican heritage are additional contributors to disease outcome. Recent research has suggested that certain drugs, such as anti-Programmed Death-1 (PD-1) and antibiotics such as tuberculosis (TB) drugs, may raise the risk of developing sarcoidosis. Hormone levels, particularly higher levels of estrogen and progesterone in women, have also been linked to an increased likelihood of sarcoidosis. The diagnosis of sarcoidosis involves a comprehensive assessment that includes medical history, physical examination, laboratory tests, and imaging studies. While there is no cure for sarcoidosis, the symptoms can often be effectively managed through various treatment options. Treatment may involve the use of medications, surgical interventions, or lifestyle changes. These disparate factors suggests that sarcoidosis has multiple positive and negative exacerbants on disease severity, some of which can be ameliorated and others which cannot.
Collapse
Affiliation(s)
- Ozioma S Chioma
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - ZaDarreyal Wiggins
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wonder P Drake
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Hou S, Wang X, Guo J, Han Y, You J, Tian Z, Zheng X, Zheng S, Ling Y, Pei L, Wu E. Triangle correlations of lung microbiome, host physiology and gut microbiome in a rat model of idiopathic pulmonary fibrosis. Sci Rep 2024; 14:28743. [PMID: 39567656 PMCID: PMC11579350 DOI: 10.1038/s41598-024-80023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
Changes in lung and gut microbial communities have been associated with idiopathic pulmonary fibrosis (IPF). This study aimed to investigate correlations between microbial changes in the lung and gut and host physiological indices in an IPF model, exploring potential mechanisms of the lung-gut axis in IPF pathogenesis. IPF model rats were established via trans-tracheal injection of bleomycin, with assessments of hematological indices, serum cytokines, lung histopathology, and microbiome alterations. Significant differences in microbial structure and composition were observed in the IPF model compared to controls, with 14 lung and 7 gut microbial genera showing significant abundance changes. Further analysis revealed 20 significant correlations between pulmonary and gut genera. Notably, 11 pairs of correlated genera were linked to the same IPF-related physiological indices, such as hydroxyproline, mean corpuscular volume (MCV), and red cell distribution width-standard deviation (RDW-SD). We identified 24 instances where a lung and a gut genus were each associated with the same physiological index, forming "lung genus-index-gut genus" relationships. Mediation analysis showed that indices like hydroxyproline, MCV, and RDW-SD mediated correlations between 10 lung genera (e.g., Cetobacterium, Clostridium XVIII ) and the gut genus Allobaculum. This study first describes gut-lung microbial interactions in pulmonary fibrosis. Mediation analysis suggests pathways underlying "lung genus-host index-gut genus" and "gut genus-host index-lung genus" correlations, thus providing clues to further elucidate the mechanisms of the "gut-lung axis" in IPF pathogenesis.
Collapse
Affiliation(s)
- Sihan Hou
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xueer Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Jiarui Guo
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Yue Han
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Jia You
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, Beijing, 100081, China
| | - Zhigang Tian
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, No.804 Shenglijie, Xingqing District, Yinchuan, 750004, China
| | - Xiwei Zheng
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, No.804 Shenglijie, Xingqing District, Yinchuan, 750004, China
| | - Siriguleng Zheng
- Department of Information Technology, Polytechnic College, Beijing, China
| | - Yaqing Ling
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China
| | - Lingpeng Pei
- School of Pharmacy, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China.
| | - Enqi Wu
- School of Pharmacy, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Minzu University of China, No. 27 Zhongguancun South Avenue, Beijing, 100081, China.
| |
Collapse
|
9
|
Yao Q, Tan W, Bai F. Gut microbiome and metabolomics in systemic sclerosis: feature, link and mechanisms. Front Immunol 2024; 15:1475528. [PMID: 39559369 PMCID: PMC11570262 DOI: 10.3389/fimmu.2024.1475528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Systemic sclerosis (SSc) is a rare and highly heterogeneous chronic autoimmune disease characterized by multi-organ and tissue fibrosis, often accompanied by a poor prognosis and high mortality rates. The primary pathogenic mechanisms of SSc are considered to involve tissue fibrosis, autoimmune dysfunction, and microvascular abnormalities. Recent studies have shed light on the gut microbiota (GM) and metabolites in SSc patients, revealing their association with gastrointestinal symptoms and disease phenotypes. However, further elucidation is needed on the specific mechanisms underlying the interactions between GM, metabolites, and the immune system and their roles in the pathogenesis of SSc. This review outlines the characteristics of GM and metabolites in SSc patients, exploring their interrelationships and analyzing their correlations with the clinical phenotypes of SSc. The findings indicate that while the α-diversity of GM in SSc patients resembles that of healthy individuals, notable differences exist in the β-diversity and the abundance of specific bacterial genera, which are closely linked to gastrointestinal symptoms. Moreover, alterations in the levels of amino acids and lipid metabolites in SSc patients are prominently observed and significantly associated with clinical phenotypes. Furthermore, this review delves into the potential immunopathological mechanisms of GM and metabolites in SSc, emphasizing the critical role of interactions between GM, metabolites, and the immune system in comprehending the immunopathological processes of SSc. These insights may offer new scientific evidence for the development of future treatment strategies.
Collapse
Affiliation(s)
- Qicen Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Nanjing Medical University, Nanjing, China
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
10
|
Takuma S, Mori K, Karayama M, Inoue Y, Yasui H, Hozumi H, Suzuki Y, Furuhashi K, Fujisawa T, Enomoto N, Inui N, Suda T. Association of constipation with the survival of patients with idiopathic interstitial pneumonias. Respir Investig 2024; 62:1204-1208. [PMID: 39476439 DOI: 10.1016/j.resinv.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Constipation is associated with the prognosis of several chronic diseases. However, the effect of constipation on the prognosis of idiopathic interstitial pneumonias (IIPs) remains unclear. This study aimed to investigate the association between constipation and the prognosis of patients with IIPs. METHODS In this single-center, observational study, the association between constipation and survival of patients with IIPs was retrospectively investigated using a marginal structural model (MSM) analysis with weighting of age, sex, body mass index, treatment (corticosteroids, immunosuppressants, and antifibrotic agents), and pulmonary function (percent predicted forced vital capacity and diffusing capacity of the lungs for carbon monoxide). RESULTS A total of 433 patients with IIPs (148 and 285 patients with idiopathic pulmonary fibrosis [IPF] and those without IPF) were included in the study. During the observation period, 238 patients developed constipation. The MSM analysis showed that constipation was significantly associated with shorter overall survival (hazard ratio [HR], 2.374; 95% confidence interval, 1.924-2.928, p < 0.001). When the use of antifibrotic agents was weighted separately as nintedanib or pirfenidone, constipation was significantly associated with shorter survival (HR, 2.427; 95% CI, 1.972-2.988, p < 0.001; and HR, 2.395; 95% CI, 1.940-2.957, p < 0.001, respectively). Furthermore, a subgroup analysis showed that constipation was associated with worse survival in patients with IPF and in those without IPF, regardless of the disease severity. CONCLUSIONS This study shows that constipation is an independent prognostic factor for patients with IIPs, suggesting its potential clinical utility.
Collapse
Affiliation(s)
- Sho Takuma
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| | - Kazutaka Mori
- Department of Respiratory Medicine, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shizuoka, 424-8636, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan.
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan; Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| |
Collapse
|
11
|
Chen YZ, Zhao L, Wei W, Gu J, Liu ZH, Shan WY, Dong J, Li C, Qin LQ, Xu JY. The Effect of Metformin on Radiation-Induced Lung Fibrosis in Mice. Dose Response 2024; 22:15593258241308051. [PMID: 39664837 PMCID: PMC11632958 DOI: 10.1177/15593258241308051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction: Radiation-induced lung fibrosis (RILF) is a common complication of thoracic radiotherapy. Metformin has been suggested to have a radioprotective effect. Objective: This study explored the radioprotective effects of metformin on RILF and its mechanisms. Methods: C57BL/6J mice were randomly divided into control, ionizing radiation (IR), low-dose metformin (L-Met), and high-dose metformin (H-Met) groups. The IR, L-Met, and H-Met groups received 15 Gy chest irradiation. The L-Met and H-Met groups were administrated 100 or 200 mg/kg metformin from 3 days before irradiation and continued for 6 months. The mice were then sacrificed, and samples were collected for further analysis. Results: RILF was induced in the irradiated mice. Metformin improved lung pathology, inhibited collagen deposition, and reduced inflammatory factors such as high mobility group box 1 (HMGB1), interleukin-1 beta, interleukin-6, tumor necrosis factor alpha in lung tissue, lavage fluid, and serum. Western blot and quantitative real-time PCR analyses revealed that metformin downregulated HMGB1, toll-like receptor 4 (TLR4), and nuclear factor kappaB (NF-κB) expression. Additionally, metformin reversed the irradiation-induced reduction in the abundance of Lactobacillus and Lachnospiraceae at the genus level. Conclusion: Our findings indicated that metformin ameliorates RILF by downregulating the inflammatory-related HMGB1/TLR4/NF-κB pathway and improving intestinal flora disorder.
Collapse
Affiliation(s)
- Yu-Zhong Chen
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Yancheng Municipal Center for Disease Control and Prevention, Yancheng, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wei Wei
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jia Gu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhen-Hua Liu
- Department of Radiotherapy, The Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of Yancheng, Yancheng, China
| | - Wen-Yue Shan
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jie Dong
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Li
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Kim YC, Sohn KH, Kang HR. Gut microbiota dysbiosis and its impact on asthma and other lung diseases: potential therapeutic approaches. Korean J Intern Med 2024; 39:746-758. [PMID: 39252487 PMCID: PMC11384250 DOI: 10.3904/kjim.2023.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 09/11/2024] Open
Abstract
The emerging field of gut-lung axis research has revealed a complex interplay between the gut microbiota and respiratory health, particularly in asthma. This review comprehensively explored the intricate relationship between these two systems, focusing on their influence on immune responses, inflammation, and the pathogenesis of respiratory diseases. Recent studies have demonstrated that gut microbiota dysbiosis can contribute to asthma onset and exacerbation, prompting investigations into therapeutic strategies to correct this imbalance. Probiotics and prebiotics, known for their ability to modulate gut microbial compositions, were discussed as potential interventions to restore immune homeostasis. The impact of antibiotics and metabolites, including short-chain fatty acids produced by the gut microbiota, on immune regulation was examined. Fecal microbiota transplantation has shown promise in various diseases, but its role in respiratory disorders is not established. Innovative approaches, including mucus transplants, inhaled probiotics, and microencapsulation strategies, have been proposed as novel therapeutic avenues. Despite challenges, including the sophisticated adaptability of microbial communities and the need for mechanistic clarity, the potential for microbiota-based interventions is considerable. Collaboration between researchers, clinicians, and other experts is essential to unravel the complexities of the gut-lung axis, paving a way for innovative strategies that could transform the management of respiratory diseases.
Collapse
Affiliation(s)
- Young-Chan Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Hee Sohn
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hye-Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Fan S, Xue B, Ma J. Causal relationship between gut microbiota and idiopathic pulmonary fibrosis: A two-sample Mendelian randomization. Medicine (Baltimore) 2024; 103:e39013. [PMID: 39029004 PMCID: PMC11398756 DOI: 10.1097/md.0000000000039013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/19/2024] [Indexed: 07/21/2024] Open
Abstract
To explore the causal relationship between gut microbiota (GM) and Idiopathic pulmonary fibrosis (IPF), we performed a two-sample Mendelian randomization (MR). GM was used as an exposure factor, and instrumental variables were determined from the GWAS of 18,340 participants. GWAS of IPF (including 1028 IPF patients and 196,986 controls) from the FinnGen was used as the outcome factor. The primary analysis method is the inverse variance weighted (IVW) method, and sensitivity analysis was used to validate the reliability. Family Bacteroidaceae (OR = 1.917 95% CI = 1.083-3.393, P = .026), order Gastranaerophilales (OR = 1.441 95% CI = 1.019-2.036, P = .039), genus Senegalimassilia (OR = 2.28 95% CI = 1.174-4.427, P = .015), phylum Cyanobacteria (OR = 1.631 95% CI = 1.035-2.571, P = .035) were positively correlated with IPF. FamilyXIII(OR = 0.452 95% CI = 0.249-0.82, P = .009), order Selenomonadale (OR = 0.563 95% CI = 0.337-0.941, P = .029), genus Veillonella (OR = 0.546 95% CI = 0.304-0.982, P = .043) (OR = 0.717 95% CI = 0.527-0.976, P = .034), genus Ruminococcusgnavus (OR = 0.717 95% CI = 0.527-0.976, P = .034), genus Oscillibacter (OR = 0.571 95% CI = 0.405-0.806, P = .001) was negatively correlated with IPF. Sensitivity analysis showed no evidence of pleiotropy or heterogeneity (P > .05). The results of MR demonstrated a causal relationship between GM and IPF. Further studies are needed to investigate the intrinsic mechanisms of the GM in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Shiqin Fan
- Department of Intensive Care Medicine, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Baorui Xue
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Ma
- Department of Intensive Care Medicine, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Song X, Fu X, Niu S, Wang P, Qi J, Shi S, Chang H, Bai W. Exploring the effects of Saorilao-4 on the gut microbiota of pulmonary fibrosis model rats based on 16S rRNA sequencing. J Appl Microbiol 2024; 135:lxae178. [PMID: 39020259 DOI: 10.1093/jambio/lxae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
AIMS Pulmonary fibrosis (PF) is a progressive and incurable lung disease for which treatment options are limited. Here, we aimed to conduct an exploratory study on the effects of the Mongolian medicine Saorilao-4 (SRL) on the gut microbiota structure, species abundance, and diversity of a rat PF model as well as the mechanisms underlying such effects. METHODS AND RESULTS Rat fecal samples were analyzed using 16S rRNA sequencing technology. Bioinformatic and correlation analyses were performed on microbiota data to determine significant associations. SRL substantially attenuated the adverse effects exerted by PF on the structure and diversity of gut microbiota while regulating its alpha and beta diversities. Linear discriminant analysis effect size enabled the identification of 62 differentially abundant microbial taxa. Gut microbiota abundance analysis revealed that SRL significantly increased the relative abundance of bacterial phyla such as Firmicutes and Bacteroidetes. Moreover, SRL increased the proportion of beneficial bacteria, such as Lactobacillus and Bifidobacteriales, decreased the proportion of pathogenic bacteria, such as Rikenellaceae, and balanced the gut microbiota by regulating metabolic pathways. CONCLUSIONS SRL may attenuate PF by regulating gut microbiota. This exploratory study establishes the groundwork for investigating the metagenomics of PF.
Collapse
Affiliation(s)
- Xinni Song
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Xinyue Fu
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Shufang Niu
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Peng Wang
- The Second Affiliated Hospital of Baotou Medical College, Baotou 014030, China
| | - Jun Qi
- The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
| | - Songli Shi
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Hong Chang
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| | - Wanfu Bai
- School of Pharmacy, Baotou Medical College, Baotou 014040, China
| |
Collapse
|
15
|
Ruan Y, Ren G, Wang M, Lv W, Shimizu K, Zhang C. The dual role of 20(S)-protopanaxadiol in alleviating pulmonary fibrosis through the gut-lung axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155699. [PMID: 38733907 DOI: 10.1016/j.phymed.2024.155699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Pulmonary Fibrosis (PF) is a progressive lung disease characterized by the diffuse interstitial tissue, leading to severe breathing difficulties. The existing treatment methods are primarily aimed at slowing the progression of the disease, underscoring the urgent need to discover new drug interventions targeting novel sites. The "gut-lung axis" represents a complex bidirectional communication system where the gut microbiota not only influences lung immunity but also responds to lung-derived signals. Recent advances have uncovered that alterations in gut microbiota composition can significantly impact respiratory diseases, offering new insights into their pathogenesis and potential therapeutic approaches. METHODS This study is based on the fundamental concepts of the lung-gut axis and our previous research, further exploring the potential mechanisms of 20(S)-Protopanaxadiol (PPD) in ginseng against PF. We utilized a bleomycin-induced mouse model of PF and employed metabolomics and 16S rRNA sequencing to investigate the pathways through which PPD regulates the pulmonary fibrosis process via the gut-lung axis. Finally, we employed strategies such as antibiotic-induced microbiota disruption and fecal microbiota transplantation (FMT) to provide a comprehensive perspective on how PPD regulates pulmonary fibrosis through gut microbiota. RESULTS The results of the bleomycin (BLM) mouse model of PF proved that PPD can directly act on the glycolysis- related metabolic reprogramming process in lung and the AMPK/STING pathway to improve PF. Combined the analysis of gut microbiota and related metabolites, we found that PPD can regulate the process of PF through the gut-lung axis target points G6PD and SPHK1. FMT and antibiotic-induced microbiota disruption further confirmed intermediate effect of gut microbiota in PF process and the treatment of PPD. Our study suggests that PPD can alleviate the process of pulmonary fibrosis either by directly acting on the lungs or by regulating the gut microbiota. CONCLUSION This study positions PPD as a vanguard in the therapeutic landscape for pulmonary fibrosis, offering a dual mechanism of action that encompasses both modulation of gut microbiota and direct intervention at molecular targets. These insights highlight the immense therapeutic potential of harnessing the gut-lung axis.
Collapse
Affiliation(s)
- Yang Ruan
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China; Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Guoqing Ren
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China
| | - Mingchun Wang
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China
| | - Weichao Lv
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China
| | - Kuniyoshi Shimizu
- Laboratory of Systematic Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| | - Chaofeng Zhang
- Sino-Jan Joint Laboratory of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 639 Longmian Road, PR China.
| |
Collapse
|
16
|
Lan YW, Chen YC, Yen CC, Chen HL, Tung MC, Fan HC, Chen CM. Kefir peptides mitigate bleomycin-induced pulmonary fibrosis in mice through modulating oxidative stress, inflammation and gut microbiota. Biomed Pharmacother 2024; 174:116431. [PMID: 38522238 DOI: 10.1016/j.biopha.2024.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive and life-threatening lung disease with high mortality rates. The limited availability of effective drugs for IPF treatment, coupled with concerns regarding adverse effects and restricted responsiveness, underscores the need for alternative approaches. Kefir peptides (KPs) have demonstrated antioxidative, anti-inflammatory, and antifibrotic properties, along with the capability to modulate gut microbiota. This study aims to investigate the impact of KPs on bleomycin-induced pulmonary fibrosis. METHODS Mice were treated with KPs for four days, followed by intratracheal injection of bleomycin for 21 days. Comprehensive assessments included pulmonary functional tests, micro-computed tomography (µ-CT), in vivo image analysis using MMPsense750, evaluation of inflammation- and fibrosis-related gene expression in lung tissue, and histopathological examinations. Furthermore, a detailed investigation of the gut microbiota community was performed using full-length 16 S rRNA sequencing in control mice, bleomycin-induced fibrotic mice, and KPs-pretreated fibrotic mice. RESULTS In KPs-pretreated bleomycin-induced lung fibrotic mice, notable outcomes included the absence of significant bodyweight loss, enhanced pulmonary functions, restored lung tissue architecture, and diminished thickening of inter-alveolar septa, as elucidated by morphological and histopathological analyses. Concurrently, a reduction in the expression levels of oxidative biomarkers, inflammatory factors, and fibrotic indicators was observed. Moreover, 16 S rRNA sequencing demonstrated that KPs pretreatment induced alterations in the relative abundances of gut microbiota, notably affecting Barnesiella_intestinihominis, Kineothrix_alysoides, and Clostridium_viride. CONCLUSIONS Kefir peptides exerted preventive effects, protecting mice against bleomycin-induced lung oxidative stress, inflammation, and fibrosis. These effects are likely linked to modifications in the gut microbiota community. The findings highlight the therapeutic potential of KPs in mitigating pulmonary fibrosis and advocate for additional exploration in clinical settings.
Collapse
Affiliation(s)
- Ying-Wei Lan
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix 85004, USA.
| | - Ying-Cheng Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Department of Basic Medical Sciences, Veterinary Medicines, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Chih-Ching Yen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan.
| | - Hsiao-Ling Chen
- Department of Biomedical Science, Da-Yeh University, Changhua 515, Taiwan; Phermpep Co., Ltd., China Chemical & Pharmaceutical Group (CCPG), Taichung 42881, Taiwan
| | - Min-Che Tung
- Department of Surgery, and Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Hueng-Chuen Fan
- Department of Surgery, and Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
17
|
Li C, Qi X, Xu L, Sun Y, Chen Y, Yao Y, Zhao J. Preventive Effect of the Total Polyphenols from Nymphaea candida on Sepsis-Induced Acute Lung Injury in Mice via Gut Microbiota and NLRP3, TLR-4/NF-κB Pathway. Int J Mol Sci 2024; 25:4276. [PMID: 38673868 PMCID: PMC11050158 DOI: 10.3390/ijms25084276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the preventive effects of the total polyphenols from Nymphaea candida (NCTP) on LPS-induced septic acute lung injury (ALI) in mice and its mechanisms. NCTP could significantly ameliorate LPS-induced lung tissue pathological injury in mice as well as lung wet/dry ratio and MPO activities (p < 0.05). NCTP could significantly decrease the blood leukocyte, neutrophil, monocyte, basophil, and eosinophil amounts and LPS contents in ALI mice compared with the model group (p < 0.05), improving lymphocyte amounts (p < 0.05). Moreover, compared with the model group, NCTP could decrease lung tissue TNF-α, IL-6, and IL-1β levels (p < 0.05) and downregulate the protein expression of TLR4, MyD88, TRAF6, IKKβ, IκB-α, p-IκB-α, NF-κB p65, p-NF-κB p65, NLRP3, ASC, and Caspase1 in lung tissues (p < 0.05). Furthermore, NCTP could inhibit ileum histopathological injuries, restoring the ileum tight junctions by increasing the expression of ZO-1 and occludin. Simultaneously, NCTP could reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Clostridiales and Lachnospiraceae, and enhance the content of SCFAs (acetic acid, propionic acid, and butyric acid) in feces. These results suggested that NCTP has preventive effects on septic ALI, and its mechanism is related to the regulation of gut microbiota, SCFA metabolism, and the TLR-4/NF-κB and NLRP3 pathways.
Collapse
Affiliation(s)
- Chenyang Li
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China; (C.L.); (X.Q.)
| | - Xinxin Qi
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China; (C.L.); (X.Q.)
| | - Lei Xu
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| | - Yuan Sun
- School of Pharmacy, Xinjiang Medical University, Urumqi 830011, China;
| | - Yan Chen
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| | - Yuhan Yao
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| | - Jun Zhao
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China; (C.L.); (X.Q.)
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| |
Collapse
|
18
|
Dong Y, He L, Zhu Z, Yang F, Ma Q, Zhang Y, Zhang X, Liu X. The mechanism of gut-lung axis in pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1258246. [PMID: 38362497 PMCID: PMC10867257 DOI: 10.3389/fcimb.2024.1258246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Pulmonary fibrosis (PF) is a terminal change of a lung disease that is marked by damage to alveolar epithelial cells, abnormal proliferative transformation of fibroblasts, excessive deposition of extracellular matrix (ECM), and concomitant inflammatory damage. Its characteristics include short median survival, high mortality rate, and limited treatment effectiveness. More in-depth studies on the mechanisms of PF are needed to provide better treatment options. The idea of the gut-lung axis has emerged as a result of comprehensive investigations into the microbiome, metabolome, and immune system. This theory is based on the material basis of microorganisms and their metabolites, while the gut-lung circulatory system and the shared mucosal immune system act as the connectors that facilitate the interplay between the gastrointestinal and respiratory systems. The emergence of a new view of the gut-lung axis is complementary and cross-cutting to the study of the mechanisms involved in PF and provides new ideas for its treatment. This article reviews the mechanisms involved in PF, the gut-lung axis theory, and the correlation between the two. Exploring the gut-lung axis mechanism and treatments related to PF from the perspectives of microorganisms, microbial metabolites, and the immune system. The study of the gut-lung axis and PF is still in its early stages. This review systematically summarizes the mechanisms of PF related to the gut-lung axis, providing ideas for subsequent research and treatment of related mechanisms.
Collapse
Affiliation(s)
- Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lanlan He
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Quan Ma
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuhui Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Su Y, Zhang Y, Xu J. Genetic association and bidirectional Mendelian randomization for causality between gut microbiota and six lung diseases. Front Med (Lausanne) 2023; 10:1279239. [PMID: 38162878 PMCID: PMC10756341 DOI: 10.3389/fmed.2023.1279239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Purposes Increasing evidence suggests that intestinal microbiota correlates with the pathological processes of many lung diseases. This study aimed to investigate the causality of gut microbiota and lung diseases. Methods Genetic information on intestinal flora and lung diseases [asthma, chronic bronchitis, chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), lower respiratory tract infection (LRTI), pulmonary arterial hypertension (PAH)] and lung function was obtained from UK Biobank, FinnGen, and additional studies. A Mendelian randomization (MR) analysis was conducted to explore the causal association between gut microbiota and lung diseases. Results The genetic liability to lung diseases may be associated with the abundance of certain microbiota taxa. Specifically, the genus Prevotella (p = 0.041) was related to a higher risk of asthma; the family Defluviitaleaceae (p = 0.002) and its child taxon were identified as a risk factor for chronic bronchitis; the abundance of the genus Prevotella (p = 0.020) was related to a higher risk of ILD; the family Coriobacteriaceae (p = 0.011) was identified to have a positive effect on the risk of LRTI; the genus Lactobacillus (p = 0.0297) has been identified to be associated with an increased risk of PAH, whereas the genus Holdemanella (p = 0.0154) presented a causal decrease in COPD risk; the order Selenomonadales was identified to have a positive effect on the risk of FEV1(p = 0.011). The reverse TSMR analysis also provided genetic evidence of reverse causality from lung diseases to the gut microbiota. Conclusion This data-driven MR analysis revealed that gut microbiota was causally associated with lung diseases, providing genetic evidence for further mechanistic and clinical studies to understand the crosstalk between gut microbiota and lung diseases.
Collapse
Affiliation(s)
- Yue Su
- Department of Respiratory and Critical Care Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Youqian Zhang
- Health Science Center, Yangtze University, Hubei Province, Jingzhou, China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Gurczynski SJ, Lipinski JH, Strauss J, Alam S, Huffnagle GB, Ranjan P, Kennedy LH, Moore BB, O’Dwyer DN. Horizontal transmission of gut microbiota attenuates mortality in lung fibrosis. JCI Insight 2023; 9:e164572. [PMID: 38015634 PMCID: PMC10911107 DOI: 10.1172/jci.insight.164572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
Pulmonary fibrosis is a chronic and often fatal disease. The pathogenesis is characterized by aberrant repair of lung parenchyma, resulting in loss of physiological homeostasis, respiratory failure, and death. The immune response in pulmonary fibrosis is dysregulated. The gut microbiome is a key regulator of immunity. The role of the gut microbiome in regulating the pulmonary immunity in lung fibrosis is poorly understood. Here, we determine the impact of gut microbiota on pulmonary fibrosis in substrains of C57BL/6 mice derived from different vendors (C57BL/6J and C57BL/6NCrl). We used germ-free models, fecal microbiota transplantation, and cohousing to transmit gut microbiota. Metagenomic studies of feces established keystone species between substrains. Pulmonary fibrosis was microbiota dependent in C57BL/6 mice. Gut microbiota were distinct by β diversity and α diversity. Mortality and lung fibrosis were attenuated in C57BL/6NCrl mice. Elevated CD4+IL-10+ T cells and lower IL-6 occurred in C57BL/6NCrl mice. Horizontal transmission of microbiota by cohousing attenuated mortality in C57BL/6J mice and promoted a transcriptionally altered pulmonary immunity. Temporal changes in lung and gut microbiota demonstrated that gut microbiota contributed largely to immunological phenotype. Key regulatory gut microbiota contributed to lung fibrosis, generating rationale for human studies.
Collapse
Affiliation(s)
| | - Jay H. Lipinski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joshua Strauss
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shafiul Alam
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gary B. Huffnagle
- Department of Microbiology and Immunology and
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Piyush Ranjan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lucy H. Kennedy
- Unit for Laboratory and Animal Medicine, Office of Research, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bethany B. Moore
- Department of Microbiology and Immunology and
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Douglas D, Keating L, Strykowski R, Lee CT, Garcia N, Selvan K, Kaushik N, Bauer Ventura I, Jablonski R, Vij R, Chung JH, Bellam S, Strek ME, Adegunsoye A. Tobacco smoking is associated with combined pulmonary fibrosis and emphysema and worse outcomes in interstitial lung disease. Am J Physiol Lung Cell Mol Physiol 2023; 325:L233-L243. [PMID: 37366539 PMCID: PMC10396279 DOI: 10.1152/ajplung.00083.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Tobacco smoking is an established cause of pulmonary disease whose contribution to interstitial lung disease (ILD) is incompletely characterized. We hypothesized that compared with nonsmokers, subjects who smoked tobacco would differ in their clinical phenotype and have greater mortality. We performed a retrospective cohort study of tobacco smoking in ILD. We evaluated demographic and clinical characteristics, time to clinically meaningful lung function decline (LFD), and mortality in patients stratified by tobacco smoking status (ever vs. never) within a tertiary center ILD registry (2006-2021) and replicated mortality outcomes across four nontertiary medical centers. Data were analyzed by two-sided t tests, Poisson generalized linear models, and Cox proportional hazard models adjusted for age, sex, forced vital capacity (FVC), diffusion capacity of the lung for carbon monoxide (DLCO), ILD subtype, antifibrotic therapy, and hospital center. Of 1,163 study participants, 651 were tobacco smokers. Smokers were more likely to be older, male, have idiopathic pulmonary fibrosis (IPF), coronary artery disease, CT honeycombing and emphysema, higher FVC, and lower DLCO than nonsmokers (P < 0.01). Time to LFD in smokers was shorter (19.7 ± 20 mo vs. 24.8 ± 29 mo; P = 0.038) and survival time was decreased [10.75 (10.08-11.50) yr vs. 20 (18.67-21.25) yr; adjusted mortality HR = 1.50, 95%CI 1.17-1.92; P < 0.0001] compared with nonsmokers. Smokers had 12% greater odds of death for every additional 10 pack yr of smoking (P < 0.0001). Mortality outcomes remained consistent in the nontertiary cohort (HR = 1.51, 95%CI = 1.03-2.23; P = 0.036). Tobacco smokers with ILD have a distinct clinical phenotype strongly associated with the syndrome of combined PF and emphysema, shorter time to LFD, and decreased survival. Smoking prevention may improve ILD outcomes.NEW & NOTEWORTHY Smoking in ILD is associated with combined pulmonary fibrosis and emphysema and worse clinical outcomes.
Collapse
Affiliation(s)
- Dylan Douglas
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Layne Keating
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Rachel Strykowski
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Cathryn T Lee
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Nicole Garcia
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Kavitha Selvan
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Neha Kaushik
- Division of Pulmonary and Critical Care, Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Iazsmin Bauer Ventura
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Renea Jablonski
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Rekha Vij
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Jonathan H Chung
- Department of Radiology, The University of Chicago, Chicago, Illinois, United States
| | - Shashi Bellam
- Division of Pulmonary and Critical Care, Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Mary E Strek
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, Illinois, United States
- Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
22
|
Chioma OS, Mallott E, Shah-Gandhi B, Wiggins Z, Langford M, Lancaster AW, Gelbard A, Wu H, Johnson JE, Lancaster L, Wilfong EM, Crofford LJ, Montgomery CG, Van Kaer L, Bordenstein S, Newcomb DC, Drake WP. Low Gut Microbial Diversity Augments Estrogen-Driven Pulmonary Fibrosis in Female-Predominant Interstitial Lung Disease. Cells 2023; 12:766. [PMID: 36899902 PMCID: PMC10000459 DOI: 10.3390/cells12050766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Although profibrotic cytokines, such as IL-17A and TGF-β1, have been implicated in the pathogenesis of interstitial lung disease (ILD), the interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as the phosphorylation of STAT3, have not been defined. Here, through chromatin immunoprecipitation sequencing (ChIP-seq) analysis of primary human CD4+ T cells, we show that regions within the STAT3 locus are significantly enriched for binding by the transcription factor estrogen receptor alpha (ERa). Using the murine model of bleomycin-induced pulmonary fibrosis, we found significantly increased regulatory T cells compared to Th17 cells in the female lung. The genetic absence of ESR1 or ovariectomy in mice significantly increased pSTAT3 and IL-17A expression in pulmonary CD4+ T cells, which was reduced after the repletion of female hormones. Remarkably, there was no significant reduction in lung fibrosis under either condition, suggesting that factors outside of ovarian hormones also contribute. An assessment of lung fibrosis among menstruating females in different rearing environments revealed that environments favoring gut dysbiosis augment fibrosis. Furthermore, hormone repletion following ovariectomy further augmented lung fibrosis, suggesting pathologic interactions between gonadal hormones and gut microbiota in relation to lung fibrosis severity. An analysis of female sarcoidosis patients revealed a significant reduction in pSTAT3 and IL-17A levels and a concomitant increase in TGF-β1 levels in CD4+ T cells compared to male sarcoidosis patients. These studies reveal that estrogen is profibrotic in females and that gut dysbiosis in menstruating females augments lung fibrosis severity, supporting a critical interaction between gonadal hormones and gut flora in lung fibrosis pathogenesis.
Collapse
Affiliation(s)
- Ozioma S. Chioma
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Elizabeth Mallott
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Binal Shah-Gandhi
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - ZaDarreyal Wiggins
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Madison Langford
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Alexander Gelbard
- Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hongmei Wu
- Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joyce E. Johnson
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lisa Lancaster
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Erin M. Wilfong
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie J. Crofford
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Courtney G. Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Luc Van Kaer
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Seth Bordenstein
- Department of Biology and Entomology, Pennsylvania State University, College Station, PA 16801, USA
| | - Dawn C. Newcomb
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Wonder Puryear Drake
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
23
|
Chioma OS, Mallott E, Shah-Gandhi B, Wiggins Z, Langford M, Lancaster AW, Gelbard A, Wu H, Johnson JE, Lancaster L, Wilfong EM, Crofford LJ, Montgomery CG, Van Kaer L, Bordenstein S, Newcomb DC, Drake WP. Low Gut Microbial Diversity Augments Estrogen-driven Pulmonary Fibrosis in Female-Predominant Interstitial Lung Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528630. [PMID: 36824732 PMCID: PMC9948999 DOI: 10.1101/2023.02.15.528630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Although profibrotic cytokines such as IL-17A and TGF-β1 have been implicated in interstitial lung disease (ILD) pathogenesis, interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as phosphorylation of STAT3, have not been defined. Here we show by chromatin immunoprecipitation sequencing (ChIP-seq) analysis of primary human CD4+ T cells that regions within the STAT3 locus are significantly enriched for binding by the transcription factor estrogen receptor alpha (ERa). Using the murine model of bleomycin-induced pulmonary fibrosis, we found significantly increased regulatory T cells compared to Th17 cells in the female lung. Genetic absence of ESR1 or ovariectomy in mice significantly increased pSTAT3 and IL-17A expression in pulmonary CD4+ T cells, which was reduced after repletion of female hormones. Remarkably, there was no significant reduction in lung fibrosis under either condition, suggesting that factors outside of ovarian hormones also contribute. Assessment of lung fibrosis among menstruating females in different rearing environments revealed that environments favoring gut dysbiosis augment fibrosis. Furthermore, hormone repletion following ovariectomy further augmented lung fibrosis, suggesting pathologic interactions between gonadal hormones and gut microbiota on lung fibrosis severity. Analysis in female sarcoidosis patients revealed a significant reduction in pSTAT3 and IL-17A levels and a concomitant increase in TGF-β1 levels in CD4+ T cells, compared to male sarcoidosis patients. These studies reveal that estrogen is profibrotic in females and that gut dysbiosis in menstruating females augments lung fibrosis severity, supporting a critical interaction between gonadal hormones and gut flora in lung fibrosis pathogenesis.
Collapse
|