1
|
Yang S, Ren X, Liu J, Lei Y, Li M, Wang F, Cheng S, Ying J, Ding J, Chen X. Knockdown of the Clock gene in the liver aggravates MASLD in mice via inhibiting lipophagy. Mol Cell Biochem 2025; 480:2455-2469. [PMID: 39276171 DOI: 10.1007/s11010-024-05109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
The increased global prevalence of metabolic dysfunction-associated steatohepatitis (MASLD) has been closely associated with chronic disorders of the circadian clock. Herein, we investigate the role of Clock, a core circadian gene, in the pathogenesis of MASLD. Wild-type (WT) and liver-specific Clock knockdown (Clock-KD) mice were fed a Western diet for 20 weeks to induce MASLD. A cellular MASLD model was established by treating AML12 cells with free fatty acids and the effects of Clock knockdown were examined following transfection with Clock siRNA. Increased lipid deposition and more severe steatohepatitis and fibrosis were observed in the livers of Western diet-fed but not normal chow diet-fed Clock-KD mice after 20 weeks compared to WT mice. Moreover, the Clock gene was found to be significantly downregulated in WT MASLD mice. The Clock gene was shown to regulate the expression of lipophagy-related proteins (LC3B, P62, RAB7, and PLIN2) in vivo and in vitro. Knockdown of Clock was found to inhibit lipophagy resulting in increased accumulation of lipid droplets in the mouse liver and AML12 cells. Interestingly, the CLOCK protein was shown to interact with P62. However, knockdown of the Clock gene did not promote transcription of the P62 gene but suppressed degradation of the P62 protein during lipophagy in AML12 cells. The hepatic Clock gene regulates lipophagy and affects lipid droplet deposition in liver cells, and thus plays a critical role in the development of MASLD induced by a Western diet.
Collapse
Affiliation(s)
- Shuhong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xinxin Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Jia Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Yan Lei
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Minqian Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Fang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Shuting Cheng
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junjie Ying
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jie Ding
- The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730050, China
| | - Xiaohui Chen
- Gansu Province Maternity and Child Health Hospital (Gansu Province Central Hospital), Lanzhou, 730050, China
| |
Collapse
|
2
|
Cheng Z, Chu H, Seki E, Lin R, Yang L. Hepatocyte programmed cell death: the trigger for inflammation and fibrosis in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol 2024; 12:1431921. [PMID: 39071804 PMCID: PMC11272544 DOI: 10.3389/fcell.2024.1431921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
By replacing and removing defective or infected cells, programmed cell death (PCD) contributes to homeostasis maintenance and body development, which is ubiquitously present in mammals and can occur at any time. Besides apoptosis, more novel modalities of PCD have been described recently, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. PCD not only regulates multiple physiological processes, but also participates in the pathogenesis of diverse disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is mainly classified into metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), and the latter putatively progresses to cirrhosis and hepatocellular carcinoma. Owing to increased incidence and obscure etiology of MASH, its management still remains a tremendous challenge. Recently, hepatocyte PCD has been attracted much attention as a potent driver of the pathological progression from MASL to MASH, and some pharmacological agents have been proved to exert their salutary effects on MASH partly via the regulation of the activity of hepatocyte PCD. The current review recapitulates the pathogenesis of different modalities of PCD, clarifies the mechanisms underlying how metabolic disorders in MASLD induce hepatocyte PCD and how hepatocyte PCD contributes to inflammatory and fibrotic progression of MASH, discusses several signaling pathways in hepatocytes governing the execution of PCD, and summarizes some potential pharmacological agents for MASH treatment which exert their therapeutic effects partly via the regulation of hepatocyte PCD. These findings indicate that hepatocyte PCD putatively represents a new therapeutic point of intervention for MASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Zhu S, Wu Z, Wang W, Wei L, Zhou H. A revisit of drugs and potential therapeutic targets against non-alcoholic fatty liver disease: learning from clinical trials. J Endocrinol Invest 2024; 47:761-776. [PMID: 37839037 DOI: 10.1007/s40618-023-02216-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, with a worldwide prevalence of 25%. Although numerous clinical trials have been conducted over the last few decades, an effective treatment has not been approved yet. Extensive research has accumulated a large amount of data and experience; however, the vast number of clinical trials and new therapeutic targets for NAFLD make it impossible to keep abreast of the relevant information. Therefore, a systematic analysis of the existing trials is necessary. METHODS Here, we reviewed clinical trials on NAFLD registered in the mandated federal database, ClinicalTrials.gov, to generate a detailed overview of the trials related to drugs and therapeutic targets for NAFLD treatment. Following screening for pertinence to therapy, a total of 440 entries were identified that included active trials as well as those that have already been completed, suspended, terminated, or withdrawn. RESULTS We summarize and systematically analyze the state, drug development pipeline, and discovery of treatment targets for NAFLD. We consider possible factors that may affect clinical outcomes. Furthermore, we discussed these results to explore the mechanisms responsible for clinical outcomes. CONCLUSION We summarised the landscape of current clinical trials and suggested the directions for future NAFLD therapy to assist internal medicine specialists in treating the whole clinical spectrum of this highly prevalent liver disease.
Collapse
Affiliation(s)
- S Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Z Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - W Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - L Wei
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - H Zhou
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Schwärzler J, Grabherr F, Grander C, Adolph TE, Tilg H. The pathophysiology of MASLD: an immunometabolic perspective. Expert Rev Clin Immunol 2024; 20:375-386. [PMID: 38149354 DOI: 10.1080/1744666x.2023.2294046] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Metabolic-associated liver diseases have emerged pandemically across the globe and are clinically related to metabolic disorders such as obesity and type 2 diabetes. The new nomenclature and definition (i.e. metabolic dysfunction-associated steatotic liver disease - MASLD; metabolic dysfunction-associated steatohepatitis - MASH) reflect the nature of these complex systemic disorders, which are characterized by inflammation, gut dysbiosis and metabolic dysregulation. In this review, we summarize recent advantages in understanding the pathophysiology of MASLD, which we parallel to emerging therapeutic concepts. AREAS COVERED We summarize the pathophysiologic concepts of MASLD and its transition to MASH and subsequent advanced sequelae of diseases. Furthermore, we highlight how dietary constituents, microbes and associated metabolites, metabolic perturbations, and immune dysregulation fuel lipotoxicity, hepatic inflammation, liver injury, insulin resistance, and systemic inflammation. Deciphering the intricate pathophysiologic processes that contribute to the development and progression of MASLD is essential to develop targeted therapeutic approaches to combat this escalating burden for health-care systems. EXPERT OPINION The rapidly increasing prevalence of metabolic dysfunction-associated steatotic liver disease challenges health-care systems worldwide. Understanding pathophysiologic traits is crucial to improve the prevention and treatment of this disorder and to slow progression into advanced sequelae such as cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Effenberger M, Grander C, Grabherr F, Tilg H. Nonalcoholic Fatty Liver Disease and the Intestinal Microbiome: An Inseparable Link. J Clin Transl Hepatol 2023; 11:1498-1507. [PMID: 38161503 PMCID: PMC10752805 DOI: 10.14218/jcth.2023.00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 01/03/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) particularly affects patients with type 2 diabetes and obesity. The incidence of NAFLD has increased significantly over the last decades and is now pandemically across the globe. It is a complex systemic disease comprising hepatic lipid accumulation, inflammation, lipotoxicity, gut dysbiosis, and insulin resistance as main features and with the potential to progress to cirrhosis and hepatocellular carcinoma (HCC). In numerous animal and human studies the gut microbiota plays a key role in the pathogenesis of NAFLD, NAFLD-cirrhosis and NAFLD-associated HCC. Lipotoxicity is the driver of inflammation, insulin resistance, and liver injury. Likewise, western diet, obesity, and metabolic disorders may alter the gut microbiota, which activates innate and adaptive immune responses and fuels hereby hepatic and systemic inflammation. Indigestible carbohydrates are fermented by the gut microbiota to produce important metabolites, such as short-chain fatty acids and succinate. Numerous animal and human studies suggested a pivotal role of these metabolites in the progression of NAFLD and its comorbidities. Though, modification of the gut microbiota and/or the metabolites could even be beneficial in patients with NAFLD, NAFLD-cirrhosis, and NAFLD-associated HCC. In this review we collect the evidence that exogenous and endogenous hits drive liver injury in NAFLD and propel liver fibrosis and the progressing to advanced disease stages. NAFLD can be seen as the product of a complex interplay between gut microbiota, the immune response and metabolism. Thus, the challenge will be to understand its pathogenesis and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Tilg H, Byrne CD, Targher G. NASH drug treatment development: challenges and lessons. Lancet Gastroenterol Hepatol 2023; 8:943-954. [PMID: 37597527 DOI: 10.1016/s2468-1253(23)00159-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 08/21/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. Although NAFLD is tightly linked to obesity and type 2 diabetes, this liver disease also affects individuals who do not have obesity. NAFLD increases the risk of developing cardiovascular disease, chronic kidney disease, and certain extrahepatic cancers. There is currently no licensed pharmacotherapy for NAFLD, despite numerous clinical trials in the past two decades. Currently, the reason so few drugs have been successful in the treatment of NAFLD in a trial setting is not fully understood. As cardiovascular disease is the predominant cause of mortality in people with NAFLD, future pharmacotherapies for NAFLD must consider associated cardiometabolic risk factors. The successful use of glucose-lowering drugs in the treatment of type 2 diabetes in patients with NAFLD indicates that this strategy is important, and worth developing further. Greater public awareness of NAFLD is needed because collaboration between all stakeholders is vital to enable a holistic approach to successful treatment.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria.
| | - Christopher D Byrne
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Verona, Verona, Italy; IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| |
Collapse
|
7
|
Fang J, Celton-Morizur S, Desdouets C. NAFLD-Related HCC: Focus on the Latest Relevant Preclinical Models. Cancers (Basel) 2023; 15:3723. [PMID: 37509384 PMCID: PMC10377912 DOI: 10.3390/cancers15143723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. Despite extensive research, the biological mechanisms underlying HCC's development and progression remain only partially understood. Chronic overeating and/or sedentary-lifestyle-associated obesity, which promote Non-Alcoholic Fatty Liver Disease (NAFLD), have recently emerged as worrying risk factors for HCC. NAFLD is characterized by excessive hepatocellular lipid accumulation (steatosis) and affects one quarter of the world's population. Steatosis progresses in the more severe inflammatory form, Non-Alcoholic Steatohepatitis (NASH), potentially leading to HCC. The incidence of NASH is expected to increase by up to 56% over the next 10 years. Better diagnoses and the establishment of effective treatments for NAFLD and HCC will require improvements in our understanding of the fundamental mechanisms of the disease's development. This review describes the pathogenesis of NAFLD and the mechanisms underlying the transition from NAFL/NASH to HCC. We also discuss a selection of appropriate preclinical models of NAFLD for research, from cellular models such as liver-on-a-chip models to in vivo models, focusing particularly on mouse models of dietary NAFLD-HCC.
Collapse
Affiliation(s)
- Jing Fang
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - Séverine Celton-Morizur
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| |
Collapse
|
8
|
Zheng K, Zhou W, Ji J, Xue Y, Liu Y, Li C, Zhang Z, Lu J, Shi X, Li Y. Si-Ni-San reduces lipid droplet deposition associated with decreased YAP1 in metabolic dysfunction-associated fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116081. [PMID: 36608777 DOI: 10.1016/j.jep.2022.116081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide. However, its complex pathogenesis and lack of effective drugs for treating it present significant challenges. Si-Ni-San (SNS) is one of the representative formulas for treating patients with MAFLD in traditional Chinese medicine (TCM) clinics. According to our previous work, SNS reduces lipid droplet (LD) deposition in livers of mice with MAFLD. AIM OF THE STUDY To elucidate the mechanism of SNS in reducing LD deposition in MAFLD. MATERIALS AND METHODS First, LD areas were detected with Oil red O staining in HepG2 cells induced by oleic acid (OA). Cell Counting Kit-8 (CCK-8) assay was used to test cell viability after treatment with different concentrations of SNS serum. The expression of Yes-associated protein 1 (YAP1) was monitored by Western blot. Second, C57BL/6 mice were fed a high-fat diet (HFD) for 12 weeks and gavaged with SNS decoction during the 11th and 12th weeks. Then, the weight of the body and the liver was examined. LD numbers and their locations in the liver were detected by triglyceride (TG) assay and hematoxylin and eosin staining (H&E). The expression levels of YAP1 and perilipin2 (PLIN2) were detected using Western blot and immunohistochemistry (IHC) in liver tissues. Finally, active ingredients of SNS decoction and SNS serum were identified by liquid chromatography-mass spectrometry (LC-MS). Finally, molecular docking was performed between the compounds in SNS and YAP1 to analyze their active interaction. RESULTS Cellular experiments showed that SNS serum reduced LD vacuoles and YAP1 expression in OA-induced HepG2 cells. Animal experiments confirmed that LD vacuoles, PLIN2 expression (3.16-fold), and YAP1 expression (2.50-fold) were increased in the HFD group compared with the normal diet (ND) group. SNS reduced LD vacuoles, TG content (0.84-fold), PLIN2 expression (0.33-fold), and YAP1 expression (0.27-fold) compared with the normal saline (NS) group in Yap1Flox mice with MAFLD. In SNS, baicalein-6-glucuronide, desoxylimonin, galangin-7-glucoside, glycyrrhizic-acid, licoricesaponin-K2, and nobiletin showed a high binding effect with YAP1. Knockout of hepatocyte YAP1 reduced LD vacuoles, TG content (0.40-fold), and PLIN2 expression (0.62-fold) in mice. Meanwhile, SNS reduced LD vacuoles, TG content (0.70-fold), and PLIN2 expression (0.19-fold) in Yap1LKO mice with MAFLD. The effect of SNS in reducing TG and PLIN2 was diminished in Yap1LKO mice compared with Yap1Flox mice. CONCLUSION SNS reduced LD deposition and YAP1 expression in MAFLD liver cells both in vivo and in vitro. YAP1 was highly expressed in livers with MAFLD, and knockout of hepatocellular YAP1 reduced LD deposition in mice. SNS reduced LD deposition associated with decreased YAP1 in MAFLD liver cells.
Collapse
Affiliation(s)
- Kangning Zheng
- Department of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Wenhan Zhou
- Department of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Junlan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Yongmin Li
- Department of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
9
|
Arif W, Mathur B, Saikali MF, Chembazhi UV, Toohill K, Song YJ, Hao Q, Karimi S, Blue SM, Yee BA, Van Nostrand EL, Bangru S, Guzman G, Yeo GW, Prasanth KV, Anakk S, Cummins CL, Kalsotra A. Splicing factor SRSF1 deficiency in the liver triggers NASH-like pathology and cell death. Nat Commun 2023; 14:551. [PMID: 36759613 PMCID: PMC9911759 DOI: 10.1038/s41467-023-35932-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Regulation of RNA processing contributes profoundly to tissue development and physiology. Here, we report that serine-arginine-rich splicing factor 1 (SRSF1) is essential for hepatocyte function and survival. Although SRSF1 is mainly known for its many roles in mRNA metabolism, it is also crucial for maintaining genome stability. We show that acute liver damage in the setting of targeted SRSF1 deletion in mice is associated with the excessive formation of deleterious RNA-DNA hybrids (R-loops), which induce DNA damage. Combining hepatocyte-specific transcriptome, proteome, and RNA binding analyses, we demonstrate that widespread genotoxic stress following SRSF1 depletion results in global inhibition of mRNA transcription and protein synthesis, leading to impaired metabolism and trafficking of lipids. Lipid accumulation in SRSF1-deficient hepatocytes is followed by necroptotic cell death, inflammation, and fibrosis, resulting in NASH-like liver pathology. Importantly, SRSF1-depleted human liver cancer cells recapitulate this pathogenesis, illustrating a conserved and fundamental role for SRSF1 in preserving genome integrity and tissue homeostasis. Thus, our study uncovers how the accumulation of detrimental R-loops impedes hepatocellular gene expression, triggering metabolic derangements and liver damage.
Collapse
Affiliation(s)
- Waqar Arif
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bhoomika Mathur
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Katelyn Toohill
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Saman Karimi
- Department of Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science Chicago, Chicago, IL, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Grace Guzman
- Department of Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science Chicago, Chicago, IL, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
10
|
van der Meer D, Gurholt TP, Sønderby IE, Shadrin AA, Hindley G, Rahman Z, de Lange AMG, Frei O, Leinhard OD, Linge J, Simon R, Beck D, Westlye LT, Halvorsen S, Dale AM, Karlsen TH, Kaufmann T, Andreassen OA. The link between liver fat and cardiometabolic diseases is highlighted by genome-wide association study of MRI-derived measures of body composition. Commun Biol 2022; 5:1271. [PMID: 36402844 PMCID: PMC9675774 DOI: 10.1038/s42003-022-04237-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Obesity and associated morbidities, metabolic associated fatty liver disease (MAFLD) included, constitute some of the largest public health threats worldwide. Body composition and related risk factors are known to be heritable and identification of their genetic determinants may aid in the development of better prevention and treatment strategies. Recently, large-scale whole-body MRI data has become available, providing more specific measures of body composition than anthropometrics such as body mass index. Here, we aimed to elucidate the genetic architecture of body composition, by conducting genome-wide association studies (GWAS) of these MRI-derived measures. We ran both univariate and multivariate GWAS on fourteen MRI-derived measurements of adipose and muscle tissue distribution, derived from scans from 33,588 White European UK Biobank participants (mean age of 64.5 years, 51.4% female). Through multivariate analysis, we discovered 100 loci with distributed effects across the body composition measures and 241 significant genes primarily involved in immune system functioning. Liver fat stood out, with a highly discoverable and oligogenic architecture and the strongest genetic associations. Comparison with 21 common cardiometabolic traits revealed both shared and specific genetic influences, with higher mean heritability for the MRI measures (h2 = .25 vs. .13, p = 1.8x10-7). We found substantial genetic correlations between the body composition measures and a range of cardiometabolic diseases, with the strongest correlation between liver fat and type 2 diabetes (rg = .49, p = 2.7x10-22). These findings show that MRI-derived body composition measures complement conventional body anthropometrics and other biomarkers of cardiometabolic health, highlighting the central role of liver fat, and improving our knowledge of the genetic architecture of body composition and related diseases.
Collapse
Affiliation(s)
- Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy Hindley
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
| | - Zillur Rahman
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- LREN, Centre for Research in Neurosciences, Dept. of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Dept. of Psychiatry, University of Oxford, Oxford, UK
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Olof D Leinhard
- AMRA Medical, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Jennifer Linge
- AMRA Medical, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Rozalyn Simon
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Dani Beck
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Sigrun Halvorsen
- Department of Cardiology, Oslo University Hospital Ullevål, and University of Oslo, Oslo, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Tom H Karlsen
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Institute for Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Bamburowicz-Klimkowska M, Ruzycka-Ayoush M, Cieszanowski A, Szeszkowski W, Bialek M, Malkowska A, Grudzinski IP. New insights into NAFLD based on preclinical MRI studies. Chem Phys Lipids 2022; 244:105192. [DOI: 10.1016/j.chemphyslip.2022.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
|
12
|
Grabherr F, Grander C, Effenberger M, Schwärzler J, Tilg H. MAFLD: what 2 years of the redefinition of fatty liver disease has taught us. Ther Adv Endocrinol Metab 2022; 13:20420188221139101. [PMID: 36439029 PMCID: PMC9685107 DOI: 10.1177/20420188221139101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has appeared as the leading liver disease worldwide. Whereas the terminology nonalcoholic fatty liver disease (NAFLD) mainly reflected a negative selection and exclusion of alcohol-related liver disease (ALD), the new definition made its focus on the association of MAFLD with overweight/obesity, type 2 diabetes and metabolic risk factors especially also in normal weight/lean subjects. Several studies from the past 2 years have now used the new definition and have provided substantial information that this new definition might be accurate. Studies from the past 2 years have provided evidence that the new definition might be especially advantageous in the characterization and identification of patients with significant fibrosis. This has also been demonstrated in the well-known Rotterdam study in which the MAFLD-only group showed a higher rate of fibrosis and liver stiffness. MAFLD might also be able to predict all-cause mortality as demonstrated in the Third National Health and Nutrition Examination Survey. Furthermore, MAFLD might improve characterization of the cardiovascular risk of this patient population. As the term MAFLD has not yet been accepted universally, it remains important to coordinate efforts globally to adapt to this new definition and especially involve all specialities dealing with metabolic disorders such as diabetologists to further improve its definition and to prepare the medical community for its future use. The aim of this review is to summarize and critically address evidence emerging over the past 2 years that usage of the term MAFLD could be helpful in daily clinical practice.
Collapse
Affiliation(s)
- Felix Grabherr
- Department of Internal Medicine I,
Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical
University Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I,
Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical
University Innsbruck, Innsbruck, Austria
| | - Maria Effenberger
- Department of Internal Medicine I,
Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical
University Innsbruck, Innsbruck, Austria
| | - Julian Schwärzler
- Department of Internal Medicine I,
Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical
University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
13
|
Tilg H, Adolph TE, Dudek M, Knolle P. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat Metab 2021; 3:1596-1607. [PMID: 34931080 DOI: 10.1038/s42255-021-00501-9] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged pandemically across the globe and particularly affects patients with obesity and type 2 diabetes. NAFLD is a complex systemic disease that is characterised by hepatic lipid accumulation, lipotoxicity, insulin resistance, gut dysbiosis and inflammation. In this review, we discuss how metabolic dysregulation, the gut microbiome, innate and adaptive immunity and their interplay contribute to NAFLD pathology. Lipotoxicity has been shown to instigate liver injury, inflammation and insulin resistance. Synchronous metabolic dysfunction, obesity and related nutritional perturbation may alter the gut microbiome, in turn fuelling hepatic and systemic inflammation by direct activation of innate and adaptive immune responses. We review evidence suggesting that, collectively, these unresolved exogenous and endogenous cues drive liver injury, culminating in liver fibrosis and advanced sequelae of this disorder such as liver cirrhosis and hepatocellular carcinoma. Understanding NAFLD as a complex interplay between metabolism, gut microbiota and the immune response will challenge the clinical perception of NAFLD and open new therapeutic avenues.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
14
|
Grander C, Grabherr F, Enrich B, Meyer M, Mayr L, Schwärzler J, Pedrini A, Effenberger M, Adolph TE, Tilg H. Hepatic Meteorin-like and Krüppel-like Factor 3 are Associated with Weight Loss and Liver Injury. Exp Clin Endocrinol Diabetes 2021; 130:406-414. [PMID: 34407548 DOI: 10.1055/a-1537-8950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Laparoscopic adjustable gastric banding (LAGB) was found to be effective in reducing body weight and improving insulin resistance in patients with obesity and non-alcoholic fatty liver disease (NAFLD). The adipokine/myokine meteorin-like (METNRL) is an important regulator of whole-body energy expenditure. Krüppel-like factor 3 (KLF3), a regulator of METRNL expression in eosinophils, inhibits the beiging of adipose tissue in mice and therefore regulates adipose tissue development. METHODS Thirty-three obese patients undergoing LAGB were included in the study. The hepatic and adipose tissue expression of METNRL and KLF3 was determined before (t0) and 6 months after (t6) LABG. The human liver cancer cell line (HepG2) was stimulated with cytokines and fatty acids and METNRL and KLF3 expressions were analyzed. RESULTS LAGB-associated weight loss was correlated with decreased hepatic METNRL expression. The expression of METNRL and KLF3 in hepatic-and adipose tissues correlated before and after LAGB. Individuals with augmented LAGB-induced weight loss (>20 kg) showed lower hepatic METNRL and KLF3 expression before and after LAGB than patients with <20 kg weight loss. METNRL and KLF3 levels were higher in patients with higher NAFLD activity scores. HepG2 stimulation with interleukin-1β, tumor necrosis factor-α, palmitic acid but not interleukin-6, oleic acid, or lipopolysaccharide, induced the expression of one or both investigated adipokines. CONCLUSIONS The novel description of METRNL and KLF3 as hepatokines could pave the way to target their production and/or signaling in obesity, NAFLD, and related disorders. Both proteins may act as possible biomarkers to estimate weight loss after bariatric surgery.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alisa Pedrini
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Mo C, Mai T, Cai J, He H, Lu H, Tang X, Chen Q, Xu X, Nong C, Liu S, Tan D, Liu Q, Xu M, Li Y, Zhang Z, Qin J. Association between TFEB gene polymorphism, gene-environment interaction, and fatty liver disease: A case-control study in China. Sci Prog 2021; 104:368504211043766. [PMID: 34581652 PMCID: PMC10461375 DOI: 10.1177/00368504211043766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fatty liver disease (FLD) is a serious public health problem that is rapidly increasing. Evidence indicates that the transcription factor EB (TFEB) gene may be involved in the pathophysiology of FLD; however, whether TEFB polymorphism has an association with FLD remains unclear. OBJECTIVES To explore the association among TFEB polymorphism, gene-environment interaction, and FLD and provide epidemiological evidence for clarifying the genetic factors of FLD. METHODS This study is a case-control study. Sequenom MassARRAY was applied in genotyping. Logical regression was used to analyze the association between TFEB polymorphism and FLD, and the gene-environment interaction in FLD was evaluated by multiplication and additive interaction models. RESULTS (1) The alleles and genotypes of each single nucleotide polymorphism and haplotypes of TFEB in the case and control groups were evenly distributed; no statistically substantial difference was observed. (2) Logistic regression analysis indicated that TFEB polymorphism is not remarkably associated with FLD. (3) In the multiplicative interaction model, rs1015149, rs1062966, rs11754668 and rs2273068 had remarkable interaction with the amount of cigarette smoking. Rs1062966 and rs11754668 also had a considerable interaction body mass index and alcohol intake, respectively. However, no remarkable additive interaction was observed. CONCLUSION TFEB polymorphism is not directly associated with FLD susceptibility, but the risk can be changed through gene-environment interaction.
Collapse
Affiliation(s)
- Chunbao Mo
- School of Medicine, Southern University of Science and
Technology, Shenzhen, Guangdong, China
| | - Tingyu Mai
- Department of Environmental Health and
Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Jiansheng Cai
- Guangxi Key Laboratory of Tumor
Immunology and Microenvironmental Regulation, Guilin Medical University, Nanning, Guilin, China
| | - Haoyu He
- Department of Quality Management, The
Affiliated Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Huaxiang Lu
- Department of Environmental and
Occupational Health, School of Public Health, Guangxi Medical University, Nanning
530021, Guangxi, China
- Department of Guangxi Science and
Technology Major Project, Guangxi Zhuang Autonomous Region Center for Diseases
Control and Prevention, Nanning, Guangxi, China
| | - Xu Tang
- Department of Environmental and
Occupational Health, School of Public Health, Guangxi Medical University, Nanning
530021, Guangxi, China
| | - Quanhui Chen
- Department of Hospital
Infection-Control, Liuzhou Workers’ Hospital, Liuzhou, Guangxi, China
| | - Xia Xu
- Department of Environmental and
Occupational Health, School of Public Health, Guangxi Medical University, Nanning
530021, Guangxi, China
| | - Chuntao Nong
- Nanning Municipal Center for Disease
Control and Prevention, Nanning, Guangxi, China
| | - Shuzhen Liu
- Department of Environmental and
Occupational Health, School of Public Health, Guangxi Medical University, Nanning
530021, Guangxi, China
| | - Dechan Tan
- Department of Environmental Health and
Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Qiumei Liu
- Department of Environmental and
Occupational Health, School of Public Health, Guangxi Medical University, Nanning
530021, Guangxi, China
| | - Min Xu
- Department of Environmental and
Occupational Health, School of Public Health, Guangxi Medical University, Nanning
530021, Guangxi, China
| | - You Li
- Department of Environmental Health and
Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Zhiyong Zhang
- Department of Environmental Health and
Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
- Department of Environmental and
Occupational Health, School of Public Health, Guangxi Medical University, Nanning
530021, Guangxi, China
| | - Jian Qin
- Department of Environmental and
Occupational Health, School of Public Health, Guangxi Medical University, Nanning
530021, Guangxi, China
| |
Collapse
|
16
|
Tilg H, Targher G. NAFLD-related mortality: simple hepatic steatosis is not as 'benign' as thought. Gut 2021; 70:1212-1213. [PMID: 33077572 DOI: 10.1136/gutjnl-2020-323188] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Giovanni Targher
- Endocrinology and Metabolism, University of Verona, Ospedale Civile Maggiore, Verona, Italy
| |
Collapse
|
17
|
Mendes TC, Silva GRDA, Silva AO, Schaedler MI, Guarnier LP, Palozi RAC, Signor CT, Bosco JDD, Auth PA, Amaral EC, Froelich DL, Soares AA, Lovato ECW, Ribeiro-Paes JT, Gasparotto Junior A, Lívero FADR. Hepato- and cardioprotective effects of Baccharis trimera (Less.) DC. against multiple risk factors for chronic noncommunicable diseases. AN ACAD BRAS CIENC 2021; 93:e20200899. [PMID: 34161513 DOI: 10.1590/0001-3765202120200899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/13/2021] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular diseases are associated with high morbidity and mortality worldwide and have several risk factors, including dyslipidemia, smoking, and hypertension. Studies have evaluated isolated risk factors in experimental models of cardiovascular disease, but few preclinical studies have assessed associations between multiple risk factors. In the present study, hypertensive Wistar rats (Goldblatt 2K1C model) received a 0.5% cholesterol diet and were exposed to tobacco smoke for 8 weeks. During the last 4 weeks, the animals were treated with vehicle, an ethanol-soluble fraction of B. trimera (30, 100, and 300 mg/kg), or simvastatin + enalapril. A group of normotensive, non-dyslipidemic, and non-smoking rats was treated with vehicle. The levels of aspartate aminotransferase, alanine aminotransferase, urea, creatinine, and hepatic and fecal lipids, blood pressure, and mesenteric arterial bed reactivity were evaluated. Cardiac, hepatic, and renal histopathology and tecidual redox state were also investigated. Untreated animals exhibited significant changes in blood pressure, lipid profile, and biomarkers of heart, liver, and kidney damage. Treatment with B. trimera reversed these changes, with effects that were similar to simvastatin + enalapril. These findings suggest that B. trimera may be promising for the treatment of cardiovascular and hepatic disorders, especially disorders that are associated with multiple risk factors.
Collapse
Affiliation(s)
- Tatiane C Mendes
- Programa de Pós-Graduação em Ciência Animal com Ênfase em Bioativos, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Gustavo R DA Silva
- Programa de Pós-Graduação em Ciência Animal com Ênfase em Bioativos, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Aniely O Silva
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Maysa I Schaedler
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Lucas P Guarnier
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Rhanany A C Palozi
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Cleide T Signor
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Janaína D Dal Bosco
- Programa de Pós-Graduação em Ciência Animal com Ênfase em Bioativos, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Pablo A Auth
- Programa de Pós-Graduação em Ciência Animal com Ênfase em Bioativos, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Eduarda C Amaral
- Programa de Pós-Graduação em Plantas Medicinais e Fitoterápicos na Atenção Básica, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Diego L Froelich
- Faculdade Assis Gurgacz, Laboratório de Prevenção e Diagnóstico, Avenida das Torres, 500, 85806-095 Cascavel, PR, Brazil
| | - Andréia A Soares
- Programa de Pós-Graduação em Plantas Medicinais e Fitoterápicos na Atenção Básica, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - Evellyn C W Lovato
- Programa de Pós-Graduação em Plantas Medicinais e Fitoterápicos na Atenção Básica, Universidade Paranaense, Laboratório de Neurociências, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| | - João T Ribeiro-Paes
- Universidade Estadual de São Paulo, Departamento de Biotecnologia, Laboratório de Genética e Terapia Celular, Avenida Dom Antonio, 2100, 19806-900 Assis, SP, Brazil
| | - Arquimedes Gasparotto Junior
- Universidade Federal da Grande Dourados, Faculdade de Ciências da Saúde, Laboratório de Farmacologia Cardiovascular, Rodovia Dourados-Itahum, Km 12, Caixa Postal 533, 79804-970 Dourados, MS, Brazil
| | - Francislaine A Dos Reis Lívero
- Programa de Pós-Graduação em Ciência Animal com Ênfase em Bioativos, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil.,Programa de Pós-Graduação em Plantas Medicinais e Fitoterápicos na Atenção Básica, Universidade Paranaense, Laboratório de Pesquisa Pré-Clínica de Produtos Naturais, Praça Mascarenhas de Moraes, 4282, Caixa Postal 224, 87502-210 Umuarama, PR, Brazil
| |
Collapse
|
18
|
Yilmaz Y, Byrne CD, Musso G. A single-letter change in an acronym: signals, reasons, promises, challenges, and steps ahead for moving from NAFLD to MAFLD. Expert Rev Gastroenterol Hepatol 2021; 15:345-352. [PMID: 33270482 DOI: 10.1080/17474124.2021.1860019] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: We are currently at the dawn of a revolution in the field of fatty liver diseases. Recently, a consensus recommended 'metabolic (dysfunction) associated fatty liver disease' (MAFLD) as a more appropriate name to describe fatty liver disease associated with metabolic dysfunction, ultimately suggesting that the old acronym nonalcoholic fatty liver disease (NAFLD) should be abandoned.Areas covered: In this viewpoint, we discuss the reasons and relevance of this semantic modification through five different conceptual domains, i.e., 1) signals, 2) reasons, 2) promises, 4) challenges and 5) steps ahead.Expert opinion: The road ahead will not be traveled without major challenges. Further research to evaluate the positive and negative impacts of the nomenclature change is warranted. However, this modification should encourage increased disease awareness among policymakers and stimulate public and private investments leading to more effective therapy development.
Collapse
Affiliation(s)
- Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey.,Liver Research Unit, Institute of Gastroenterology, Marmara University, Istanbul, Turkey
| | - Christopher D Byrne
- National Institute for Health Research, Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Giovanni Musso
- HUMANITAS Gradenigo Hospital; Laboratory of Diabetology and Metabolism, Department of Medical Sciences, Città della Salute, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Lozano-Ruiz B, González-Navajas JM. The Emerging Relevance of AIM2 in Liver Disease. Int J Mol Sci 2020; 21:ijms21186535. [PMID: 32906750 PMCID: PMC7555176 DOI: 10.3390/ijms21186535] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/18/2023] Open
Abstract
Absent in melanoma 2 (AIM2) is a cytosolic receptor that recognizes double-stranded DNA (dsDNA) and triggers the activation of the inflammasome cascade. Activation of the inflammasome results in the maturation of inflammatory cytokines, such as interleukin (IL)-1 β and IL-18, and a form of cell death known as pyroptosis. Owing to the conserved nature of its ligand, AIM2 is important during immune recognition of multiple pathogens. Additionally, AIM2 is also capable of recognizing host DNA during cellular damage or stress, thereby contributing to sterile inflammatory diseases. Inflammation, either in response to pathogens or due to sterile cellular damage, is at the center of the most prevalent and life-threatening liver diseases. Therefore, during the last 15 years, the study of inflammasome activation in the liver has emerged as a new research area in hepatology. Here, we discuss the known functions of AIM2 in the pathogenesis of different hepatic diseases, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), hepatitis B, liver fibrosis, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Beatriz Lozano-Ruiz
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain;
- Department of Pharmacology, Paediatrics and Organic Chemistry, University Miguel Hernández (UMH), 03550 San Juan, Alicante, Spain
| | - José M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain;
- Department of Pharmacology, Paediatrics and Organic Chemistry, University Miguel Hernández (UMH), 03550 San Juan, Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), University Miguel Hernández, 03202 Elche, Alicante, Spain
- Correspondence: ; Tel.: +34-(965)-913-928
| |
Collapse
|