1
|
Nakamura M, Huang GN. Why some hearts heal and others don't: The phylogenetic landscape of cardiac regenerative capacity. Semin Cell Dev Biol 2025; 170:103609. [PMID: 40220599 DOI: 10.1016/j.semcdb.2025.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
The limited ability of adult humans to replenish lost heart muscle cells after a heart attack has attracted scientists to explore natural heart regeneration capabilities in the animal kingdom. In particular, research has accelerated since the landmark discovery more than twenty years ago that zebrafish can completely regrow myocardial tissue. In this review, we survey heart regeneration studies in diverse model and non-model animals, aiming to gain insights into both the evolutionary trends in cardiac regenerative potential and the variations among closely related species. Differences in cardiomyogenesis, vasculature formation, and the communication between cardiovascular cells and other players have been investigated to understand the cellular basis, although the precise molecular and genetic causes underlying the stark differences in cardiac regenerative potential among certain close cousins remain largely unknown. By studying cardiovascular regeneration and repair in diverse organisms, we may uncover distinct mechanisms, offering new perspectives for advancing regenerative medicine.
Collapse
Affiliation(s)
- Makoto Nakamura
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Mei Z, Yilamu K, Ni W, Shen P, Pan N, Chen H, Su Y, Guo L, Sun Q, Li Z, Huang D, Fang X, Fan S, Zhang H, Shen S. Chondrocyte fatty acid oxidation drives osteoarthritis via SOX9 degradation and epigenetic regulation. Nat Commun 2025; 16:4892. [PMID: 40425566 PMCID: PMC12117060 DOI: 10.1038/s41467-025-60037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Osteoarthritis is the most prevalent age-related degenerative joint disease and is closely linked to obesity. However, the underlying mechanisms remain unclear. Here we show that altered lipid metabolism in chondrocytes, particularly enhanced fatty acid oxidation (FAO), contributes to osteoarthritis progression. Excessive FAO causes acetyl-CoA accumulation, thereby altering protein-acetylation profiles, where the core FAO enzyme HADHA is hyperacetylated and activated, reciprocally boosting FAO activity and exacerbating OA progression. Mechanistically, elevated FAO reduces AMPK activity, impairs SOX9 phosphorylation, and ultimately promotes its ubiquitination-mediated degradation. Additionally, acetyl-CoA orchestrates epigenetic modulation, affecting multiple cellular processes critical for osteoarthritis pathogenesis, including the transcriptional activation of MMP13 and ADAMTS7. Cartilage-targeted delivery of trimetazidine, an FAO inhibitor and AMPK activator, demonstrates superior efficacy in a mouse model of metabolism-associated post-traumatic osteoarthritis. These findings suggest that targeting chondrocyte-lipid metabolism may offer new therapeutic strategies for osteoarthritis.
Collapse
Affiliation(s)
- Zixuan Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Kamuran Yilamu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Nan Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Huasen Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yingfeng Su
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lei Guo
- Pooling Institute of Translational Medicine, Hangzhou, China
| | - Qunan Sun
- Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaomei Li
- Department of Geriatrics, Xiaoshan Geriatric Hospital, Hangzhou, China
| | - Dongdong Huang
- Pooling Institute of Translational Medicine, Hangzhou, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Haitao Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Lan T, Kaminsky S, Wu CC. Ploidy in cardiovascular development and regeneration. Semin Cell Dev Biol 2025; 172:103618. [PMID: 40398363 DOI: 10.1016/j.semcdb.2025.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/01/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
Somatic polyploidy, a non-inheritable form of genome multiplication, plays cell-type specific and context-dependent roles in organ development and regeneration. In the mammalian heart, embryonic cardiomyocytes are primarily diploid, which lose their ability to complete cell division and become polyploid as they mature. Unlike lower vertebrates like zebrafish, polyploid cardiomyocytes are commonly found across mammals, including humans. Intriguingly, the degree, timing, and modes of cardiomyocyte polyploidization vary greatly between species. In addition to the association with cardiomyocyte development and maturation, recent studies have established polyploidy as a barrier against cardiomyocyte proliferation and heart regeneration following cardiac injury. Hence, a thorough understanding of how and why cardiomyocyte become polyploid will provide insights into heart development and may help develop therapeutic strategies for heart regeneration. Here, we review the dynamics of cardiomyocyte polyploidization across species and how cardiomyocyte-intrinsic, -extrinsic, and environmental factors regulate this process as well as the impact of cardiomyocyte polyploidization on heart development and regeneration.
Collapse
Affiliation(s)
- Tian Lan
- Heidelberg University, Medical Faculty Mannheim, European Center for Angioscience, Mannheim, Germany; Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University
| | - Sabrina Kaminsky
- Heidelberg University, Medical Faculty Mannheim, European Center for Angioscience, Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Germany
| | - Chi-Chung Wu
- Heidelberg University, Medical Faculty Mannheim, European Center for Angioscience, Mannheim, Germany; Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University.
| |
Collapse
|
4
|
Tanaka S, Hirota A, Okada Y, Obana M, Fujio Y. Fatty acid metabolism suppresses neonatal cardiomyocyte proliferation by increasing PDK4 and HMGCS2 expression through PPARδ. PLoS One 2025; 20:e0318178. [PMID: 40338840 PMCID: PMC12061097 DOI: 10.1371/journal.pone.0318178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/11/2025] [Indexed: 05/10/2025] Open
Abstract
Cardiomyocytes lose their capacity to regenerate immediately after birth. Simultaneously, cardiomyocytes change energy metabolism from glycolysis to oxidative phosphorylation, especially using fatty acids. Accumulating evidence has revealed that fatty acid metabolism weakens the proliferative ability of cardiomyocytes. However, its underlying molecular mechanism remains unclear. In this study, we investigated how fatty acid metabolism contributes to cell cycle regulation in neonatal cardiomyocytes. Cultured neonatal rat cardiomyocytes (NRCMs) were treated with a fatty acid mixture (FA) consisting of palmitic and oleic acids containing L-carnitine. The FA treatment increased not only β-oxidation-related enzymes but also pyruvate dehydrogenase kinase 4 (PDK4), a fatty acid metabolism regulator, and HMG-CoA synthase 2 (HMGCS2), a ketogenic factor. Moreover, Ki67-positive proliferative NRCMs were reduced by the FA, indicating that fatty acids suppress the NRCM cell cycle. GW501516, a peroxisome proliferator-activated receptor δ (PPARδ) activator, also upregulated fatty acid metabolism genes and disturbed NRCM proliferation, whereas GSK3787, a PPARδ inhibitor, recovered FA-induced the cell cycle arrest. Furthermore, overexpression of PDK4 or HMGCS2 using a lentiviral vector suppressed cell cycle activity in NRCMs, and silencing either gene regained cell cycle even in FA-rich condition. In conclusion, fatty acid metabolism increased PDK4 and HMGCS2 via PPARδ activation and suppressed NRCM proliferation.
Collapse
Affiliation(s)
- Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akane Hirota
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Yang S, Yan L, Chen L, Su G, Yang L, Gong L, Liu L. Cardiac PDK4 promotes neutrophilic PFKL methylation and drives the innate immune response in diabetic myocardial infarction. Pharmacol Res 2025; 215:107731. [PMID: 40222696 DOI: 10.1016/j.phrs.2025.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
NETosis plays a pivotal role in the innate immune response after diabetic myocardial infarction (MI), exerting a profound influence on the overall pathological process and potential recovery outcomes. The metabolism of diabetic cardiomyocyte actively creates a specialized micro environment for the innate immune response after MI. However, the mechanism by which cardiac metabolism drives NETosis remains unclear. Utilizing public databases of human MI sc-RNA datasets, we discovered that cardiomyocyte PDK4 expression mediates the intensification of glycolysis, which is strongly correlated with NETosis. Through mass spectrometry imaging and phenotype assessment, we ascertained that specific knockout of PDK4 in cardiomyocytes (PDK4fl/flMyh6Cre, male, 6 weeks) led to a reduction in NETosis by restraining micro environmental lactate (LA) production. In addition, the role of LA in promoting NETosis has been further corroborated by in vivo/in vitro experiments involving LA supplementation and its absence. Moreover, LA redirects neutrophil metabolic flux from glycolysis to the pentose-phosphate pathway (PPP). Mechanistically, LA triggers metabolic remodeling through the PRMT9-mediated methylation of PFKL at the R301 residue, resulting in PFKL inactivation and the consequent restriction of glycolysis. Our findings reveal the crucial role of cardiomyocyte metabolism in NETosis, shedding light on the role of LA as a vital signaling molecule in the crosstalk between cardiomyocytes and neutrophils. Importantly, we screened pitavastatin, a potential inhibitor of PDK4 among the FDA-approved drugs, and verified that it can alleviate NETosis in diabetic MI, which provides a rationale for drug selection in diabetic MI patients.
Collapse
Affiliation(s)
- Song Yang
- China-Japan Friendship Hospital, Beijing 100029, China
| | - Longxin Yan
- China-Japan Friendship Hospital, Beijing 100029, China
| | - Lang Chen
- China-Japan Friendship Hospital, Beijing 100029, China
| | - Gaijuan Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
| | - Long Yang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lili Gong
- China-Japan Friendship Hospital, Beijing 100029, China.
| | - Lihong Liu
- China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
6
|
James R. Relationship troubles at the mitochondrial level and what it might mean for human disease. Open Biol 2025; 15:240331. [PMID: 40393506 DOI: 10.1098/rsob.240331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 05/22/2025] Open
Abstract
Understanding and treating disease depend upon our knowledge of how the body works. The biomedical approach to disease describes health purely in terms of biological factors, with a focus on the genome as the molecular basis for cellular function and dysfunction in disease. However, the eukaryotic cell has evolved as a partnership between prokaryotic cells with mitochondria being crucial to this relationship. Aside from their role as bioenergetic and biosynthetic hubs, mitochondria are also involved in cell signalling and cell fate pathways, playing a multifaceted role in cell function and health. Crucially, mitochondria are implicated in most diseases. Perhaps then, visualizing biomedical function on the backdrop of endosymbiosis may provide another viewpoint for explaining and treating disease.
Collapse
|
7
|
Xu Q, Chen X, Zhao C, Liu Y, Wang J, Ao X, Ding W. Cell cycle arrest of cardiomyocytes in the context of cardiac regeneration. Front Cardiovasc Med 2025; 12:1538546. [PMID: 40357436 PMCID: PMC12066773 DOI: 10.3389/fcvm.2025.1538546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
The limited capacity of adult mammalian cardiomyocytes to undergo cell division and proliferation is one of the key factors contributing to heart failure. In newborn mice, cardiac proliferation occurs during a brief window, but this proliferative capacity diminishes by 7 days after birth. Current studies on cardiac regeneration focused on elucidating changes in regulatory factors within the heart before and after this proliferative window, aiming to determine whether potential association between these factors and cell cycle arrest in cardiomyocytes. Facilitating the re-entry of cardiomyocytes into the cell cycle or reversing their exit from it represents a critical strategy for cardiac regeneration. This paper provides an overview of the role of cell cycle arrest in cardiac regeneration, briefly describes cardiomyocyte proliferation and cardiac regeneration, and systematically summarizes the regulation of the cell cycle arrest in cardiomyocytes, and the potential metabolic mechanisms underlying cardiomyocyte cycle arrest. Additionally, we highlight the development of cardiovascular disease drugs targeting cardiomyocyte cell cycle regulation and their status in clinical treatment. Our goal is to outline strategies for promoting cardiac regeneration and repair following cardiac injury, while also pointing toward future research directions that may offer new technologies and prospects for treating cardiovascular diseases, such as myocardial infarction, arrhythmia and heart failure.
Collapse
Affiliation(s)
- Qingling Xu
- Department of Comprehensive Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xinhui Chen
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chunyige Zhao
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiang Ao
- Department of Comprehensive Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Lam NT, Nguyen NUN, Elhelaly WM, Hsu CC, Menendez-Montes I, Xiao F, Ali SR, Vo N, Briard N, El-Feky L, Omari QM, Cardoso AC, Liu Y, Ahmed MS, Li S, Thet S, Xing C, Zangi L, Sadek HA. Induced Cytokinesis Generates Highly Proliferative Mononuclear Cardiomyocytes at the Expense of Contractility. Circulation 2025; 151:1009-1023. [PMID: 39912233 DOI: 10.1161/circulationaha.124.065763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025]
Abstract
BACKGROUND Cytokinesis is the last step in the eukaryotic cell cycle, which physically separates a mitotic cell into 2 daughter cells. A few days after birth in mouse cardiomyocytes, DNA synthesis occurs without cytokinesis, leading to the majority of cardiomyocytes becoming binucleated instead of generating 2 daughter cells with 1 nucleus each. This results in cell cycle arrest of cardiomyocytes, and the mouse heart is no longer able to regenerate. A longstanding unanswered question is whether binucleation of cardiomyocytes is a result of cytokinesis failure. METHODS To address this, we generated several transgenic mouse models to determine whether forced induction of cardiomyocyte cytokinesis generates mononucleated cardiomyocytes and restores the endogenous regenerative properties of the myocardium. We focused on 2 complementary regulators of cytokinesis: Plk1 (polo-like kinase 1) and Ect2 (epithelial cell-transformation sequence 2). RESULTS We found that cardiomyocyte-specific transgenic overexpression of constitutively active Plk1(T210D) promotes mitosis and cytokinesis in adult hearts, whereas overexpression of Ect2 alone promotes only cytokinesis. Cardiomyocyte-specific overexpression of both Plk1(T210D) and Ect2 concomitantly (double transgenic) prevents binucleation of cardiomyocytes postnatally and results in widespread cardiomyocyte mitosis, cardiac enlargement, contractile failure, and death before 2 weeks of age. In contrast, doxycycline-inducible cardiomyocyte-specific overexpression of both genes (inducible double transgenic) in the adult heart results in cardiomyocyte mitosis and transient contractile dysfunction. Importantly, this transient induction of cytokinesis in adult mice improves left ventricular systolic function after myocardial infarction. CONCLUSIONS These results collectively demonstrate that cytokinesis failure mediates cardiomyocyte multinucleation and cell cycle exit of postnatal cardiomyocytes, but may be a protective mechanism to preserve the contractile function of the myocardium.
Collapse
Affiliation(s)
- Nicholas T Lam
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Sarver Heart Center and Department of Medicine, Division of Cardiology, The University of Arizona, Tucson (N.T.L., W.M.E., I.M.-M., H.A.S.)
- Heart Research Institute, Sydney, Australia (N.T.L.)
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Waleed M Elhelaly
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Sarver Heart Center and Department of Medicine, Division of Cardiology, The University of Arizona, Tucson (N.T.L., W.M.E., I.M.-M., H.A.S.)
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Ivan Menendez-Montes
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Sarver Heart Center and Department of Medicine, Division of Cardiology, The University of Arizona, Tucson (N.T.L., W.M.E., I.M.-M., H.A.S.)
| | - Feng Xiao
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Shah R Ali
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Nelson Vo
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Nathan Briard
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Lobna El-Feky
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Qamar M Omari
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Alisson C Cardoso
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Yan Liu
- Eugene McDermott Center for Human Growth and Development (Y.L., C.X.), The University of Texas Southwestern Medical Center, Dallas
| | - Mahmoud Salama Ahmed
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Shujuan Li
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Suwannee Thet
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development (Y.L., C.X.), The University of Texas Southwestern Medical Center, Dallas
| | - Lior Zangi
- Cardiovascular Research Institute, Department of Genetics and Genomic Sciences, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY (L.Z.)
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology (N.T.L., N.U.N.N., W.M.E., C.-C.H., I.M.-M., F.X., S.R.A., N.V., N.B., L.E.-F., Q.M.O., A.C.C., M.S.A., S.L., S.T., H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Hamon Center for Regenerative Science and Medicine (H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Department of Biophysics (H.A.S.), The University of Texas Southwestern Medical Center, Dallas
- Sarver Heart Center and Department of Medicine, Division of Cardiology, The University of Arizona, Tucson (N.T.L., W.M.E., I.M.-M., H.A.S.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (H.A.S.)
| |
Collapse
|
9
|
Koopmans T, van Rooij E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 2025:10.1038/s41569-025-01145-y. [PMID: 40195566 DOI: 10.1038/s41569-025-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue - a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth - nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation - forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
10
|
Li H, Xiao F, Zhou C, Zhu T, Wang S. Metabolic Adaptations and Therapies in Cardiac Hypoxia: Mechanisms and Clinical Implications/ Potential Strategies. JACC Basic Transl Sci 2025:S2452-302X(24)00458-3. [PMID: 40265246 DOI: 10.1016/j.jacbts.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 04/24/2025]
Abstract
Cardiac hypoxia triggers a cascade of responses and functional changes in myocardial and non-myocardial cells, profoundly affecting cellular metabolism, oxygen-sensing mechanisms, and immune responses. Myocardial cells, being the primary cell type in cardiac tissue, undergo significant alterations in energy metabolism, including glycolysis, fatty acid metabolism, ketone body utilization, and branched-chain amino acid metabolism, to maintain cardiac function under hypoxic conditions. Non-myocardial cells, such as fibroblasts, endothelial cells, and immune cells, although fewer in number, play crucial roles in regulating cardiac homeostasis, maintaining structural integrity, and responding to injury. This review discusses the metabolic reprogramming of immune cells, particularly macrophages, during ischemia-reperfusion injury and explores various therapeutic strategies that modulate these metabolic pathways to protect the heart during hypoxia. Understanding these interactions provides valuable insights and potential therapeutic targets for heart disease treatment.
Collapse
Affiliation(s)
- Huili Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fei Xiao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chenghui Zhou
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012, West China Hospital, Sichuan University, Chengdu, China.
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
11
|
Atser MG, Wenyonu CD, Rowe EM, Leung CLK, Cen HH, Queathem ED, Liu LT, Moravcova R, Rogalski J, Perrin D, Crawford P, Foster LJ, Alcazar A, Johnson JD. Pyruvate dehydrogenase kinase 1 controls triacylglycerol hydrolysis in cardiomyocytes. J Biol Chem 2025; 301:108398. [PMID: 40074083 PMCID: PMC11999607 DOI: 10.1016/j.jbc.2025.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Pyruvate dehydrogenase kinase (PDK) 1 is one of four isozymes that inhibit the oxidative decarboxylation of pyruvate to acetyl-CoA via pyruvate dehydrogenase. PDK activity is elevated in fasting or starvation conditions to conserve carbohydrate reserves. PDK has also been shown to increase mitochondrial fatty acid utilization. In cardiomyocytes, metabolic flexibility is crucial for the fulfillment of high energy requirements. The PDK1 isoform is abundant in cardiomyocytes, but its specific contribution to cardiomyocyte metabolism is unclear. Here we show that PDK1 regulates cardiomyocyte fuel preference by mediating triacylglycerol turnover in differentiated H9c2 myoblasts using lentiviral shRNA to knockdown Pdk1 expression. Somewhat surprisingly, PDK1 loss did not affect overall PDH activity, basal glycolysis, or glucose oxidation revealed by oxygen consumption rate experiments and 13C6 glucose labeling. On the other hand, we observed decreased triacylglycerol turnover in H9c2 cells with PDK1 knockdown, which was accompanied by decreased mitochondrial fatty acid utilization following nutrient deprivation. 13C16 palmitate tracing of uniformly labeled acyl chains revealed minimal acyl chain shuffling within triacylglycerol, indicating that the triacylglycerol hydrolysis, and not re-esterification, was dysfunctional in PDK1 knockdown cells. Importantly, PDK1 loss did not significantly impact the cellular lipidome or triacylglycerol accumulation in the context of palmitic acid supplementation, suggesting that the effects of PDK1 on lipid metabolism were specific to the nutrient-deprived state. We validated that PDK1 loss decreased triacylglycerol turnover in Pdk1 knockout mice. Together, these findings implicate a novel role for PDK1 in lipid metabolism in cardiomyocytes, independent of its canonical roles in glucose metabolism.
Collapse
Affiliation(s)
- Michael G Atser
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chelsea D Wenyonu
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elyn M Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie L K Leung
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haoning Howard Cen
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric D Queathem
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Leo T Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Renata Moravcova
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Rogalski
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Perrin
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Leonard J Foster
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armando Alcazar
- Life Sciences Institute Proteomics and Metabolomics Core Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Ghanizadeh-Kazerouni E, Negrete B, Jones SRM, Fast MD, Brauner CJ. Mitochondrial respiration capacity impacts gill tissue regeneration in Atlantic salmon. J Exp Biol 2025; 228:jeb249704. [PMID: 40013343 DOI: 10.1242/jeb.249704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Gill regeneration in fish varies inter- and intra-specifically. The latter may be associated with myriad factors including capacity of energy metabolism. This study investigated whether mitochondrial respiration capacity influences the degree of gill regeneration and features of mitochondria in regenerated tissue by feeding fish an experimental diet aimed at modulating mitochondrial efficiency. Atlantic salmon reared on standard and experimental diet were subjected to 50% filament resection on a subset of filaments on the ventral and dorsal regions of the first gill arch. Mitochondrial respiration and citrate synthase activity (CSA) were measured in the resected tips of filaments (week-0) and then in the regenerated tissue at 20 weeks post-resection (week-20). The degree of filament regeneration was measured at week-20. The experimental diet reduced CSA and respiratory control ratio (RCR), and increased proton leak at week-0, which was associated with a 30% reduction in tissue regeneration compared with fish on standard diet. While CSA increased in the regenerated tissue of experimental diet fish, there was a decline in other metrics of mitochondrial respiration including state 3, proton leak and RCR irrespective of diet. Overall, mitochondrial respiration efficiency at week-0 was positively correlated with the degree of subsequent gill tissue regeneration. Additionally, state 3 respiration and proton leak at week-20 were positively correlated with tissue regeneration, whereas CSA exhibited a negative relationship. Our results indicate that the capacity of mitochondrial respiration may at least partially explain the inter-individual variation in tissue regeneration, but mitochondrial function in the regenerating tissue may be limited.
Collapse
Affiliation(s)
| | - Benjamin Negrete
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Simon R M Jones
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada, V9T 6N7
| | - Mark D Fast
- Department of Pathology and Microbiology, University of Prince Edward Island, Charlottetown, PE, Canada, C1A 4P3
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
13
|
Cai D, Liu C, Li H, Wang C, Bai L, Feng J, Hu M, Wang H, Song S, Xie Y, Chen Z, Zhong J, Lian H, Yang Z, Zhang Y, Nie Y. Foxk1 and Foxk2 promote cardiomyocyte proliferation and heart regeneration. Nat Commun 2025; 16:2877. [PMID: 40128196 PMCID: PMC11933303 DOI: 10.1038/s41467-025-57996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Promoting endogenous cardiomyocyte proliferation is a promising strategy for cardiac repair. Identifying key factors that regulate cardiomyocyte proliferation can advance the development of novel therapies for heart regeneration. Here, we identify Foxk1 and Foxk2 as key regulators of cardiomyocyte proliferation, whose expression declines during postnatal heart development. Cardiomyocyte-specific knockout of Foxk1 or Foxk2 impairs neonatal heart regeneration after myocardial infarction (MI) injury. AAV9-mediated Foxk1 or Foxk2 overexpression extends the postnatal cardiomyocyte proliferative window and enhances cardiac repair in adult mice after MI. Mechanistically, Foxk1 and Foxk2 drive cardiomyocyte cell cycle progression by directly activating CCNB1 and CDK1 expression, forming the CCNB1/CDK1 complex that facilitates G2/M transition. Moreover, Foxk1 and Foxk2 promote cardiomyocyte proliferation by upregulating HIF1α expression, which enhances glycolysis and the pentose phosphate pathway (PPP), which further favors cardiomyocyte proliferation. These findings establish Foxk1 and Foxk2 as promising therapeutic targets for cardiac injury.
Collapse
Affiliation(s)
- Dongcheng Cai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chungeng Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Spine Surgery and Institute for Orthopaedic Research, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, PR China
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chiyin Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Miaoqing Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yifan Xie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ziwei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiajun Zhong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhiwei Yang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, PR China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, PR China.
| |
Collapse
|
14
|
Dittrich A, Andersson SA, Busk M, Hansen K, Foldager CB, Palmfeldt J, Andersen A, Pedersen M, Vendelbo M, Nielsen KL, Lauridsen H. Metabolic changes during cardiac regeneration in the axolotl. Dev Dyn 2025. [PMID: 40119743 DOI: 10.1002/dvdy.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/11/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND The axolotl is a prominent model organism of heart regeneration due to its ability to anatomically and functionally repair the heart after an injury that mimics human myocardial infarction. In humans, such an injury leads to permanent scarring. Cardiac regeneration has been linked to metabolism and the oxygenation state, but so far, these factors remain to be detailed in the axolotl model. In this descriptive study, we have investigated metabolic changes that occurred during cardiac regeneration in the axolotl. RESULTS We describe systemic and local cardiac metabolic changes after injury involving an early upregulation of glucose uptake and nucleotide biosynthesis followed by a later increase in acetate uptake. We detect several promising factors and metabolites for future studies and show that, unlike other popular animal models capable of intrinsic regeneration, the axolotl maintains its cardiac regenerative ability under hyperoxic conditions. CONCLUSIONS Axolotls undergo dynamic metabolic changes during the process of heart regeneration and display a robust reparative response to cardiac cryo-injury, which is unaffected by hyperoxia.
Collapse
Affiliation(s)
- Anita Dittrich
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sofie Amalie Andersson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Busk
- Department of Clinical Medicine, Experimental Clinical Oncology, Aarhus University, Aarhus, Denmark
| | - Kasper Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Bindzus Foldager
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Orthopaedic Research Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Asger Andersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikkel Vendelbo
- Department of Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Lauridsen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Wang Y, Wang X, Fang J, Chen X, Xu T, Zhuang T, Peng S, Bao W, Wu W, Lu Y, Wang H, Tomlinson B, Chan P, Zhuang S, Zhang Q, Zhang L, Liu Z, Pi J, Zhang Y, Liu J. Cardiomyocyte Foxp1-Specific Deletion Promotes Post-injury Heart Regeneration via Targeting Usp20-HIF1ɑ-Hand1 Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412124. [PMID: 39899693 PMCID: PMC11948019 DOI: 10.1002/advs.202412124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/19/2024] [Indexed: 02/05/2025]
Abstract
The adult mammalian heart has limited regenerative capacity to replace lost tissue after a major injury. Forkhead box P1 (Foxp1) regulates embryonic cardiomyocyte proliferation and heart development. However, whether Foxp1 participates in postnatal-injury cardiomyocyte proliferation and heart regeneration remains unclear. This study demonstrates that Foxp1 is downregulated at border zone cardiomyocytes of both neonatal apical resection and adult myocardial infarction. Analysis of the Single-cell transcriptome database reveals reduced Foxp1 expression in the cardiomyocyte population with high regenerative capacity. Cardiomyocyte-Foxp1 loss-of-function significantly promotes, whereas cardiomyocytes-Foxp1 gain-of-function suppresses cardiomyocyte proliferation. Mechanistically, Foxp1 directly regulates ubiquitin specific peptidase 20 (USP20), a de-ubiquitinase that prevents hypoxia inducible factor 1ɑ (HIF1α) degradation. Thus, Foxp1 regulates HIF1α and downstream heart and neural crest derivatives expressed 1 (Hand1) to control the cardiomyocyte proliferation via metabolic transition from fatty acid oxidation to glycolysis. Finally, cardiac type troponin T2 (cTnT)-promoter-driven adeno-associated virus 9 (AAV9) for Hand1 induction in cardiomyocytes significantly promoted cardiac regeneration and functional recovery. These findings may provide novel molecular strategies to promote heart regeneration and therapeutic interventions for heart failure.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
- Department of CardiologyThe First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College)WuhuAnhui241001China
| | - Xiaoyu Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Ji Fang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xiaoli Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Teng Xu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
- Institute of Translational MedicineBaotou Central HospitalBaotouInner Mongolia014040China
| | - Tao Zhuang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Sheng Peng
- Department of TraumaShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Wenzhen Bao
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Wenrun Wu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yushi Lu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Haikun Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Brian Tomlinson
- Faculty of MedicineMacau University of Science and TechnologyMacau SAR999078China
| | - Paul Chan
- Division of CardiologyDepartment of Internal MedicineWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan11696China
| | - Shougang Zhuang
- Depeartment of NephrologyShanghai East HospitalShanghai200120China
- Department of MedicineRhode Island Hospital and Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Qi Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Lin Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhongmin Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jingjiang Pi
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
- Shenzhen Ruipuxun Academy for Stem Cell and Regenerative MedicineShenzhenGuangdong518122China
| | - Yuzhen Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jie Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation CenterShanghai Heart Failure Research CenterDepartment of Cardiovascular SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
- Shenzhen Ruipuxun Academy for Stem Cell and Regenerative MedicineShenzhenGuangdong518122China
| |
Collapse
|
16
|
Zhang K, Gan J, Wang B, Lei W, Zhen D, Yang J, Wang N, Wen C, Gao X, Li X, Xu A, Liu X, Li Y, Wu F, Lin Z. FGF21 protects against HFpEF by improving cardiac mitochondrial bioenergetics in mice. Nat Commun 2025; 16:1661. [PMID: 39955281 PMCID: PMC11829982 DOI: 10.1038/s41467-025-56885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Fibroblast growth factor 21 (FGF21), a metabolic hormone with pleiotropic effects, is beneficial for various cardiac disorders. However, FGF21's role in heart failure with preserved ejection fraction (HFpEF) remains unclear. Here, we show that elevated circulating FGF21 levels are negatively associated with cardiac diastolic function in patients with HFpEF. Global or adipose FGF21 deficiency exacerbates cardiac diastolic dysfunction and damage in high-fat diet (HFD) plus N[w]-nitro-L-arginine methyl ester (L-NAME)-induced HFpEF mice, whereas these effects are notably reversed by FGF21 replenishment. Mechanistically, FGF21 enhances the production of adiponectin (APN), which in turn indirectly acts on cardiomyocytes, or FGF21 directly targets cardiomyocytes, to negatively regulate pyruvate dehydrogenase kinase 4 (PDK4) production by activating PI3K/AKT signals, then promoting mitochondrial bioenergetics. Additionally, APN deletion strikingly abrogates FGF21's protective effects against HFpEF, while genetic PDK4 inactivation markedly mitigates HFpEF in mice. Thus, FGF21 protects against HFpEF via fine-tuning the multiorgan crosstalk among the adipose, liver, and heart.
Collapse
Affiliation(s)
- Ke Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Gan
- The Affiliated Dongguan Songshan Lake Center Hospital, The Innovative Center of Cardiometabolic Disease, Guangdong Medical University, Dongguan, China
| | - Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Wei Lei
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong Zhen
- The Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Yang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, Beijing, China
| | - Ningrui Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Congcong Wen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaotang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China.
| | - Yulin Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, Beijing, China.
| | - Fan Wu
- The Affiliated Dongguan Songshan Lake Center Hospital, The Innovative Center of Cardiometabolic Disease, Guangdong Medical University, Dongguan, China.
| | - Zhuofeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
- The Affiliated Dongguan Songshan Lake Center Hospital, The Innovative Center of Cardiometabolic Disease, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
17
|
Ren J, Chen X, Wang T, Liu C, Wang K. Regenerative therapies for myocardial infarction: exploring the critical role of energy metabolism in achieving cardiac repair. Front Cardiovasc Med 2025; 12:1533105. [PMID: 39991634 PMCID: PMC11842438 DOI: 10.3389/fcvm.2025.1533105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Cardiovascular diseases are the most lethal diseases worldwide, of which myocardial infarction is the leading cause of death. After myocardial infarction, in order to ensure normal blood supply to the heart, the remaining cardiomyocytes compensate for the loss of cardiomyocytes mainly by working at high capacity rather than by proliferating to produce new cardiomyocytes. This is partly due to the extremely limited ability of the adult heart to repair itself. A growing body of research suggests that the loss of cardiac regenerative capacity is closely related to metabolic shifts in energy sources. Currently, a large number of studies have focused on changes in metabolic levels before and after the proliferation window of cardiomyocytes, so it is crucial to search for relevant factors in metabolic pathways to regulate the cell cycle in cardiomyocyte progression. This paper presents a review of the role of myocardial energy metabolism in regenerative repair after cardiac injury. It aims to elucidate the effects of myocardial metabolic shifts on cardiomyocyte proliferation in adult mammals and to point out directions for cardiac regeneration research and clinical treatment of myocardial infarction.
Collapse
Affiliation(s)
- Jiahao Ren
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xinzhe Chen
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Tao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Cuiyun Liu
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
18
|
Saito Y, Sugiura Y, Sakaguchi A, Sada T, Nishiyama C, Maeda R, Kaneko M, Kiyonari H, Kimura W. Redox-dependent purine degradation triggers postnatal loss of cardiac regeneration potential. Redox Biol 2025; 79:103442. [PMID: 39637598 PMCID: PMC11664147 DOI: 10.1016/j.redox.2024.103442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Postnatal cardiomyocyte cell cycle withdrawal is a critical step wherein the mammalian heart loses regenerative potential after birth. Here, we conducted interspecies multi-omic comparisons between the mouse heart and that of the opossum, which have different postnatal time-windows for cardiomyocyte cell cycle withdrawal. Xanthine metabolism was activated in both postnatal hearts in parallel with cardiomyocyte cell cycle arrest. The pentose phosphate pathway (PPP) which produces NADPH was found to decrease simultaneously. Postnatal myocardial tissues became oxidized accordingly, and administration of antioxidants to neonatal mice altered the PPP and suppressed the postnatal activation of cardiac xanthine metabolism. These results suggest a redox-driven postnatal switch from purine synthesis to degradation in the heart. Importantly, inhibition of xanthine metabolism in the postnatal heart extended postnatal duration of cardiomyocyte proliferation and maintained postnatal heart regeneration potential in mice. These findings highlight a novel role of xanthine metabolism as a redox-dependent metabolic regulator of cardiac regeneration potential.
Collapse
Affiliation(s)
- Yuichi Saito
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yuki Sugiura
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University School of Medicine, Tokyo, Japan
| | - Akane Sakaguchi
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Tai Sada
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Chihiro Nishiyama
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Rae Maeda
- Multiomics Platform, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Wataru Kimura
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
19
|
Santos F, Correia M, Dias R, Bola B, Noberini R, Ferreira RS, Trigo D, Domingues P, Teixeira J, Bonaldi T, Oliveira PJ, Bär C, de Jesus BB, Nóbrega‐Pereira S. Age-associated metabolic and epigenetic barriers during direct reprogramming of mouse fibroblasts into induced cardiomyocytes. Aging Cell 2025; 24:e14371. [PMID: 39540462 PMCID: PMC11822649 DOI: 10.1111/acel.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Heart disease is the leading cause of mortality in developed countries, and novel regenerative procedures are warranted. Direct cardiac conversion (DCC) of adult fibroblasts can create induced cardiomyocytes (iCMs) for gene and cell-based heart therapy, and in addition to holding great promise, still lacks effectiveness as metabolic and age-associated barriers remain elusive. Here, by employing MGT (Mef2c, Gata4, Tbx5) transduction of mouse embryonic fibroblasts (MEFs) and adult (dermal and cardiac) fibroblasts from animals of different ages, we provide evidence that the direct reprogramming of fibroblasts into iCMs decreases with age. Analyses of histone posttranslational modifications and ChIP-qPCR revealed age-dependent alterations in the epigenetic landscape of DCC. Moreover, DCC is accompanied by profound mitochondrial metabolic adaptations, including a lower abundance of anabolic metabolites, network remodeling, and reliance on mitochondrial respiration. In vitro metabolic modulation and dietary manipulation in vivo improve DCC efficiency and are accompanied by significant alterations in histone marks and mitochondrial homeostasis. Importantly, adult-derived iCMs exhibit increased accumulation of oxidative stress in the mitochondria and activation of mitophagy or dietary lipids; they improve DCC and revert mitochondrial oxidative damage. Our study provides evidence that metaboloepigenetics plays a direct role in cell fate transitions driving DCC, highlighting the potential use of metabolic modulation to improve cardiac regenerative strategies.
Collapse
Affiliation(s)
- Francisco Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Magda Correia
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Rafaela Dias
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Bárbara Bola
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Roberta Noberini
- Department of Experimental OncologyEuropean Institute of Oncology (IEO), IRCCSMilanItaly
| | - Rita S. Ferreira
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Diogo Trigo
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Pedro Domingues
- Mass Spectrometry Center, Department of ChemistryUniversity of AveiroAveiroPortugal
- LAQV/REQUIMTEUniversity of AveiroAveiroPortugal
| | - José Teixeira
- CNC‐UC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB, Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCantanhedePortugal
| | - Tiziana Bonaldi
- Department of Experimental OncologyEuropean Institute of Oncology (IEO), IRCCSMilanItaly
- Department of Oncology and Hematology‐OncologyUniversity of MilanoMilanItaly
| | - Paulo J. Oliveira
- CNC‐UC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB, Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCantanhedePortugal
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS)Hannover Medical School (MHH)HannoverGermany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)HannoverGermany
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Sandrina Nóbrega‐Pereira
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| |
Collapse
|
20
|
Bois A, Grandela C, Gallant J, Mummery C, Menasché P. Revitalizing the heart: strategies and tools for cardiomyocyte regeneration post-myocardial infarction. NPJ Regen Med 2025; 10:6. [PMID: 39843488 PMCID: PMC11754855 DOI: 10.1038/s41536-025-00394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Myocardial infarction (MI) causes the loss of millions of cardiomyocytes, and current treatments do not address this root issue. New therapies focus on stimulating cardiomyocyte division in the adult heart, inspired by the regenerative capacities of lower vertebrates and neonatal mice. This review explores strategies for heart regeneration, offers insights into cardiomyocyte proliferation, evaluates in vivo models, and discusses integrating in vitro human cardiac models to advance cardiac regeneration research.
Collapse
Affiliation(s)
- Axelle Bois
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Department of Cardiovascular Surgery, Université Paris Cité, INSERM U970, PARCC Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Catarina Grandela
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - James Gallant
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Université Paris Cité, INSERM U970, PARCC Hôpital Européen Georges Pompidou, 75015, Paris, France
| |
Collapse
|
21
|
Mitra A, Mandal S, Banerjee K, Ganguly N, Sasmal P, Banerjee D, Gupta S. Cardiac Regeneration in Adult Zebrafish: A Review of Signaling and Metabolic Coordination. Curr Cardiol Rep 2025; 27:15. [PMID: 39792206 DOI: 10.1007/s11886-024-02162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE OF REVIEW This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration. RECENT FINDINGS Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals. Unlike adult mammalian hearts, zebrafish can regenerate cardiomyocytes by re-entering the cell cycle, characterized by a metabolic switch from oxidative metabolism to increased glycolysis. Zebrafish provide a valuable model for studying metabolic regulation during cell cycle re-entry and cardiac regeneration. Proliferative cardiomyocytes have upregulated Notch, hippo, and Wnt signaling and decreased ROS generation, DNA damage in different zebrafish cardiac regeneration models. Understanding the correlation between metabolic switches during cell cycle re-entry of already differentiated zebrafish cardiomyocytes is being increasingly recognized as a critical factor in heart regeneration. Zebrafish studies provide insights into metabolic adaptations during heart regeneration, emphasizing the importance of a metabolic switch. However, there are mechanistic gaps, and extensive studies are required to aid in formulating therapeutic strategies for cardiac regenerative medicine.
Collapse
Affiliation(s)
- Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Nilanjan Ganguly
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Pramit Sasmal
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Durba Banerjee
- Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St, Seattle, WA, 98109, USA.
| | - Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.
| |
Collapse
|
22
|
DeLuca S, Strash N, Chen Y, Patsy M, Myers A, Tejeda L, Broders S, Miranda A, Jiang X, Bursac N. Engineered Cardiac Tissues as a Platform for CRISPR-Based Mitogen Discovery. Adv Healthc Mater 2025; 14:e2402201. [PMID: 39508305 PMCID: PMC11695184 DOI: 10.1002/adhm.202402201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024]
Abstract
Improved understanding of cardiomyocyte (CM) cell cycle regulation may allow researchers to stimulate pro-regenerative effects in injured hearts or promote maturation of human stem cell-derived CMs. Gene therapies, in particular, hold promise to induce controlled proliferation of endogenous or transplanted CMs via transient activation of mitogenic processes. Methods to identify and characterize candidate cardiac mitogens in vitro can accelerate translational efforts and contribute to the understanding of the complex regulatory landscape of CM proliferation and postnatal maturation. In this study, A CRISPR knockout-based screening strategy using in vitro neonatal rat ventricular myocyte (NRVM) monolayers is established, followed by candidate mitogen validation in mature 3-D engineered cardiac tissues (ECTs). This screen identified knockout of the purine metabolism enzyme adenosine deaminase (ADA-KO) as an effective pro-mitogenic stimulus. RNA-sequencing of ECTs further reveals increased pentose phosphate pathway (PPP) activity as the primary driver of ADA-KO-induced CM cycling. Inhibition of the pathway's rate limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD), prevented ADA-KO induced CM cycling, while increasing PPP activity via G6PD overexpression increased CM cycling. Together, this study demonstrates the development and application of a genetic/tissue engineering platform for in vitro discovery and validation of new candidate mitogens affecting regenerative or maturation states of cardiomyocytes.
Collapse
Affiliation(s)
- Sophia DeLuca
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Nicholas Strash
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | | | | | | | | | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
23
|
Liu C, Shen M, Liu Y, Manhas A, Zhao SR, Zhang M, Belbachir N, Ren L, Zhang JZ, Caudal A, Nishiga M, Thomas D, Zhang A, Yang H, Zhou Y, Ameen M, Sayed N, Rhee JW, Qi LS, Wu JC. CRISPRi/a screens in human iPSC-cardiomyocytes identify glycolytic activation as a druggable target for doxorubicin-induced cardiotoxicity. Cell Stem Cell 2024; 31:1760-1776.e9. [PMID: 39515331 PMCID: PMC11646563 DOI: 10.1016/j.stem.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Doxorubicin is limited in its therapeutic utility due to its life-threatening cardiovascular side effects. Here, we present an integrated drug discovery pipeline combining human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs), CRISPR interference and activation (CRISPRi/a) bidirectional pooled screens, and a small-molecule screening to identify therapeutic targets mitigating doxorubicin-induced cardiotoxicity (DIC) without compromising its oncological effects. The screens revealed several previously unreported candidate genes contributing to DIC, including carbonic anhydrase 12 (CA12). Genetic inhibition of CA12 protected iCMs against DIC by improving cell survival, sarcomere structural integrity, contractile function, and calcium handling. Indisulam, a CA12 antagonist, can effectively attenuate DIC in iCMs, engineered heart tissue, and animal models. Mechanistically, doxorubicin-induced CA12 potentiated a glycolytic activation in cardiomyocytes, contributing to DIC by interfering with cellular metabolism and functions. Collectively, our study provides a roadmap for future drug discovery efforts, potentially leading to more targeted therapies with minimal off-target toxicity.
Collapse
Affiliation(s)
- Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Physiology and Cancer Center, Milwaukee, WI, USA; Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Yanxia Liu
- Department of Bioengineering, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Amit Manhas
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Shane Rui Zhao
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Mao Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Nadjet Belbachir
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Lu Ren
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Joe Z Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Arianne Caudal
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Angela Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Greentstone Biosciences, Palo Alto, CA, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Yang Zhou
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Mohamed Ameen
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA; Department of Surgery, Division of Vascular Surgery, Stanford University, Stanford, CA, USA
| | - June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA; Department of Medicine (Division of Cardiology), Stanford, CA, USA.
| |
Collapse
|
24
|
Du T, Han Y, Han H, Xu T, Yan Y, Wu J, Li Y, Liu C, Liao X, Dong Y, Chen D, Ou J, Lin S, Huang ZP. The tRNA methyltransferase Mettl1 governs ketogenesis through translational regulation and drives metabolic reprogramming in cardiomyocyte maturation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1438-1453. [PMID: 39587264 DOI: 10.1038/s44161-024-00565-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024]
Abstract
After birth, the heart undergoes a shift in energy metabolism and cytoarchitecture to enhance efficient energy production and cardiac contraction, which is essential for postnatal development and growth. However, the precise mechanisms regulating this process remain elusive. Here we show that the RNA modification enzyme Mettl1 is a critical regulator of postnatal metabolic reprogramming and cardiomyocyte maturation in mice, primarily through its influence on the translation of the rate-limiting ketogenesis enzyme Hmgcs2. Our findings reveal that ketogenesis is vital for the postnatal transition of fuel from glucose to fatty acids in cardiomyocytes, achieved by modulating tricarboxylic acid cycle-related enzymatic activity via lysine β-hydroxybutyrylation protein modification. Loss of Mettl1 results in aberrant metabolic reprogramming and cardiomyocyte immaturity, leading to heart failure, although some clinical features can be rescued by β-hydroxybutyrate supplementation. Our study provides mechanistic insights into how Mettl1 regulates metabolic reprogramming in neonatal cardiomyocytes and highlights the importance of ketogenesis in cardiomyocyte maturation.
Collapse
Affiliation(s)
- Tailai Du
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Yanchuang Han
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Hui Han
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Ting Xu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Youchen Yan
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Jialing Wu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Yan Li
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Chen Liu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Xinxue Liao
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
| | - Demeng Chen
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingsong Ou
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Shuibin Lin
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, China.
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
25
|
Zeng Q, Jiang T. Molecular mechanisms of ferroptosis in cardiovascular disease. Mol Cell Biochem 2024; 479:3181-3193. [PMID: 38374233 DOI: 10.1007/s11010-024-04940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024]
Abstract
Ferroptosis is a newly recognized type of regulated cell death that is characterized by the accumulation of iron and lipid peroxides in cells. Studies have shown that ferroptosis plays a significant role in the pathogenesis of various diseases, including cardiovascular diseases. In cardiovascular disease, ferroptosis is associated with ischemia-reperfusion injury, myocardial infarction, heart failure, and atherosclerosis. The molecular mechanisms underlying ferroptosis include the iron-dependent accumulation of lipid peroxidation products, glutathione depletion, and dysregulation of lipid metabolism, among others. This review aims to summarize the current knowledge of the molecular mechanisms of ferroptosis in cardiovascular disease and discuss the potential therapeutic strategies targeting ferroptosis as a treatment for cardiovascular disease.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Tingting Jiang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
26
|
She H, Hu Y, Zhao G, Du Y, Wu Y, Chen W, Li Y, Wang Y, Tan L, Zhou Y, Zheng J, Li Q, Yan H, Mao Q, Zuo D, Liu L, Li T. Dexmedetomidine Ameliorates Myocardial Ischemia-Reperfusion Injury by Inhibiting MDH2 Lactylation via Regulating Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409499. [PMID: 39467114 DOI: 10.1002/advs.202409499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) significantly worsens the outcomes of patients with cardiovascular diseases. Dexmedetomidine (Dex) is recognized for its cardioprotective properties, but the related mechanisms, especially regarding metabolic reprogramming, have not been fully clarified. A total of 60 patients with heart valve disease are randomly assigned to Dex or control group. Blood samples are collected to analyze cardiac injury biomarkers and metabolomics. In vivo and vitro rat models of MIRI are utilized to assess the effects of Dex on cardiac function, lactate production, and mitochondrial function. It is found that postoperative CK-MB and cTNT levels are significantly lower in the Dex group. Metabolomics reveals that Dex regulates metabolic reprogramming and reduces lactate level. In Dex-treated rats, the myocardial infarction area is reduced, and myocardial contractility is improved. Dex inhibits glycolysis, reduces lactate, and improves mitochondrial function following MIRI. Lactylation proteomics identifies that Dex reduces the lactylation of Malate Dehydrogenase 2(MDH2), thus alleviating myocardial injury. Further studies reveal that MDH2 lactylation induces ferroptosis, leading to MIRI by impairing mitochondrial function. Mechanistic analyses reveal that Dex upregulates Nuclear Receptor Subfamily 3 Group C Member 1(NR3C1) phosphorylation, downregulates Pyruvate Dehydrogenase Kinase 4 (PDK4), and reduces lactate production and MDH2 lactylation. These findings provide new therapeutic targets and mechanisms for the treatment for MIRI.
Collapse
Affiliation(s)
- Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Guozhi Zhao
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunxia Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yinyu Wu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Chen
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong Li
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Wang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lei Tan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuanqun Zhou
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qinghui Li
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hong Yan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Deyu Zuo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
- Department of Research and Development, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, 400000, China
| | - Liangming Liu
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tao Li
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
27
|
Chen X, Zhong X, Huang GN. Heart regeneration from the whole-organism perspective to single-cell resolution. NPJ Regen Med 2024; 9:34. [PMID: 39548113 PMCID: PMC11568173 DOI: 10.1038/s41536-024-00378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cardiac regenerative potential in the animal kingdom displays striking divergence across ontogeny and phylogeny. Here we discuss several fundamental questions in heart regeneration and provide both a holistic view of heart regeneration in the organism as a whole, as well as a single-cell perspective on intercellular communication among diverse cardiac cell populations. We hope to provide valuable insights that advance our understanding of organ regeneration and future therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaochen Zhong
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
29
|
Li Z, Dong X, Zhuang L, Jia K, Cheng H, Sun H, Cui Y, Ma W, Wei K, Zhang P, Xie H, Yi L, Chen Z, Lu L, Li T, Zhang R, Yan X. The de novo purine synthesis enzyme Adssl1 promotes cardiomyocyte proliferation and cardiac regeneration. Sci Signal 2024; 17:eadn3285. [PMID: 39471248 DOI: 10.1126/scisignal.adn3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/08/2024] [Indexed: 11/01/2024]
Abstract
There is a short window during which the neonatal heart has the proliferative capacity to completely repair damage, an ability that is lost in adulthood. Inducing proliferation in adult cardiomyocytes by reactivating cell cycle reentry after myocardial infarction (MI) improves cardiac function. De novo purine synthesis is a critical source of nucleotides for cell proliferation. Here, using loss- and gain-of-function genetic approaches, we explored the role of the muscle-specific de novo purine synthesis enzyme Adssl1 in cardiac regeneration. Deletion of Adssl1 in mouse neonatal hearts reduced cardiomyocyte proliferation and attenuated heart regeneration after apical resection. Conversely, cardiomyocyte-specific Adssl1 overexpression extended the postnatal regenerative window and induced robust cell cycle reentry after MI, which decreased fibrotic scar size and improved cardiac function. RNA sequencing analysis suggested that Adssl1 overexpression induced strong dedifferentiation and cell cycle entry. Moreover, LC-MS/MS analysis showed that Adssl1 overexpression was associated with increased amounts of purine metabolites, including inosine, which is in clinical use. Administration of exogenous inosine promoted cardiac repair after MI in adult mice. At a molecular level, the increase in purine metabolite production mediated by Adssl1 enhanced the activity of the proliferation-promoting mTORC1 pathway. Our study identifies a role for Adssl1 in supporting cardiomyocyte proliferation and cardiac regeneration.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xiaxi Dong
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Kangni Jia
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Haomai Cheng
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Hang Sun
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yuke Cui
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Wenqi Ma
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Keying Wei
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Pupu Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Hongyang Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| |
Collapse
|
30
|
Zhao Y, Lv H, Yu C, Liang J, Yu H, Du Z, Zhang R. Systemic inhibition of mitochondrial fatty acid β-oxidation impedes zebrafish ventricle regeneration. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167442. [PMID: 39059593 DOI: 10.1016/j.bbadis.2024.167442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Unlike humans and other mammals, zebrafish demonstrate a remarkable capacity to regenerate their injured hearts throughout life. Mitochondrial fatty acid β-oxidation (FAO) contributes to major energy demands of the adult hearts under physiological conditions; however, its functions in regulating cardiac regeneration and the underlying mechanisms are not completely understood. Different strategies targeting FAO have yield mixed outcomes. Here, we demonstrated that pharmacological inhibition of mitochondrial FAO with mildronate (MD) caused lipid accumulation in zebrafish larvae and suppressed ventricle regeneration. MD treatment impeded cardiogenic factor reactivation and cardiomyocyte (CM) proliferation, and impaired ventricle regeneration could be rescued by exogenous l-carnitine supplementation. Moreover, compared with the ablated hearts of wild-type fish, ventricle regeneration, cardiogenic factor reactivation and CM proliferation were significantly blocked in the ablated hearts of carnitine palmitoyltransferase-1b (cpt1b) knockout zebrafish. Further experiments suggested that NF-κB signaling and increased inflammation may be involved in the impediment of ventricle regeneration caused by systemic mitochondrial FAO inhibition. Overall, our study demonstrates the essential roles of mitochondrial FAO in zebrafish ventricle regeneration and reaffirms the sophisticated and multifaceted roles of FAO in heart regeneration with regard to different injury models and means of FAO inhibition.
Collapse
Affiliation(s)
- Yan Zhao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hongbo Lv
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Chunxiao Yu
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Jieling Liang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hong Yu
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Zhenyu Du
- School of Life Sciences, East China Normal University, Shanghai, China.
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
31
|
Chen YX, Zhao AR, Wei TW, Wang H, Wang LS. Progress of Mitochondrial Function Regulation in Cardiac Regeneration. J Cardiovasc Transl Res 2024; 17:1097-1105. [PMID: 38647881 DOI: 10.1007/s12265-024-10514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.
Collapse
Affiliation(s)
- Yi-Xi Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - An-Ran Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tian-Wen Wei
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
32
|
Shi Y, Tian M, Zhao X, Tang L, Wang F, Wu H, Liao Q, Ren H, Fu W, Zheng S, Jose PA, Li L, Zeng C. α-Ketoglutarate promotes cardiomyocyte proliferation and heart regeneration after myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1083-1097. [PMID: 39223390 DOI: 10.1038/s44161-024-00531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The neonatal mammalian heart can regenerate following injury through cardiomyocyte proliferation but loses this potential by postnatal day 7. Stimulating adult cardiomyocytes to reenter the cell cycle remains unclear. Here we show that cardiomyocyte proliferation depends on its metabolic state. Given the connection between the tricarboxylic acid cycle and cell proliferation, we analyzed these metabolites in mouse hearts from postnatal day 0.5 to day 7 and found that α-ketoglutarate ranked highest among the decreased metabolites. Injection of α-ketoglutarate extended the window of cardiomyocyte proliferation during heart development and promoted heart regeneration after myocardial infarction by inducing adult cardiomyocyte proliferation. This was confirmed in Ogdh-siRNA-treated mice with increased α-ketoglutarate levels. Mechanistically, α-ketoglutarate decreases H3K27me3 deposition at the promoters of cell cycle genes in cardiomyocytes. Thus, α-ketoglutarate promotes cardiomyocyte proliferation through JMJD3-dependent demethylation, offering a potential approach for treating myocardial infarction.
Collapse
Affiliation(s)
- Yu Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Miao Tian
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Xiaofang Zhao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Luxun Tang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Feng Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Hao Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Wenbin Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, Department of Medicine and Pharmacology-Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, P. R. China.
- Chongqing Key Laboratory for Hypertension Research, Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, P. R. China.
- Department of Cardiology, The First Affiliated Hospital of Qunming Medical University, Qunming, P. R. China.
| |
Collapse
|
33
|
Li J, Sun S, Zhu D, Mei X, Lyu Y, Huang K, Li Y, Liu S, Wang Z, Hu S, Lutz HJ, Popowski KD, Dinh PUC, Butte AJ, Cheng K. Inhalable Stem Cell Exosomes Promote Heart Repair After Myocardial Infarction. Circulation 2024; 150:710-723. [PMID: 39186525 PMCID: PMC11349039 DOI: 10.1161/circulationaha.123.065005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/25/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Exosome therapy shows potential for cardiac repair after injury. However, intrinsic challenges such as short half-life and lack of clear targets hinder the clinical feasibility. Here, we report a noninvasive and repeatable method for exosome delivery through inhalation after myocardial infarction (MI), which we called stem cell-derived exosome nebulization therapy (SCENT). METHODS Stem cell-derived exosomes were characterized for size distribution and surface markers. C57BL/6 mice with MI model received exosome inhalation treatment through a nebulizer for 7 consecutive days. Echocardiographies were performed to monitor cardiac function after SCENT, and histological analysis helped with the investigation of myocardial repair. Single-cell RNA sequencing of the whole heart was performed to explore the mechanism of action by SCENT. Last, the feasibility, efficacy, and general safety of SCENT were demonstrated in a swine model of MI, facilitated by 3-dimensional cardiac magnetic resonance imaging. RESULTS Recruitment of exosomes to the ischemic heart after SCENT was detected by ex vivo IVIS imaging and fluorescence microscopy. In a mouse model of MI, SCENT ameliorated cardiac repair by improving left ventricular function, reducing fibrotic tissue, and promoting cardiomyocyte proliferation. Mechanistic studies using single-cell RNA sequencing of mouse heart after SCENT revealed a downregulation of Cd36 in endothelial cells (ECs). In an EC-Cd36fl/- conditional knockout mouse model, the inhibition of CD36, a fatty acid transporter in ECs, led to a compensatory increase in glucose utilization in the heart and higher ATP generation, which enhanced cardiac contractility. In pigs, cardiac magnetic resonance imaging showed an enhanced ejection fraction (Δ=11.66±5.12%) and fractional shortening (Δ=5.72±2.29%) at day 28 after MI by SCENT treatment compared with controls, along with reduced infarct size and thickened ventricular wall. CONCLUSIONS In both rodent and swine models, our data proved the feasibility, efficacy, and general safety of SCENT treatment against acute MI injury, laying the groundwork for clinical investigation. Moreover, the EC-Cd36fl/- mouse model provides the first in vivo evidence showing that conditional EC-CD36 knockout can ameliorate cardiac injury. Our study introduces a noninvasive treatment option for heart disease and identifies new potential therapeutic targets.
Collapse
Affiliation(s)
- Junlang Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (J.L., Y.L., Y.L., Z.W.)
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
- Xsome Biotech Inc, Raleigh, NC (J.L.)
| | - Shenghuan Sun
- Bakar Computational Health Sciences Institute, University of California, San Francisco (S.S., A.J.B.)
| | - Dashuai Zhu
- Department of Biomedical Engineering (D.Z., S.L., S.H., K.C.), Columbia University, New York, NY
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA (X.M.)
| | - Yongbo Lyu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (J.L., Y.L., Y.L., Z.W.)
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Ke Huang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Yuan Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (J.L., Y.L., Y.L., Z.W.)
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Shuo Liu
- Department of Biomedical Engineering (D.Z., S.L., S.H., K.C.), Columbia University, New York, NY
| | - Zhenzhen Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (J.L., Y.L., Y.L., Z.W.)
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Shiqi Hu
- Department of Biomedical Engineering (D.Z., S.L., S.H., K.C.), Columbia University, New York, NY
| | - Halle J Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Kristen D Popowski
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco (S.S., A.J.B.)
| | - Ke Cheng
- Department of Biomedical Engineering (D.Z., S.L., S.H., K.C.), Columbia University, New York, NY
- Herbert Irving Comprehensive Cancer Center (K.C.), Columbia University, New York, NY
| |
Collapse
|
34
|
García-Poyatos C, Arora P, Calvo E, Marques IJ, Kirschke N, Galardi-Castilla M, Lembke C, Meer M, Fernández-Montes P, Ernst A, Haberthür D, Hlushchuk R, Vázquez J, Vermathen P, Enríquez JA, Mercader N. Cox7a1 controls skeletal muscle physiology and heart regeneration through complex IV dimerization. Dev Cell 2024; 59:1824-1841.e10. [PMID: 38701784 DOI: 10.1016/j.devcel.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/30/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
The oxidative phosphorylation (OXPHOS) system is intricately organized, with respiratory complexes forming super-assembled quaternary structures whose assembly mechanisms and physiological roles remain under investigation. Cox7a2l, also known as Scaf1, facilitates complex III and complex IV (CIII-CIV) super-assembly, enhancing energetic efficiency in various species. We examined the role of Cox7a1, another Cox7a family member, in supercomplex assembly and muscle physiology. Zebrafish lacking Cox7a1 exhibited reduced CIV2 formation, metabolic alterations, and non-pathological muscle performance decline. Additionally, cox7a1-/- hearts displayed a pro-regenerative metabolic profile, impacting cardiac regenerative response. The distinct phenotypic effects of cox7a1-/- and cox7a2l-/- underscore the diverse metabolic and physiological consequences of impaired supercomplex formation, emphasizing the significance of Cox7a1 in muscle maturation within the OXPHOS system.
Collapse
Affiliation(s)
- Carolina García-Poyatos
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Fragilidad y Envejecimiento saludable (CIBERFES), Madrid, Spain
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ines J Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | - Nick Kirschke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | | | - Carla Lembke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | - Marco Meer
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland
| | | | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - David Haberthür
- MicroCT research group, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Ruslan Hlushchuk
- MicroCT research group, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Peter Vermathen
- University Institute of Diagnostic and Interventional Neuroradiology, Magnetic Resonance Methodology, University of Bern, Bern, Switzerland
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigación Biomédica en red en Fragilidad y Envejecimiento saludable (CIBERFES), Madrid, Spain.
| | - Nadia Mercader
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland; Department for Biomedical Research, Cardiovascular Disease Program, University of Bern, Bern, Switzerland.
| |
Collapse
|
35
|
Yu M, Feng Y, Yan J, Zhang X, Tian Z, Wang T, Wang J, Shen W. Transcriptomic regulatory analysis of skeletal muscle development in landrace pigs. Gene 2024; 915:148407. [PMID: 38531491 DOI: 10.1016/j.gene.2024.148407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
The development of pig skeletal muscle is a complex dynamic regulation process, which mainly includes the formation of primary and secondary muscle fibers, the remodeling of muscle fibers, and the maturation of skeletal muscle; However, the regulatory mechanism of the entire developmental process remains unclear. This study analyzed the whole-transcriptome data of skeletal muscles at 27 developmental nodes (E33-D180) in Landrace pigs, and their key regulatory factors in the development process were identified using the bioinformatics method. Firstly, we constructed a transcriptome expression map of skeletal muscle development from embryo to adulthood in Landrace pig. Subsequently, due to drastic change in gene expression, the perinatal periods including E105, D0 and D9, were focused, and the genes related to the process of muscle fiber remodeling and volume expansion were revealed. Then, though conjoint analysis with miRNA and lncRNA transcripts, a ceRNA network were identified, which consist of 11 key regulatory genes (such as CHAC1, RTN4IP1 and SESN1), 7 miRNAs and 43 lncRNAs, and they potentially play an important role in the process of muscle fiber differentiation, muscle fiber remodeling and volume expansion, intramuscular fat deposition, and other skeletal muscle developmental events. In summary, we reveal candidate genes and underlying molecular regulatory networks associated with perinatal skeletal muscle fiber type remodeling and expansion. These data provide new insights into the molecular regulation of mammalian skeletal muscle development and diversity.
Collapse
Affiliation(s)
- Mubin Yu
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqin Feng
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiamao Yan
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoyuan Zhang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhe Tian
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Wang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Wang
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
36
|
Zheng K, Hao Y, Xia C, Cheng S, Yu J, Chen Z, Li Y, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Zhao J, Li R, Zong J, Zhang H, Lai L, Huang P, Zhou C, Xia J, Zhang X, Wu J. Effects and mechanisms of the myocardial microenvironment on cardiomyocyte proliferation and regeneration. Front Cell Dev Biol 2024; 12:1429020. [PMID: 39050889 PMCID: PMC11266095 DOI: 10.3389/fcell.2024.1429020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
The adult mammalian cardiomyocyte has a limited capacity for self-renewal, which leads to the irreversible heart dysfunction and poses a significant threat to myocardial infarction patients. In the past decades, research efforts have been predominantly concentrated on the cardiomyocyte proliferation and heart regeneration. However, the heart is a complex organ that comprises not only cardiomyocytes but also numerous noncardiomyocyte cells, all playing integral roles in maintaining cardiac function. In addition, cardiomyocytes are exposed to a dynamically changing physical environment that includes oxygen saturation and mechanical forces. Recently, a growing number of studies on myocardial microenvironment in cardiomyocyte proliferation and heart regeneration is ongoing. In this review, we provide an overview of recent advances in myocardial microenvironment, which plays an important role in cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
- Kexiao Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoxian Cheng
- Jingshan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Wei T, Shan T, Wang H, Chen J, Yang T, Zhou L, Zhao D, Sun J, Wang S, Gu L, Du C, Jiang Q, Sun R, Wang Q, Kong X, Lu X, Sun H, Xu Y, Xie L, Gu A, Chen F, Ji Y, Guo X, Wang L. Checkpoint Kinase 1 Stimulates Endogenous Cardiomyocyte Renewal and Cardiac Repair by Binding to Pyruvate Kinase Isoform M2 C-Domain and Activating Cardiac Metabolic Reprogramming in a Porcine Model of Myocardial Ischemia/Reperfusion Injury. J Am Heart Assoc 2024; 13:e034805. [PMID: 38934866 PMCID: PMC11255682 DOI: 10.1161/jaha.124.034805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.
Collapse
Affiliation(s)
- Tian‐Wen Wei
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tian‐Kai Shan
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hao Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jia‐Wen Chen
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tong‐Tong Yang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Liu‐Hua Zhou
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Di Zhao
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jia‐Teng Sun
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Si‐Bo Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ling‐Feng Gu
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chong Du
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qi‐Qi Jiang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Rui Sun
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qi‐Ming Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiang‐Qing Kong
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiao‐Hu Lu
- Department of Cardiovascular SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hao‐Liang Sun
- Department of Cardiovascular SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yi Xu
- Department of RadiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Li‐Ping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingChina
| | - Ai‐Hua Gu
- State Key Laboratory of Reproductive MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Feng Chen
- Department of BiostatisticsSchool of Public HealthChina International Cooperation Center for Environment and Human HealthNanjing Medical UniversityNanjingChina
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjingChina
| | - Xue‐Jiang Guo
- State Key Laboratory of Reproductive MedicineDepartment of Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Lian‐Sheng Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
38
|
Tan Y, Nie Y, ZhengWen L, Zheng Z. Comparative effectiveness of myocardial patches and intramyocardial injections in treating myocardial infarction with a MitoQ/hydrogel system. J Mater Chem B 2024; 12:5838-5847. [PMID: 38771306 DOI: 10.1039/d4tb00573b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In cardiac tissue engineering, myocardial surface patches and hydrogel intramyocardial injections represent the two primary hydrogel-based strategies for myocardial infarction (MI) treatment. However, the comparative effectiveness of these two treatments remains uncertain. Therefore, this study aimed to compare the effects of the two treatment modalities by designing a simple and reproducible hydrogel cross-linked with γ-PGA and 4-arm-PEG-SG. To improve mitochondrial damage in cardiomyocytes (CMs) during early MI, we incorporated the mitochondria-targeting antioxidant MitoQ into the hydrogel network. The hydrogel exhibited excellent biodegradability, biocompatibility, adhesion, and injectability in vitro. The hydrogel was utilized for rat MI treatment through both patch adhesion and intramyocardial injections. In vivo results demonstrated that the slow release of MitoQ peptide from the hydrogel hindered ROS production in CM, alleviated mitochondrial damage, and enhanced CM activity within 7 days, effectively inhibiting MI progression. Both hydrogel intramyocardial injections and patches exhibited positive therapeutic effects, with intramyocardial injections demonstrating superior efficacy in terms of cardiac function and structure in equivalent treatment cycles. In conclusion, we developed a MitoQ/hydrogel system that is easily prepared and can serve as both a myocardial patch and an intramyocardial injection for MI treatment, showing significant potential for clinical applications.
Collapse
Affiliation(s)
- Ying Tan
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases &Department of Cardiology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases &Department of Cardiology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lei ZhengWen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhi Zheng
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases &Department of Cardiology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
39
|
Wang X, Menezes CJ, Jia Y, Xiao Y, Venigalla SSK, Cai F, Hsieh MH, Gu W, Du L, Sudderth J, Kim D, Shelton SD, Llamas CB, Lin YH, Zhu M, Merchant S, Bezwada D, Kelekar S, Zacharias LG, Mathews TP, Hoxhaj G, Wynn RM, Tambar UK, DeBerardinis RJ, Zhu H, Mishra P. Metabolic inflexibility promotes mitochondrial health during liver regeneration. Science 2024; 384:eadj4301. [PMID: 38870309 PMCID: PMC11232486 DOI: 10.1126/science.adj4301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/17/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria are critical for proper organ function and mechanisms to promote mitochondrial health during regeneration would benefit tissue homeostasis. We report that during liver regeneration, proliferation is suppressed in electron transport chain (ETC)-dysfunctional hepatocytes due to an inability to generate acetyl-CoA from peripheral fatty acids through mitochondrial β-oxidation. Alternative modes for acetyl-CoA production from pyruvate or acetate are suppressed in the setting of ETC dysfunction. This metabolic inflexibility forces a dependence on ETC-functional mitochondria and restoring acetyl-CoA production from pyruvate is sufficient to allow ETC-dysfunctional hepatocytes to proliferate. We propose that metabolic inflexibility within hepatocytes can be advantageous by limiting the expansion of ETC-dysfunctional cells.
Collapse
Affiliation(s)
- Xun Wang
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cameron J Menezes
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuemeng Jia
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Xiao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Feng Cai
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liming Du
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica Sudderth
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dohun Kim
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Spencer D Shelton
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claire B Llamas
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Hsuan Lin
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Zhu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Salma Merchant
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gerta Hoxhaj
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Uttam K Tambar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Mishra
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
40
|
Zhu C, Yuan T, Krishnan J. Targeting cardiomyocyte cell cycle regulation in heart failure. Basic Res Cardiol 2024; 119:349-369. [PMID: 38683371 PMCID: PMC11142990 DOI: 10.1007/s00395-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Heart failure continues to be a significant global health concern, causing substantial morbidity and mortality. The limited ability of the adult heart to regenerate has posed challenges in finding effective treatments for cardiac pathologies. While various medications and surgical interventions have been used to improve cardiac function, they are not able to address the extensive loss of functioning cardiomyocytes that occurs during cardiac injury. As a result, there is growing interest in understanding how the cell cycle is regulated and exploring the potential for stimulating cardiomyocyte proliferation as a means of promoting heart regeneration. This review aims to provide an overview of current knowledge on cell cycle regulation and mechanisms underlying cardiomyocyte proliferation in cases of heart failure, while also highlighting established and novel therapeutic strategies targeting this area for treatment purposes.
Collapse
Affiliation(s)
- Chaonan Zhu
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany
| | - Ting Yuan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| | - Jaya Krishnan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Kuppa A, Alzamrooni A, Lopez R, Suhan T, Chaudhary R, Collins N, Van den Bergh F, Abouleisa R, Wang H, Mohamed T, Satin J, Lyssiotis C, Beard DA, Abdel-Latif A. Inherent Metabolic Adaptations in Adult Spiny Mouse ( Acomys ) Cardiomyocytes Facilitate Enhanced Cardiac Recovery Following Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595229. [PMID: 38826249 PMCID: PMC11142149 DOI: 10.1101/2024.05.22.595229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The adult mammalian heart has limited regenerative capacity following injury, leading to progressive heart failure and mortality. Recent studies have identified the spiny mouse ( Acomys ) as a unique model for mammalian cardiac isch3emic resilience, exhibiting enhanced recovery after myocardial infarction (MI) compared to commonly used laboratory mouse strains. However, the underlying cellular and molecular mechanisms behind this unique response remain poorly understood. In this study, we comprehensively characterized the metabolic characteristics of cardiomyocytes in Acomys compared to the non-regenerative Mus musculus . We utilized single-nucleus RNA sequencing (snRNA-seq) in sham-operated animals and 1, 3, and 7 days post-myocardial infarction to investigate cardiomyocytes' transcriptomic and metabolomic profiles in response to myocardial infarction. Complementary targeted metabolomics, stable isotope-resolved metabolomics, and functional mitochondrial assays were performed on heart tissues from both species to validate the transcriptomic findings and elucidate the metabolic adaptations in cardiomyocytes following ischemic injury. Transcriptomic analysis revealed that Acomys cardiomyocytes inherently upregulate genes associated with glycolysis, the pentose phosphate pathway, and glutathione metabolism while downregulating genes involved in oxidative phosphorylation (OXPHOS). These metabolic characteristics are linked to decreased reactive oxygen species (ROS) production and increased antioxidant capacity. Our targeted metabolomic studies in heart tissue corroborated these findings, showing a shift from fatty acid oxidation to glycolysis and ancillary biosynthetic pathways in Acomys at baseline with adaptive changes post-MI. Functional mitochondrial studies indicated a higher reliance on glycolysis in Acomys compared to Mus , underscoring the unique metabolic phenotype of Acomys hearts. Stable isotope tracing experiments confirmed a shift in glucose utilization from oxidative phosphorylation in Acomys . In conclusion, our study identifies unique metabolic characteristics of Acomys cardiomyocytes that contribute to their enhanced ischemic resilience following myocardial infarction. These findings provide novel insights into the role of metabolism in regulating cardiac repair in adult mammals. Our work highlights the importance of inherent and adaptive metabolic flexibility in determining cardiomyocyte ischemic responses and establishes Acomys as a valuable model for studying cardiac ischemic resilience in adult mammals. Graphical abstract
Collapse
|
42
|
Granath-Panelo M, Kajimura S. Mitochondrial heterogeneity and adaptations to cellular needs. Nat Cell Biol 2024; 26:674-686. [PMID: 38755301 DOI: 10.1038/s41556-024-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Although it is well described that mitochondria are at the epicentre of the energy demands of a cell, it is becoming important to consider how each cell tailors its mitochondrial composition and functions to suit its particular needs beyond ATP production. Here we provide insight into mitochondrial heterogeneity throughout development as well as in tissues with specific energy demands and discuss how mitochondrial malleability contributes to cell fate determination and tissue remodelling.
Collapse
Affiliation(s)
- Melia Granath-Panelo
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
43
|
Ji X, Chen Z, Wang Q, Li B, Wei Y, Li Y, Lin J, Cheng W, Guo Y, Wu S, Mao L, Xiang Y, Lan T, Gu S, Wei M, Zhang JZ, Jiang L, Wang J, Xu J, Cao N. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab 2024; 36:839-856.e8. [PMID: 38367623 DOI: 10.1016/j.cmet.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.
Collapse
Affiliation(s)
- Xiaoqian Ji
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Zihao Chen
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Qiyuan Wang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Bin Li
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yan Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yun Li
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Lin
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Weisheng Cheng
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yijie Guo
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Shilin Wu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Longkun Mao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yuzhou Xiang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong 510006, China
| | - Shanshan Gu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Meng Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lan Jiang
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangdong 510080, China
| | - Nan Cao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China.
| |
Collapse
|
44
|
Yucel D, Pu WT. From vitality to vulnerability: the impact of oxygen on cardiac function and regeneration. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:15. [PMID: 38694792 PMCID: PMC11062631 DOI: 10.20517/jca.2024.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Affiliation(s)
- Dogacan Yucel
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
45
|
Wang S, Li J, Zhao Y. Construction and analysis of a network of exercise-induced mitochondria-related non-coding RNA in the regulation of diabetic cardiomyopathy. PLoS One 2024; 19:e0297848. [PMID: 38547044 PMCID: PMC10977711 DOI: 10.1371/journal.pone.0297848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major factor in the development of heart failure. Mitochondria play a crucial role in regulating insulin resistance, oxidative stress, and inflammation, which affect the progression of DCM. Regular exercise can induce altered non-coding RNA (ncRNA) expression, which subsequently affects gene expression and protein function. The mechanism of exercise-induced mitochondrial-related non-coding RNA network in the regulation of DCM remains unclear. This study seeks to construct an innovative exercise-induced mitochondrial-related ncRNA network. Bioinformatic analysis of RNA sequencing data from an exercise rat model identified 144 differentially expressed long non-coding RNA (lncRNA) with cutoff criteria of p< 0.05 and fold change ≥1.0. GSE6880 and GSE4745 were the differentially expressed mRNAs from the left ventricle of DCM rat that downloaded from the GEO database. Combined with the differentially expressed mRNA and MitoCarta 3.0 dataset, the mitochondrial located gene Pdk4 was identified as a target gene. The miRNA prediction analysis using miRanda and TargetScan confirmed that 5 miRNAs have potential to interact with the 144 lncRNA. The novel lncRNA-miRNA-Pdk4 network was constructed for the first time. According to the functional protein association network, the newly created exercise-induced ncRNA network may serve as a promising diagnostic marker and therapeutic target, providing a fresh perspective to understand the molecular mechanism of different exercise types for the prevention and treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shuo Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Jiacong Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
46
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
47
|
Li RG, Li X, Morikawa Y, Grisanti-Canozo FJ, Meng F, Tsai CR, Zhao Y, Liu L, Kim J, Xie B, Klysik E, Liu S, Samee MAH, Martin JF. YAP induces a neonatal-like pro-renewal niche in the adult heart. NATURE CARDIOVASCULAR RESEARCH 2024; 3:283-300. [PMID: 38510108 PMCID: PMC10954255 DOI: 10.1038/s44161-024-00428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/12/2024] [Indexed: 03/22/2024]
Abstract
After myocardial infarction (MI), mammalian hearts do not regenerate, and the microenvironment is disrupted. Hippo signaling loss of function with activation of transcriptional co-factor YAP induces heart renewal and rebuilds the post-MI microenvironment. In this study, we investigated adult renewal-competent mouse hearts expressing an active version of YAP, called YAP5SA, in cardiomyocytes (CMs). Spatial transcriptomics and single-cell RNA sequencing revealed a conserved, renewal-competent CM cell state called adult (a)CM2 with high YAP activity. aCM2 co-localized with cardiac fibroblasts (CFs) expressing complement pathway component C3 and macrophages (MPs) expressing C3ar1 receptor to form a cellular triad in YAP5SA hearts and renewal-competent neonatal hearts. Although aCM2 was detected in adult mouse and human hearts, the cellular triad failed to co-localize in these non-renewing hearts. C3 and C3ar1 loss-of-function experiments indicated that C3a signaling between MPs and CFs was required to assemble the pro-renewal aCM2, C3+ CF and C3ar1+ MP cellular triad.
Collapse
Affiliation(s)
- Rich Gang Li
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
- These authors contributed equally: Rich Gang Li, Xiao Li
| | - Xiao Li
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
- These authors contributed equally: Rich Gang Li, Xiao Li
| | - Yuka Morikawa
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Francisco J. Grisanti-Canozo
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Fansen Meng
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Chang-Ru Tsai
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Yi Zhao
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Lin Liu
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Jong Kim
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Bing Xie
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Elzbieta Klysik
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - James F. Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA
- McGill Gene Editing Laboratory, Texas Heart Institute, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
48
|
Nakano H, Nakano A. The role of metabolism in cardiac development. Curr Top Dev Biol 2024; 156:201-243. [PMID: 38556424 DOI: 10.1016/bs.ctdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States; Cardiology Division, Department of Medicine, UCLA, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States; Molecular Biology Institute, UCLA, Los Angeles, CA, United States; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
49
|
Zhang Z, Sun M, Jiang W, Yu L, Zhang C, Ma H. Myocardial Metabolic Reprogramming in HFpEF. J Cardiovasc Transl Res 2024; 17:121-132. [PMID: 37650988 DOI: 10.1007/s12265-023-10433-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Heart failure (HF) caused by structural or functional cardiac abnormalities is a significant cause of morbidity and mortality worldwide. While HF with reduced ejection fraction (HErEF) is well understood, more than half of patients have HF with preserved ejection fraction (HFpEF). Currently, the treatment for HFpEF primarily focuses on symptom alleviation, lacking specific drugs. The stressed heart undergoes metabolic switches in substrate preference, which is a compensatory process involved in cardiac pathological remodeling. Although metabolic reprogramming in HF has gained attention in recent years, its role in HFpEF still requires further elucidation. In this review, we present a summary of cardiac mitochondrial dysfunction and cardiac metabolic reprogramming in HFpEF. Additionally, we emphasize potential therapeutic approaches that target metabolic reprogramming for the treatment of HFpEF.
Collapse
Affiliation(s)
- Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Mingchu Sun
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chan Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China.
| | - Heng Ma
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China.
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
50
|
Ahola S, Langer T. Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol 2024; 34:150-160. [PMID: 37419738 DOI: 10.1016/j.tcb.2023.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Ferroptosis is a form of necrotic cell death characterized by iron-dependent lipid peroxidation culminating in membrane rupture. Accumulating evidence links ferroptosis to multiple cardiac diseases and identifies mitochondria as important regulators of ferroptosis. Mitochondria are not only a major source of reactive oxygen species (ROS) but also counteract ferroptosis by preserving cellular redox balance and oxidative defense. Recent evidence has revealed that the mitochondrial integrated stress response limits oxidative stress and ferroptosis in oxidative phosphorylation (OXPHOS)-deficient cardiomyocytes and protects against mitochondrial cardiomyopathy. We summarize the multiple ways in which mitochondria modulate the susceptibility of cells to ferroptosis, and discuss the implications of ferroptosis for cardiomyopathies in mitochondrial disease.
Collapse
Affiliation(s)
- Sofia Ahola
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|