1
|
Ji HL, Liu C, Zhang JJ, Lin L, Yang Q, Yang Y, Dong CC, He YB, Shao CW. Molecular cloning, expression, and functional analyses of plasmanylethanolamine desaturase gene of Takifugu rubripes. Gene 2025; 953:149242. [PMID: 39800193 DOI: 10.1016/j.gene.2025.149242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The aging population has led to a significant increase in neurodegenerative diseases, particularly Alzheimer's disease (AD), which adversely affects the quality of life and longevity of the elderly. Abnormal plasmalogen metabolism plays a crucial role in the pathogenesis of AD. This study focused on tmem189, a key gene involved in plasmalogen synthesis. We successfully cloned and characterized the open reading frame (ORF) of tmem189 in Takifugu rubripes, revealing that it encodes a protein consisting of 275 amino acids. Notably, tmem189 expression was found to be higher in brain compared to other tissues. We transfected a GFP-tagged eukaryotic expression vector into 293 T cells, confirming successful expression of tmem189 with increased expression levels. Additionally, liquid chromatography-mass spectrometry (LC-MS) analysis demonstrated that tmem189 promotes plasmalogen synthesis in the transfected 293T cells. Our findings suggest that tmem189 could serve as a potential target for the treatment of neurodegenerative diseases, providing new insights into the promotion of plasmalogen synthesis.
Collapse
Affiliation(s)
- Hong-Long Ji
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| | - Chang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| | - Jing-Jing Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| | - Lei Lin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| | - Qi Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| | - Yu Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| | - Cai-Chao Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| | - Yang-Bin He
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| | - Chang-Wei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Bullington AV, Micallo I, Bajaj B, Kumar P, Schlamowitz N, Silva A, Hendrix S, Zelcer N, Kober DL. Structural basis for substrate selectivity by site-one protease revealed by studies with a small-molecule inhibitor. Proc Natl Acad Sci U S A 2025; 122:e2426931122. [PMID: 40299693 PMCID: PMC12067269 DOI: 10.1073/pnas.2426931122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/31/2025] [Indexed: 05/01/2025] Open
Abstract
Site-one protease (S1P) carries out the first proteolytic step to activate membrane-bound effector proteins in the Golgi. S1P matures through an autocatalytic process that begins in the endoplasmic reticulum (ER) and culminates with the displacement of its inhibitory pro-domain by its cofactor, sterol regulatory element binding protein-regulating gene (SPRING). Spatial control of S1P activity and substrate localization underpins signaling pathways governing, among others, lipogenesis, ER stress, and lysosome biogenesis. The factors governing these pathways are activated by S1P-mediated proteolysis upon their regulated transport from the ER to the Golgi. S1P cleaves substrates with the recognition sequence RX(L/I/V)Z, where X is any residue other than Cys or Pro and Z is preferably Leu or Lys. However, the structural basis for substrate recognition by S1P has remained unknown. Here, we used the small molecule PF-429242, a competitive inhibitor of S1P, to investigate substrate recognition by the S1P/SPRING complex. We determined the structure of S1P/SPRING bound to PF-429242 and found that PF-429242 binds S1P in the same pocket that recognizes the substrate's conserved P4 Arg. Further structural analysis suggests that S1P requires a conformation change to accommodate the substrate's P2 (L/I/V) residue. We designed an S1P mutation (I308A) to reduce the steric clash at the P2 position and generated an S1P that was resistant to PF-429242 in biochemical and cell culture assays. Our findings reveal selectivity in the recognition of substrates by S1P and provide a roadmap for the rational design of improved S1P inhibitors.
Collapse
Affiliation(s)
- Ashley V. Bullington
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Ilaria Micallo
- Department of Medical Biochemistry, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam1105AZ, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
| | - Bilkish Bajaj
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Pankaj Kumar
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Netanya Schlamowitz
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Aurora Silva
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam1105AZ, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam1105AZ, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
| | - Daniel L. Kober
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
3
|
Raaijmakers JA, Janssen LME, Mazouzi A, Hondema ALH, Borza R, Fish A, Elbatsh AMO, Kazokaitė-Adomaitienė J, Vaquero-Siguero N, Mayayo-Peralta I, Nahidiazar L, Friskes A, Hoekman L, Bleijerveld OB, Hoencamp C, Moser SC, Jonkers J, Jalink K, Zwart W, Celie PHN, Rowland BD, Perrakis A, Brummelkamp TR, Medema RH. SRBD1, a highly conserved gene required for chromosome individualization. Cell Rep 2025; 44:115443. [PMID: 40106440 DOI: 10.1016/j.celrep.2025.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Despite significant progress made in functional genomics, the roles of a relatively small number of essential genes remain enigmatic. Here, we characterize S1 RNA-binding domain-containing protein 1 (SRBD1), an essential gene with no previously assigned function. Through genetic, proteomic, and functional approaches, we discovered that SRBD1 is a DNA-binding protein and a key component of the mitotic chromatid axis. The loss of SRBD1 results in a pronounced defect in sister chromatid segregation that strikingly resembles the phenotype observed when sister chromatid decatenation is perturbed by topoisomerase IIα (TOP2A) dysfunction. Using genetic screens, we uncovered that the requirement for SRBD1 depends on the presence of condensin II but not condensin I. Moreover, we found that SRBD1 activity is most critical during prophase, when chromosome condensation is established. Taking these results together, we propose that SRBD1 acts during prophase to safeguard the decatenation process to prevent the formation of difficult-to-resolve DNA structures, thereby averting severe chromosome missegregations.
Collapse
Affiliation(s)
- Jonne A Raaijmakers
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Louise M E Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Abdelghani Mazouzi
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Amber L H Hondema
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Razvan Borza
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alexander Fish
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ahmed M O Elbatsh
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Justina Kazokaitė-Adomaitienė
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nuria Vaquero-Siguero
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Isabel Mayayo-Peralta
- Division of Oncogenomics, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leila Nahidiazar
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Anoek Friskes
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- Mass Spectrometry and Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Patrick H N Celie
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Thijn R Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
4
|
Yu HC, Jin L, Bai L, Zhang YJ, Yang ZX. C12ORF49 inhibits ferroptosis in hepatocellular carcinoma cells via reprogramming SREBP1/SCD1-mediated lipid metabolism. Cell Death Discov 2025; 11:178. [PMID: 40240331 PMCID: PMC12003882 DOI: 10.1038/s41420-025-02480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Altered lipid metabolism is an emerging hallmark of cancer, which is involved in various aspects of the cancer phenotypes. C12ORF49 has recently been identified as a pivotal regulator of sterol regulatory element binding proteins (SREBPs), a family of transcriptional factors that govern lipid biosynthesis. Nevertheless, the function of C12ORF49 in human cancers has not been studied. Here, we show that C12ORF49 levels are higher in HCC tissue than in nearby non-cancerous liver tissue. Additionally, increased C12ORF49 expression is linked to poorer survival outcomes in HCC patients. Functional experiments uncovered that knockdown of C12ORF49 inhibited HCC cell survival and tumor growth by inducing ferroptosis, whereas the opposites were observed upon C12ORF49 overexpression. Mechanistically, C12ORF49 promotes SREBP1/SCD-regulated production of monounsaturated fatty acids, which inhibits ferroptosis in HCC cells. Furthermore, silencing C12ORF49 combined with Sorafenib treatment showed a synergistic effect in inducing HCC cell death. Together, our findings suggest a critical role of C12ORF49 in the evasion of ferroptosis in HCC cells, highlighting the potential of targeting C12ORF49 as a therapeutic strategy to enhance the efficacy of Sorafenib treatment in HCC.
Collapse
Affiliation(s)
- Heng-Chao Yu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Liang Jin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lu Bai
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yu-Jia Zhang
- Department of Clinical Medicine, Shananxi University of Chinese Medicine, Xianyang, China
| | - Zhao-Xu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
5
|
Chen R, Chen T, Li X, Yu J, Lin M, Wen S, Zhang M, Chen J, Yi B, Zhong H, Li Z. SREBP2 as a central player in cancer progression: potential for targeted therapeutics. Front Pharmacol 2025; 16:1535691. [PMID: 40308757 PMCID: PMC12041066 DOI: 10.3389/fphar.2025.1535691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Recent studies have identified the reprogramming of lipid metabolism as a critical hallmark of malignancy. Enhanced cholesterol uptake and increased cholesterol biosynthesis significantly contribute to the rapid growth of tumors, with cholesterol also playing essential roles in cellular signaling pathways. Targeting cholesterol metabolism has emerged as a promising therapeutic strategy in oncology. The sterol regulatory element-binding protein-2 (SREBP2) serves as a primary transcriptional regulator of genes involved in cholesterol biosynthesis and is crucial for maintaining cholesterol homeostasis. Numerous studies have reported the upregulation of SREBP2 across various cancers, facilitating tumor progression. This review aims to provide a comprehensive overview of the structure, biological functions, and regulatory mechanisms of SREBP2. Furthermore, we summarize that SREBP2 plays a crucial role in various cancers and tumor microenvironment primarily by regulating cholesterol, as well as through several non-cholesterol pathways. We also particularly emphasize therapeutic agents targeting SREBP2 that are currently under investigation. This review seeks to enhance our understanding of SREBP2's involvement in cancer and provide theoretical references for cancer therapies that target SREBP2.
Collapse
Affiliation(s)
- Ruiqi Chen
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianyu Chen
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiang Li
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junfeng Yu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Lin
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Siqi Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Man Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinchi Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bei Yi
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Huage Zhong
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
6
|
Xu X, Chen Y, Fei S, Jiang X, Zhou X, Xue Y, Li Y, Zhao SM, Huang Y, Wang C. PPTC7 acts as an essential co-factor of the SCF FBXL4 ubiquitin ligase complex to restrict BNIP3/3L-dependent mitophagy. Cell Death Dis 2025; 16:145. [PMID: 40025034 PMCID: PMC11873123 DOI: 10.1038/s41419-025-07463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Mitophagy is a selective process that targets the damaged, dysfunctional, or superfluous mitochondria for degradation through autophagy. The SCFFBXL4 E3 ubiquitin ligase complex suppresses basal mitophagy by targeting BNIP3 and BNIP3L, two key mitophagy cargo receptors, for ubiquitin-proteasomal degradation. FBXL4 loss-of-function mutations lead to excessive BNIP3/3L-dependent mitophagy, thereby causing a devastating multi-system disorder called mitochondrial DNA depletion syndrome, type 13 (MTDPS13). PPTC7, a mitochondrial matrix phosphatase, is essential for proper mitochondrial function and biogenesis. Here, we show that a proportion of PPTC7 is located on the outer mitochondrial membrane, where it interacts with FBXL4 and BNIP3/3L. PPTC7 decreases BNIP3/3L protein stability in a protein phosphatase activity-independent manner. Using in vitro cell culture and Pptc7 knockout mouse model, we demonstrate that PPTC7 deficiency activates high levels of basal mitophagy in a BNIP3/3L-dependent manner. Mechanistically, PPTC7 facilitates SCFFBXL4-mediated ubiquitin-proteasomal degradation of BNIP3/3L. Overall, these findings establish PPTC7 as an essential co-factor of the SCFFBXL4 complex and a suppressor of BNIP3/3L-dependent mitophagy.
Collapse
Affiliation(s)
- Xiayun Xu
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Yingji Chen
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Siqi Fei
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyue Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoting Zhou
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Yimeng Xue
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering, School of Life Sciences, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China.
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Hendrix S, Dartigue V, Hall H, Bawaria S, Kingma J, Bajaj B, Zelcer N, Kober DL. SPRING licenses S1P-mediated cleavage of SREBP2 by displacing an inhibitory pro-domain. Nat Commun 2024; 15:5732. [PMID: 38977690 PMCID: PMC11231238 DOI: 10.1038/s41467-024-50068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Site-one protease (S1P) conducts the first of two cleavage events in the Golgi to activate Sterol regulatory element binding proteins (SREBPs) and upregulate lipogenic transcription. S1P is also required for a wide array of additional signaling pathways. A zymogen serine protease, S1P matures through autoproteolysis of two pro-domains, with one cleavage event in the endoplasmic reticulum (ER) and the other in the Golgi. We recently identified the SREBP regulating gene, (SPRING), which enhances S1P maturation and is necessary for SREBP signaling. Here, we report the cryo-EM structures of S1P and S1P-SPRING at sub-2.5 Å resolution. SPRING activates S1P by dislodging its inhibitory pro-domain and stabilizing intra-domain contacts. Functionally, SPRING licenses S1P to cleave its cognate substrate, SREBP2. Our findings reveal an activation mechanism for S1P and provide insights into how spatial control of S1P activity underpins cholesterol homeostasis.
Collapse
Affiliation(s)
- Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Vincent Dartigue
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hailee Hall
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shrankhla Bawaria
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jenina Kingma
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Bilkish Bajaj
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands.
| | - Daniel L Kober
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
8
|
Kwon JJ, Pan J, Gonzalez G, Hahn WC, Zitnik M. On knowing a gene: A distributional hypothesis of gene function. Cell Syst 2024; 15:488-496. [PMID: 38810640 PMCID: PMC11189734 DOI: 10.1016/j.cels.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 02/25/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
As words can have multiple meanings that depend on sentence context, genes can have various functions that depend on the surrounding biological system. This pleiotropic nature of gene function is limited by ontologies, which annotate gene functions without considering biological contexts. We contend that the gene function problem in genetics may be informed by recent technological leaps in natural language processing, in which representations of word semantics can be automatically learned from diverse language contexts. In contrast to efforts to model semantics as "is-a" relationships in the 1990s, modern distributional semantics represents words as vectors in a learned semantic space and fuels current advances in transformer-based models such as large language models and generative pre-trained transformers. A similar shift in thinking of gene functions as distributions over cellular contexts may enable a similar breakthrough in data-driven learning from large biological datasets to inform gene function.
Collapse
Affiliation(s)
- Jason J Kwon
- Dana-Farber Cancer Institute and Harvard Medical School, Department of Medical Oncology, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua Pan
- Dana-Farber Cancer Institute and Harvard Medical School, Department of Medical Oncology, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Guadalupe Gonzalez
- Department of Computing, Faculty of Engineering, Imperial College, London SW7 2AZ, UK
| | - William C Hahn
- Dana-Farber Cancer Institute and Harvard Medical School, Department of Medical Oncology, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Marinka Zitnik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Department of Biomedical Informatics, Boston, MA 02115, USA; Harvard Data Science Initiative, Harvard University, Cambridge, MA 02138, USA; Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, MA 02134, USA.
| |
Collapse
|
9
|
Hendrix S, Tan JME, Ndoj K, Kingma J, Valiloo M, Zijlstra LF, Ottenhoff R, Seidah NG, Loregger A, Kober DL, Zelcer N. SPRING is a Dedicated Licensing Factor for SREBP-Specific Activation by S1P. Mol Cell Biol 2024; 44:123-137. [PMID: 38747374 PMCID: PMC11110692 DOI: 10.1080/10985549.2024.2348711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
SREBP transcription factors are central regulators of lipid metabolism. Their proteolytic activation requires ER to the Golgi translocation and subsequent cleavage by site-1-protease (S1P). Produced as a proprotein, S1P undergoes autocatalytic cleavage from its precursor S1PA to mature S1PC form. Here, we report that SPRING (previously C12ORF29) and S1P interact through their ectodomains, and that this facilitates the autocatalytic cleavage of S1PA into its mature S1PC form. Reciprocally, we identified a S1P recognition-motif in SPRING and demonstrate that S1P-mediated cleavage leads to secretion of the SPRING ectodomain in cells, and in liver-specific Spring knockout (LKO) mice transduced with AAV-mSpring. By reconstituting SPRING variants into SPRINGKO cells we show that the SPRING ectodomain supports proteolytic maturation of S1P and SREBP signaling, but that S1P-mediated SPRING cleavage is not essential for these processes. Absence of SPRING modestly diminishes proteolytic maturation of S1PA→C and trafficking of S1PC to the Golgi. However, despite reaching the Golgi in SPRINGKO cells, S1PC fails to rescue SREBP signaling. Remarkably, whereas SREBP signaling was severely attenuated in SPRINGKO cells and LKO mice, that of ATF6, another S1P substrate, was unaffected in these models. Collectively, our study positions SPRING as a dedicated licensing factor for SREBP-specific activation by S1P.
Collapse
Affiliation(s)
- Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Josephine M. E. Tan
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Klevis Ndoj
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Jenina Kingma
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Masoud Valiloo
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Lobke F. Zijlstra
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), University of Montreal, Montréal, Québec, Canada
| | - Anke Loregger
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel L. Kober
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Jia W, Wu X, Shu J, Shi L. 3-Monochloropropane-1,2-diol reduced bioaccessibility of sn-2 palmitate via binding with pancreatic lipase in infant formula during gastrointestinal digestion. J Dairy Sci 2023; 106:8449-8468. [PMID: 37690726 DOI: 10.3168/jds.2023-23730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Infant formula contains 3-monochloropropane-1,2-diol esters (3-MCPDE), which are formed during the deodorization step of vegetable oil refining. The European Food Safety Authority stated that 3-MCPDE can be hydrolyzed in the gastrointestinal tract to free-form 3-monochloropropane-1,2-diol (3-MCPD), which has potential toxicity and can be rapidly absorbed. Evaluating the effect of 3-MCPD on nutrition absorption is a prerequisite for establishing effective management strategies. A total of 66 crucial lipid molecules associated with 3-MCPD were identified based on debiased sparse partial correlation analysis. 3-MCPD affected triglyceride hydrolyzation and increased the concentration of undigested sn-2 palmitate (9.57 to 17.06 mg kg-1). 3-Monochloropropane-1,2-diol reduced the bioaccessibility of fatty acids, and more short- (31.42 to 58.02 mg kg-1) and medium-chain fatty acids (17.03 to 26.43 mg kg-1) remained unabsorbed. Lipidomic profiles of infant formula models spiked with different 3-MCPDE levels were investigated, and the results were consistent with the experiments with the commercial formula indicating lipid alteration was mainly affected by the digestive 3-MCPD. The formation of 3-MCPD ester-pancreatic lipase with the binding energy of -4.9 kcal mol-1 was more stable than triglyceride-pancreatic lipase (-4.0 kcal mol-1), affecting triglyceride hydrolyzation. 3-Monochloropropane-1,2-diol was bound to Glu13 and Asp331 residues of the pancreatic lipase via hydrogen bonds, which resulted in a conformational change of pancreatic lipase and spatial shielding effect. The existence of the spatial-shielding effect reduced the accessibility of pancreatic lipase and further affected triglyceride hydrolyzation. These findings indicated that 3-MCPD obstructed nutrient acquisition and laid the foundation for the subsequent nutrition enhancement design.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Testing Institute of Product Quality Supervision, Xi'an, Shaanxi 710048, China; Shaanxi Sky Pet Biotechnology Co. Ltd., Xi'an 710075, China.
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jing Shu
- Shaanxi Testing Institute of Product Quality Supervision, Xi'an, Shaanxi 710048, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
11
|
Chen Y, Jiao D, He H, Sun H, Liu Y, Shi Q, Zhang P, Li Y, Mo R, Gao K, Wang C. Disruption of the Keap1-mTORC2 axis by cancer-derived Keap1/mLST8 mutations leads to oncogenic mTORC2-AKT activation. Redox Biol 2023; 67:102872. [PMID: 37688978 PMCID: PMC10498434 DOI: 10.1016/j.redox.2023.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
The mechanistic target of the rapamycin (mTOR) pathway, which participates in the regulation of cellular growth and metabolism, is aberrantly regulated in various cancer types. The mTOR complex 2 (mTORC2), which consists of the core components mTOR, Rictor, mSin1, and mLST8, primarily responds to growth signals. However, the coordination between mTORC2 assembly and activity remains poorly understood. Keap1, a major sensor of oxidative stress in cells, functions as a substrate adaptor for Cullin 3-RING E3 ubiquitin ligase (CRL3) to promote proteasomal degradation of NF-E2-related factor 2 (NRF2), which is a transcription factor that protects cells against oxidative and electrophilic stress. In the present study, we demonstrate that Keap1 binds to mLST8 via a conserved ETGE motif. The CRL3Keap1 ubiquitin ligase complex promotes non-degradative ubiquitination of mLST8, thus reducing mTORC2 complex integrity and mTORC2-AKT activation. However, this effect can be prevented by oxidative/electrophilic stresses and growth factor signaling-induced reactive oxygen species (ROS) burst. Cancer-derived Keap1 or mLST8 mutations disrupt the Keap1-mLST8 interaction and allow mLST8 to evade Keap1-mediated ubiquitination, thereby enhancing mTORC2-AKT activation and promoting cell malignancy and remodeling cell metabolism. Our findings provide new insights into the molecular mechanisms of Keap1/mLST8 mutation-driven tumorigenesis by promoting mTORC2-AKT activation, which is independent of the canonical NRF2 pathway.
Collapse
Affiliation(s)
- Yingji Chen
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Dongyue Jiao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Huiying He
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Huiru Sun
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Yajuan Liu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Qing Shi
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Pingzhao Zhang
- Fudan University Shanghai Cancer Center and Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yao Li
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Ren Mo
- Department of Urology, Inner Mongolia Urological Institute, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010017, Inner Mongolia, PR China.
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China; Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, PR China.
| | - Chenji Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
12
|
Hendrix S, Zelcer N. A new SPRING in lipid metabolism. Curr Opin Lipidol 2023; 34:201-207. [PMID: 37548386 DOI: 10.1097/mol.0000000000000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW The SREBP transcription factors are master regulators of lipid homeostasis owing to their role in controlling cholesterol and fatty acid metabolism. The core machinery required to promote their trafficking and proteolytic activation has been established close to 20 years ago. In this review, we summarize the current understanding of a newly identified regulator of SREBP signaling, SPRING (formerly C12ORF49), its proposed mechanism of action, and its role in lipid metabolism. RECENT FINDINGS Using whole-genome functional genetic screens we, and others, have recently identified SPRING as a novel regulator of SREBP signaling. SPRING is a Golgi-resident single-pass transmembrane protein that is required for proteolytic activation of SREBPs in this compartment. Mechanistic studies identified regulation of S1P, the protease that cleaves SREBPs, and control of retrograde trafficking of the SREBP chaperone SCAP from the Golgi to the ER as processes requiring SPRING. Emerging studies suggest an important role for SPRING in regulating circulating and hepatic lipid levels in mice and potentially in humans. SUMMARY Current studies support the notion that SPRING is a novel component of the core SREBP-activating machinery. Additional studies are warranted to elucidate its role in cellular and systemic lipid metabolism.
Collapse
Affiliation(s)
- Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 15, Amsterdam, the Netherlands
| | | |
Collapse
|
13
|
Dreishpoon MB, Bick NR, Petrova B, Warui DM, Cameron A, Booker SJ, Kanarek N, Golub TR, Tsvetkov P. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J Biol Chem 2023; 299:105046. [PMID: 37453661 PMCID: PMC10462841 DOI: 10.1016/j.jbc.2023.105046] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Ferredoxins are a family of iron-sulfur (Fe-S) cluster proteins that serve as essential electron donors in numerous cellular processes that are conserved through evolution. The promiscuous nature of ferredoxins as electron donors enables them to participate in many metabolic processes including steroid, heme, vitamin D, and Fe-S cluster biosynthesis in different organisms. However, the unique natural function(s) of each of the two human ferredoxins (FDX1 and FDX2) are still poorly characterized. We recently reported that FDX1 is both a crucial regulator of copper ionophore-induced cell death and serves as an upstream regulator of cellular protein lipoylation, a mitochondrial lipid-based post-translational modification naturally occurring on four mitochondrial enzymes that are crucial for TCA cycle function. Here we show that FDX1 directly regulates protein lipoylation by binding the lipoyl synthase (LIAS) enzyme promoting its functional binding to the lipoyl carrier protein GCSH and not through indirect regulation of cellular Fe-S cluster biosynthesis. Metabolite profiling revealed that the predominant cellular metabolic outcome of FDX1 loss of function is manifested through the regulation of the four lipoylation-dependent enzymes ultimately resulting in loss of cellular respiration and sensitivity to mild glucose starvation. Transcriptional profiling established that FDX1 loss-of-function results in the induction of both compensatory metabolism-related genes and the integrated stress response, consistent with our findings that FDX1 loss-of-function is conditionally lethal. Together, our findings establish that FDX1 directly engages with LIAS, promoting its role in cellular protein lipoylation, a process essential in maintaining cell viability under low glucose conditions.
Collapse
Affiliation(s)
| | - Nolan R Bick
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Boryana Petrova
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Douglas M Warui
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | - Squire J Booker
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Naama Kanarek
- Broad Institute of Harvard and MIT, Cambridge, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
14
|
Hendrix S, Kingma J, Ottenhoff R, Valiloo M, Svecla M, Zijlstra LF, Sachdev V, Kovac K, Levels JHM, Jongejan A, de Boer JF, Kuipers F, Rimbert A, Norata GD, Loregger A, Zelcer N. Hepatic SREBP signaling requires SPRING to govern systemic lipid metabolism in mice and humans. Nat Commun 2023; 14:5181. [PMID: 37626055 PMCID: PMC10457316 DOI: 10.1038/s41467-023-40943-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The sterol regulatory element binding proteins (SREBPs) are transcription factors that govern cholesterol and fatty acid metabolism. We recently identified SPRING as a post-transcriptional regulator of SREBP activation. Constitutive or inducible global ablation of Spring in mice is not tolerated, and we therefore develop liver-specific Spring knockout mice (LKO). Transcriptomics and proteomics analysis reveal attenuated SREBP signaling in livers and hepatocytes of LKO mice. Total plasma cholesterol is reduced in male and female LKO mice in both the low-density lipoprotein and high-density lipoprotein fractions, while triglycerides are unaffected. Loss of Spring decreases hepatic cholesterol and triglyceride content due to diminished biosynthesis, which coincides with reduced very-low-density lipoprotein secretion. Accordingly, LKO mice are protected from fructose diet-induced hepatosteatosis. In humans, we find common genetic SPRING variants that associate with circulating high-density lipoprotein cholesterol and ApoA1 levels. This study positions SPRING as a core component of hepatic SREBP signaling and systemic lipid metabolism in mice and humans.
Collapse
Affiliation(s)
- Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Jenina Kingma
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Masoud Valiloo
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Lobke F Zijlstra
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Vinay Sachdev
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Kristina Kovac
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Johannes H M Levels
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Bioinformatics Laboratory, of Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Jan F de Boer
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoine Rimbert
- l'institut du thorax, Nantes Université, CNRS, INSERM, F-44000, Nantes, France
| | - Giuseppe D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Anke Loregger
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Myllia Biotechnology GmbH, Am Kanal 27, 1110, Vienna, Austria
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Chen X, Li Y, Zhu F, Xu X, Estrella B, Pazos MA, McGuire JT, Karagiannis D, Sahu V, Mustafokulov M, Scuoppo C, Sánchez-Rivera FJ, Soto-Feliciano YM, Pasqualucci L, Ciccia A, Amengual JE, Lu C. Context-defined cancer co-dependency mapping identifies a functional interplay between PRC2 and MLL-MEN1 complex in lymphoma. Nat Commun 2023; 14:4259. [PMID: 37460547 DOI: 10.1038/s41467-023-39990-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Interplay between chromatin-associated complexes and modifications critically contribute to the partitioning of epigenome into stable and functionally distinct domains. Yet there is a lack of systematic identification of chromatin crosstalk mechanisms, limiting our understanding of the dynamic transition between chromatin states during development and disease. Here we perform co-dependency mapping of genes using CRISPR-Cas9-mediated fitness screens in pan-cancer cell lines to quantify gene-gene functional relationships. We identify 145 co-dependency modules and further define the molecular context underlying the essentiality of these modules by incorporating mutational, epigenome, gene expression and drug sensitivity profiles of cell lines. These analyses assign new protein complex composition and function, and predict new functional interactions, including an unexpected co-dependency between two transcriptionally counteracting chromatin complexes - polycomb repressive complex 2 (PRC2) and MLL-MEN1 complex. We show that PRC2-mediated H3K27 tri-methylation regulates the genome-wide distribution of MLL1 and MEN1. In lymphoma cells with EZH2 gain-of-function mutations, the re-localization of MLL-MEN1 complex drives oncogenic gene expression and results in a hypersensitivity to pharmacologic inhibition of MEN1. Together, our findings provide a resource for discovery of trans-regulatory interactions as mechanisms of chromatin regulation and potential targets of synthetic lethality.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Marine College, Shandong University, 264209, Weihai, China
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Fang Zhu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Union Hospital Cancer Center, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xinjing Xu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brian Estrella
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Manuel A Pazos
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - John T McGuire
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Varun Sahu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mustafo Mustafokulov
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Claudio Scuoppo
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Francisco J Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Yadira M Soto-Feliciano
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jennifer E Amengual
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Takenaka A, Suzuki J, Tanaka H, Hibino K, Kamanaka Y, Nakamura S, Mitsunaga F, Kawamoto Y, Morimoto M, Aisu S, Natsume T. Hypercholesterolemia induced by spontaneous oligogenic mutations in rhesus macaques (Macaca mulatta). J Med Primatol 2023. [PMID: 37186395 DOI: 10.1111/jmp.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/05/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND A rhesus macaque with the fourth highest plasma cholesterol (CH) levels of 501 breeding macaques was identified 22 years ago. Seven offspring with gene mutations causing hypercholesterolemia were obtained. METHODS Activity of low-density lipoprotein receptor (LDLR), plasma CH levels and mRNA expression levels of LDLR were measured after administration of 0.1% (0.27 mg/kcal) or 0.3% CH. RESULTS Activity of p. (Cys82Tyr) of LDLR was 71% and 42% in the heterozygotes and a homozygote, respectively. The mRNA expression level of LDLR in the p. (Val241Ile) of membrane-bound transcription factor protease, site 2 (MBTPS2, S2P protein) was 0.83 times lower than normal levels. LDLR mRNA levels were increased for up to 4 weeks by administration of 0.3% CH before suddenly decreasing to 80% of the baseline levels after 6 weeks. CONCLUSION Oligogenic mutations of p. (Cys82Tyr) in LDLR and p. (Val241Ile) in MBTPS2 (S2P) caused hypercholesterolemia exceeding cardiovascular risk levels under a 0.1% CH diet.
Collapse
Affiliation(s)
- Akiko Takenaka
- Department of Health and Nutrition, Faculty of Health and Human Life, Nagoya Bunri University, Inazawa, Japan
| | - Juri Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Hiroyuki Tanaka
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Kumiko Hibino
- Department Food and Nutrition, College of Nagoya Bunri University, Nagoya, Japan
| | - Yoshiro Kamanaka
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Shin Nakamura
- NPO Primate Agora, Biomedical Institute, Gifu, Japan
| | | | - Yoshi Kawamoto
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Mayumi Morimoto
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Seitaro Aisu
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Takayoshi Natsume
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
17
|
Tao Y, Luo J, Zhu H, Chu Y, Pei L. Chromosome 12 Open Reading Frame 49 Promotes Tumor Growth and Predicts Poor Prognosis in Colorectal Cancer. Dig Dis Sci 2023; 68:1306-1315. [PMID: 36348128 PMCID: PMC10102024 DOI: 10.1007/s10620-022-07751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND AIMS Little is known about the role of chromosome 12 open reading frame 49 (C12ORF49)-induced metabolic signal transduction in tumor growth. We investigated the relationship between C12ORF49 expression and prognosis in colorectal cancer (CRC) patients. METHODS C12ORF49 protein expression was measured in CRC tissues by Western blot and immunohistochemistry staining. Knock out of C12ORF49 in CRC cells was then performed, and the role of C12ORF49 in CRC cell proliferation and growth was examined. The expression of C12ORF49 in CRC was analyzed in Gene Expression Profiling Interactive Analysis (GEPIA) databases. A prognosis model with 11 C12ORF49-associated genes (CAGs) was generated by TCGA databases. RESULTS C12ORF49 expression was significantly higher in CRC tumor tissue than in non-tumor tissue. Furthermore, in vitro and in vivo loss-of-function experiments, showed that C12ORF49 plays critical roles in promoting tumor cell growth. There was a significant correlation between C12ORF49 protein and the presence of tumor necrosis. C12ORF49 is critical for its interaction with SREBF1, TMEM41A, and S1PR3 in the poor prognosis of CRC. CONCLUSIONS Our results suggest that C12ORF49 plays a key role in CRC tumor growth.
Collapse
Affiliation(s)
- Yiming Tao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jia Luo
- Department of Surgery, Hunan Cancer Hospital, Affiliated Tumor Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Hongyi Zhu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Research Center of Digestive Disease, Central South University, Changsha, 410011, Hunan, China
| | - Yi Chu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Research Center of Digestive Disease, Central South University, Changsha, 410011, Hunan, China
| | - Lei Pei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, 410011, China.
| |
Collapse
|
18
|
Li Y, Wu S, Zhao X, Hao S, Li F, Wang Y, Liu B, Zhang D, Wang Y, Zhou H. Key events in cancer: Dysregulation of SREBPs. Front Pharmacol 2023; 14:1130747. [PMID: 36969840 PMCID: PMC10030587 DOI: 10.3389/fphar.2023.1130747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Lipid metabolism reprogramming is an important hallmark of tumor progression. Cancer cells require high levels of lipid synthesis and uptake not only to support their continued replication, invasion, metastasis, and survival but also to participate in the formation of biological membranes and signaling molecules. Sterol regulatory element binding proteins (SREBPs) are core transcription factors that control lipid metabolism and the expression of important genes for lipid synthesis and uptake. A growing number of studies have shown that SREBPs are significantly upregulated in human cancers and serve as intermediaries providing a mechanistic link between lipid metabolism reprogramming and malignancy. Different subcellular localizations, including endoplasmic reticulum, Golgi, and nucleus, play an indispensable role in regulating the cleavage maturation and activity of SREBPs. In this review, we focus on the relationship between aberrant regulation of SREBPs activity in three organelles and tumor progression. Because blocking the regulation of lipid synthesis by SREBPs has gradually become an important part of tumor therapy, this review also summarizes and analyzes several current mainstream strategies.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shiming Hao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| |
Collapse
|
19
|
Ritter DJ, Choudhary D, Unlu G, Knapik EW. Rgp1 contributes to craniofacial cartilage development and Rab8a-mediated collagen II secretion. Front Endocrinol (Lausanne) 2023; 14:1120420. [PMID: 36843607 PMCID: PMC9947155 DOI: 10.3389/fendo.2023.1120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Rgp1 was previously identified as a component of a guanine nucleotide exchange factor (GEF) complex to activate Rab6a-mediated trafficking events in and around the Golgi. While the role of Rgp1 in protein trafficking has been examined in vitro and in yeast, the role of Rgp1 during vertebrate embryogenesis and protein trafficking in vivo is unknown. Using genetic, CRISPR-induced zebrafish mutants for Rgp1 loss-of-function, we found that Rgp1 is required for craniofacial cartilage development. Within live rgp1-/- craniofacial chondrocytes, we observed altered movements of Rab6a+ vesicular compartments, consistent with a conserved mechanism described in vitro. Using transmission electron microscopy (TEM) and immunofluorescence analyses, we show that Rgp1 plays a role in the secretion of collagen II, the most abundant protein in cartilage. Our overexpression experiments revealed that Rab8a is a part of the post-Golgi collagen II trafficking pathway. Following loss of Rgp1, chondrocytes activate an Arf4b-mediated stress response and subsequently respond with nuclear DNA fragmentation and cell death. We propose that an Rgp1-regulated Rab6a-Rab8a pathway directs secretion of ECM cargoes such as collagen II, a pathway that may also be utilized in other tissues where coordinated trafficking and secretion of collagens and other large cargoes is required for normal development and tissue function.
Collapse
Affiliation(s)
- Dylan J. Ritter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dharmendra Choudhary
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gokhan Unlu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ela W. Knapik
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
20
|
Dreishpoon MB, Bick NR, Petrova B, Warui DM, Cameron A, Booker SJ, Kanarek N, Golub TR, Tsvetkov P. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526472. [PMID: 36778498 PMCID: PMC9915701 DOI: 10.1101/2023.02.03.526472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ferredoxins are a family of iron-sulfur (Fe-S) cluster proteins that serve as essential electron donors in numerous cellular processes that are conserved through evolution. The promiscuous nature of ferredoxins as electron donors enables them to participate in many metabolic processes including steroid, heme, vitamin D and Fe-S cluster biosynthesis in different organisms. However, the unique natural function(s) of each of the two human ferredoxins (FDX1 and FDX2) are still poorly characterized. We recently reported that FDX1 is both a crucial regulator of copper ionophore induced cell death and serves as an upstream regulator of cellular protein lipoylation, a mitochondrial lipid-based post translational modification naturally occurring on four mitochondrial enzymes that are crucial for TCA cycle function. Here we show that FDX1 regulates protein lipoylation by directly binding to the lipoyl synthase (LIAS) enzyme and not through indirect regulation of cellular Fe-S cluster biosynthesis. Metabolite profiling revealed that the predominant cellular metabolic outcome of FDX1 loss-of-function is manifested through the regulation of the four lipoylation-dependent enzymes ultimately resulting in loss of cellular respiration and sensitivity to mild glucose starvation. Transcriptional profiling of cells growing in either normal or low glucose conditions established that FDX1 loss-of-function results in the induction of both compensatory metabolism related genes and the integrated stress response, consistent with our findings that FDX1 loss-of-functions is conditionally lethal. Together, our findings establish that FDX1 directly engages with LIAS, promoting cellular protein lipoylation, a process essential in maintaining cell viability under low glucose conditions.
Collapse
Affiliation(s)
| | | | - Boryana Petrova
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA USA
| | - Douglas M. Warui
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, PA, United States
| | | | - Squire J. Booker
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, PA, United States
| | - Naama Kanarek
- Broad Institute of Harvard and MIT, Cambridge, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA USA
| | - Todd R. Golub
- Broad Institute of Harvard and MIT, Cambridge, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | | |
Collapse
|
21
|
Shi H, Doench JG, Chi H. CRISPR screens for functional interrogation of immunity. Nat Rev Immunol 2022:10.1038/s41577-022-00802-4. [DOI: 10.1038/s41577-022-00802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
|
22
|
Zhang W, Yang X, Li Y, Yu L, Zhang B, Zhang J, Cho WJ, Venkatarangan V, Chen L, Burugula BB, Bui S, Wang Y, Duan C, Kitzman JO, Li M. GCAF(TMEM251) regulates lysosome biogenesis by activating the mannose-6-phosphate pathway. Nat Commun 2022; 13:5351. [PMID: 36096887 PMCID: PMC9468337 DOI: 10.1038/s41467-022-33025-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022] Open
Abstract
The mannose-6-phosphate (M6P) biosynthetic pathway for lysosome biogenesis has been studied for decades and is considered a well-understood topic. However, whether this pathway is regulated remains an open question. In a genome-wide CRISPR/Cas9 knockout screen, we discover TMEM251 as the first regulator of the M6P modification. Deleting TMEM251 causes mistargeting of most lysosomal enzymes due to their loss of M6P modification and accumulation of numerous undigested materials. We further demonstrate that TMEM251 localizes to the Golgi and is required for the cleavage and activity of GNPT, the enzyme that catalyzes M6P modification. In zebrafish, TMEM251 deletion leads to severe developmental defects including heart edema and skeletal dysplasia, which phenocopies Mucolipidosis Type II. Our discovery provides a mechanism for the newly discovered human disease caused by TMEM251 mutations. We name TMEM251 as GNPTAB cleavage and activity factor (GCAF) and its related disease as Mucolipidosis Type V.
Collapse
Affiliation(s)
- Weichao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yingxiang Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Linchen Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bokai Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Woo Jung Cho
- BRCF Microscopy Core, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Liang Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bala Bharathi Burugula
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sarah Bui
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Achreja A, Yu T, Mittal A, Choppara S, Animasahun O, Nenwani M, Wuchu F, Meurs N, Mohan A, Jeon JH, Sarangi I, Jayaraman A, Owen S, Kulkarni R, Cusato M, Weinberg F, Kweon HK, Subramanian C, Wicha MS, Merajver SD, Nagrath S, Cho KR, DiFeo A, Lu X, Nagrath D. Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. Nat Metab 2022; 4:1119-1137. [PMID: 36131208 DOI: 10.1038/s42255-022-00636-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2022] [Indexed: 11/08/2022]
Abstract
Recurrent loss-of-function deletions cause frequent inactivation of tumour suppressor genes but often also involve the collateral deletion of essential genes in chromosomal proximity, engendering dependence on paralogues that maintain similar function. Although these paralogues are attractive anticancer targets, no methodology exists to uncover such collateral lethal genes. Here we report a framework for collateral lethal gene identification via metabolic fluxes, CLIM, and use it to reveal MTHFD2 as a collateral lethal gene in UQCR11-deleted ovarian tumours. We show that MTHFD2 has a non-canonical oxidative function to provide mitochondrial NAD+, and demonstrate the regulation of systemic metabolic activity by the paralogue metabolic pathway maintaining metabolic flux compensation. This UQCR11-MTHFD2 collateral lethality is confirmed in vivo, with MTHFD2 inhibition leading to complete remission of UQCR11-deleted ovarian tumours. Using CLIM's machine learning and genome-scale metabolic flux analysis, we elucidate the broad efficacy of targeting MTHFD2 despite distinct cancer genetic profiles co-occurring with UQCR11 deletion and irrespective of stromal compositions of tumours.
Collapse
Affiliation(s)
- Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Tao Yu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Srinadh Choppara
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Minal Nenwani
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fulei Wuchu
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Noah Meurs
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Aradhana Mohan
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jin Heon Jeon
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Itisam Sarangi
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Anusha Jayaraman
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Owen
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Reva Kulkarni
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michele Cusato
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Frank Weinberg
- Hematology and Oncology, University of Illinois, Chicago, IL, USA
| | - Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Chitra Subramanian
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Max S Wicha
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sofia D Merajver
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sunitha Nagrath
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen R Cho
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Melvin & Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Chu PY, Huang WC, Tung SL, Tsai CY, Chen CJ, Liu YC, Lee CW, Lin YH, Lin HY, Chen CY, Yeh CT, Lin KH, Chi HC. IFITM3 promotes malignant progression, cancer stemness and chemoresistance of gastric cancer by targeting MET/AKT/FOXO3/c-MYC axis. Cell Biosci 2022; 12:124. [PMID: 35941699 PMCID: PMC9361616 DOI: 10.1186/s13578-022-00858-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/22/2022] [Indexed: 12/09/2022] Open
Abstract
Background Targeting the HGF/MET signaling pathway has been a viable therapeutic strategy for various cancer types due to hyperactivation of HGF/MET axis occurs frequently that leads to detrimental cancer progression and recurrence. Deciphering novel molecule mechanisms underlying complex HGF/MET signaling network is therefore critical to development of effective therapeutics for treating MET-dependent malignancies. Results Using isobaric mass tag-based quantitative proteomics approach, we identified IFITM3, an interferon-induced transmembrane protein that was highly expressed in micro-dissected gastric cancer (GC) tumor regions relative to adjacent non-tumor epithelia. Analyses of GC clinical specimens revealed that expression IFITM3 was closely correlated to advanced pathological stages. IFITM3 has been reported as a PIP3 scaffold protein that promotes PI3K signaling. In present study, we unprecedentedly unraveled that IFITM3 associated with MET and AKT to facilitate HGF/MET mediated AKT signaling crosstalk in suppressing FOXO3, consequently leading to c-MYC mediated GC progression. In addition, gene ontology analyses of the clinical GC cohort revealed significant correlation between IFITM3-associated genes and targets of c-MYC, which is a crucial downstream effector of HGF/MET pathway in cancer progression. Moreover, we demonstrated ectopic expression of IFITM3 suppressed FOXO3 expression, consequently led to c-MYC induction to promote tumor growth, cell metastasis, cancer stemness as well as chemoresistance. Conversely, depletion of IFITM3 resulted in suppression of HGF triggered cellular growth and migration via inhibition of AKT/c-MYC signaling in GC. Conclusions In summary, our present study unveiled a novel regulatory mechanism for c-MYC-driven oncogenesis underlined by IFITM3-mediated signaling crosstalk between MET associated AKT signaling cascade. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00858-8.
Collapse
|
25
|
Bahrami S, Nordengen K, Shadrin AA, Frei O, van der Meer D, Dale AM, Westlye LT, Andreassen OA, Kaufmann T. Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders. Nat Commun 2022; 13:3436. [PMID: 35705537 PMCID: PMC9200849 DOI: 10.1038/s41467-022-31086-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Despite its major role in complex human functions across the lifespan, most notably navigation, learning and memory, much of the genetic architecture of the hippocampal formation is currently unexplored. Here, through multivariate genome-wide association analysis in volumetric data from 35,411 white British individuals, we reveal 177 unique genetic loci with distributed associations across the hippocampal formation. We identify genetic overlap with eight brain disorders with typical onset at different stages of life, where common genes suggest partly age- and disorder-independent mechanisms underlying hippocampal pathology.
Collapse
Affiliation(s)
- Shahram Bahrami
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kaja Nordengen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Anders M Dale
- Department of Radiology, School of Medicine, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA, USA
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Pan J, Kwon JJ, Talamas JA, Borah AA, Vazquez F, Boehm JS, Tsherniak A, Zitnik M, McFarland JM, Hahn WC. Sparse dictionary learning recovers pleiotropy from human cell fitness screens. Cell Syst 2022; 13:286-303.e10. [PMID: 35085500 PMCID: PMC9035054 DOI: 10.1016/j.cels.2021.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/30/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022]
Abstract
In high-throughput functional genomic screens, each gene product is commonly assumed to exhibit a singular biological function within a defined protein complex or pathway. In practice, a single gene perturbation may induce multiple cascading functional outcomes, a genetic principle known as pleiotropy. Here, we model pleiotropy in fitness screen collections by representing each gene perturbation as the sum of multiple perturbations of biological functions, each harboring independent fitness effects inferred empirically from the data. Our approach (Webster) recovered pleiotropic functions for DNA damage proteins from genotoxic fitness screens, untangled distinct signaling pathways upstream of shared effector proteins from cancer cell fitness screens, and predicted the stoichiometry of an unknown protein complex subunit from fitness data alone. Modeling compound sensitivity profiles in terms of genetic functions recovered compound mechanisms of action. Our approach establishes a sparse approximation mechanism for unraveling complex genetic architectures underlying high-dimensional gene perturbation readouts.
Collapse
Affiliation(s)
- Joshua Pan
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Jason J Kwon
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Jessica A Talamas
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Ashir A Borah
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviad Tsherniak
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marinka Zitnik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Department of Biomedical Informatics, Boston, MA 02215, USA; Harvard University, Data Science Initiative, Cambridge, MA 02138, USA
| | | | - William C Hahn
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA; Brigham and Women's Hospital and Harvard Medical School, Department of Medicine, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Lu A, Hsieh F, Sharma BR, Vaughn SR, Enrich C, Pfeffer SR. CRISPR screens for lipid regulators reveal a role for ER-bound SNX13 in lysosomal cholesterol export. J Cell Biol 2022; 221:212937. [PMID: 34936700 PMCID: PMC8704955 DOI: 10.1083/jcb.202105060] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
We report here two genome-wide CRISPR screens performed to identify genes that, when knocked out, alter levels of lysosomal cholesterol or bis(monoacylglycero)phosphate. In addition, these screens were also performed under conditions of NPC1 inhibition to identify modifiers of NPC1 function in lysosomal cholesterol export. The screens confirm tight coregulation of cholesterol and bis(monoacylglycero)phosphate in cells and reveal an unexpected role for the ER-localized SNX13 protein as a negative regulator of lysosomal cholesterol export and contributor to ER–lysosome membrane contact sites. In the absence of NPC1 function, SNX13 knockdown redistributes lysosomal cholesterol and is accompanied by triacylglycerol-rich lipid droplet accumulation and increased lysosomal bis(monoacylglycero)phosphate. These experiments provide unexpected insight into the regulation of lysosomal lipids and modification of these processes by novel gene products.
Collapse
Affiliation(s)
- Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA.,Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | | | - Bikal R Sharma
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| | - Sydney R Vaughn
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
28
|
Discovery of putative tumor suppressors from CRISPR screens reveals rewired lipid metabolism in acute myeloid leukemia cells. Nat Commun 2021; 12:6506. [PMID: 34764293 PMCID: PMC8586352 DOI: 10.1038/s41467-021-26867-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR knockout fitness screens in cancer cell lines reveal many genes whose loss of function causes cell death or loss of fitness or, more rarely, the opposite phenotype of faster proliferation. Here we demonstrate a systematic approach to identify these proliferation suppressors, which are highly enriched for tumor suppressor genes, and define a network of 145 such genes in 22 modules. One module contains several elements of the glycerolipid biosynthesis pathway and operates exclusively in a subset of acute myeloid leukemia cell lines. The proliferation suppressor activity of genes involved in the synthesis of saturated fatty acids, coupled with a more severe loss of fitness phenotype for genes in the desaturation pathway, suggests that these cells operate at the limit of their carrying capacity for saturated fatty acids, which we confirm biochemically. Overexpression of this module is associated with a survival advantage in juvenile leukemias, suggesting a clinically relevant subtype. CRISPR-based knockout screens in cancer cells have suggested the existence of proliferation suppressor genes (PSG). Here, the authors develop an approach to systematically identify them, and reveal a PSG module involved in fatty acid synthesis and tumour suppression in acute myeloid leukemia cell lines.
Collapse
|
29
|
Abstract
The past 25 years of genomics research first revealed which genes are encoded by the human genome and then a detailed catalogue of human genome variation associated with many diseases. Despite this, the function of many genes and gene regulatory elements remains poorly characterized, which limits our ability to apply these insights to human disease. The advent of new CRISPR functional genomics tools allows for scalable and multiplexable characterization of genes and gene regulatory elements encoded by the human genome. These approaches promise to reveal mechanisms of gene function and regulation, and to enable exploration of how genes work together to modulate complex phenotypes.
Collapse
|
30
|
Colardo M, Martella N, Pensabene D, Siteni S, Di Bartolomeo S, Pallottini V, Segatto M. Neurotrophins as Key Regulators of Cell Metabolism: Implications for Cholesterol Homeostasis. Int J Mol Sci 2021; 22:5692. [PMID: 34073639 PMCID: PMC8198482 DOI: 10.3390/ijms22115692] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins constitute a family of growth factors initially characterized as predominant mediators of nervous system development, neuronal survival, regeneration and plasticity. Their biological activity is promoted by the binding of two different types of receptors, leading to the generation of multiple and variegated signaling cascades in the target cells. Increasing evidence indicates that neurotrophins are also emerging as crucial regulators of metabolic processes in both neuronal and non-neuronal cells. In this context, it has been reported that neurotrophins affect redox balance, autophagy, glucose homeostasis and energy expenditure. Additionally, the trophic support provided by these secreted factors may involve the regulation of cholesterol metabolism. In this review, we examine the neurotrophins' signaling pathways and their effects on metabolism by critically discussing the most up-to-date information. In particular, we gather experimental evidence demonstrating the impact of these growth factors on cholesterol metabolism.
Collapse
Affiliation(s)
- Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Silvia Siteni
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy;
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano 64, 00143 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| |
Collapse
|
31
|
Sekine Y, Houston R, Sekine S. Cellular metabolic stress responses via organelles. Exp Cell Res 2021; 400:112515. [PMID: 33582095 DOI: 10.1016/j.yexcr.2021.112515] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 02/08/2023]
Abstract
Metabolite fluctuations following nutrient metabolism or environmental stresses impact various intracellular signaling networks and stress responses to maintain cellular and organismal homeostasis. It has been shown that subcellular organelles, such as the endoplasmic reticulum, the Golgi apparatus, lysosomes and mitochondria serve as crucial hubs linking alterations in metabolite levels to cellular responses. This role is coordinated by molecular machineries that are associated with the lipid membranes of organelles, which sense the fluctuations in specific metabolites and activate the appropriate signaling and effector molecules. Moreover, recent studies have demonstrated that membraneless organelles, such as the nucleolus and stress granules, are involved in the metabolic stress response. Metabolite-induced post-translational modifications appear to play an important role in this process. Here, we review the molecular mechanisms of metabolite sensing and metabolite-mediated stress responses through membrane-bound and membraneless organelles in mammalian cells.
Collapse
Affiliation(s)
- Yusuke Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ryan Houston
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shiori Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Amici DR, Jackson JM, Truica MI, Smith RS, Abdulkadir SA, Mendillo ML. FIREWORKS: a bottom-up approach to integrative coessentiality network analysis. Life Sci Alliance 2021; 4:e202000882. [PMID: 33328249 PMCID: PMC7756899 DOI: 10.26508/lsa.202000882] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Genetic coessentiality analysis, a computational approach which identifies genes sharing a common effect on cell fitness across large-scale screening datasets, has emerged as a powerful tool to identify functional relationships between human genes. However, widespread implementation of coessentiality to study individual genes and pathways is limited by systematic biases in existing coessentiality approaches and accessibility barriers for investigators without computational expertise. We created FIREWORKS, a method and interactive tool for the construction and statistical analysis of coessentiality networks centered around gene(s) provided by the user. FIREWORKS incorporates a novel bias reduction approach to reduce false discoveries, enables restriction of coessentiality analyses to custom subsets of cell lines, and integrates multiomic and drug-gene interaction datasets to investigate and target contextual gene essentiality. We demonstrate the broad utility of FIREWORKS through case vignettes investigating gene function and specialization, indirect therapeutic targeting of "undruggable" proteins, and context-specific rewiring of genetic networks.
Collapse
Affiliation(s)
- David R Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jasen M Jackson
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mihai I Truica
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roger S Smith
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sarki A Abdulkadir
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
33
|
Vos DY, van de Sluis B. Function of the endolysosomal network in cholesterol homeostasis and metabolic-associated fatty liver disease (MAFLD). Mol Metab 2021; 50:101146. [PMID: 33348067 PMCID: PMC8324686 DOI: 10.1016/j.molmet.2020.101146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease, has become the leading cause of chronic liver disease worldwide. In addition to hepatic accumulation of triglycerides, dysregulated cholesterol metabolism is an important contributor to the pathogenesis of MAFLD. Maintenance of cholesterol homeostasis is highly dependent on cellular cholesterol uptake and, subsequently, cholesterol transport to other membrane compartments, such as the endoplasmic reticulum (ER). Scope of review The endolysosomal network is key for regulating cellular homeostasis and adaptation, and emerging evidence has shown that the endolysosomal network is crucial to maintain metabolic homeostasis. In this review, we will summarize our current understanding of the role of the endolysosomal network in cholesterol homeostasis and its implications in MAFLD pathogenesis. Major conclusions Although multiple endolysosomal proteins have been identified in the regulation of cholesterol uptake, intracellular transport, and degradation, their physiological role is incompletely understood. Further research should elucidate their role in controlling metabolic homeostasis and development of fatty liver disease. The intracellular cholesterol transport is tightly regulated by the endocytic and lysosomal network. Dysfunction of the endolysosomal network affects hepatic lipid homeostasis. The endosomal sorting of lipoprotein receptors is precisely regulated and is not a bulk process.
Collapse
Affiliation(s)
- Dyonne Y Vos
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
34
|
Xiao J, Xiong Y, Yang LT, Wang JQ, Zhou ZM, Dong LW, Shi XJ, Zhao X, Luo J, Song BL. POST1/C12ORF49 regulates the SREBP pathway by promoting site-1 protease maturation. Protein Cell 2020; 12:279-296. [PMID: 32666500 PMCID: PMC8019017 DOI: 10.1007/s13238-020-00753-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Sterol-regulatory element binding proteins (SREBPs) are the key transcriptional regulators of lipid metabolism. The activation of SREBP requires translocation of the SREBP precursor from the endoplasmic reticulum to the Golgi, where it is sequentially cleaved by site-1 protease (S1P) and site-2 protease and releases a nuclear form to modulate gene expression. To search for new genes regulating cholesterol metabolism, we perform a genome-wide CRISPR/Cas9 knockout screen and find that partner of site-1 protease (POST1), encoded by C12ORF49, is critically involved in the SREBP signaling. Ablation of POST1 decreases the generation of nuclear SREBP and reduces the expression of SREBP target genes. POST1 binds S1P, which is synthesized as an inactive protease (form A) and becomes fully mature via a two-step autocatalytic process involving forms B'/B and C'/C. POST1 promotes the generation of the functional S1P-C'/C from S1P-B'/B (canonical cleavage) and, notably, from S1P-A directly (non-canonical cleavage) as well. This POST1-mediated S1P activation is also essential for the cleavages of other S1P substrates including ATF6, CREB3 family members and the α/β-subunit precursor of N-acetylglucosamine-1-phosphotransferase. Together, we demonstrate that POST1 is a cofactor controlling S1P maturation and plays important roles in lipid homeostasis, unfolded protein response, lipoprotein metabolism and lysosome biogenesis.
Collapse
Affiliation(s)
- Jian Xiao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Yanni Xiong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Liu-Ting Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Ju-Qiong Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Zi-Mu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Le-Wei Dong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xiong-Jie Shi
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xiaolu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
35
|
Affiliation(s)
- Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|