1
|
Yan L, Li X, Xu J, Tang S, Wang G, Shi M, Liu P. The CNC-family transcription factor NRF3: A crucial therapeutic target for cancer treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167794. [PMID: 40081618 DOI: 10.1016/j.bbadis.2025.167794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
The CNC-bZIP family member NRF3 (NFE2L3) has received limited attention since its discovery. However, recent research has gradually revealed its biological functions, such as involvement in the regulation of cell differentiation, lipid metabolism, and malignant cell proliferation. Under physiological conditions, NRF3 is anchored to the endoplasmic reticulum within the cytoplasm and is biologically inactive. Upon cellular exposure to microenvironmental stresses such as oxidative stress, NRF3 translocates to the nucleus, binds to DNA, and acts as a transcription factor by inducing or repressing the expression of various genes. In terms of tumor regulation, NRF3 exhibits a dual role. It can function as a tumor suppressor to prevent the malignant progression of tumor tissues, protecting the organism from harm. Conversely, current research indicates that NRF3 plays a tumor-promoting role in most tumor tissues. NRF3 enhances the proliferation, migration and invasion of tumor cells by regulating cell cycle-related proteins and enhancing proteasome assembly to degrade tumor suppressors. Studies correlating NRF3 expression with clinical tumor features have found that elevated NRF3 expression is often associated with poor prognoses in various cancers, with patients exhibiting higher NRF3 expression typically having lower survival rates. Several studies suggest that NRF3 could serve as a clinical diagnostic and prognostic marker for tumors. Finally, from the clinical perspective, exploring the feasibility of inhibiting NRF3 activity in tumor treatment provides new insights for the development of NRF3-targeted oncological therapies.
Collapse
Affiliation(s)
- Liangwen Yan
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyan Li
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shenkang Tang
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Gang Wang
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| | - Mengjiao Shi
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
2
|
Saleh T, Greenberg EF, Faber AC, Harada H, Gewirtz DA. A Critical Appraisal of the Utility of Targeting Therapy-Induced Senescence for Cancer Treatment. Cancer Res 2025; 85:1755-1768. [PMID: 40036150 DOI: 10.1158/0008-5472.can-24-2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Cancer chemotherapy and radiotherapy are rarely successful in eliminating the entire tumor population, often leaving behind a subpopulation of senescent cells that can contribute to disease recurrence. These senescent tumor cells also secrete various chemokines and cytokines that may be tumor promoting and immunosuppressive. Recognition of the deleterious impact of therapy-induced senescence has led to the preclinical development of senolytic compounds that eliminate senescent cells, representing a potential strategy to enhance the efficacy of conventional and targeted anticancer therapy. However, it remains uncertain whether this strategy can or will be translated to the clinic. This review provides a summary of the recent preclinical literature supporting the use of senolytics as an adjunct for cancer treatment, discusses the limitations associated with their use in the current preclinical models, and provides perspectives on the clinical development of senolytics in cancer treatment regimens. Overall, preclinical studies support the potential of senolytics to enhance efficacy and prolong the antitumor activity of current standard-of-care cancer therapies that promote senescence. However, further work is needed to develop optimal senolytic agents with the appropriate combination of properties for clinical testing, specifically, activity in the context of therapy-induced senescence with acceptable tolerability.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Anthony C Faber
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
- Department of Pediatrics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - David A Gewirtz
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
3
|
Xue Y, Chen T, Ma Z, Pu X, Xu J, Zhai S, Du X, Ji Y, Simon MC, Zhai W, Xue W. Osalmid sensitizes clear cell renal cell carcinoma to navitoclax through a STAT3/BCL-XL pathway. Cancer Lett 2025; 613:217514. [PMID: 39894195 DOI: 10.1016/j.canlet.2025.217514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common and lethal urinary malignancy characterized by its resistance to apoptosis. Despite the emerging treatment options available for ccRCC, only a small proportion of patients achieve long-term survival benefits. Previous studies have demonstrated that inducing tumor cell senescence, followed by treatment using senolytics, represents a potential strategy for triggering tumor cell apoptosis. However, it remains unclear whether this strategy is suitable for the treatment of ccRCC. Using the whole-genome CRISPR screening database Dependency Map portal (DepMap), we identified ribonucleotide reductase family member 2 (RRM2), which catalyzes the conversion of ribonucleotides to deoxyribonucleotides (dNTPs), as an essential targetable gene for ccRCC. Herein, we report that the combination of the choleretic drug osalmid targeting RRM2 and the senolytic compound navitoclax targeting BCL-XL represents a novel therapeutic approach for ccRCC. Furthermore, we have validated this approach across a panel of human ccRCC cells with different genetic backgrounds and multiple preclinical models, including cell line-derived xenografts (CDX), patient-derived xenografts (PDX), and patient-derived organoids (PDO). Mechanistically, osalmid-mediated inhibition of dNTPs generation induces cellular senescence in ccRCC, concomitant with STAT3 activation and upregulation of BCL-XL, thus rendering these cells vulnerable to navitoclax, which targets the BCL-2 protein family.
Collapse
Affiliation(s)
- Yizheng Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tianyi Chen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Zehua Ma
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550001, China
| | - Xinyuan Pu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Junyao Xu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Shuanfeng Zhai
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Yiyi Ji
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA, Howard Hughes Medical Institute
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei Zhai
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China; Shanghai Immune Therapy Institute State, Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
4
|
Belenki D, Richter-Pechanska P, Shao Z, Bhattacharya A, Lau A, Nabuco Leva Ferreira de Freitas JA, Kandler G, Hick TP, Cai X, Scharnagl E, Bittner A, Schönlein M, Kase J, Pardon K, Brzezicha B, Thiessen N, Bischof O, Dörr JR, Reimann M, Milanovic M, Du J, Yu Y, Chapuy B, Lee S, Leser U, Scheidereit C, Wolf J, Fan DNY, Schmitt CA. Senescence-associated lineage-aberrant plasticity evokes T-cell-mediated tumor control. Nat Commun 2025; 16:3079. [PMID: 40159497 PMCID: PMC11955568 DOI: 10.1038/s41467-025-57429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Cellular senescence is a stress-inducible state switch relevant in aging, tumorigenesis and cancer therapy. Beyond a lasting arrest, senescent cells are characterized by profound chromatin remodeling and transcriptional reprogramming. We show here myeloid-skewed aberrant lineage plasticity and its immunological ramifications in therapy-induced senescence (TIS) of primary human and murine B-cell lymphoma. We find myeloid transcription factor (TF) networks, specifically AP-1-, C/EBPβ- and PU.1-governed transcriptional programs, enriched in TIS but not in equally chemotherapy-exposed senescence-incapable cancer cells. Dependent on these master TF, TIS lymphoma cells adopt a lineage-promiscuous state with properties of monocytic-dendritic cell (DC) differentiation. TIS lymphoma cells are preferentially lysed by T-cells in vitro, and mice harboring DC-skewed Eμ-myc lymphoma experience significantly longer tumor-free survival. Consistently, superior long-term outcome is also achieved in diffuse large B-cell lymphoma patients with high expression of a TIS-related DC signature. In essence, these data demonstrate a therapeutically exploitable, prognostically favorable immunogenic role of senescence-dependent aberrant myeloid plasticity in B-cell lymphoma.
Collapse
MESH Headings
- Cellular Senescence/genetics
- Cellular Senescence/immunology
- Humans
- Animals
- Mice
- T-Lymphocytes/immunology
- Dendritic Cells/immunology
- Cell Lineage
- Cell Differentiation
- Cell Line, Tumor
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/genetics
- Gene Expression Regulation, Neoplastic
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Cell Plasticity
- Female
- Mice, Inbred C57BL
- Proto-Oncogene Proteins
- Trans-Activators
Collapse
Affiliation(s)
- Dimitri Belenki
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Paulina Richter-Pechanska
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Zhiting Shao
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Animesh Bhattacharya
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Andrea Lau
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | | | - Gregor Kandler
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Timon P Hick
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiurong Cai
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Eva Scharnagl
- Johannes Kepler University, Medical Faculty, Linz, Austria
| | - Aitomi Bittner
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Martin Schönlein
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Julia Kase
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Katharina Pardon
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | | | - Nina Thiessen
- Core Unit Bioinformatics - CUBI, Berlin Institute of Health, Berlin, Germany
| | - Oliver Bischof
- IMRB, Mondor Institute for Biomedical Research, INSERM U955 - Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil, Créteil, France
| | - Jan R Dörr
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maurice Reimann
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Maja Milanovic
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Campus Benjamin Franklin, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), partner site Berlin, Berlin, Germany
| | - Jing Du
- Medical Research Center and Department of Oncology Binzhou Medical University Hospital, 256600, Binzhou, P.R. China
| | - Yong Yu
- Johannes Kepler University, Medical Faculty, Linz, Austria
| | - Björn Chapuy
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Campus Benjamin Franklin, Berlin, Germany
| | - Soyoung Lee
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Johannes Kepler University, Medical Faculty, Linz, Austria
| | - Ulf Leser
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claus Scheidereit
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jana Wolf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany
| | - Dorothy N Y Fan
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), partner site Berlin, Berlin, Germany
| | - Clemens A Schmitt
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Johannes Kepler University, Medical Faculty, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), partner site Berlin, Berlin, Germany.
- Kepler University Hospital, Department of Hematology and Oncology, Krankenhausstraße 9, 4020, Linz, Austria.
| |
Collapse
|
5
|
Guo Z, Zhang Y, Gong Y, Li G, Pan J, Dou D, Ma K, Cui C, Liu Y, Zhu X. Antibody functionalized curcuma-derived extracellular vesicles loaded with doxorubicin overcome therapy-induced senescence and enhance chemotherapy. J Control Release 2025; 379:377-389. [PMID: 39814319 DOI: 10.1016/j.jconrel.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Conventional cancer treatments often induce a sustained DNA damage response (DDR) in tumor cells, leading to therapy-induced senescence (TIS), characterized by permanent cell cycle arrest and resistance to apoptosis. These senescent cells secrete senescence-associated secretory phenotypes (SASP), which can promote tumor progression and create an immunosuppressive microenvironment. This study introduces a novel approach to enhance chemotherapy efficacy by using functionalized curcuma-derived extracellular vesicles (DR5-CNV/DOX) to target and eliminate senescent tumor cells and inhibit their SASP. Curcuma-derived extracellular vesicles (CNV) were loaded with the chemotherapeutic drug doxorubicin (DOX) and surface-modified with an antibody targeting death receptor 5 (DR5), which is overexpressed on senescent tumor cells. In vitro experiments demonstrated that DR5-CNV/DOX effectively targeted senescent tumor cells, promoting apoptosis and suppressing SASP production. In vivo studies confirmed the inhibition of epithelial-mesenchymal transition (EMT) initiation, angiogenesis, and modulation of the tumor immune microenvironment, enhancing chemotherapy efficacy and demonstrating promising biocompatibility. This study highlights the potential of plant-derived extracellular vesicles as a novel drug delivery system to overcome senescent tumor cells and their SASP.
Collapse
Affiliation(s)
- Zhaoming Guo
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China; School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China.
| | - Yi Zhang
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Yuwei Gong
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Guqing Li
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Jiawei Pan
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Danni Dou
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Kun Ma
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Changhao Cui
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Yubo Liu
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning 124221, China.
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China; Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
6
|
Yasuda T, Alan Wang Y. Immune therapeutic strategies for the senescent tumor microenvironment. Br J Cancer 2025; 132:237-244. [PMID: 39468331 PMCID: PMC11790855 DOI: 10.1038/s41416-024-02865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Senescent cells can either to promote immunosuppressive tumor microenvironment or facilitate immune surveillance. Despite the revolutionary impact of cancer immunotherapy, durable responses in solid tumors, particularly in advanced stages, remain limited. Recent studies have shed light on the influence of senescent status within the tumor microenvironment (TME) on therapy resistance and major efforts are needed to overcome these challenges. This review summarizes recent advancements in targeting cellular senescence, with a particular focus on immunomodulatory approaches on the hallmarks of cellular senescence.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | - Y Alan Wang
- Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center Indianapolis, Indianapolis, USA
| |
Collapse
|
7
|
Zhou Y, Zeng L, Cai L, Zheng W, Liu X, Xiao Y, Jin X, Bai Y, Lai M, Li H, Jiang H, Hu S, Pan Y, Zhang J, Shao C. Cellular senescence-associated gene IFI16 promotes HMOX1-dependent evasion of ferroptosis and radioresistance in glioblastoma. Nat Commun 2025; 16:1212. [PMID: 39890789 PMCID: PMC11785807 DOI: 10.1038/s41467-025-56456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
Glioblastoma multiforme (GBM) remains a therapeutic challenge due to its aggressive nature and recurrence. This study establishes a radioresistant GBM cell model through repeated irradiation and observes a cellular senescence-like phenotype in these cells. Comprehensive genomic and transcriptomic analyses identify IFI16 as a central regulator of this phenotype and contributes to radioresistance. IFI16 activates HMOX1 transcription thereby attenuating ferroptosis by reducing lipid peroxidation, ROS production, and intracellular Fe2+ content following irradiation. Furthermore, IFI16 interacts with the transcription factors JUND and SP1 through its pyrin domain, robustly facilitating HMOX1 expression, further inhibiting ferroptosis and enhancing radioresistance in GBM. Notably, glyburide, a sulfonylurea compound, effectively disrupts IFI16 function and enhances ferroptosis and radiosensitivity. By targeting the pyrin domain of IFI16, glyburide emerges as a potential therapeutic agent against GBM radioresistance. These findings underscore the central role of IFI16 in GBM radioresistance and offer promising avenues to improve GBM treatment.
Collapse
Affiliation(s)
- Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Zeng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Linbo Cai
- Department of Neuro-Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuqi Xiao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoya Jin
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingyao Lai
- Department of Neuro-Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Hainan Li
- Department of Neuro-Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Hua Jiang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Songling Hu
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Zhou X, Zhu X, Wang W, Wang J, Wen H, Zhao Y, Zhang J, Xu Q, Zhao Z, Ni T. Comprehensive Cellular Senescence Evaluation to Aid Targeted Therapies. RESEARCH (WASHINGTON, D.C.) 2025; 8:0576. [PMID: 39822281 PMCID: PMC11735710 DOI: 10.34133/research.0576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Drug resistance to a single agent is common in cancer-targeted therapies, and rational drug combinations are a promising approach to overcome this challenge. Many Food and Drug Administration-approved drugs can induce cellular senescence, which possesses unique vulnerabilities and molecular signatures. However, there is limited analysis on the effect of the combination of cellular-senescence-inducing drugs and targeted therapy drugs. Here, we conducted a comprehensive evaluation of cellular senescence using 7 senescence-associated gene sets. We quantified the cellular senescence states of ~10,000 tumor samples from The Cancer Genome Atlas and examined their associations with targeted drug responses. Our analysis revealed that tumors with higher cellular senescence scores exhibited increased sensitivity to targeted drugs. As a proof of concept, we experimentally confirmed that etoposide-induced senescence sensitized lung cancer cells to 2 widely used targeted drugs, erlotinib and dasatinib. Furthermore, we identified multiple genes whose dependencies were associated with senescence status across ~1,000 cancer cell lines, suggesting that cellular senescence generates unique vulnerabilities for therapeutic exploitation. Our study provides a comprehensive overview of drug response related to cellular senescence and highlights the potential of combining senescence-inducing agents with targeted therapies to improve treatment outcomes in lung cancer, revealing novel applications of cellular senescence in targeted cancer therapies.
Collapse
Affiliation(s)
- Xiaolan Zhou
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences,
Fudan University, Shanghai 200438, China
| | - Xiaofeng Zhu
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences,
Fudan University, Shanghai 200438, China
| | - Weixu Wang
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences,
Fudan University, Shanghai 200438, China
- Institute of Computational Biology,
Helmholtz Center Munich, Munich, Germany
| | - Jing Wang
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences,
Fudan University, Shanghai 200438, China
| | - Haimei Wen
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences,
Fudan University, Shanghai 200438, China
| | - Yuqi Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences,
Inner Mongolia University, Hohhot 010070, China
| | - Jiayu Zhang
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences,
Fudan University, Shanghai 200438, China
| | - Qiushi Xu
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences,
Fudan University, Shanghai 200438, China
| | - Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences,
Fudan University, Shanghai 200438, China
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences,
Fudan University, Shanghai 200438, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences,
Fudan University, Shanghai 200438, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences,
Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
9
|
McHugh D, Durán I, Gil J. Senescence as a therapeutic target in cancer and age-related diseases. Nat Rev Drug Discov 2025; 24:57-71. [PMID: 39548312 DOI: 10.1038/s41573-024-01074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Cellular senescence is a stress response that restrains the growth of aged, damaged or abnormal cells. Thus, senescence has a crucial role in development, tissue maintenance and cancer prevention. However, lingering senescent cells fuel chronic inflammation through the acquisition of a senescence-associated secretory phenotype (SASP), which contributes to cancer and age-related tissue dysfunction. Recent progress in understanding senescence has spurred interest in the development of approaches to target senescent cells, known as senotherapies. In this Review, we evaluate the status of various types of senotherapies, including senolytics that eliminate senescent cells, senomorphics that suppress the SASP, interventions that mitigate senescence and strategies that harness the immune system to clear senescent cells. We also summarize how these approaches can be combined with cancer therapies, and we discuss the challenges and opportunities in moving senotherapies into clinical practice. Such therapies have the potential to address root causes of age-related diseases and thus open new avenues for preventive therapies and treating multimorbidities.
Collapse
Affiliation(s)
- Domhnall McHugh
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Imanol Durán
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jesús Gil
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
10
|
Shimizu K, Inuzuka H, Tokunaga F. The interplay between cell death and senescence in cancer. Semin Cancer Biol 2025; 108:1-16. [PMID: 39557316 DOI: 10.1016/j.semcancer.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cellular senescence is a state of permanent proliferative arrest that occurs in response to DNA damage-inducing endogenous and exogenous stresses, and is often accompanied by dynamic molecular changes such as a senescence-associated secretory phenotype (SASP). Accumulating evidence indicates that age-associated increases in the upstream and downstream signals of regulated cell death, including apoptosis, necroptosis, pyroptosis, and ferroptosis, are closely related to the induction of cellular senescence and its phenotype. Furthermore, elevated levels of pro-inflammatory SASP factors with aging can be both a cause and consequence of several cell death modes, suggesting the reciprocal effects of cellular senescence and cells undergoing regulated cell death. Here, we review the critical molecular pathways of the regulated cell death forms and describe the crosstalk between aging-related signals and cancer. In addition, we discuss how targeting regulated cell death could be harnessed in therapeutic interventions for cancer. ABBREVIATIONS: Abbreviations that are not standard in this field are defined at their first occurrence in the article and are used consistently throughout the article.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, USA
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
11
|
Casagrande Raffi G, Chen J, Feng X, Chen Z, Lieftink C, Deng S, Mo J, Zeng C, Steur M, Wang J, Bleijerveld OB, Hoekman L, van der Wel N, Wang F, Beijersbergen R, Zheng J, Bernards R, Wang L. An antibiotic that mediates immune destruction of senescent cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2417724121. [PMID: 39693343 DOI: 10.1073/pnas.2417724121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Drugs that eliminate senescent cells, senolytics, can be powerful when combined with prosenescence cancer therapies. Using a CRISPR/Cas9-based genetic screen, we identify here SLC25A23 as a vulnerability of senescent cancer cells. Suppressing SLC25A23 disrupts cellular calcium homeostasis, impairs oxidative phosphorylation, and interferes with redox signaling, leading to death of senescent cells. These effects can be replicated by salinomycin, a cation ionophore antibiotic. Salinomycin prompts a pyroptosis-apoptosis-necroptosis (PAN)optosis-like cell death in senescent cells, including apoptosis and two forms of immunogenic cell death: necroptosis and pyroptosis. Notably, we observed that salinomycin treatment or SLC25A23 suppression elevates reactive oxygen species, upregulating death receptor 5 via Jun N-terminal protein kinase (JNK) pathway activation. We show that a combination of a death receptor 5 (DR5) agonistic antibody and salinomycin is a robust senolytic cocktail. We provide evidence that this drug combination provokes a potent natural killer (NK) and CD8+ T cell-mediated immune destruction of senescent cancer cells, mediated by the pyroptotic cytokine interleukin 18 (IL18).
Collapse
Affiliation(s)
- Gabriele Casagrande Raffi
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Jian Chen
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xuezhao Feng
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhen Chen
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Shuang Deng
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jinzhe Mo
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuting Zeng
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Marit Steur
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Onno B Bleijerveld
- Division of Biochemistry, Proteomics facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Liesbeth Hoekman
- Division of Biochemistry, Proteomics facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Nicole van der Wel
- Amsterdam Faculty of Medicine Location University of Amsterdam, Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Roderick Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute Robotic and Screening Center, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
12
|
He X, Liu F, Gong Q. Identification of a senescence-related transcriptional signature to uncover molecular subtypes and key genes in hepatocellular carcinoma. PLoS One 2024; 19:e0311696. [PMID: 39383169 PMCID: PMC11463828 DOI: 10.1371/journal.pone.0311696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer caused by abnormal cell growth due to faulty signal transduction. Cells secrete tumor suppressor factors in response to potential carcinogenic signals, inducing cellular senescence (CS) as a countermeasure. However, accurately measuring CS levels in different types of tumors is challenging due to tumor heterogeneity and the lack of universal and specific CS markers. Machine learning has revealed unique molecular traits in HCC patients, leading to clinical advantages. More research is needed to understand senescence-related molecular features in these patients. In this study, the gene expression profile features of patients with HCC were analyzed by integrating single-cell RNA sequencing and bulk RNA-seq datasets from HCC samples. The analysis identified the senescence-related pathways exhibiting HCC specificity. Subsequently, genes from these pathways were used to identify senescence-related molecular subtypes in HCC, showing significant variations in biological and clinical attributes. An HCC-specific CS risk model developed in this study revealed substantial associations between the patients' CS scores and prognosis grouping, clinical staging, immune infiltration levels, immunotherapy response, and drug sensitivity levels. Within the constructed model, G6PD was identified as a key gene, potentially serving as a senescence-related target in liver cancer. Molecular biology experiments demonstrated that overexpression of G6PD effectively promotes the proliferative, invasive, and migration capacities of HepG2 and SK-HEP-1 cells. In conclusion, this analysis offers a valuable framework for understanding senescence in HCC and introduces a new biomarker. These findings improve our understanding of senescence in HCC and have potential for future research.
Collapse
Affiliation(s)
- Xiaorong He
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Fuzhou, China
| | - Fahui Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Qiming Gong
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Education Department of Guangxi Zhuang Autonomous Region, Baise Key Laboratory for Metabolic Diseases (Youjiang Medical University for Nationalities), Baise, China
| |
Collapse
|
13
|
Russo M, Chen M, Mariella E, Peng H, Rehman SK, Sancho E, Sogari A, Toh TS, Balaban NQ, Batlle E, Bernards R, Garnett MJ, Hangauer M, Leucci E, Marine JC, O'Brien CA, Oren Y, Patton EE, Robert C, Rosenberg SM, Shen S, Bardelli A. Cancer drug-tolerant persister cells: from biological questions to clinical opportunities. Nat Rev Cancer 2024; 24:694-717. [PMID: 39223250 DOI: 10.1038/s41568-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant 'persister' (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| | - Mengnuo Chen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elisa Mariella
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Haoning Peng
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Sumaiyah K Rehman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Alberto Sogari
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Tzen S Toh
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Nathalie Q Balaban
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Matthew Hangauer
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
| | | | - Jean-Christophe Marine
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Catherine A O'Brien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yaara Oren
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Elizabeth Patton
- MRC Human Genetics Unit, and CRUK Scotland Centre and Edinburgh Cancer Research, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Caroline Robert
- Oncology Department, Dermatology Unit, Villejuif, France
- Oncology Department and INSERM U981, Villejuif, France
- Paris Saclay University, Villejuif, France
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shensi Shen
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
14
|
Zhang Y, Xiao B, Yuan S, Ding L, Pan Y, Jiang Y, Sun S, Ke X, Cai L, Jia L. Tryptanthrin targets GSTP1 to induce senescence and increases the susceptibility to apoptosis by senolytics in liver cancer cells. Redox Biol 2024; 76:103323. [PMID: 39180983 PMCID: PMC11388193 DOI: 10.1016/j.redox.2024.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Targeting senescence has emerged as a promising strategy for liver cancer treatment. However, the lack of a safe agent capable of inducing complete senescence and being combined with senolytics poses a limitation. Here, we screened a natural product library and identified tryptanthrin (TRYP) as a potent inducer of cellular senescence in liver cancer cells both in vitro and in vivo. Mechanistically, Glutathione S-transferase P1 (GSTP1), a key regulator for redox homeostasis, was identified as a target protein for TRYP-induced senescence. TRYP directly bound to GSTP1 and inhibited its enzymatic activity, mediating reactive oxygen species (ROS) accumulation, followed by DNA damage response (DDR), consequently contributing to initiating primary senescence. Furthermore, TRYP triggered DNA damage-dependent activation of NF-κB pathway, which evoked senescence-associated secretory phenotype (SASP), thereby leading to senescence reinforcement. Importantly, TRYP exposed the vulnerability of tumor cells and sensitized senescent cells to apoptosis induced by senolytic agent ABT263, a Bcl2 inhibitor. Taken together, our findings reveal that TRYP induces cellular senescence via GSTP1/ROS/DDR/NF-κB/SASP axis, providing a novel potential application in synergizing with senolytic therapy in liver cancer.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Shuying Yuan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lele Ding
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Shenghao Sun
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| |
Collapse
|
15
|
Abdelmoaty AAA, Chen J, Zhang K, Wu C, Li Y, Li P, Xu J. Senolytic effect of triterpenoid complex from Ganoderma lucidum on adriamycin-induced senescent human hepatocellular carcinoma cells model in vitro and in vivo. Front Pharmacol 2024; 15:1422363. [PMID: 39364046 PMCID: PMC11447279 DOI: 10.3389/fphar.2024.1422363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) is a famous medicinal mushroom that has been reported to prevent and treat a variety of diseases. Different extractions from G. lucidum have been used to manage age-related diseases, including cancer. Nevertheless, the senolytic activity of G. lucidum against senescent cancer cells has not been investigated. Although cellular senescence causes tumor growth inhibition, senescent cells promote the growth of the neighboring tumor cells through paracrine effects. Therefore, the elimination of senescent cells is a new strategy for cancer treatment. Methods In this study, senescence was triggered in HCC cells by the chemotherapeutic agent Adriamycin (ADR), and subsequently, cells were treated with TC to assess its senolytic activity. Results We found for the first time that the triterpenoid complex (TC) from G. lucidum had senolytic effect, which could selectively eliminate adriamycin (ADR)-induced senescent cells (SCs) of hepatocellular carcinoma (HCC) cells via caspase-dependent and mitochondrial pathways-mediated apoptosis and reduce the levels of senescence markers, thereby inhibiting the progression of cancers caused by SCs. TC could block autophagy at the late stage in SCs, resulting in a significant activation of TC-induced apoptosis. Furthermore, TC inhibited the senescence-associated secretory phenotype (SASP) in SCs through the inhibition of NF-κB, TFEB, P38, ERK, and mTOR signaling pathways and reducing the number of SCs. Sequential administration of ADR and TC in vivo significantly reduced tumor growth and reversed the toxicity of ADR. Conclusion A triterpenoid complex isolated from G. lucidum may serve as a novel senolytic agent against SCs, and its combination with chemotherapeutic agents may enhance their antitumor efficacy.
Collapse
Affiliation(s)
- Ahmed Attia Ahmed Abdelmoaty
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Jing Chen
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kun Zhang
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Changhui Wu
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Peng Li
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Haimovici A, Rupp V, Amer T, Moeed A, Weber A, Häcker G. The caspase-activated DNase promotes cellular senescence. EMBO J 2024; 43:3523-3544. [PMID: 38977850 PMCID: PMC11329656 DOI: 10.1038/s44318-024-00163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Cellular senescence is a response to many stressful insults. DNA damage is a consistent feature of senescent cells, but in many cases its source remains unknown. Here, we identify the cellular endonuclease caspase-activated DNase (CAD) as a critical factor in the initiation of senescence. During apoptosis, CAD is activated by caspases and cleaves the genomic DNA of the dying cell. The CAD DNase is also activated by sub-lethal signals in the apoptotic pathway, causing DNA damage in the absence of cell death. We show that sub-lethal signals in the mitochondrial apoptotic pathway induce CAD-dependent senescence. Inducers of cellular senescence, such as oncogenic RAS, type-I interferon, and doxorubicin treatment, also depend on CAD presence for senescence induction. By directly activating CAD experimentally, we demonstrate that its activity is sufficient to induce senescence in human cells. We further investigate the contribution of CAD to senescence in vivo and find substantially reduced signs of senescence in organs of ageing CAD-deficient mice. Our results show that CAD-induced DNA damage in response to various stimuli is an essential contributor to cellular senescence.
Collapse
Affiliation(s)
- Aladin Haimovici
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| | - Valentin Rupp
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Tarek Amer
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Abdul Moeed
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Arnim Weber
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Zhang S, Li N, Wu S, Xie T, Chen Q, Wu J, Zeng S, Zhu L, Bai S, Zha H, Tian W, Wu N, Zou X, Fang S, Luo C, Shi M, Sun C, Shu Y, Luo H. c-FLIP facilitates ZIKV infection by mediating caspase-8/3-dependent apoptosis. PLoS Pathog 2024; 20:e1012408. [PMID: 39038037 PMCID: PMC11293698 DOI: 10.1371/journal.ppat.1012408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/01/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
c-FLIP functions as a dual regulator of apoptosis and inflammation, yet its implications in Zika virus (ZIKV) infection remain partially understood, especially in the context of ZIKV-induced congenital Zika syndrome (CZS) where both apoptosis and inflammation play pivotal roles. Our findings demonstrate that c-FLIP promotes ZIKV infection in placental cells and myeloid-derived macrophages, involving inflammation and caspase-8/3-mediated apoptosis. Moreover, our observations reveal that c-FLIP augments ZIKV infection in multiple tissues, including blood cell, spleen, uterus, testis, and the brain of mice. Notably, the partial deficiency of c-FLIP provides protection to embryos against ZIKV-induced CZS, accompanied by a reduction in caspase-3-mediated apoptosis. Additionally, we have found a distinctive parental effect of c-FLIP influencing ZIKV replication in fetal heads. In summary, our study reveals the critical role of c-FLIP as a positive regulator in caspase-8/3-mediated apoptosis during ZIKV infection, significantly contributing to the development of CZS.
Collapse
Affiliation(s)
- Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shu Wu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Ting Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Shike Zeng
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Shaohui Bai
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Haolu Zha
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Weijian Tian
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Nan Wu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
| | - Mang Shi
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, P.R. China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, P.R. China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, P.R. China
| |
Collapse
|
18
|
Wang H, Yuan S, Zheng Q, Zhang S, Zhang Q, Ji S, Wang W, Cao Y, Guo Y, Yang X, Geng H, Yang F, Xi S, Jin G, Zhang J, Gao Q, Bernards R, Qin W, Wang C. Dual Inhibition of CDK4/6 and XPO1 Induces Senescence With Acquired Vulnerability to CRBN-Based PROTAC Drugs. Gastroenterology 2024; 166:1130-1144.e8. [PMID: 38262581 DOI: 10.1053/j.gastro.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND & AIMS Despite the increasing number of treatment options available for liver cancer, only a small proportion of patients achieve long-term clinical benefits. Here, we aim to develop new therapeutic approaches for liver cancer. METHODS A compound screen was conducted to identify inhibitors that could synergistically induce senescence when combined with cyclin-dependent kinase (CDK) 4/6 inhibitor. The combination effects of CDK4/6 inhibitor and exportin 1 (XPO1) inhibitor on cellular senescence were investigated in a panel of human liver cancer cell lines and multiple liver cancer models. A senolytic drug screen was performed to identify drugs that selectively killed senescent liver cancer cells. RESULTS The combination of CDK4/6 inhibitor and XPO1 inhibitor synergistically induces senescence of liver cancer cells in vitro and in vivo. The XPO1 inhibitor acts by causing accumulation of RB1 in the nucleus, leading to decreased E2F signaling and promoting senescence induction by the CDK4/6 inhibitor. Through a senolytic drug screen, cereblon (CRBN)-based proteolysis targeting chimera (PROTAC) ARV-825 was identified as an agent that can selectively kill senescent liver cancer cells. Up-regulation of CRBN was a vulnerability of senescent liver cancer cells, making them sensitive to CRBN-based PROTAC drugs. Mechanistically, we find that ubiquitin specific peptidase 2 (USP2) directly interacts with CRBN, leading to the deubiquitination and stabilization of CRBN in senescent liver cancer cells. CONCLUSIONS Our study demonstrates a striking synergy in senescence induction of liver cancer cells through the combination of CDK4/6 inhibitor and XPO1 inhibitor. These findings also shed light on the molecular processes underlying the vulnerability of senescent liver cancer cells to CRBN-based PROTAC therapy.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sisi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchen Guo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Haigang Geng
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Yang
- Department of Pharmacy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuijun Xi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Guangzhi Jin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianming Zhang
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Geng H, Huang C, Xu L, Zhou Y, Dong Z, Zhong Y, Li Q, Yang C, Huang S, Liao W, Lin Y, Liu Z, Li Q, Zhang Z, Zhu C. Targeting cellular senescence as a therapeutic vulnerability in gastric cancer. Life Sci 2024; 346:122631. [PMID: 38621585 DOI: 10.1016/j.lfs.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
AIMS Cellular senescence (CS) represents an intracellular defense mechanism responding to stress signals and can be leveraged as a "vulnerability" in cancer treatment. This study aims to construct a CS atlas for gastric cancer (GC) and uncover potential therapeutics for GC patients. MATERIALS AND METHODS 38 senescence-associated regulators with prognostic significance in GC were obtained from the CellAge database to construct Gastric cancer-specific Senescence Score (GSS). Using eXtreme Sum algorism, GSS-based drug repositioning was conducted to identify drugs that could antagonize GSS in CMap database. In vitro experiments were conducted to test the effect of combination of palbociclib and exisulind in eliminating GC cells. KEY FINDINGS Patients with high GSS exhibited CS-related features, such as CS markers upregulation, adverse clinical outcomes and hypomethylation status. scRNA-seq data showed malignant cells with high GSS exhibited enhanced senescence state and more immunosuppressive signals such as PVR-CD96 compared with malignant cells with low GSS. In addition, the GSS-High cancer associated fibroblasts might secrete cytokines and chemokines such as IL-6, CXCL1, CXCL12, and CCL2 to from an immunosuppressive microenvironment, and GSS could serve as an indicator for immunotherapy resistance. Exisulind exhibited the greatest potential to reverse GSS. In vitro experiments demonstrated that exisulind could induce apoptosis and suppress the proliferation of palbociclib-induced senescent GC cells. SIGNIFICANCE Overall, GSS offers a framework for better understanding of correlation between senescence and GC, which might provide new insights into the development of novel therapeutics in GC.
Collapse
Affiliation(s)
- Haigang Geng
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Yangyang Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhongyi Dong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqing Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Shaozhuo Huang
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Weixin Liao
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Yuxuan Lin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Qing Li
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Liu X, Li X, Yu S. CFLAR: A novel diagnostic and prognostic biomarker in soft tissue sarcoma, which positively modulates the immune response in the tumor microenvironment. Oncol Lett 2024; 27:151. [PMID: 38406597 PMCID: PMC10885000 DOI: 10.3892/ol.2024.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Anoikis is highly associated with tumor cell apoptosis and tumor prognosis; however, the specific role of anoikis-related genes (ARGs) in soft tissue sarcoma (STS) remains to be fully elucidated. The present study aimed to use a variety of bioinformatics methods to determine differentially expressed anoikis-related genes in STS and healthy tissues. Subsequently, three machine learning algorithms, Least Absolute Shrinkage and Selection Operator, Support Vector Machine and Random Forest, were used to screen genes with the highest importance score. The results of the bioinformatics analyses demonstrated that CASP8 and FADD-like apoptosis regulator (CFLAR) exhibited the highest importance score. Subsequently, the diagnostic and prognostic value of CFLAR in STS development was determined using multiple public and in-house cohorts. The results of the present study demonstrated that CFLAR may be considered a diagnostic and prognostic marker of STS, which acts as an independent prognostic factor of STS development. The present study also aimed to explore the potential role of CFLAR in the STS tumor microenvironment, and the results demonstrated that CFLAR significantly enhanced the immune response of STS, and exerted a positive effect on the infiltration of CD8+ T cells and M1 macrophages in the STS immune microenvironment. Notably, the aforementioned results were verified using multiplex immunofluorescence analysis. Collectively, the results of the present study demonstrated that CFLAR may act as a novel diagnostic and prognostic marker for STS, and may positively regulate the immune response of STS. Thus, the present study provided a novel theoretical basis for the use of CFLAR in STS diagnosis, in predicting clinical outcomes and in tailoring individualized treatment options.
Collapse
Affiliation(s)
- Xu Liu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
21
|
Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, Elliott C, Erez A, Evan G, Febbraio MA, Hidalgo A, Jamal-Hanjani M, Joyce JA, Kaiser M, Lamia K, Locasale JW, Loi S, Malanchi I, Merad M, Musgrave K, Patel KJ, Quezada S, Wargo JA, Weeraratna A, White E, Winkler F, Wood JN, Vousden KH, Hanahan D. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187:1589-1616. [PMID: 38552609 PMCID: PMC12077170 DOI: 10.1016/j.cell.2024.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Elsa Bernard
- The Francis Crick Institute, London, UK; INSERM U981, Gustave Roussy, Villejuif, France
| | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Paris Saclay University, Kremlin-Bicetre, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gerard Evan
- The Francis Crick Institute, London, UK; Kings College London, London, UK
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrés Hidalgo
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Area of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Katja Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Department of Medical Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Miriam Merad
- Department of immunology and immunotherapy, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Jennifer A Wargo
- Department of Surgical Oncology, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashani Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | | | - Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
22
|
Chen M, Mainardi S, Lieftink C, Velds A, de Rink I, Yang C, Kuiken HJ, Morris B, Edwards F, Jochems F, van Tellingen O, Boeije M, Proost N, Jansen RA, Qin S, Jin H, Koen van der Mijn JC, Schepers A, Venkatesan S, Qin W, Beijersbergen RL, Wang L, Bernards R. Targeting of vulnerabilities of drug-tolerant persisters identified through functional genetics delays tumor relapse. Cell Rep Med 2024; 5:101471. [PMID: 38508142 PMCID: PMC10983104 DOI: 10.1016/j.xcrm.2024.101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy.
Collapse
Affiliation(s)
- Mengnuo Chen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sara Mainardi
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Arno Velds
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hendrik J Kuiken
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ben Morris
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Finn Edwards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Manon Boeije
- Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Natalie Proost
- Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Robin A Jansen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Shifan Qin
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Haojie Jin
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J C Koen van der Mijn
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Arnout Schepers
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Subramanian Venkatesan
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Saleh T. Therapy-induced senescence is finally escapable, what is next? Cell Cycle 2024; 23:713-721. [PMID: 38879812 PMCID: PMC11229739 DOI: 10.1080/15384101.2024.2364579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Several breakthrough articles have recently confirmed the ability of tumor cells to escape the stable cell cycle arrest imposed by Therapy-Induced Senescence (TIS). Subsequently, accepting the hypothesis that TIS is escapable should encourage serious reassessments of the fundamental roles of senescence in cancer treatment. The potential for escape from TIS undermines the well-established tumor suppressor function of senescence, proposes it as a mechanism of tumor dormancy leading to disease recurrence and invites for further investigation of its unfavorable contribution to cancer therapy outcomes. Moreover, escaping TIS strongly indicates that the elimination of senescent tumor cells, primarily through pharmacological means, is a suitable approach for increasing the efficacy of cancer treatment, one that still requires further exploration. This commentary provides an overview of the recent evidence that unequivocally demonstrated the ability of therapy-induced senescent tumor cells in overcoming the terminal growth arrest fate and provides future perspectives on the roles of TIS in tumor biology.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
24
|
Huang L, Che Z, Liu F, Ge M, Wu Z, Wu L, Chen W, Wang Z, Zhu Z, Xu W, Dong Q, Yang D. ASB3 promotes hepatocellular carcinoma progression by mediating DR5 ubiquitination in TRAIL resistance. FASEB J 2024; 38:e23475. [PMID: 38334450 DOI: 10.1096/fj.202301755r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/24/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Ankyrin-repeat proteins with a suppressor of cytokine signaling box (ASB) proteins belong to the E3 ubiquitin ligase family. 18 ASB members have been identified whose biological functions are mostly unexplored. Here, we discovered that ASB3 was essential for hepatocellular carcinoma (HCC) development and high ASB3 expression predicted poor clinical outcomes. ASB3 silencing induced HCC cell growth arrest and apoptosis in vitro and in vivo. Liver-specific deletion of Asb3 gene suppressed diethylnitrosamine (DEN)-induced liver cancer development. Mechanistically, ASB3 interacted with death receptor 5 (DR5), which promoted ubiquitination and degradation of DR5. We further showed that ASB3 knockdown stabilized DR5 and increased the sensitivity of liver cancer cells to the treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a DR5-dependent manner in cellular and in animal models. In summary, we demonstrated that ASB3 promoted ubiquitination and degradation of DR5 in HCC, suggesting the potential of targeting ASB3 to HCC treatment and overcome TRAIL resistance.
Collapse
Affiliation(s)
- Linlin Huang
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihui Che
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Mengxiao Ge
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaohui Wu
- Cullgen Inc., San Diego, California, USA
| | - Lijun Wu
- Fudan University Library, Shanghai, China
| | - Wenwen Chen
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wei Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China
| | - Dongqin Yang
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Cai X, Li Y, Zheng J, Liu L, Jiao Z, Lin J, Jiang S, Lin X, Sun Y. Modeling of senescence-related chemoresistance in ovarian cancer using data analysis and patient-derived organoids. Front Oncol 2024; 13:1291559. [PMID: 38370348 PMCID: PMC10869451 DOI: 10.3389/fonc.2023.1291559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024] Open
Abstract
Background Ovarian cancer (OC) is a malignant tumor associated with poor prognosis owing to its susceptibility to chemoresistance. Cellular senescence, an irreversible biological state, is intricately linked to chemoresistance in cancer treatment. We developed a senescence-related gene signature for prognostic prediction and evaluated personalized treatment in patients with OC. Methods We acquired the clinical and RNA-seq data of OC patients from The Cancer Genome Atlas and identified a senescence-related prognostic gene set through differential and cox regression analysis in distinct chemotherapy response groups. A prognostic senescence-related signature was developed and validated by OC patient-derived-organoids (PDOs). We leveraged gene set enrichment analysis (GSEA) and ESTIMATE to unravel the potential functions and immune landscape of the model. Moreover, we explored the correlation between risk scores and potential chemotherapeutic agents. After confirming the congruence between organoids and tumor tissues through immunohistochemistry, we measured the IC50 of cisplatin in PDOs using the ATP activity assay, categorized by resistance and sensitivity to the drug. We also investigated the expression patterns of model genes across different groups. Results We got 2740 differentially expressed genes between two chemotherapy response groups including 43 senescence-related genes. Model prognostic genes were yielded through univariate cox analysis, and multifactorial cox analysis. Our work culminated in a senescence-related prognostic model based on the expression of SGK1 and VEGFA. Simultaneously, we successfully constructed and propagated three OC PDOs for drug screening. PCR and WB from PDOs affirmed consistent expression trends as those of our model genes derived from comprehensive data analysis. Specifically, SGK1 exhibited heightened expression in cisplatin-resistant OC organoids, while VEGFA manifested elevated expression in the sensitive group (P<0.05). Intriguingly, GSEA results unveiled the enrichment of model genes in the PPAR signaling pathway, pivotal regulator in chemoresistance and tumorigenesis. This revelation prompted the identification of potential beneficial drugs for patients with a high-risk score, including gemcitabine, dabrafenib, epirubicin, oxaliplatin, olaparib, teniposide, ribociclib, topotecan, venetoclax. Conclusion Through the formulation of a senescence-related signature comprising SGK1 and VEGFA, we established a promising tool for prognosticating chemotherapy reactions, predicting outcomes, and steering therapeutic strategies. Patients with high VEGFA and low SGK1 expression levels exhibit heightened sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yanhong Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Li Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zicong Jiao
- Department of Translational Medicine, Scientific Research System, Geneplus -Beijing Institute, Beijing, China
| | - Jie Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Shan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Xuefen Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
26
|
Rad AN, Grillari J. Current senolytics: Mode of action, efficacy and limitations, and their future. Mech Ageing Dev 2024; 217:111888. [PMID: 38040344 DOI: 10.1016/j.mad.2023.111888] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Senescence is a cellular state characterized by its near-permanent halted cell cycle and distinct secretory phenotype. Although senescent cells have a variety of beneficial physiological functions, progressive accumulation of these cells due to aging or other conditions has been widely shown to provoke deleterious effects on the normal functioning of the same or higher-level biological organizations. Recently, erasing senescent cells in vivo, using senolytics, could ameliorate diseases identified with an elevated number of senescent cells. Since then, researchers have struggled to develop new senolytics each with different selectivity and potency. In this review, we have gathered and classified the proposed senolytics and discussed their mechanisms of action. Moreover, we highlight the heterogeneity of senolytics regarding their effect sizes, and cell type specificity as well as comment on the exploited strategies to improve these features. Finally, we suggest some prospective routes for the novel methods for ablation of senescent cells.
Collapse
Affiliation(s)
- Amirhossein Nayeri Rad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
27
|
Loeuillard EJ, Li B, Stumpf HE, Yang J, Willhite JR, Tomlinson JL, Rohakhtar FR, Simon VA, Graham RP, Smoot RL, Dong H, Ilyas SI. Noncanonical TRAIL Signaling Promotes Myeloid-Derived Suppressor Cell Abundance and Tumor Growth in Cholangiocarcinoma. Cell Mol Gastroenterol Hepatol 2024; 17:853-876. [PMID: 38219900 PMCID: PMC10981132 DOI: 10.1016/j.jcmgh.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND & AIMS Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in human beings, challenging the concept of TRAIL as a potent anticancer agent. Herein, we aimed to define mechanisms by which TRAIL+ cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA). METHODS Multiple immunocompetent syngeneic, orthotopic models of CCA were used. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of CD45+ cells in murine tumors from the different CCA models was conducted. RESULTS In multiple immunocompetent murine models of CCA, implantation of TRAIL+ murine cancer cells into Trail-r-/- mice resulted in a significant reduction in tumor volumes compared with wild-type mice. Tumor-bearing Trail-r-/- mice had a significant decrease in the abundance of MDSCs owing to attenuation of MDSC proliferation. Noncanonical TRAIL signaling with consequent nuclear factor-κB activation in MDSCs facilitated enhanced MDSC proliferation. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of immune cells from murine tumors showed enrichment of a nuclear factor-κB activation signature in MDSCs. Moreover, MDSCs were resistant to TRAIL-mediated apoptosis owing to enhanced expression of cellular FLICE inhibitory protein, an inhibitor of proapoptotic TRAIL signaling. Accordingly, cellular FLICE inhibitory protein knockdown sensitized murine MDSCs to TRAIL-mediated apoptosis. Finally, cancer cell-restricted deletion of Trail significantly reduced MDSC abundance and murine tumor burden. CONCLUSIONS Our findings highlight the therapeutic potential of targeting TRAIL+ cancer cells for treatment of a poorly immunogenic cancer.
Collapse
Affiliation(s)
- Emilien J Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Hannah E Stumpf
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jessica R Willhite
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jennifer L Tomlinson
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | | | | | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Haidong Dong
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
28
|
Zhang D, Wu H, Liu D, Ye M, Li Y, Zhou G, Yang Q, Liu Y, Li Y. cFLIP L alleviates myocardial ischemia-reperfusion injury by regulating pyroptosis. Cell Biol Int 2024; 48:60-75. [PMID: 37750485 DOI: 10.1002/cbin.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/04/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Alleviating myocardial ischemia-reperfusion injury (MIRI) plays a critical role in the prognosis and improvement of cardiac function following acute myocardial infarction. Pyroptosis is a newly identified form of cell death that has been implicated in the regulation of MIRI. In our study, H9c2 cells and SD rats were transfected using a recombinant adenovirus vector carrying cFLIPL , and the transfection was conducted for 3 days. Subsequently, H9c2 cells were subjected to 4 h of hypoxia followed by 12 h of reoxygenation to simulate an in vitro ischemia-reperfusion model. SD rats underwent 30 min of ischemia followed by 2 h of reperfusion to establish an MIRI model. Our findings revealed a notable decrease in cFLIPL expression in response to ischemia/reperfusion (I/R) and hypoxia/reoxygenation (H/R) injuries. Overexpression of cFLIPL can inhibit pyroptosis, reducing myocardial infarction area in vivo, and enhancing H9c2 cell viability in vitro. I/R and H/R injuries induced the upregulation of ASC, cleaved Caspase 1, NLRP3, GSDMD-N, IL-1β, and IL-18 proteins, promoting cell apoptosis. Our research indicates that cFLIPL may suppress pyroptosis by strategically binding with Caspase 1, inhibiting the release of inflammatory cytokines and preventing cell membrane rupture. Therefore, cFLIPL could potentially serve as a promising target for alleviating MIRI by suppressing the pyroptotic pathway.
Collapse
Affiliation(s)
- Dong Zhang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, China
| | - Hui Wu
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, China
| | - Di Liu
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, China
| | - Ming Ye
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, China
| | - Yunzhao Li
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, China
| | - Gang Zhou
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, China
| | - QingZhuo Yang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, China
| | - YanFang Liu
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, China
| | - Yi Li
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, China
| |
Collapse
|
29
|
Li F, Liu P, Mi W, Li L, Anderson NM, Lesner NP, Burrows M, Plesset J, Majer A, Wang G, Li J, Zhu L, Keith B, Simon MC. Blocking methionine catabolism induces senescence and confers vulnerability to GSK3 inhibition in liver cancer. NATURE CANCER 2024; 5:131-146. [PMID: 38168934 PMCID: PMC11277537 DOI: 10.1038/s43018-023-00671-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/16/2023] [Indexed: 01/05/2024]
Abstract
Availability of the essential amino acid methionine affects cellular metabolism and growth, and dietary methionine restriction has been implicated as a cancer therapeutic strategy. Nevertheless, how liver cancer cells respond to methionine deprivation and underlying mechanisms remain unclear. Here we find that human liver cancer cells undergo irreversible cell cycle arrest upon methionine deprivation in vitro. Blocking methionine adenosyl transferase 2A (MAT2A)-dependent methionine catabolism induces cell cycle arrest and DNA damage in liver cancer cells, resulting in cellular senescence. A pharmacological screen further identified GSK3 inhibitors as senolytics that selectively kill MAT2A-inhibited senescent liver cancer cells. Importantly, combined treatment with MAT2A and GSK3 inhibitors therapeutically blunts liver tumor growth in vitro and in vivo across multiple models. Together, methionine catabolism is essential for liver tumor growth, and its inhibition can be exploited as an improved pro-senescence strategy for combination with senolytic agents to treat liver cancer.
Collapse
Affiliation(s)
- Fuming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Pingyu Liu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Wen Mi
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Liucheng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Nicole M Anderson
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Burrows
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacqueline Plesset
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ariana Majer
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guanlin Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jinyang Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lingzhi Zhu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Brian Keith
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Mondal T, Gaur H, Wamba BEN, Michalak AG, Stout C, Watson MR, Aleixo SL, Singh A, Condello S, Faller R, Leiserowitz GS, Bhatnagar S, Tushir-Singh J. Characterizing the regulatory Fas (CD95) epitope critical for agonist antibody targeting and CAR-T bystander function in ovarian cancer. Cell Death Differ 2023; 30:2408-2431. [PMID: 37838774 PMCID: PMC10657439 DOI: 10.1038/s41418-023-01229-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
Receptor clustering is the most critical step to activate extrinsic apoptosis by death receptors belonging to the TNF superfamily. Although clinically unsuccessful, using agonist antibodies, the death receptors-5 remains extensively studied from a cancer therapeutics perspective. However, despite its regulatory role and elevated function in ovarian and other solid tumors, another tumor-enriched death receptor called Fas (CD95) remained undervalued in cancer immunotherapy until recently, when its role in off-target tumor killing by CAR-T therapies was imperative. By comprehensively analyzing structure studies in the context of the binding epitope of FasL and various preclinical Fas agonist antibodies, we characterize a highly significant patch of positively charged residue epitope (PPCR) in its cysteine-rich domain 2 of Fas. PPCR engagement is indispensable for superior Fas agonist signaling and CAR-T bystander function in ovarian tumor models. A single-point mutation in FasL or Fas that interferes with the PPCR engagement inhibited apoptotic signaling in tumor cells and T cells. Furthermore, considering that clinical and immunological features of the autoimmune lymphoproliferative syndrome (ALPS) are directly attributed to homozygous mutations in FasL, we reveal differential mechanistic details of FasL/Fas clustering at the PPCR interface compared to described ALPS mutations. As Fas-mediated bystander killing remains vital to the success of CAR-T therapies in tumors, our findings highlight the therapeutic analytical design for potentially effective Fas-targeting strategies using death agonism to improve cancer immunotherapy in ovarian and other solid tumors.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Himanshu Gaur
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Brice E N Wamba
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Abby Grace Michalak
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Camryn Stout
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Matthew R Watson
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Sophia L Aleixo
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Arjun Singh
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roland Faller
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| | - Gary Scott Leiserowitz
- Department of Obstetrics and Gynecology, UC Davis School of Medicine, Sacramento, CA, USA
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Sanchita Bhatnagar
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Jogender Tushir-Singh
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA.
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA.
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA.
- Ovarian Cancer Academy Early Career Investigator at UC Davis, Davis, CA, USA.
| |
Collapse
|
31
|
Wang K, Gong Z, Chen Y, Zhang M, Wang S, Yao S, Liu Z, Huang Z, Fei B. KDM4C-mediated senescence defense is a targetable vulnerability in gastric cancer harboring TP53 mutations. Clin Epigenetics 2023; 15:163. [PMID: 37848946 PMCID: PMC10583429 DOI: 10.1186/s13148-023-01579-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Gastric cancer patients harboring a TP53 mutation exhibit a more aggressive and chemoresistant phenotype. Unfortunately, efforts to identify the vulnerabilities to overcome these aggressive malignancies have made minimal progress in recent years. Therefore, there is an urgent need to explore the novel therapeutic strategies for this subclass. Histone methylation modulators are critical epigenetic targets for cancer therapies that help maintain the malignancies of cancers harboring TP53 mutations and senescence evasion. Triggering senescence is now considered to benefit multiple cancer therapies. Furthermore, senescence-based "one-two punch" therapy was validated in clinical trials. Therefore, we hypothesized that screening epigenetic modulators might help identify a novel vulnerability to trigger senescence in gastric cancer harboring TP53 mutations. RESULTS We developed a novel efficient approach to identify senescence inducers by sequentially treating cells with drug candidates and senolytic agents. Based on this, we demonstrated that QC6352 (a selective KDM4C inhibitor) efficiently triggered cellular senescence in gastric cancer harboring TP53 mutations. More importantly, the "one-two punch' therapy consisting of QC6352 and SSK1 eliminates tumor cells harboring TP53 mutations. This finding highlights a potential therapeutic strategy for the aggressive subgroup of gastric cancer. Besides, the functions of QC6352 were totally unknown. We demonstrated that QC6352 might possess far more powerful anti-tumor capacities compared to the traditional genotoxic drugs, 5-Fu and Oxaliplatin. CONCLUSIONS This initial investigation to identify a senescence inducer revealed that QC6352 triggers senescence in gastric cancer cells harboring TP53 mutations by regulating the SP1/CDK2 axis through suppressing KDM4C. QC6352 and senolytic agent-SSK1 represent a novel 'one-two punch' therapeutic strategy for the more malignant gastric cancer subtypes.
Collapse
Affiliation(s)
- Kaiqing Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhicheng Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yanyan Chen
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Meimei Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China
| | - Suzeng Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhihui Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
| |
Collapse
|
32
|
A cFLIP-flop switch for senolysis. NATURE CANCER 2022; 3:1279-1281. [PMID: 36414710 DOI: 10.1038/s43018-022-00455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|