1
|
Ferriere F, Aasi N, Flouriot G, Pakdel F. Exploring the Complex Mechanisms of Isoflavones: From Cell Bioavailability, to Cell Dynamics and Breast Cancer. Phytother Res 2025; 39:957-979. [PMID: 39707600 PMCID: PMC11832364 DOI: 10.1002/ptr.8417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
In Western countries, the increase in the consumption of soy-derived products raises the population's exposure to isoflavones. These molecules, present in many foods, have numerous effects on the body's cells, including regulation of the transcription and epigenetics, cell signaling, cell cycle, cell growth, apoptosis, and oxidative stress. However, despite the multitude of studies conducted, on these compounds, it remains difficult to draw definitive conclusions regarding their safety or dangerousness in the diet. Indeed, some epidemiological studies highlight health benefits in consuming isoflavone-rich foods, notably by reducing the risk of certain cancers. However, several studies conducted on cell models show that these molecules can have negative effects on cell fate, particularly with regard to proliferation and survival of mammary tumor cells. Isoflavones are mainly genistein, daidzein, formononetin, and biochanin A. These molecules belong to the family of phytoestrogens, which are capable of interacting with both nuclear estrogen receptor, ERα and ERβ, to trigger agonistic and antagonistic effects. Due to their estrogenic properties, isoflavones are suspected to promote hormone-dependent cancers such as breast cancer. This suspicion is based primarily on their ability to bind to ERα in breast cells, thereby altering the signaling pathways that control cell growth. However, study results are sometimes contradictory. Some studies suggest that isoflavones may protect against breast cancer by acting as selective estrogen receptor modulators, while others highlight their potential role in stimulating tumor growth. This review explores the literature on the effects of isoflavones, focusing on their influence on ERα-dependent signaling in breast tumor cells.
Collapse
Affiliation(s)
- François Ferriere
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| | - Nagham Aasi
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| | - Gilles Flouriot
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| | - Farzad Pakdel
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| |
Collapse
|
2
|
Park SH, Lee J, Jung SY, Kang YH, Kim J. A higher consumption of green and white-colored vegetables and fruits is associated with lowered breast cancer risk among Korean women. Nutr Res 2024; 129:38-54. [PMID: 39213830 DOI: 10.1016/j.nutres.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer (BrCa) remains a significant health concern globally, influenced by both nonmodifiable and modifiable risk factors. Limited studies have explored the role of color-specific vegetables and fruits, which are rich in specific phytonutrients, on BrCa risk. We hypothesized that consuming color-specific vegetables and fruits may decrease BrCa risk in Korean women. This case-control study examined the relationship between the intake of different-colored vegetables and fruits and the risk of BrCa, considering menopausal, hormone receptor status, tumor subtypes. We matched 395 patients and 395 controls by age and recruited from the National Cancer Center in Korea. Dietary data was collected via food frequency questionnaire, categorizing by colors: green, orange/yellow, red/purple, and white. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated by logistic regression models, with subgroup analyses for menopausal, hormone receptor status, and tumor subtypes. Results shown BrCa patients consumed less vegetables and fruits than control group. Higher consumption of green, other orange/yellow, and white vegetables and fruits was negatively associated with BrCa risk [OR (95% CIs) of Q4 vs Q1 = 0.59 (0.36-0.94); 0.55 (0.33-0.89); and 0.60 (0.37-0.96), respectively]. Particularly, a greater intake of dark green leafy vegetables was significantly associated with reduced BrCa risk (OR of Q4 vs Q1 = 0.55, 95% CI = 0.34-0.89). Subgroup analysis consistently demonstrated inverse associations between higher intake of green-color vegetables and fruits and BrCa risk. Our findings suggest that a diet rich in green and white-color vegetables and fruits may lower BrCa risk among Korean women.
Collapse
Affiliation(s)
- Sin-Hye Park
- Department of Food Science and Nutrition, Korean Institute of Nutrition, Hallym University, Chuncheon, Gangwon State, 24252, Republic of Korea; Department of Cancer Artificial Intelligence Digital Healthcare, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Gyeonggi-do, 10408, Republic of Korea
| | - Jeonghee Lee
- Department of Cancer Artificial Intelligence Digital Healthcare, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Gyeonggi-do, 10408, Republic of Korea
| | - So-Youn Jung
- Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi-do, 10408, Republic of Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Korean Institute of Nutrition, Hallym University, Chuncheon, Gangwon State, 24252, Republic of Korea
| | - Jeongseon Kim
- Department of Cancer Artificial Intelligence Digital Healthcare, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Gyeonggi-do, 10408, Republic of Korea.
| |
Collapse
|
3
|
Shahiwala AF, Khan GA. Potential Phytochemicals for Prevention of Familial Breast Cancer with BRCA Mutations. Curr Drug Targets 2023; 24:521-531. [PMID: 36918779 DOI: 10.2174/1389450124666230314110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 03/16/2023]
Abstract
Breast cancer has remained a global challenge and the second leading cause of cancer mortality in women and family history. Hereditary factors are some of the major risk factors associated with breast cancer. Out of total breast cancer cases, 5-10% account only for familial breast cancer, and nearly 50% of all hereditary breast cancer are due to BRCA1/BRCA2 germline mutations. BRCA1/2 mutations play an important role not only in determining the clinical prognosis of breast cancer but also in the survival curves. Since this risk factor is known, a significant amount of the healthcare burden can be reduced by taking preventive measures among people with a known history of familial breast cancer. There is increasing evidence that phytochemicals of nutrients and supplements help in the prevention and cure of BRCA-related cancers by different mechanisms such as limiting DNA damage, altering estrogen metabolism, or upregulating expression of the normal BRCA allele, and ultimately enhancing DNA repair. This manuscript reviews different approaches used to identify potential phytochemicals to mitigate the risk of familial breast cancer with BRCA mutations. The findings of this review can be extended for the prevention and cure of any BRCAmutated cancer after proper experimental and clinical validation of the data.
Collapse
Affiliation(s)
| | - Gazala Afreen Khan
- Department of Clinical Pharmacy & Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Gano CA, Fatima S, Failes TW, Arndt GM, Sajinovic M, Mahns D, Saedisomeolia A, Coorssen JR, Bucci J, de Souza P, Vafaee F, Scott KF. Anti-cancer potential of synergistic phytochemical combinations is influenced by the genetic profile of prostate cancer cell lines. Front Nutr 2023; 10:1119274. [PMID: 36960209 PMCID: PMC10029761 DOI: 10.3389/fnut.2023.1119274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
Introduction Despite strong epidemiological evidence that dietary factors modulate cancer risk, cancer control through dietary intervention has been a largely intractable goal for over sixty years. The effect of tumour genotype on synergy is largely unexplored. Methods The effect of seven dietary phytochemicals, quercetin (0-100 μM), curcumin (0-80 μM), genistein, indole-3-carbinol (I3C), equol, resveratrol and epigallocatechin gallate (EGCG) (each 0-200 μM), alone and in all paired combinations om cell viability of the androgen-responsive, pTEN-null (LNCaP), androgen-independent, pTEN-null (PC-3) or androgen-independent, pTEN-positive (DU145) prostate cancer (PCa) cell lines was determined using a high throughput alamarBlue® assay. Synergy, additivity and antagonism were modelled using Bliss additivism and highest single agent equations. Patterns of maximum synergy were identified by polygonogram analysis. Network pharmacology approaches were used to identify interactions with known PCa protein targets. Results Synergy was observed with all combinations. In LNCaP and PC-3 cells, I3C mediated maximum synergy with five phytochemicals, while genistein was maximally synergistic with EGCG. In contrast, DU145 cells showed resveratrol-mediated maximum synergy with equol, EGCG and genistein, with I3C mediating maximum synergy with only quercetin and curcumin. Knockdown of pTEN expression in DU145 cells abrogated the synergistic effect of resveratrol without affecting the synergy profile of I3C and quercetin. Discussion Our study identifies patterns of synergy that are dependent on tumour cell genotype and are independent of androgen signaling but are dependent on pTEN. Despite evident cell-type specificity in both maximally-synergistic combinations and the pathways that phytochemicals modulate, these combinations interact with similar prostate cancer protein targets. Here, we identify an approach that, when coupled with advanced data analysis methods, may suggest optimal dietary phytochemical combinations for individual consumption based on tumour molecular profile.Graphical abstract.
Collapse
Affiliation(s)
- Carol A. Gano
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Shadma Fatima
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- School of Biotechnology and Biological Sciences, UNSW Sydney, Sydney, NSW, Australia
- Shadma Fatima, ;
| | - Timothy W. Failes
- ACRF Drug Discovery Centre, Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Gregory M. Arndt
- ACRF Drug Discovery Centre, Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Mila Sajinovic
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - David Mahns
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ahmad Saedisomeolia
- School of Human Nutrition, McGill University, Sainte Anne-de-Bellevue, QC, Canada
| | - Jens R. Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Science, and Mathematics and Science, Brock University, St. Catharines, ON, Canada
| | - Joseph Bucci
- St George Hospital Clinical School, UNSW, Kogarah, NSW, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biological Sciences, UNSW Sydney, Sydney, NSW, Australia
- UNSW Data Science Hub (uDASH), UNSW Sydney, Sydney, NSW, Australia
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- *Correspondence: Kieran F. Scott,
| |
Collapse
|
5
|
Munj SA, Taz TA, Arslanturk S, Heath EI. Biomarker-driven drug repurposing on biologically similar cancers with DNA-repair deficiencies. Front Genet 2022; 13:1015531. [PMID: 36583025 PMCID: PMC9792769 DOI: 10.3389/fgene.2022.1015531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Similar molecular and genetic aberrations among diseases can lead to the discovery of jointly important treatment options across biologically similar diseases. Oncologists closely looked at several hormone-dependent cancers and identified remarkable pathological and molecular similarities in their DNA repair pathway abnormalities. Although deficiencies in Homologous Recombination (HR) pathway plays a significant role towards cancer progression, there could be other DNA-repair pathway deficiencies that requires careful investigation. In this paper, through a biomarker-driven drug repurposing model, we identified several potential drug candidates for breast and prostate cancer patients with DNA-repair deficiencies based on common specific biomarkers and irrespective of the organ the tumors originated from. Normalized discounted cumulative gain (NDCG) and sensitivity analysis were used to assess the performance of the drug repurposing model. Our results showed that Mitoxantrone and Genistein were among drugs with high therapeutic effects that significantly reverted the gene expression changes caused by the disease (FDR adjusted p-values for prostate cancer =1.225e-4 and 8.195e-8, respectively) for patients with deficiencies in their homologous recombination (HR) pathways. The proposed multi-cancer treatment framework, suitable for patients whose cancers had common specific biomarkers, has the potential to identify promising drug candidates by enriching the study population through the integration of multiple cancers and targeting patients who respond poorly to organ-specific treatments.
Collapse
Affiliation(s)
- Seeya Awadhut Munj
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Tasnimul Alam Taz
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Suzan Arslanturk
- Department of Computer Science, Wayne State University, Detroit, MI, United States,*Correspondence: Suzan Arslanturk,
| | - Elisabeth I. Heath
- Department of Oncology, Wayne State University, Detroit, MI, United States,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
| |
Collapse
|
6
|
Deshpande M, Paniza T, Jalloul N, Nanjangud G, Twarowski J, Koren A, Zaninovic N, Zhan Q, Chadalavada K, Malkova A, Khiabanian H, Madireddy A, Rosenwaks Z, Gerhardt J. Error-prone repair of stalled replication forks drives mutagenesis and loss of heterozygosity in haploinsufficient BRCA1 cells. Mol Cell 2022; 82:3781-3793.e7. [PMID: 36099913 DOI: 10.1016/j.molcel.2022.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/21/2022] [Accepted: 08/16/2022] [Indexed: 01/05/2023]
Abstract
Germline mutations in the BRCA genes are associated with a higher risk of carcinogenesis, which is linked to an increased mutation rate and loss of the second unaffected BRCA allele (loss of heterozygosity, LOH). However, the mechanisms triggering mutagenesis are not clearly understood. The BRCA genes contain high numbers of repetitive DNA sequences. We detected replication forks stalling, DNA breaks, and deletions at these sites in haploinsufficient BRCA cells, thus identifying the BRCA genes as fragile sites. Next, we found that stalled forks are repaired by error-prone pathways, such as microhomology-mediated break-induced replication (MMBIR) in haploinsufficient BRCA1 breast epithelial cells. We detected MMBIR mutations in BRCA1 tumor cells and noticed deletions-insertions (>50 bp) at the BRCA1 genes in BRCA1 patients. Altogether, these results suggest that under stress, error-prone repair of stalled forks is upregulated and induces mutations, including complex genomic rearrangements at the BRCA genes (LOH), in haploinsufficient BRCA1 cells.
Collapse
Affiliation(s)
- Madhura Deshpande
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Theodore Paniza
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nahed Jalloul
- Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08903, USA
| | - Gouri Nanjangud
- Molecular Cytogenetics Core Facility, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jerzy Twarowski
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Nikica Zaninovic
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Qiansheng Zhan
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Kalyani Chadalavada
- Molecular Cytogenetics Core Facility, Sloan Kettering Institute, New York, NY 10065, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08903, USA
| | - Advaitha Madireddy
- Department of Pediatric Hematology/Oncology, Rutgers University, New Brunswick, NJ 08903, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
7
|
Wang T, Zhang D, Yang B, Su N, Cui J. Salicylic Acid Regulates Indole-3-Carbinol Biosynthesis Under Blue Light in Broccoli Sprouts ( Brassica oleracea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:848454. [PMID: 35449891 PMCID: PMC9016176 DOI: 10.3389/fpls.2022.848454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Indole-3-carbinol (I3C), an important secondary metabolite with strong anti-cancer ability, is widely found in cruciferous plants. Light and phytohormones are one of the most important external and internal signals, respectively, that control the growth, development, and secondary metabolism of the plant life cycle. However, there are few studies about the influence of the blue light and salicylic acid (SA) on the regulation of I3C accumulation. In this study, a negative correlation was found between the content of I3C and SA in different species. Among this, broccoli and Arabidopsis thaliana were chosen for further studies. We observed that blue light treatment increased the accumulation of I3C, and exogenous SA treatment significantly inhibited the accumulation of I3C in broccoli sprouts. Based on the RNA sequence, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that blue light promoted the enrichment of differentially expressed genes (DEGs) in plant hormone signal transduction pathways. More specifically, downregulated expression of genes related to SA biosynthesis and upregulated expression of I3C genes related to metabolic pathway were observed under blue light. Taken together, these results suggested that SA negatively regulates blue light-induced I3C accumulation in broccoli sprouts.
Collapse
Affiliation(s)
- Tao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Derui Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Boming Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Khan H, Labanca F, Ullah H, Hussain Y, Tzvetkov NT, Akkol EK, Milella L. Advances and challenges in cancer treatment and nutraceutical prevention: the possible role of dietary phenols in BRCA regulation. PHYTOCHEMISTRY REVIEWS 2022; 21:385-400. [DOI: 10.1007/s11101-021-09771-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
AbstractOver the years, the attention towards the role of phytochemicals in dietary natural products in reducing the risk of developing cancer is rising. Cancer is the second primary cause of mortality worldwide. The current therapeutic options for cancer treatment are surgical excision, immunotherapy, chemotherapy, and radiotherapy. Unfortunately, in case of metastases or chemoresistance, the treatment options become very limited. Despite the advances in medical and pharmaceutical sciences, the impact of available treatments on survival is not satisfactory. Recently, natural products are a great deal of interest as potential anti-cancer agents. Among them, phenolic compounds have gained a great deal of interest, thanks to their anti-cancer activity. The present review focuses on the suppression of cancer by targeting BRCA gene expression using dietary polyphenols, as well as the clinical aspects of polyphenolic agents in cancer therapy. They regulate specific key processes involved in cancer progression and modulate the expression of oncogenic proteins, like p27, p21, and p53, which may lead to apoptosis, cell cycle arrest, inhibition of cell proliferation, and, consequently, cancer suppression. Thus, one of the mechanisms underlying the anti-cancer activity of phenolics involves the regulation of tumor suppressor genes. Among them, the BRCA genes, with the two forms (BRCA-1 and BRCA-2), play a pivotal role in cancer protection and prevention. BRCA germline mutations are associated with an increased risk of developing several types of cancers, including ovarian, breast, and prostate cancers. BRCA genes also play a key role in the sensitivity and response of cancer cells to specific pharmacological treatments. As the importance of BRCA-1 and BRCA-2 in reducing cancer invasiveness, repairing DNA damages, oncosoppression, and cell cycle checkpoint, their regulation by natural molecules has been examined.
Collapse
|
9
|
Physiological Effects of Green-Colored Food-Derived Bioactive Compounds on Cancer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Green-colored foods, such as broccoli, sprouts, soybean, and green leafy vegetables are considered one of the representative healthy foods for containing various functional ingredients that can combat chronic diseases, including diabetes, obesity, and cancer. Herein, we reviewed the anti-cancer activities and the underlying mechanisms of some important bioactive compounds, such as sulforaphane, catechins, chlorophyll, isoflavone, indole dervatives, and lutein, present in green-colored foods. In vivo and clinical studies suggest that sulforaphane, a sulfur-containing compound found in cruciferous vegetables, can ameliorate prostate and breast cancer symptoms by arresting cell-cycle progression and modulating Ki67 and HDAC expression. A green tea compound, known as epigallocatechin-3-gallate (EGCG), has shown remarkable anti-cancer effects against prostate cancer and lung adenocarcinoma in human trials through its antioxidative defense and immunomodulatory functions. Chlorophyll, a natural pigment found in all green plants, can regulate multiple cancer-related genes, including cyclin D1, CYP1A, CYP1B1, and p53. Epidemiological studies indicate that chlorophyll can substantially reduce aflatoxin level and can mitigate colon cancer in human subjects. Remarkably, the consumption of soy isoflavone has been found to be associated with the lower incidence and mortality of breast and prostate cancers in East Asia and in Canada. In vivo and in vitro data point out that isoflavone has modulatory effects on estrogen and androgen signaling pathways and the expression of MAPK, NfκB, Bcl-2, and PI3K/AKT in different cancer models. Other green food bioactive compounds, such as indole derivatives and lutein, also exhibited suppressing effects in rodent models of lung, liver, stomach, cervical, and prostate cancers. In addition, some micronutrients, such as folate, riboflavin, retinoic acid, and vitamin D3 present in green foods, also showed potential cancer suppressing effects. Taken together, these data suggest potential chemopreventive functions of the bioactive compounds from green-colored foods. This paper could be beneficial for further research on the anti-carcinogenic effects of green-colored food-derived compounds, in order to develop green chemotherapeutics for cancers.
Collapse
|
10
|
Ullah MF, Usmani S, Shah A, Abuduhier FM. Dietary molecules and experimental evidence of epigenetic influence in cancer chemoprevention: An insight. Semin Cancer Biol 2020; 83:319-334. [PMID: 33152485 DOI: 10.1016/j.semcancer.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
The world-wide rate of incidence of cancer disease has been only modestly contested by the past and current preventive and interventional strategies. Hence, the global effort towards novel ideas to contain the disease still continues. Constituents of human diets have in recent years emerged as key regulators of carcinogenesis, with studies reporting their inhibitory potential against all the three stages vis-a-vis initiation, promotion and progression. Unlike drugs which usually act on single targets, these dietary factors have an advantage of multi-targeted effects and pleiotropic action mechanisms, which are effective against cancer that manifest as a micro-evolutionary and multi-factorial disease. Since most of the cellular targets have been identified and their consumption considered relatively safe, these diet-derived agents often appear as molecules of interest in repurposing strategies. Currently, many of these molecules are being investigated for their ability to influence the aberrant alterations in cell's epigenome for epigenetic therapy against cancer. Targeting the epigenetic regulators is a new paradigm in cancer chemoprevention which acts to reverse the warped-up epigenetic alterations in a cancer cell, thereby directing it towards a normal phenotype. In this review, we discuss the significance of dietary factors and natural products as chemopreventive agents. Further, we corroborate the experimental evidence from existing literature, reflecting the ability of a series of such molecules to act as epigenetic modifiers in cancer cells, by interfering with molecular events that map the epigenetic imprints such as DNA methylation, histone acetylation and non-coding RNA mediated gene regulation.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, India
| | - Faisel M Abuduhier
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
11
|
Modulatory Effect of Indoles on the Expression of miRNAs Regulating G1/S Cell Cycle Phase in Breast Cancer Cells. Appl Biochem Biotechnol 2020; 192:1208-1223. [PMID: 32710170 DOI: 10.1007/s12010-020-03378-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Indole-3-carbinol (I3C) is a naturally occurring glucosinolate found in Brassica vegetables that is usually converted in gastric acidic environment to the efficient metabolite 3,3'-diindolylmethane (DIM). Both indoles (I3C and DIM) are known chemopreventive agents for various cancers including breast cancer. This study aimed to investigate the influence of both indoles on the tumor suppressor miRNAs (let-7a-e, miR-15a, miR-16, miR-17-5p, miR-19a, and miR-20a) and oncomiRs (miR-181a, miR-181b, miR-210, miR-221, and miR-106a), which are controlling the cell cycle key regulators: cyclin-dependent kinases (CDKs), CDK inhibitor p27Kip1, and cyclin D1. Our results indicated that both indoles generally elevated the expression of the tumor suppressor miRNAs let-7a-e, miR-19a, miR-17-5p, and miR-20a and decreased the expression of the oncomiR list. Both indoles were able to significantly suppress the expression of CDK4 and CDK6 as well as the apoptotic markers Bcl-2 and survivin. Both indoles decreased cyclin-D1 protein, where I3C decreased cytoplasmic and nuclear cyclin-D1 significantly. Cytoplasmic and nuclear P27Kip1 showed overexpression following treatment with I3C higher than that detected following DIM treatment. This study provides a mechanistic elucidation of the previously reported cell cycle arrest by I3C and DIM in breast cancer cells suggesting that this effect could be through modulation of miRNAs expression that, in turn, regulates the genetic network controlling the G1/S phase in cell cycle progression.
Collapse
|
12
|
Liu R, Yu X, Chen X, Zhong H, Liang C, Xu X, Xu W, Cheng Y, Wang W, Yu L, Wu Y, Yan N, Hu X. Individual factors define the overall effects of dietary genistein exposure on breast cancer patients. Nutr Res 2019; 67:1-16. [DOI: 10.1016/j.nutres.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/03/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
|
13
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
14
|
Scherbakov AM, Shestakova EA, Galeeva KE, Bogush TA. BRCA1 and Estrogen Receptor α Expression Regulation in Breast Cancer Cells. Mol Biol 2019. [DOI: 10.1134/s0026893319030166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Karimabad MN, Mahmoodi M, Jafarzadeh A, Darekordi A, Hajizadeh MR, Hassanshahi G. Molecular Targets, Anti-cancer Properties and Potency of Synthetic Indole-3-carbinol Derivatives. Mini Rev Med Chem 2019; 19:540-554. [DOI: 10.2174/1389557518666181116120145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
The indole-3-carbinol (I3C) displays anti-cancer/proliferative activities against human cancer cells. Cellular proliferation is an event associated with the progress and its continuation. This manifest is described by variation in expression and/or functions of genes that are related with cell cycle relevant proteins. The constitutive activation of several signal transduction pathways stimulates cells proliferation as well. The immediate stages in cancer development are accompanied by a fibrogenic response and the progression of the hypoxic environment is in favor of survival and proliferatory functions of cancer stem cells. A main part for prevention of in cancer cells death may manifest through altering cell metabolism. Cellular proliferation and metastasis are reported to be supported with increased generation of responsible hormones (in hormone dependent malignancies), and further promotion the angiogenesis, with epithelial to mesenchymal transition. This may be facilitated by progression of autophagy phenomenon, as well as via taking cues from neighboring stromal cells. Several signaling pathways in association with various factors specific for cellular viability, including hypoxia inducible factor 1, NF-κB, insulin-like growth factor 1 (IGF-1) receptor, Human foreskin fibroblasts (HFF-1), phosphoinositide 3 kinase/Akt, Wnt, cell cycle related protein, with androgen and estrogen receptor signaling are reported to be inhibited by I3C. These evidences, in association with bioinformatics data represent very important information for describing signaling pathways in parallel with molecular targets that may serve as markers for early diagnosis and/or critical targets for designing and development of novel therapeutic regimes alone or combined with drugs, to prevent tumor formation and further progression. In particular, I3C and DIM have been extensively investigated for their importance against numbers human cancers both in vitro and in vivo. We aimed the present manuscript, current study, to review anticancer properties and the miscellaneous mechanisms underlying the antitumorigenicity in an in-depth study for broadening the I3C treating marvel.
Collapse
Affiliation(s)
- Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abdolah Jafarzadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Darekordi
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mohamad Reza Hajizadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
16
|
Martín-Ruiz A, Peña L, González-Gil A, Díez-Córdova LT, Cáceres S, Illera JC. Effects of indole-3-carbinol on steroid hormone profile and tumor progression in a mice model of canine inflammatory mammarycancer. BMC Cancer 2018; 18:626. [PMID: 29866056 PMCID: PMC5987405 DOI: 10.1186/s12885-018-4518-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022] Open
Abstract
Background Indole-3-carbinol, derived from Cruciferous vegetables is an estrogen receptor antagonist considered a preventive agent that is naturally present in diet. There are no previous studies on its effects in human inflammatory breast cancer or canine inflammatory mammary cancer that is the most aggressive type of breast cancer. Methods The aim of this study was to analyze the effect of indole-3-carbinol on a SCID mice xenograft model of canine inflammatory mammary cancer, using equivalent human oral dose as a preventive therapy in humans for 3 weeks. Results Indole-3-carbinol treatment decreased tumor proliferation and increased apoptosis, although tumor embolization and liver metastasis were observed in some animals. There was a characteristic subpopulation of lipid-rich cells and increased contents of select steroid hormones in tumor homogenates and serum. Conclusions Our data reveal for the first time that the ingestion of indole-3-carbinol, as administered, diminishes proliferation and increases apoptosis of tumor cells in an experimental model of inflammatory breast cancer, although this effect could not be enough to avoid the appearance of tumor embolization and metastasis. Future clinical trials will be needed to clarify the usefulness of indole-3-carbinol in this cancer and to understand the molecular mechanisms involved.
Collapse
Affiliation(s)
- Asunción Martín-Ruiz
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Alfredo González-Gil
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Lucía Teresa Díez-Córdova
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Sara Cáceres
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Juan Carlos Illera
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Abstract
A diet rich in cruciferous vegetables such as cauliflower, broccoli, and cabbage has long been considered healthy, and various epidemiological studies suggest that the consumption of cruciferous vegetables contributes to a cancer-protecting diet. While these vegetables contain a vast array of phytochemicals, the mechanism by which these vegetables counteract cancer is still largely unresolved. Numerous
in situ studies have implicated indole-3-carbinol, a breakdown product of the glucosinolate indole-3-ylmethylglucosinolate, as one of the phytochemicals with anti-cancer properties. Indole-3-carbinol influences a range of cellular processes, but the mechanisms by which it acts on cancer cells are slowly being revealed. Recent studies on the role of indole-3-carbinol in Arabidopsis opens the door for cross-kingdom comparisons that can help in understanding the roles of this important phytohormone in both plant biology and combatting cancer.
Collapse
Affiliation(s)
- Ella Katz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.,Department of Plant Sciences, University of California , Davis , USA
| | - Sophia Nisani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Daniel A Chamovitz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2017; 60:1310-29. [PMID: 27144894 DOI: 10.1002/mnfr.201501063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR), bisphenol A (BPA), and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. METHODS AND RESULTS This review highlights (i) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and (ii) potential opportunities for the prevention of sporadic breast cancer with food components that target the epigenetic machinery. CONCLUSIONS Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jonathan T Grunwald
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Stephan A Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
19
|
Olsvik PA, Skjærven KH, Søfteland L. Metabolic signatures of bisphenol A and genistein in Atlantic salmon liver cells. CHEMOSPHERE 2017; 189:730-743. [PMID: 28988043 DOI: 10.1016/j.chemosphere.2017.09.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Screening has revealed that aquafeeds with high inclusion of plant material may contain small amounts of endocrine disrupting agricultural pesticides. In this work, bisphenol A (BPA) and genistein (GEN) were selected as model endocrine disrupting toxicants with impact on DNA methylation in fish. Atlantic salmon hepatocytes were exposed in vitro to four concentrations of BPA and GEN (0.1, 1.0, 10 and 100 μM) for 48 h. Toxicity endpoints included cytotoxicity, global DNA methylation, targeted transcriptomics and metabolomic screening (100 μM). GEN was not cytotoxic in concentrations up to 100 μM, whereas one out of two cell viability assays indicated a cytotoxic response to 100 μM BPA. Compared to the control, significant global DNA hypomethylation was observed at 1.0 μM BPA. Both compounds upregulated cyp1a1 transcription at 100 μM, while estrogenic markers esr1 and vtg1 responded strongest at 10 μM. Dnmt3aa transcription was downregulated by both compounds at 100 μM. Metabolomic screening showed that BPA and GEN resulted in significant changes in numerous biochemical pathways consistent with alterations in carbohydrate metabolism, indicating perturbation in glucose homeostasis and energy generation, and glutamate metabolism. Pathway analysis showed that while the superpathway of methionine degradation was among the most strongly affected pathways by BPA, GEN induced changes to uridine and pyrimidine biosynthesis. In conclusion, this mechanistic study proposes metabolites associated with glucose and glutamate metabolism, glucuronidation detoxification, as well as cyp1a1, vtg1, esr1, ar, dnmt3aa, cdkn1b and insig1 as transcriptional markers for BPA and GEN exposure in fish liver cells.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway.
| | - Kaja H Skjærven
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Liv Søfteland
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| |
Collapse
|
20
|
Lee GA, Hwang KA, Choi KC. Inhibitory effects of 3,3′-diindolylmethane on epithelial-mesenchymal transition induced by endocrine disrupting chemicals in cellular and xenograft mouse models of breast cancer. Food Chem Toxicol 2017; 109:284-295. [DOI: 10.1016/j.fct.2017.08.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
|
21
|
Romagnolo DF, Donovan MG, Papoutsis AJ, Doetschman TC, Selmin OI. Genistein Prevents BRCA1 CpG Methylation and Proliferation in Human Breast Cancer Cells with Activated Aromatic Hydrocarbon Receptor. Curr Dev Nutr 2017; 1:e000562. [PMID: 29955703 PMCID: PMC5998349 DOI: 10.3945/cdn.117.000562] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 01/11/2023] Open
Abstract
Background: Previous studies have suggested a causative role for agonists of the aromatic hydrocarbon receptor (AhR) in the etiology of breast cancer 1, early-onset (BRCA-1)-silenced breast tumors, for which prospects for treatment remain poor. Objectives: We investigated the regulation of BRCA1 by the soy isoflavone genistein (GEN) in human estrogen receptor α (ERα)-positive Michigan Cancer Foundation-7 (MCF-7) and ERα-negative sporadic University of Arizona Cell Culture-3199 (UACC-3199) breast cancer cells, respectively, with inducible and constitutively active AhR. Methods: In MCF-7 cells, we analyzed the dose- and time-dependent effects of GEN and (-)-epigallocatechin-3-gallate (EGCG) control, selected as prototype dietary DNA methyltransferase (DNMT) inhibitors, on BRCA-1 expression after AhR activation with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in TCDD-washout experiments. We compared the effects of GEN and EGCG on BRCA1 cytosine-phosphate-guanine (CpG) methylation and cell proliferation. Controls for DNA methylation and proliferation were changes in expression of DNMT-1, cyclin D1, and p53, respectively. In UACC-3199 cells, we compared the effects of GEN and α-naphthoflavone (αNF; 7,8-benzoflavone), a synthetic flavone and AhR antagonist, on BRCA1 expression and CpG methylation, cyclin D1, and cell growth. Finally, we examined the effects of GEN and αNF on BRCA1, AhR-inducible cytochrome P450 (CYP)-1A1 (CYP1A1) and CYP1B1, and AhR mRNA expression. Results: In MCF-7 cells, GEN exerted dose- and time-dependent preventative effects against TCDD-dependent downregulation of BRCA-1. After TCDD washout, GEN rescued BRCA-1 protein expression while reducing DNMT-1 and cyclin D1. GEN and EGCG reduced BRCA1 CpG methylation and cell proliferation associated with increased p53. In UACC-3199 cells, GEN reduced BRCA1 and estrogen receptor-1 (ESR1) CpG methylation, cyclin D1, and cell growth while inducing BRCA-1 and CYP1A1. Conclusions: Results suggest preventative effects for GEN and EGCG against BRCA1 CpG methylation and downregulation in ERα-positive breast cancer cells with activated AhR. GEN and flavone antagonists of AhR may be useful for reactivation of BRCA1 and ERα via CpG demethylation in ERα-negative breast cancer cells harboring constitutively active AhR.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Micah G Donovan
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Andreas J Papoutsis
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Tom C Doetschman
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ
- Department of The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ
| |
Collapse
|
22
|
Ziaei S, Halaby R. Dietary Isoflavones and Breast Cancer Risk. MEDICINES 2017; 4:medicines4020018. [PMID: 28930233 PMCID: PMC5590054 DOI: 10.3390/medicines4020018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022]
Abstract
Breast cancer is the deadliest neoplasm in women globally, resulting in a significant health burden. In many cases, breast cancer becomes resistant to chemotherapy, radiation, and hormonal therapies. It is believed that genetics is not the major cause of breast cancer. Other contributing risk factors include age at first childbirth, age at menarche, age at menopause, use of oral contraceptives, race and ethnicity, and diet. Diet has been shown to influence breast cancer incidence, recurrence, and prognosis. Soy isoflavones have long been a staple in Asian diets, and there appears to be an increase, albeit modest, compared to Asian populations, in soy consumption among Americans. Isoflavones are phytoestrogens that have antiestrogenic as well as estrogenic effects on breast cancer cells in culture, in animal models, and in clinical trials. This study will investigate anticancer and tumor promoting properties of dietary isoflavones and evaluate their effects on breast cancer development. Furthermore, this work seeks to elucidate the putative molecular pathways by which these phytochemicals modulate breast cancer risk by synergizing or antagonizing the estrogen receptor (ER) and in ER-independent signaling mechanisms.
Collapse
Affiliation(s)
- Samira Ziaei
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA.
| | - Reginald Halaby
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA.
| |
Collapse
|
23
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Zhang J, Xu J, Wang G, Sun P, Yan T, Zhao X. WTIP interacts with BRCA2 and is essential for BRCA2 centrosome localization in cervical cancer cell. Arch Gynecol Obstet 2016; 294:1311-1316. [PMID: 27535760 DOI: 10.1007/s00404-016-4176-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022]
Abstract
AIM Breast cancer 2, early onset (BRCA2) has been reported to be associated with familial breast and ovarian cancer. Several proteins interact with conserved regions of BRCA2, which play significant roles in DNA damage repair and centrosomal localization. This study was aimed to identify a novel protein, Wilms tumor 1 interacting protein (WTIP), which might interact with the conserved regions of BRCA2, as well as the functional role of silencing of WTIP in response to centrosomal localization. MATERIALS AND METHODS Hela S3 cells were used in our study. A yeast two-hybrid screening was used to identify a novel BRCA2-interacting protein. Coimmunoprecipitation and glutathione S-transferase (GST) pull-down assays were performed to detect protein-protein interaction between BRCA2 and hemaglutinin (HA)-WTIP. The expression of WTIP was silenced by short hairpin RNA (shRNA) and the levels of WTIP were confirmed by Western blot. Immunofluorescence microscopy was performed to study the centrosome localization. The functional role of knocking down WTIP expression in response to centrosomal localization was then investigated. RESULTS The results showed that there was an interaction between WTIP and BRCA2 (amino acids 2750-2864) in Hela S3 cells. We found that WTIP interacted with BRCA2 in both exogenous and endogenous level. The expression levels of WTIP were significantly decreased by siRNA compared to the control group. Downregulation of WTIP abolished BRCA2 centrosome localization and abnormal cell division. CONCLUSION This study indicates that WTIP interacts with BRCA2 and might be responsible for BRCA2 centrosome localization in cervical cancer cell.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gynecology Oncology, Shaanxi Provincial Tumor Hospital, No. 309 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jing Xu
- Department of Gynecology Oncology, Shaanxi Provincial Tumor Hospital, No. 309 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Guoqing Wang
- Department of Gynecology Oncology, Shaanxi Provincial Tumor Hospital, No. 309 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Ping Sun
- Department of Gynecology Oncology, Shaanxi Provincial Tumor Hospital, No. 309 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tao Yan
- Department of Gynecology Oncology, Shaanxi Provincial Tumor Hospital, No. 309 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xixia Zhao
- Department of Gynecology Oncology, Shaanxi Provincial Tumor Hospital, No. 309 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
25
|
Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM. Understanding genistein in cancer: The "good" and the "bad" effects: A review. Food Chem 2016; 196:589-600. [PMID: 26593532 DOI: 10.1016/j.foodchem.2015.09.085] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/29/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
Nowadays, diet and specific dietary supplements are seen as potential adjuvants to prevent different chronic diseases, including cancer, or to ameliorate pharmacological therapies. Soybean is one of the most important food components in Asian diet. A plethora of evidence supports the in vitro and in vivo anticancer effects of genistein, a soybean isoflavone. Major tumors affected by genistein here reviewed are breast, prostate, colon, liver, ovarian, bladder, gastric, brain cancers, neuroblastoma and chronic lymphocytic leukemia. However, it is not always clear if and when genistein is beneficial against tumors (the "good" effects), or the opposite, when the same molecule exerts adverse effects (the "bad" effects), favouring cancer cell proliferation. This review will critically evaluate this concept in the light of the different molecular mechanisms of genistein which occur when the molecule is administered at low doses (chemopreventive effects), or at high doses (pharmacological effects).
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy
| | - Pandima Devi Kasi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India.
| | - Sakthivel Ravi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Bak MJ, Das Gupta S, Wahler J, Suh N. Role of dietary bioactive natural products in estrogen receptor-positive breast cancer. Semin Cancer Biol 2016; 40-41:170-191. [PMID: 27016037 DOI: 10.1016/j.semcancer.2016.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer, including luminal-A and -B, is the most common type of breast cancer. Extended exposure to estrogen is associated with an increased risk of breast cancer. Both ER-dependent and ER-independent mechanisms have been implicated in estrogen-mediated carcinogenesis. The ER-dependent pathway involves cell growth and proliferation triggered by the binding of estrogen to the ER. The ER-independent mechanisms depend on the metabolism of estrogen to generate genotoxic metabolites, free radicals and reactive oxygen species to induce breast cancer. A better understanding of the mechanisms that drive ER-positive breast cancer will help optimize targeted approaches to prevent or treat breast cancer. A growing emphasis is being placed on alternative medicine and dietary approaches toward the prevention and treatment of breast cancer. Many natural products and bioactive compounds found in foods have been shown to inhibit breast carcinogenesis via inhibition of estrogen induced oxidative stress as well as ER signaling. This review summarizes the role of bioactive natural products that are involved in the prevention and treatment of estrogen-related and ER-positive breast cancer.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
27
|
Tripathi K, Mani C, Clark DW, Palle K. Rad18 is required for functional interactions between FANCD2, BRCA2, and Rad51 to repair DNA topoisomerase 1-poisons induced lesions and promote fork recovery. Oncotarget 2016; 7:12537-53. [PMID: 26871286 PMCID: PMC4914303 DOI: 10.18632/oncotarget.7247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
Camptothecin (CPT) and its analogues are chemotherapeutic agents that covalently and reversibly link DNA Topoisomerase I to its nicked DNA intermediate eliciting the formation of DNA double strand breaks (DSB) during replication. The repair of these DSB involves multiple DNA damage response and repair proteins. Here we demonstrate that CPT-induced DNA damage promotes functional interactions between BRCA2, FANCD2, Rad18, and Rad51 to repair the replication-associated DSB through homologous recombination (HR). Loss of any of these proteins leads to equal disruption of HR repair, causes chromosomal aberrations and sensitizes cells to CPT. Rad18 appears to function upstream in this repair pathway as its downregulation prevents activation of FANCD2, diminishes BRCA2 and Rad51 protein levels, formation of nuclear foci of all three proteins and recovery of stalled or collapsed replication forks in response to CPT. Taken together this work further elucidates the complex interplay of DNA repair proteins in the repair of replication-associated DSB.
Collapse
Affiliation(s)
- Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, 36604, USA
| | - Chinnadurai Mani
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, 36604, USA
| | - David W Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, 36604, USA
| | - Komaraiah Palle
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, 36604, USA
| |
Collapse
|
28
|
Nikitina D, Llacuachaqui M, Sepkovic D, Bradlow HL, Narod SA, Kotsopoulos J. The effect of oral 3,3'-diindolylmethane supplementation on the 2:16α-OHE ratio in BRCA1 mutation carriers. Fam Cancer 2016; 14:281-6. [PMID: 25613194 DOI: 10.1007/s10689-015-9783-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hormonal exposures are known to influence breast cancer risk among women with a BRCA1 mutation. Thus, dietary factors that increase the 2-hydroxyestrone (OHE):16α-OHE ratio, a biomarker inversely related to breast cancer development, may also influence cancer risk. We conducted a dietary intervention study to evaluate the ability of 300 mg/day of 3,3'-diindolylmethane (DIM) to increase the urinary 2:16α-OHE ratio in 20 women with a BRCA1 mutation. BRCA1 mutation carriers (n = 15) were assigned to receive 300 mg/day of Rx Balance BioREsponse DIM for 4-6 weeks (intervention group) and five BRCA1 mutation carriers did not take DIM (control group). The urinary 2:16α-OHE ratio was assessed at baseline and after 4-6 weeks by immunoassay. There was no significant effect of DIM on the 2:16α-OHE ratio (2.4 at baseline vs. 3.0 after the intervention, P = 0.35). A short dietary intervention with DIM did not significantly increase the 2:16α-OHE ratio in female BRCA1 mutation carriers. Larger studies investigating the effect of dietary or lifestyle interventions on circulating hormone levels in these high-risk women are warranted.
Collapse
Affiliation(s)
- Dina Nikitina
- Women's College Research Institute, 790 Bay St, Toronto, ON, M5G 1N8, Canada,
| | | | | | | | | | | |
Collapse
|
29
|
Licznerska B, Baer-Dubowska W. Indole-3-Carbinol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:131-154. [PMID: 27671815 DOI: 10.1007/978-3-319-41334-1_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Indole-3-carbinol (I3C), a common phytochemical in cruciferous vegetables, and its condensation product, 3,3'-diindolylmethane (DIM) exert several biological activities on cellular and molecular levels, which contribute to their well-recognized chemoprevention potential. Initially, these compounds were classified as blocking agents that increase drug-metabolizing enzyme activity. Now it is widely accepted that I3C and DIM affect multiple signaling pathways and target molecules controlling cell division, apoptosis, or angiogenesis deregulated in cancer cells. Although most of the current data support the role of I3C and DIM in prevention of hormone-dependent cancers, it seems that their application in prevention of the other cancer as well as cardiovascular disease, obesity, and diabetes reduction is also possible. This chapter summarizes the current experimental data on the I3C and DIM activity and the results of clinical studies indicating their role in prevention of chronic diseases.
Collapse
Affiliation(s)
- Barbara Licznerska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
30
|
Lin L, Drton M, Shojaie A. Estimation of High-Dimensional Graphical Models Using Regularized Score Matching. Electron J Stat 2016; 10:806-854. [PMID: 28638498 PMCID: PMC5476334 DOI: 10.1214/16-ejs1126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Graphical models are widely used to model stochastic dependences among large collections of variables. We introduce a new method of estimating undirected conditional independence graphs based on the score matching loss, introduced by Hyvärinen (2005), and subsequently extended in Hyvärinen (2007). The regularized score matching method we propose applies to settings with continuous observations and allows for computationally efficient treatment of possibly non-Gaussian exponential family models. In the well-explored Gaussian setting, regularized score matching avoids issues of asymmetry that arise when applying the technique of neighborhood selection, and compared to existing methods that directly yield symmetric estimates, the score matching approach has the advantage that the considered loss is quadratic and gives piecewise linear solution paths under ℓ1 regularization. Under suitable irrepresentability conditions, we show that ℓ1-regularized score matching is consistent for graph estimation in sparse high-dimensional settings. Through numerical experiments and an application to RNAseq data, we confirm that regularized score matching achieves state-of-the-art performance in the Gaussian case and provides a valuable tool for computationally efficient estimation in non-Gaussian graphical models.
Collapse
Affiliation(s)
- Lina Lin
- Department of Statistics, University of Washington, Seattle, WA 98195, U.S.A
| | - Mathias Drton
- Department of Statistics, University of Washington, Seattle, WA 98195, U.S.A
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
31
|
Bailon-Moscoso N, González-Arévalo G, Velásquez-Rojas G, Malagon O, Vidari G, Zentella-Dehesa A, Ratovitski EA, Ostrosky-Wegman P. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation. PLoS One 2015; 10:e0136527. [PMID: 26309132 PMCID: PMC4550445 DOI: 10.1371/journal.pone.0136527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/04/2015] [Indexed: 12/01/2022] Open
Abstract
Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.
Collapse
Affiliation(s)
- Natalia Bailon-Moscoso
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | | | - Omar Malagon
- Departamento de Química Aplicada, Universidad Técnica Particular de Loja, Loja, Ecuador
- Dipartimento di Chimica Organica, University of Pavia, Pavia, Italy
| | - Giovanni Vidari
- Dipartimento di Chimica Organica, University of Pavia, Pavia, Italy
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición“Salvador Zubirán”, México, D. F., Mexico
| | - Edward A. Ratovitski
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
- Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- * E-mail:
| |
Collapse
|
32
|
Kim J, Johnson L, Skrzynia C, Buchanan A, Gracia C, Mersereau JE. Prospective multicenter cohort study of estrogen and insulin-like growth factor system in BRCA mutation carriers. Cancer Causes Control 2015; 26:1087-92. [DOI: 10.1007/s10552-015-0601-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
|
33
|
Katz E, Nisani S, Yadav BS, Woldemariam MG, Shai B, Obolski U, Ehrlich M, Shani E, Jander G, Chamovitz DA. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:547-55. [PMID: 25758811 DOI: 10.1111/tpj.12824] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 05/21/2023]
Abstract
The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.
Collapse
Affiliation(s)
- Ella Katz
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Sophia Nisani
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Brijesh S Yadav
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| | | | - Ben Shai
- Cell Research and Immunology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Uri Obolski
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Marcelo Ehrlich
- Cell Research and Immunology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Eilon Shani
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Daniel A Chamovitz
- Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, 69978, Israel
| |
Collapse
|
34
|
Nakashima S, Kobayashi S, Nagano H, Tomokuni A, Tomimaru Y, Asaoka T, Hama N, Wada H, Kawamoto K, Marubashi S, Eguchi H, Doki Y, Mori M. BRCA/Fanconi anemia pathway implicates chemoresistance to gemcitabine in biliary tract cancer. Cancer Sci 2015; 106:584-91. [PMID: 25736055 PMCID: PMC4452159 DOI: 10.1111/cas.12652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/11/2015] [Accepted: 02/27/2015] [Indexed: 12/19/2022] Open
Abstract
The BRCA/Fanconi anemia (FA) pathway plays a key role in the repair of DNA double strand breaks. We focused on this pathway to clarify chemoresistance mechanisms in biliary tract cancer (BTC). We also investigated changes in the CD24+/44+ population that may be involved in chemoresistance, as this population likely includes cancer stem cells. We used three BTC cell lines to establish gemcitabine (GEM)-resistant (GR) cells and evaluated the expression of BRCA/FA pathway components, chemoresistance, and the effect of BRCA/FA pathway inhibition on the CD24+/44+ population. FANCD2 and CD24 expression were evaluated in 108 resected BTC specimens. GR cells highly expressed the BRCA/FA components. The BRCA/FA pathway was upregulated by GEM and cisplatin (CDDP) exposure. Inhibition using siRNA and RAD51 inhibitor sensitized GR cells to GEM or CDDP. The CD24+/44+ population was increased in GR and parent BTC cells treated with GEM or CDDP and highly expressed BRCA/FA genes. FANCD2 was related to CD24 expression in resected BTC specimens. Inhibition of the BRCA/FA pathway under GEM reduced the CD24+/44+ population in MzChA1-GR cells. Thus, high expression of the BRCA/FA pathway is one mechanism of chemoresistance against GEM and/or CDDP and is related to the CD24+/44+ population in BTC.
Collapse
Affiliation(s)
- Shinsuke Nakashima
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Surgery, Osaka Medical Center for Cancer and Cardio-Vascular Diseases, Osaka, Japan
| | - Hiroaki Nagano
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Tomokuni
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoki Hama
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Wada
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Kawamoto
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shigeru Marubashi
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
35
|
Abstract
Recently, nutraceuticals have received increasing attention as the agents for cancer prevention and supplement with conventional therapy. Prostate cancer (PCa) is the most frequently diagnosed cancer and second leading cause of cancer-related death in men in the US. Growing evidences from epidemiological studies, in vitro experimental studies, animal studies, and clinical trials have shown that nutraceuticals could be very useful for the prevention and treatment of PCa. Several nutraceuticals including isoflavone, indole-3-carbinol, 3,3'-diindolylmethane, lycopene, (-)-epigallocatechin-3-gallate, and curcumin are known to downregulate the signal transductions in AR, Akt, NF-κB, and other signal transduction pathways which are vital for the development of PCa and the progression of PCa from androgen-sensitive to castrate-resistant PCa. Therefore, nutraceutical treatment in combination with conventional therapeutics could achieve better treatment outcome in prostate cancer therapy. Interestingly, some nutraceuticals could regulate the function of cancer stem cell (CSC)-related miRNAs and associated molecules, leading to the inhibition of prostatic CSCs which are responsible for drug resistance, tumor progression, and recurrence of PCa. Hence, nutraceuticals may serve as powerful agents for the prevention of PCa progression and they could also be useful in combination with chemotherapeutics or radiotherapy. Such strategy could become a promising newer approach for the treatment of metastatic PCa with better treatment outcome by improving overall survival.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, 4100 John R, Detroit, MI, 48201, USA
| | | | | | | | | |
Collapse
|
36
|
DiMarco-Crook C, Xiao H. Diet-based strategies for cancer chemoprevention: the role of combination regimens using dietary bioactive components. Annu Rev Food Sci Technol 2015; 6:505-26. [PMID: 25884285 DOI: 10.1146/annurev-food-081114-110833] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemopreventive agents that the general population can consume for prolonged periods of time with minimal risk of any side effects are of great interest to all in search of a solution to the pervasive incidence of cancer. Dietary bioactive components have been found to modulate many deregulated molecular pathways associated with the initiation and progression of different types of cancer. Combination regimens with dietary bioactive components are a promising strategy for cancer chemoprevention because they may offer enhanced protective effects against cancer development but cause little or no adverse effects. This article provides an overview of studies examining the combination of dietary bioactive components for the chemoprevention of major types of cancer. A better understanding of existing research on the combination of dietary bioactive components will provide an important basis for the rational design of future combination studies and the successful development of cancer chemoprevention strategies.
Collapse
|
37
|
Nakanishi A, Minami A, Kitagishi Y, Ogura Y, Matsuda S. BRCA1 and p53 tumor suppressor molecules in Alzheimer's disease. Int J Mol Sci 2015; 16:2879-92. [PMID: 25636033 PMCID: PMC4346871 DOI: 10.3390/ijms16022879] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/20/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022] Open
Abstract
Tumor suppressor molecules play a pivotal role in regulating DNA repair, cell proliferation, and cell death, which are also important processes in the pathogenesis of Alzheimer’s disease. Alzheimer’s disease is the most common neurodegenerative disorder, however, the precise molecular events that control the death of neuronal cells are unclear. Recently, a fundamental role for tumor suppressor molecules in regulating neurons in Alzheimer’s disease was highlighted. Generally, onset of neurodegenerative diseases including Alzheimer’s disease may be delayed with use of dietary neuro-protective agents against oxidative stresses. Studies suggest that dietary antioxidants are also beneficial for brain health in reducing disease-risk and in slowing down disease-progression. We summarize research advances in dietary regulation for the treatment of Alzheimer’s disease with a focus on its modulatory roles in BRCA1 and p53 tumor suppressor expression, in support of further therapeutic research in this field.
Collapse
Affiliation(s)
- Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| |
Collapse
|
38
|
Seidlova-Wuttke D, Jarry H, Wuttke W. Plant derived alternatives for hormone replacement therapy (HRT). Horm Mol Biol Clin Investig 2015; 16:35-45. [PMID: 25436745 DOI: 10.1515/hmbci-2013-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 12/13/2022]
Abstract
Abstract Hormone replacement therapy (HRT) has undisputable positive effects on climacteric complaints, in the bone and on body weight but also several undesired side effects. Therefore, plant-derived alternatives are currently promoted. Phytoestrogens - primarily the isoflavones genistein, daidzein and coumestrol, stemming from soy (Glycine max) or red clover (Trifolium pratense) - were suggested to have the desired but not the undesired effects of estrogens. Most recently published placebo-controlled studies question the beneficial effects. When taken at the time of puberty however, phytoestrogens appear to protect against mammary cancer later in life. Extracts from the rhizome of Cimicifuga racemosa (black cohosh) have no estrogenic effects. In a narrow dose range they have beneficial effects on climacteric complaints, which are due to several compounds with dopaminergic, noradrenergic, serotoninergic and GABAergic actions that act together in the hypothalamus. Ecdysone is produced by several plants, including spinach (Spinacia oleracea) and was very early on shown to increase muscle mass. Later it became apparent that spinach extracts containing ecdysone decreased body fat load, thereby reducing secretion of proinflammatory cytokines by visceral adipocytes and oxidative stress. This had beneficial effects on body weight and serum lipids not only in obese postmenopausal but also in premenopausal women and in men. For the above-described plant extracts, solid placebo-controlled clinical trials are available. For other plant extracts claiming beneficial effects on climacteric complaints or postmenopausal diseases, no solid data are available.
Collapse
|
39
|
Katz E, Nisani S, Sela M, Behar H, Chamovitz DA. The effect of indole-3-carbinol on PIN1 and PIN2 in Arabidopsis roots. PLANT SIGNALING & BEHAVIOR 2015; 10:e1062200. [PMID: 26252364 PMCID: PMC4883967 DOI: 10.1080/15592324.2015.1062200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The phytochemical indole-3-carbinol is produced in Cruciferous plants upon tissue rapture and deters herbivores. We recently showed that indole-3-carbinol modulates auxin signaling in root tips. Here we present transcript profiling experiments which further reveal the influence of indole-3-carbinol on auxin signaling in root tips, and also show that I3C affects auxin transporters. Brief treatment with indole-3-carbinol led to a reduction in the amount of PIN1 and to mislocalization of PIN2.
Collapse
Affiliation(s)
- Ella Katz
- Molecular Biology and Ecology of Plants; Tel Aviv University; Ramat Aviv, Israel
| | - Sophia Nisani
- Molecular Biology and Ecology of Plants; Tel Aviv University; Ramat Aviv, Israel
| | - Mor Sela
- Molecular Biology and Ecology of Plants; Tel Aviv University; Ramat Aviv, Israel
| | - Hila Behar
- Molecular Biology and Ecology of Plants; Tel Aviv University; Ramat Aviv, Israel
| | - Daniel A Chamovitz
- Molecular Biology and Ecology of Plants; Tel Aviv University; Ramat Aviv, Israel
- Correspondence to: Daniel A Chamovitz;
| |
Collapse
|
40
|
Li D, Bi FF, Chen NN, Cao JM, Sun WP, Zhou YM, Li CY, Yang Q. A novel crosstalk between BRCA1 and sirtuin 1 in ovarian cancer. Sci Rep 2014; 4:6666. [PMID: 25323003 PMCID: PMC4200400 DOI: 10.1038/srep06666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022] Open
Abstract
BRCA mutations are the main known hereditary factors for ovarian cancer. Notably, emerging evidence has led to considerable interest in the role of sirtuin 1 (SIRT1) in ovarian cancer development. However, dynamic crosstalk between BRCA1 and SIRT1 is poorly understood. Here, we showed that: (i) BRCA1 inactivation events (mutation, promoter methylation, or knockdown) were accompanied by decreased SIRT1 levels and increased nicotinamide adenine dinucleotide (NAD) levels and a subsequent increase in SIRT1 activity; (ii) overexpression of BRCA1 resulted in increased SIRT1 levels, an impairment in NAD synthesis, and a subsequent inhibition of SIRT1 activity; and (iii) intracellular NAD levels were largely responsible for regulating SIRT1 activity, and BRCA1 expression patterns correlated with SIRT1 levels and NAD levels correlated with SIRT1 activity in human ovarian cancer specimens. Interestingly, although BRCA1 inactivation events inhibited SIRT1 expression, they led to a substantial increase in NAD levels that enhanced NAD-related SIRT1 activity. This is a special BRCA1-mediated compensatory mechanism for the maintenance of SIRT1 function. Therefore, these results highlight a novel interaction between BRCA1 and SIRT1, which may be beneficial for the dynamic balance between BRCA1-related biologic processes and SIRT1-related energy metabolism and stress response.
Collapse
Affiliation(s)
- Da Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fang-Fang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Na-Na Chen
- Department of Molecular Immunology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Ji-Min Cao
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wu-Ping Sun
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Yi-Ming Zhou
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Chun-Yan Li
- Department of Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
41
|
BRCA1 mRNA levels following a 4-6-week intervention with oral 3,3'-diindolylmethane. Br J Cancer 2014; 111:1269-74. [PMID: 25025957 PMCID: PMC4183839 DOI: 10.1038/bjc.2014.391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/26/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
Background: Haploinsufficiency may contribute to the development of breast cancer among women with a BRCA1 mutation. Thus, interventions that enhance BRCA1 expression may represent avenues for prevention. Studies have shown that 3,3′-diindolylmethane (DIM) can upregulate BRCA1 expression in breast cancer cells. This has yet to be demonstrated in vivo. Methods: We conducted a study to evaluate the ability of oral DIM to upregulate BRCA1 mRNA expression in white blood cells. A total of 18 women were enroled in the study, including 13 BRCA1 mutation carriers who received 300 mg per day of Rx Balance BioResponse DIM for 4–6 weeks (intervention group) and 5 BRCA1 mutation carriers who did not take DIM (control group). BRCA1 mRNA expression was assessed at baseline and at 4–6 weeks by real-time, quantitative PCR and the relative change in BRCA1 mRNA expression (that is, 2−ΔΔCT) was calculated. Results: The relative change in BRCA1 mRNA expression among women in the intervention group achieved borderline significance (P paired t-test=0.05). In the intervention group, BRCA1 mRNA expression increased in 10 of the participants, decreased in 2 and remained unchanged in 1 of the participants following DIM intervention (P sign test=0.02). On average, women in the intervention group experienced a 34% increase in BRCA1 mRNA expression (range −24 to 194%). There was no significant difference in the relative change in BRCA1 mRNA expression among women in the control group (P paired t-test=0.45). Conclusions: Under the tested conditions, oral DIM was associated with an increase in BRCA1 mRNA expression in women with a BRCA1 mutation. The possibility of mitigating the effect of an inherited deleterious BRCA1 mutation by increasing the physiologic expression of the gene and normalising protein levels represents a clinically important paradigm shift in the prevention strategies available to these high-risk women. Future studies with a larger sample size and higher doses of DIM are warranted.
Collapse
|
42
|
Effects of chemopreventive natural products on non-homologous end-joining DNA double-strand break repair. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 768:33-41. [DOI: 10.1016/j.mrgentox.2014.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 01/12/2023]
|
43
|
Amini S, Fathi F, Mobalegi J, Sofimajidpour H, Ghadimi T. The expressions of stem cell markers: Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3, Dppa4, and Esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines. Anat Cell Biol 2014; 47:1-11. [PMID: 24693477 PMCID: PMC3968261 DOI: 10.5115/acb.2014.47.1.1] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 12/17/2022] Open
Abstract
Uncontrolled self-renewal plays a direct function in the progression of different types of carcinomas. The same molecular pathway that manages self-renewal in normal stem cells also seems to manage cancer stem cells. Here, we examine the expressions of self-renewal regulatory factors Oct4, Nanog, Sox2, nucleostemin, Zfx, Esrrb, Tcl1, Tbx3, and Dppa4 in tissue samples of colon, prostate, and bladder carcinomas as well as cancer cell lines HT-29, Caco-2, HT-1376, LNCaP, and HepG2. We used reverse transcriptase polymerase chain reaction to examine expressions of the above mentioned regulatory factors in cancer cell lines HT-29, Caco-2, HT-1376, LNCaP, and HepG2 and in 20 tumor tissue samples. Total RNA was isolated by the ISOGEN method. RNA integrity was checked by agarose gel electrophoresis and spectrophotometry. Expressions of Oct4 and nucleostemin at the protein level were determined by immunocytochemistry. A significant relationship was found between tumor grade and self-renewal gene expression. Expressions of stem cell specific marker genes were detected in all examined cancer cell lines, in 40% to 100% of bladder cancer samples, and in 60% to 100% of colon and prostate cancer samples. Oct4 expressed in 100% of tumor tissue samples. Our data show that stem cell markers Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Esrrb, Tcl1, Tbx3, and Dppa4 significantly express in cancer cell lines and cancer tissues. Hence, these markers might be useful as potential tumor markers in the diagnosis and/or prognosis of tumors.
Collapse
Affiliation(s)
- Sabrieh Amini
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jafar Mobalegi
- Department of Surgery, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Tayyeb Ghadimi
- Department of Surgery, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
44
|
Li D, Bi FF, Chen NN, Cao JM, Sun WP, Zhou YM, Li CY, Yang Q. A novel crosstalk between BRCA1 and poly (ADP-ribose) polymerase 1 in breast cancer. Cell Cycle 2014; 13:3442-3449. [PMID: 25485588 PMCID: PMC4613991 DOI: 10.4161/15384101.2014.956507] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 11/19/2022] Open
Abstract
BRCA mutations are the main known hereditary factor for breast cancer. Notably, poly (ADP-ribose) polymerase 1 (PARP1) expression status plays a critical role in breast cancer progression and the clinical development of PARP1 inhibitors to treat BRCA-mutated breast cancer has advanced rapidly. However, dynamic crosstalk between BRCA1 and PARP1 remains largely unknown. Here, we showed that: (i) BRCA1 inactivation events (mutation, promoter methylation, or knockdown) were accompanied by increased PARP1 and nicotinamide adenine dinucleotide (NAD) levels, and a subsequent increase in NAD-dependent PARP1 activity in MDA-MB-231 and primary breast cancer cells; (ii) the overexpression of BRCA1 resulted in decreased PARP1 and NAD levels, and a subsequent impairment in NAD-dependent PARP1 activity in MDA-MB-231 and primary breast cancer cells; and (iii) intracellular NAD levels were largely responsible for regulating PARP1 activity in breast cancer cells, and NAD levels were positively correlated with PARP1 activity in human breast cancer specimens (R = 0.647, P < 0.001). Interestingly, the high efficiency of PARP1 triggered by BRCA1 inactivation may further inhibit BRCA1 transcription by NAD depletion. These results highlight a novel interaction between BRCA1 and PARP1, which may be beneficial for the dynamic balance between BRCA1 and PARP1-related biologic processes, especially for maintaining stable DNA repair ability. All of this may improve our understanding of the basic molecular mechanism underlying BRCA1- and PARP1-related breast cancer progression.
Collapse
Key Words
- BRCA1
- CtBP, C-terminal binding proteins
- DMEM, Dulbecco's Modified Eagles Medium
- DNA repair
- ER, endoplasmic reticulum
- ETS1, protein C-ets-1
- NAD
- NAD, nicotinamide adenine dinucleotide
- Nampt, nicotinamide phosphoribosyltransferase
- PARP1
- PARP1, poly (ADP-ribose) polymerase 1
- PCR, polymerase chain reaction
- SD, standard deviations
- TNBC, triple-negative breast cancer
- breast cancer
- shRNAs, short hairpin RNAs
Collapse
Affiliation(s)
- Da Li
- Department of Obstetrics and Gynecology; Shengjing Hospital of China Medical University; Shenyang, China
| | - Fang-Fang Bi
- Department of Obstetrics and Gynecology; Shengjing Hospital of China Medical University; Shenyang, China
| | - Na-Na Chen
- Department of Molecular Immunology; Graduate School of Medicine; Nagoya University; Nagoya, Japan
| | - Ji-Min Cao
- Department of Physiology and Pathophysiology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College; Beijing, China
| | - Wu-Ping Sun
- Division of Cell Signaling; National Institute for Physiological Sciences; Okazaki, Japan
| | - Yi-Ming Zhou
- Division of Cell Signaling; National Institute for Physiological Sciences; Okazaki, Japan
| | - Chun-Yan Li
- Department of Histology and Embryology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College; Beijing, China
| | - Qing Yang
- Department of Obstetrics and Gynecology; Shengjing Hospital of China Medical University; Shenyang, China
| |
Collapse
|
45
|
Ko KP, Kim SW, Ma SH, Park B, Ahn Y, Lee JW, Lee MH, Kang E, Kim LS, Jung Y, Cho YU, Lee B, Lin JH, Park SK. Dietary intake and breast cancer among carriers and noncarriers of BRCA mutations in the Korean Hereditary Breast Cancer Study. Am J Clin Nutr 2013; 98:1493-501. [PMID: 24153343 DOI: 10.3945/ajcn.112.057760] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Soy intake is associated with a lower risk of breast cancer. However, it is unclear whether the same reduction in risk associated with high soy intake is also applicable to familial or genetic breast cancer. OBJECTIVE The aim of this study was to assess the dietary factors among carriers and noncarriers of BRCA mutations in the Korean Hereditary Breast Cancer Study (KOHBRA). DESIGN The KOHBRA Study is an ongoing project composed of affected breast cancer patients and familial members of breast cancer cases with BRCA mutations. To assess the association between dietary diversity and breast cancer risk, an HR was estimated by comparing affected subjects with their familial nonaffected members. To assess the interaction between the combination of BRCA mutation and diet diversity, the case-only OR (COR) was estimated by comparing BRCA mutation carriers and noncarriers only in affected subjects. RESULTS Soy product intake was associated with a lower risk of breast cancer in carriers (HR: 0.39; 95% CI: 0.19, 0.79 for the highest quartile). The highest quartile of meat intake was associated with a higher risk of breast cancer regardless of BRCA mutation in carriers (HR: 1.97; 95% CI: 1.13, 3.44) and noncarriers (95% CI: 1.41; 1.12, 1.78). The associations of meat intake and soybean intake for breast cancer were more prominent in BRCA2 mutation carriers. In the analysis with only cases, the highest quartile of soy intake, but not meat intake, was associated with BRCA-related breast cancer (COR: 0.57; 95% CI: 0.36, 0.91). CONCLUSION Our study suggests that soy product consumption is associated with lower breast cancer risk and it had an interaction with BRCA mutation.
Collapse
Affiliation(s)
- Kwang-Pil Ko
- Department of Preventive Medicine, Gachon University of Medicine and Science, Incheon, Korea (K-PK); the Department of Surgery, Breast and Endocrine Service, Seoul National University Bundang Hospital, Gyeonggi-do, Korea (S-WK and EK); the Departments of Preventive Medicine (SHM and SKP) and Biomedical Science (SKP), Seoul National University College of Medicine, Seoul, Korea; the Cancer Research Institute, Seoul National University, Seoul, Korea (SHM and SKP); the Cancer Policy Branch, National Cancer Control Institute, National Cancer Center, Gyeonggi-do, Korea (BP); the Division of Epidemiology and Health Index, Center for Genome Science, Korea Centers for Disease Control & Prevention, Chungcheongbuk-do, Korea (YA); the Department of Surgery, College of Medicine, University of Ulsan and Asan Medical Center, Seoul, Korea (JWL); the Department of Surgery, College of Medicine, Soonchunhyang University, Seoul, Korea (MHL); the Department of Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea (LSK); the Department of Surgery, Ajou University School of Medicine, Suwon, Korea (YJ); the Department of Surgery, Inha University Hospital, Incheon, Korea (YUC); the Department of Surgery, Chonbuk National University Medical School, Jeonju, Korea (BL); and the Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (JHL)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ouhtit A, Gaur RL, Abdraboh M, Ireland SK, Rao PN, Raj SG, Al-Riyami H, Shanmuganathan S, Gupta I, Murthy SN, Hollenbach A, Raj MHG. Simultaneous inhibition of cell-cycle, proliferation, survival, metastatic pathways and induction of apoptosis in breast cancer cells by a phytochemical super-cocktail: genes that underpin its mode of action. J Cancer 2013; 4:703-15. [PMID: 24312140 PMCID: PMC3842439 DOI: 10.7150/jca.7235] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022] Open
Abstract
Traditional chemotherapy and radiotherapy for cancer treatment face serious challenges such as drug resistance and toxic side effects. Complementary / Alternative medicine is increasingly being practiced worldwide due to its safety beneficial therapeutic effects. We hypothesized that a super combination (SC) of known phytochemicals used at bioavailable levels could induce 100% killing of breast cancer (BC) cells without toxic effects on normal cells and that microarray analysis would identify potential genes for targeted therapy of BC. Mesenchymal Stems cells (MSC, control) and two BC cell lines were treated with six well established pro-apoptotic phytochemicals individually and in combination (super cocktail), at bioavailable levels. The compounds were ineffective individually. In combination, they significantly suppressed BC cell proliferation (>80%), inhibited migration and invasion, caused cell cycle arrest and induced apoptosis resulting in 100% cell death. However, there were no deleterious effects on MSC cells used as control. Furthermore, the SC down-regulated the expression of PCNA, Rb, CDK4, BcL-2, SVV, and CD44 (metastasis inducing stem cell factor) in the BC cell lines. Microarray analysis revealed several differentially expressed key genes (PCNA, Rb, CDK4, Bcl-2, SVV, P53 and CD44) underpinning SC-promoted BC cell death and motility. Four unique genes were highly up-regulated (ARC, GADD45B, MYLIP and CDKN1C). This investigation indicates the potential for development of a highly effective phytochemical combination for breast cancer chemoprevention / chemotherapy. The novel over-expressed genes hold the potential for development as markers to follow efficacy of therapy.
Collapse
Affiliation(s)
- Allal Ouhtit
- 1. Stanley S Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana
- 2. Present address: Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Rajiv Lochan Gaur
- 1. Stanley S Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana
- 3. Present address: Department of Pathology, Stanford University, California
| | - Mohamed Abdraboh
- 1. Stanley S Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana
- 4. Present address: Faculty of Science, University of Mansora, Egypt
| | - Shubha K. Ireland
- 5. Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - Prakash N Rao
- 6. New Jersey Organ and Tissue Sharing Network, New Jersey
| | | | - Hamad Al-Riyami
- 2. Present address: Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Somya Shanmuganathan
- 2. Present address: Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Ishita Gupta
- 2. Present address: Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Subramanyam N Murthy
- 8. Departnent of Environmental Toxicology, Southern University and A & M College, Baton Rouge, Louisiana
| | - Andrew Hollenbach
- 9. Department of Genetics, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Madhwa HG Raj
- 1. Stanley S Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana
- 10. Department of Obstetrics & Gynecology, Louisiana Health Sciences Center
| |
Collapse
|
47
|
Middleton RP, Nelson R, Li Q, Blanton A, Labuda JA, Vitt J, Inpanbutr N. 1,25-Dihydroxyvitamin D3and its analogues increase catalase at the mRNA, protein and activity level in a canine transitional carcinoma cell line. Vet Comp Oncol 2013; 13:452-63. [DOI: 10.1111/vco.12066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - R. Nelson
- Nestlé Purina Research; St. Louis MO 63164 USA
| | - Q. Li
- Nestlé Purina Research; St. Louis MO 63164 USA
| | - A. Blanton
- Department of Veterinary Biosciences; The Ohio State University; Columbus OH 43210 USA
| | | | - J. Vitt
- Department of Veterinary Biosciences; The Ohio State University; Columbus OH 43210 USA
| | - N. Inpanbutr
- Department of Veterinary Biosciences; The Ohio State University; Columbus OH 43210 USA
| |
Collapse
|
48
|
Lelièvre SA, Weaver CM. Global nutrition research: nutrition and breast cancer prevention as a model. Nutr Rev 2013; 71:742-52. [PMID: 24447199 PMCID: PMC3901298 DOI: 10.1111/nure.12075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The gene-environment interaction is paramount in light of the worldwide rise in incidence of chronic diseases, with cancers in the pole position. Diet is an environmental factor with potential to influence cancer onset by shaping the epigenome (i.e., the genome organization that controls the differential expression of genes). Yet, there is no consensus regarding how diet might help prevent breast cancer, the second most frequent malignancy globally. The complexity of breast cancers requires working on a global and multidisciplinary scale to further understand the relationship between breast cancer type, diet, and the epigenome. This article describes the International Breast Cancer & Nutrition collaboration as one such approach. A global endeavor brings the diversity necessary to pinpoint important diet-gene relationships. Being developed are models, detection and assessment tools, and funding and public policy frameworks necessary to advance primary prevention research for the benefit of all populations affected by breast cancer. This paradigm can be adapted to understanding diet-gene relationships for other chronic diseases.
Collapse
Affiliation(s)
- Sophie A. Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Women’s Global Health Institute, Purdue University, West Lafayette, IN, 47907, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Connie M. Weaver
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Women’s Global Health Institute, Purdue University, West Lafayette, IN, 47907, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
49
|
DIM (3,3'-diindolylmethane) confers protection against ionizing radiation by a unique mechanism. Proc Natl Acad Sci U S A 2013; 110:18650-5. [PMID: 24127581 DOI: 10.1073/pnas.1308206110] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DIM (3,3'-diindolylmethane), a small molecule compound, is a proposed cancer preventive agent that can be safely administered to humans in repeated doses. We report that administration of DIM in a multidose schedule protected rodents against lethal doses of total body irradiation up to 13 Gy, whether DIM dosing was initiated before or up to 24 h after radiation. Physiologic submicromolar concentrations of DIM protected cultured cells against radiation by a unique mechanism: DIM caused rapid activation of ataxia-telangiectasia mutated (ATM), a nuclear kinase that regulates responses to DNA damage (DDR) and oxidative stress. Subsequently, multiple ATM substrates were phosphorylated, suggesting that DIM induces an ATM-dependent DDR-like response, and DIM enhanced radiation-induced ATM signaling and NF-κB activation. DIM also caused activation of ATM in rodent tissues. Activation of ATM by DIM may be due, in part, to inhibition of protein phosphatase 2A, an upstream regulator of ATM. In contrast, DIM did not protect human breast cancer xenograft tumors against radiation under the conditions tested. In tumors, ATM was constitutively phosphorylated and was not further stimulated by radiation and/or DIM. Our findings suggest that DIM is a potent radioprotector and mitigator that functions by stimulating an ATM-driven DDR-like response and NF-κB survival signaling.
Collapse
|
50
|
Nachtergael A, Charles C, Spanoghe M, Gadenne M, Belayew A, Duez P. Measurement of translesion synthesis by fluorescent capillary electrophoresis: 7,8-dihydro-8-oxodeoxyguanosine bypass modulation by natural products. Anal Biochem 2013; 440:23-31. [PMID: 23711721 DOI: 10.1016/j.ab.2013.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 01/20/2023]
Abstract
Translesion synthesis (TLS) relies on a series of specialized DNA polymerases able to insert a base either correctly or incorrectly opposite a lesion on a DNA template strand during replication or post-repair synthesis. To measure the correct or mutagenic outcome of 7,8-dihydro-8-oxodeoxyguanosine (8-oxodG) bypass by TLS DNA polymerases, a capillary electrophoresis (CE) method with fluorescent label has been developed. Two oligonucleotides were designed and hybridized: (i) a 72-mer oligonucleotide framing one 8-oxodG at position 40 and (ii) the 39-mer oligonucleotide complementary to the first strand from the 3' end to the lesion and labeled at the 5' end with a fluorochrome. After incubation with FHs 74 Int human intestinal epithelial cell nuclear proteins, in the presence of either deoxyadenosine triphosphate (dATP) or deoxycytidine triphosphate (dCTP), and denaturation, the resulting elongated oligomers were analyzed by fluorescent capillary electrophoresis. This primer extension assay was then validated in terms of linearity (linear range=0.5-2.5 nM), detectability (limits of detection and quantification=0.023 and 0.091 nM, respectively), and precision (total precisions=8.1% and 3.7% for dATP and dCTP, respectively, n=9). The addition of some natural phytochemicals to the reaction mix significantly influences the outcome of TLS either in an error-free way or in a mutagenic way.
Collapse
Affiliation(s)
- Amandine Nachtergael
- Laboratory of Therapeutic Chemistry and Pharmacognosy, Research Institute for Health Sciences and Technology, Université de Mons (UMONS), 7000 Mons, Belgium.
| | | | | | | | | | | |
Collapse
|