1
|
Yan W, Zhou Y, Yuan X, Bai P, Tang M, Chen L, Wei H, Yang J. The cytotoxic natural compound erianin binds to colchicine site of β-tubulin and overcomes taxane resistance. Bioorg Chem 2024; 150:107569. [PMID: 38905886 DOI: 10.1016/j.bioorg.2024.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Erianin, a natural compound derived from Dendrobium, has shown significant anticancer properties against a wide range of cancer cells. Despite the identification of multiple mechanisms of action for erianin, none of these mechanisms fully account for its broad-spectrum effect. In this study, we aimed to identify the cellular target and underlying mechanism responsible for the broad-spectrum antitumor effects of erianin. We found that erianin effectively inhibited tubulin polymerization in cancer cells and purified tubulin. Through competition binding assays and X-ray crystallography, it was revealed that erianin bound to the colchicine site of β-tubulin. Importantly, the X-ray crystal structure of the tubulin-erianin complex was solved, providing clear insight into the orientation and position of erianin in the colchicine-binding site. Erianin showed activity against paclitaxel-resistant cells, evidenced by G2/M cell cycle arrest, apoptosis-related PARP and Caspase-3 cleavage, and in vivo xenograft studies. The study concluded that erianin bound reversibly to the colchicine site of β-tubulin, inhibited tubulin polymerization, and displayed anticancer activity against paclitaxel-resistant cells, offering valuable insights for further exploration as potential anticancer agents.
Collapse
Affiliation(s)
- Wei Yan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yongzhao Zhou
- Integrated Care Management Center, West China Hospital, Sichuan University, China.
| | - Xue Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Peng Bai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoche Wei
- Department of General Surgery, Gastric Cancer Center, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Jianhong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Martin-Caraballo M. Regulation of Molecular Biomarkers Associated with the Progression of Prostate Cancer. Int J Mol Sci 2024; 25:4171. [PMID: 38673756 PMCID: PMC11050209 DOI: 10.3390/ijms25084171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Androgen receptor signaling regulates the normal and pathological growth of the prostate. In particular, the growth and survival of prostate cancer cells is initially dependent on androgen receptor signaling. Exposure to androgen deprivation therapy leads to the development of castration-resistant prostate cancer. There is a multitude of molecular and cellular changes that occur in prostate tumor cells, including the expression of neuroendocrine features and various biomarkers, which promotes the switch of cancer cells to androgen-independent growth. These biomarkers include transcription factors (TP53, REST, BRN2, INSM1, c-Myc), signaling molecules (PTEN, Aurora kinases, retinoblastoma tumor suppressor, calcium-binding proteins), and receptors (glucocorticoid, androgen receptor-variant 7), among others. It is believed that genetic modifications, therapeutic treatments, and changes in the tumor microenvironment are contributing factors to the progression of prostate cancers with significant heterogeneity in their phenotypic characteristics. However, it is not well understood how these phenotypic characteristics and molecular modifications arise under specific treatment conditions. In this work, we summarize some of the most important molecular changes associated with the progression of prostate cancers and we describe some of the factors involved in these cellular processes.
Collapse
Affiliation(s)
- Miguel Martin-Caraballo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
3
|
Feng K, Liu C, Wang W, Kong P, Tao Z, Liu W. Emerging proteins involved in castration‑resistant prostate cancer via the AR‑dependent and AR‑independent pathways (Review). Int J Oncol 2023; 63:127. [PMID: 37732538 PMCID: PMC10609492 DOI: 10.3892/ijo.2023.5575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Despite achieving optimal initial responses to androgen deprivation therapy, most patients with prostate cancer eventually progress to a poor prognosis state known as castration‑resistant prostate cancer (CRPC). Currently, there is a notable absence of reliable early warning biomarkers and effective treatment strategies for these patients. Although androgen receptor (AR)‑independent pathways have been discovered and acknowledged in recent years, the AR signaling pathway continues to play a pivotal role in the progression of CRPC. The present review focuses on newly identified proteins within human CRPC tissues. These proteins encompass both those involved in AR‑dependent and AR‑independent pathways. Specifically, the present review provides an in‑depth summary and analysis of the emerging proteins within AR bypass pathways. Furthermore, the significance of these proteins as potential biomarkers and therapeutic targets for treating CRPC is discussed. Therefore, the present review offers valuable theoretical insights and clinical perspectives to comprehensively enhance the understanding of CRPC.
Collapse
Affiliation(s)
- Kangle Feng
- Department of Blood Transfusion, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, P.R. China
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chunhua Liu
- Department of Blood Transfusion, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weixi Wang
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Piaoping Kong
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhihua Tao
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weiwei Liu
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
4
|
Coelho MP, Duarte P, Calado M, Almeida AJ, Reis CP, Gaspar MM. The current role of cannabis and cannabinoids in health: A comprehensive review of their therapeutic potential. Life Sci 2023; 329:121838. [PMID: 37290668 DOI: 10.1016/j.lfs.2023.121838] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
There has been an increased interest of the scientific community in cannabis and its constituents for therapeutic purposes. Although it is believed that cannabinoids can be effective for a few different conditions and syndromes, there are little objective data that clearly support the use of cannabis, cannabis extracts or even cannabidiol (CBD) oil. This review aims to explore the therapeutic potential of phytocannabinoids and synthetic cannabinoids for the treatment of several diseases. A broad search covering the past five years, was performed in PubMed and ClinicalTrial.gov databases, to identify papers focusing on the use of medical phytocannabinoids in terms of tolerability, efficacy and safety. Accordingly, there are preclinical data supporting the use of phytocannabinoids and synthetic cannabinoids for the management of neurological pathologies, acute and chronical pain, cancer, psychiatric disorders and chemotherapy-induced emetic symptoms. However, regarding the clinical trials, most of the collected data do not fully support the use of cannabinoids in the treatment of such conditions. Consequently, more studies are still needed to clarify ascertain if the use of these compounds is useful in the management of different pathologies.
Collapse
Affiliation(s)
- Mariana Pinto Coelho
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Patrícia Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Calado
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - António J Almeida
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Pinto Reis
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1649-016 Lisboa, Portugal.
| | - M Manuela Gaspar
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
5
|
Cai M, Song XL, Li XA, Chen M, Guo J, Yang DH, Chen Z, Zhao SC. Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug Resist Updat 2023; 68:100962. [PMID: 37068396 DOI: 10.1016/j.drup.2023.100962] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/06/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Castration-resistant prostate cancer (CRPC), especially metastatic castration-resistant prostate cancer (mCRPC) is one of the most prevalent malignancies and main cause of cancer-related death among men in the world. In addition, it is very difficult for clinical treatment because of the natural or acquired drug resistance of CRPC. Mechanisms of drug resistance are extremely complicated and how to overcome it remains an urgent clinical problem to be solved. Thus, a comprehensive and thorough understanding for mechanisms of drug resistance in mCRPC is indispensable to develop novel and better therapeutic strategies. In this review, we aim to review new insight of the treatment of mCRPC and elucidate mechanisms governing resistance to new drugs: taxanes, androgen receptor signaling inhibitors (ARSIs) and poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi). Most importantly, in order to improve efficacy of these drugs, strategies of overcoming drug resistance are also discussed based on their mechanisms respectively.
Collapse
Affiliation(s)
- Maoping Cai
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, PR China; The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong, PR China; Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, Guangdong, PR China
| | - Xian-Lu Song
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, PR China
| | - Xin-An Li
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, PR China
| | - Mingkun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, PR China; The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong, PR China; Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jiading Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, PR China; The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong, PR China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola 11501, NY, USA.
| | - Zhanghui Chen
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, Guangdong, PR China.
| | - Shan-Chao Zhao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, PR China; The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong, PR China; Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
6
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
7
|
Scherbakov AM, Basharina AA, Sorokin DV, Mikhaevich EI, Mizaeva IE, Mikhaylova AL, Bogush TA, Krasil’nikov MA. Targeting hormone-resistant breast cancer cells with docetaxel: a look inside the resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:103-115. [PMID: 37065867 PMCID: PMC10099602 DOI: 10.20517/cdr.2022.96] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 04/18/2023]
Abstract
Aim: The study aims to analyze the effect of long-term incubation of ERα-positive MCF7 breast cancer cells with 4-hydroxytamoxifen (HT) on their sensitivity to tubulin polymerization inhibitor docetaxel. Methods: The analysis of cell viability was performed by the MTT method. The expression of signaling proteins was analyzed by immunoblotting and flow cytometry. ERα activity was evaluated by gene reporter assay. To establish hormone-resistant subline MCF7, breast cancer cells were treated with 4-hydroxytamoxifen for 12 months. Results: The developed MCF7/HT subline has lost sensitivity to 4-hydroxytamoxifen, and the resistance index was 2. Increased Akt activity (2.2-fold) and decreased ERα expression (1.5-fold) were revealed in MCF7/HT cells. The activity of the estrogen receptor α was reduced (1.5-fold) in MCF7/HT. Evaluation of class III β-tubulin expression (TUBB3), a marker associated with metastasis, revealed the following trends: higher expression of TUBB3 was detected in triple-negative breast cancer MDA-MB-231 cells compared to hormone-responsive MCF7 cells (P < 0.05). The lowest expression of TUBB3 was found in hormone-resistant MCF7/HT cells (MCF7/HT < MCF7 < MDA-MB-231, approximately 1:2:4). High TUBB3 expression strongly correlated with docetaxel resistance: IC50 value of docetaxel for MDA-MB-231 cells was greater than that for MCF7 cells, whereas resistant MCF7/HT cells were the most sensitive to the drug. The accumulation of cleaved PARP (a 1.6-fold increase) and Bcl-2 downregulation (1.8-fold) were more pronounced in docetaxel-treated resistant cells (P < 0.05). The expression of cyclin D1 decreased (2.8-fold) only in resistant cells after 4 nM docetaxel treatment, while this marker was unchanged in parental MCF7 breast cancer cells. Conclusion: Further development of taxane-based chemotherapy for hormone-resistant cancer looks highly promising, especially for cancers with low TUBB3 expression.
Collapse
Affiliation(s)
- Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
- Correspondence to: Dr. Alexander M. Scherbakov, Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, Moscow 115522, Russia. E-mail:
| | - Anna A. Basharina
- Group of Molecular Tumor Markers, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Ekaterina I. Mikhaevich
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Iman E. Mizaeva
- Group of Molecular Tumor Markers, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Alexandra L. Mikhaylova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Tatiana A. Bogush
- Group of Molecular Tumor Markers, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Mikhail A. Krasil’nikov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| |
Collapse
|
8
|
IL-6 evoked biochemical changes in prostate cancer cells. Cytokine 2023; 161:156079. [PMID: 36372008 DOI: 10.1016/j.cyto.2022.156079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
The pro-inflammatory cytokine IL-6 has been associated with the progression of PCa to a castration-resistant phenotype. In this work, we characterized the biochemical changes evoked by IL-6 in three different models of PCa cells, including LNCaP, C4-2, and PC3. The effect of IL-6 on PCa cells was compared with the effect obtained by co-stimulation with the cAMP-inducing agent forskolin (FSK). Stimulation of LNCaP cells with IL-6 or IL-6 + FSK evoked increased expression of the neuroendocrine marker tubulin IIIβ and Cav3.2 T-type Ca2+ channel subunit. PC3 cells, representing a more advanced state of PCa, had high levels of tubulin IIIβ expression without any further changes observed by treatment with IL-6 or IL-6 + FSK. Elevated expression of the glucocorticoid receptor was observed in PC3, but not in LNCaP or C4-2 cells. Glucocorticoid receptor expression was not regulated by IL-6 stimulation of LNCaP or C4-2 cells. IL-6 acting alone or together with FSK evoked a significant reduction in the expression of the transcription factor REST and retinoblastoma tumor suppressor protein Rb1. In LNCaP cells, IL-6 acting alone or together with FSK had no effect on the expression of several biological markers of advanced PCa, including Aurora kinase A, valosin-containing protein, calcium-sensing receptor, calreticulin, S100A protein, and Protein S. In PC3 cells, co-treatment with IL-6 + FSK evoked increased expression of REST and S100A proteins, as well as a reduction in Protein S levels. These findings reveal a complex pattern of biochemical changes in PCa cells under the influence of IL-6.
Collapse
|
9
|
Moreira-Silva F, Henrique R, Jerónimo C. From Therapy Resistance to Targeted Therapies in Prostate Cancer. Front Oncol 2022; 12:877379. [PMID: 35686097 PMCID: PMC9170957 DOI: 10.3389/fonc.2022.877379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy among men worldwide. Although early-stage disease is curable, advanced stage PCa is mostly incurable and eventually becomes resistant to standard therapeutic options. Different genetic and epigenetic alterations are associated with the development of therapy resistant PCa, with specific players being particularly involved in this process. Therefore, identification and targeting of these molecules with selective inhibitors might result in anti-tumoral effects. Herein, we describe the mechanisms underlying therapy resistance in PCa, focusing on the most relevant molecules, aiming to enlighten the current state of targeted therapies in PCa. We suggest that selective drug targeting, either alone or in combination with standard treatment options, might improve therapeutic sensitivity of resistant PCa. Moreover, an individualized analysis of tumor biology in each PCa patient might improve treatment selection and therapeutic response, enabling better disease management.
Collapse
Affiliation(s)
- Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
10
|
Alfano A, Xu J, Yang X, Deshmukh D, Qiu Y. SRC Kinase-Mediated Tyrosine Phosphorylation of TUBB3 Regulates Its Stability and Mitotic Spindle Dynamics in Prostate Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14050932. [PMID: 35631517 PMCID: PMC9146564 DOI: 10.3390/pharmaceutics14050932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Tubulin is an integral part of the cytoskeleton and plays a pivotal role in cellular signaling, maintenance, and division. β-tubulin is also the molecular target for taxane compounds such as docetaxel (DTX) and cabazitaxel (CTX), both first-line treatments for several solid cancers. Increased expression of Class III β-tubulin (TUBB3), a primarily neural isoform of β-tubulin, correlates with taxane resistance and poor prognosis. Although tyrosine kinase c-Src has been implicated to phosphorylate β-tubulins during both hematopoietic and neural differentiation, the mechanisms by which Src modulates tubulins functions are still poorly understood. Here, we report, for the first time, that TUBB3 is phosphorylated at Tyrosine 340 (Y340) by c-SRC in prostate cancer cells. We also showed that Y340 phosphorylation regulates TUBB3 protein stability and subcellular localization. Furthermore, we demonstrated that inhibition of SRC kinase activity compromises spindle stability in mitotic cells, at least partly due to the lack of TUBB3 Y340 phosphorylation. Given the importance of TUBB3 as a clinical biomarker of poor prognosis and drug resistance, characterization of TUBB3 posttranslational regulation could potentially serve as new biomarkers for disease recurrence and/or treatment failure.
Collapse
Affiliation(s)
- Alan Alfano
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.); (J.X.); (X.Y.); (D.D.)
| | - Jin Xu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.); (J.X.); (X.Y.); (D.D.)
| | - Xi Yang
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.); (J.X.); (X.Y.); (D.D.)
| | - Dhanraj Deshmukh
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.); (J.X.); (X.Y.); (D.D.)
| | - Yun Qiu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.); (J.X.); (X.Y.); (D.D.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
11
|
Kato A, Naitoh I, Naiki-Ito A, Hayashi K, Okumura F, Fujita Y, Sano H, Nishi Y, Miyabe K, Inoue T, Hirano A, Takada H, Yoshida M, Hori Y, Natsume M, Kato H, Takahashi S, Kataoka H. Class III β-Tubulin Expression Is of Value in Selecting nab -Paclitaxel and Gemcitabine as First-Line Therapy in Unresectable Pancreatic Cancer. Pancreas 2022; 51:372-379. [PMID: 35695793 DOI: 10.1097/mpa.0000000000002032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Nab -paclitaxel and gemcitabine (GnP) or FOLFIRINOX (a combination of leucovorin, fluorouracil, irinotecan, and oxaliplatin [FFX]) is currently recognized as the standard first-line regimen for unresectable pancreatic ductal adenocarcinoma (PDAC). Class III β-tubulin (TUBB3) has the potential to predict resistance to taxane in various tumors; therefore, this study aimed to clarify whether TUBB3 is a predictive marker for GnP response. METHODS We retrospectively reviewed 113 patients with PDAC who received GnP or FFX as first-line chemotherapy and examined immunohistochemically the TUBB3 expression in specimens obtained by endoscopic ultrasound-guided fine-needle aspiration. RESULTS High TUBB3 expression was associated with a significantly lower disease control rate ( P = 0.017) and shorter progression-free survival (PFS) ( P = 0.019), and multivariate analysis revealed that TUBB3 expression was an independent variable for PFS in the GnP first-line group ( P = 0.045). In addition, in the FFX first-line group, TUBB3 expression was not correlated with PFS or overall survival (OS). In all 113 patients, TUBB3 expression was not also associated with OS. CONCLUSIONS Class III β-tubulin might be a predictive factor for the response of GnP, but not a prognostic factor for OS, helping the selection of an optimized first-line chemotherapy regimen for unresectable PDAC.
Collapse
Affiliation(s)
- Akihisa Kato
- From the Departments of Gastroenterology and Metabolism
| | - Itaru Naitoh
- From the Departments of Gastroenterology and Metabolism
| | - Aya Naiki-Ito
- Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | | | - Fumihiro Okumura
- Department of Gastroenterology, Gifu Prefectural Tajimi Hospital, Tajimi
| | - Yasuaki Fujita
- Department of Gastroenterology, Gifu Prefectural Tajimi Hospital, Tajimi
| | - Hitoshi Sano
- Department of Gastroenterology, Toyokawa City Hospital, Toyokawa
| | - Yuji Nishi
- Department of Gastroenterology, Toyokawa City Hospital, Toyokawa
| | - Katsuyuki Miyabe
- Department of Gastroenterology, Nagoya Daini Red Cross Hospital, Nagoya
| | - Tadahisa Inoue
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute
| | - Atsuyuki Hirano
- Department of Gastroenterology, Nagoya City West Medical Center, Nagoya
| | - Hiroki Takada
- Department of Gastroenterology, Kasugai Municipal Hospital, Kasugai, Japan
| | | | - Yasuki Hori
- From the Departments of Gastroenterology and Metabolism
| | | | - Hiroyuki Kato
- Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Satoru Takahashi
- Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | | |
Collapse
|
12
|
Lai YL, Liu CH, Wang SC, Huang SP, Cho YC, Bao BY, Su CC, Yeh HC, Lee CH, Teng PC, Chuu CP, Chen DN, Li CY, Cheng WC. Identification of a Steroid Hormone-Associated Gene Signature Predicting the Prognosis of Prostate Cancer through an Integrative Bioinformatics Analysis. Cancers (Basel) 2022; 14:cancers14061565. [PMID: 35326723 PMCID: PMC8946240 DOI: 10.3390/cancers14061565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Prostate cancer (PC) is the second most common cancer worldwide and steroid hormone plays an important role in prostate carcinogenesis. Most patients with PC are initially sensitive to androgen deprivation therapy (ADT) but eventually become hormone refractory and reflect disease progression. The aim of the study was to investigate the genes which regulate the steroid hormone functional pathways and associate with the disease progression of PC. We identified a panel of eight-gene signatures that modulated steroid-hormone pathways and predicted the prognosis of PC using integrative bioinformatics analysis of multiple datasets validated from external cohorts. This panel could be used for predicting the prognosis of PC patients and might be associated with the drug response of hormonal therapies. Moreover, these genes in the signature could be potential targets to develop a novel treatment for castration-resistant PC therapy. Abstract The importance of anti-androgen therapy for prostate cancer (PC) has been well recognized. However, the mechanisms underlying prostate cancer resistance to anti-androgens are not completely understood. Therefore, identifying pharmacological targets in driving the development of castration-resistant PC is necessary. In the present study, we sought to identify core genes in regulating steroid hormone pathways and associating them with the disease progression of PC. The selection of steroid hormone-associated genes was identified from functional databases, including gene ontology, KEGG, and Reactome. The gene expression profiles and relevant clinical information of patients with PC were obtained from TCGA and used to examine the genes associated with steroid hormone. The machine-learning algorithm was performed for key feature selection and signature construction. With the integrative bioinformatics analysis, an eight-gene signature, including CA2, CYP2E1, HSD17B, SSTR3, SULT1E1, TUBB3, UCN, and UGT2B7 was established. Patients with higher expression of this gene signature had worse progression-free interval in both univariate and multivariate cox models adjusted for clinical variables. The expression of the gene signatures also showed the aggressiveness consistently in two external cohorts, PCS and PAM50. Our findings demonstrated a validated eight-gene signature could successfully predict PC prognosis and regulate the steroid hormone pathway.
Collapse
Affiliation(s)
- Yo-Liang Lai
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40403, Taiwan;
- Department of Radiation Oncology, China Medical University Hospital, Taichung 40403, Taiwan
| | - Chia-Hsin Liu
- Research Center for Cancer Biology, China Medical University, Taichung 40403, Taiwan; (C.-H.L.); (Y.-C.C.)
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Shu-Pin Huang
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-P.H.); (H.-C.Y.)
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chun Cho
- Research Center for Cancer Biology, China Medical University, Taichung 40403, Taiwan; (C.-H.L.); (Y.-C.C.)
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 40403, Taiwan;
| | - Chia-Cheng Su
- Department of Surgery, Division of Urology, Chi-Mei Medical Center, Tainan 71004, Taiwan;
| | - Hsin-Chih Yeh
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-P.H.); (H.-C.Y.)
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Pai-Chi Teng
- Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 350401, Taiwan;
| | - Deng-Neng Chen
- Department Management Information Systems, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Correspondence: (C.-Y.L.); (W.-C.C.)
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40403, Taiwan;
- Department of Radiation Oncology, China Medical University Hospital, Taichung 40403, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia, Sinica 40403, Taiwan
- Correspondence: (C.-Y.L.); (W.-C.C.)
| |
Collapse
|
13
|
Bell CJ, Potts KG, Hitt MM, Pink D, Tuszynski JA, Lewis JD. Novel colchicine derivative CR42-24 demonstrates potent anti-tumor activity in urothelial carcinoma. Cancer Lett 2022; 526:168-179. [PMID: 34838691 DOI: 10.1016/j.canlet.2021.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Bladder cancers, and specifically urothelial carcinoma, have few effective treatment options, and tumors typically develop resistance against standard of care chemotherapies leading to significant mortality. The development of alternative therapies with increased selectivity and improved tolerability would significantly impact this patient population. Here, we investigate a novel colchicine derivative, CR42-24, with increased selectivity for the βIII tubulin subtype as a treatment for urothelial carcinoma. βIII tubulin is a promising target due to its low expression in healthy tissues and its clinical association with poor prognosis. This study demonstrated that CR42-24 is selectively cytotoxic to several cancer cell lines at low nanomolar IC50, with high activity in bladder cancer cell lines both in vitro and in vivo. CR42-24 monotherapy in an aggressive urothelial carcinoma xenograft model results in effective control when treated early. We observed significant ablation of large tumors and patient-derived xenografts at low doses with excellent tolerability. CR42-24 was highly synergistic in combination with the standard of care chemotherapies gemcitabine and cisplatin, further increasing its therapeutic potential as a novel treatment for urothelial carcinoma.
Collapse
Affiliation(s)
- Clayton J Bell
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Kyle G Potts
- Department Microbiology, Immunology & Infectious Diseases, Alberta Children's Hospital Research Institute, T2N-4N1, Canada
| | - Mary M Hitt
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Desmond Pink
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
14
|
Ge Z, Gu T, Zhang L, Fan Q, Ma L, Fang N. The phosphatase of regenerating liver-3 protein(PRL-3)promotes glioma cell invasiveness by interacting with β3 -tubulin. Bioengineered 2022; 13:4112-4121. [PMID: 35098869 PMCID: PMC8973939 DOI: 10.1080/21655979.2021.2001220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
PRL-3 is a tyrosine phosphatase linked with tumor metastasis. It is detected high expression in different kinds of cancers, including colorectal, gastric, ovarian, and liver cancer. Its high expression is positively correlated with the progression of tumors and negatively with survivals of patients. However, the detailed mechanism underlying PRL-3 in tumor metastasis still remains unclear. In the present study, we found that PRL-3 is able to bind to β3-tubulin in pull-down and co-immunoprecipitation assays. Furthermore, overexpression of PRL-3 dephosphorylated β3-tubulin, a component of cytoskeleton, which plays critical role in cell shape formation and migration. Using cell wound healing and matrigel invasion assays, we found that PRL-3 could promote the migration and invasion of glioma cells. Taken together, our study revealed that PRL-3 may be involved in migration and invasion of glioma by dephosphorylating β3-tubulin. It is tempting to speculate that dephosphorylation of β3-tubulin by PRL-3 results in assembly of the cytoskeleton and facilitates cell migration and/or tumor metastasis.
Collapse
Affiliation(s)
- Zhenying Ge
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng Science & Technology Bureau, Kaifeng, China
| | - Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, China
| | - Lingge Zhang
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng Science & Technology Bureau, Kaifeng, China
| | - Qingfang Fan
- Xinxiang Central Hospital, No.56, Jinsui Road, Xinxiang, China
| | - Li Ma
- Department of Infectious Diseases, Henan Provincial People's Hospital, Henan University, Zhengzhou China
| | - Na Fang
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng Science & Technology Bureau, Kaifeng, China
| |
Collapse
|
15
|
Dharmapal D, Jyothy A, Mohan A, Balagopal PG, George NA, Sebastian P, Maliekal TT, Sengupta S. β-Tubulin Isotype, TUBB4B, Regulates The Maintenance of Cancer Stem Cells. Front Oncol 2021; 11:788024. [PMID: 35004310 PMCID: PMC8733585 DOI: 10.3389/fonc.2021.788024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advancements in cancer research have shown that cancer stem cell (CSC) niche is a crucial factor modulating tumor progression and treatment outcomes. It sustains CSCs by orchestrated regulation of several cytokines, growth factors, and signaling pathways. Although the features defining adult stem cell niches are well-explored, the CSC niche is poorly characterized. Since membrane trafficking proteins have been shown to be essential for the localization of critical proteins supporting CSCs, we investigated the role of TUBB4B, a probable membrane trafficking protein that was found to be overexpressed in the membranes of stem cell enriched cultures, in sustaining CSCs in oral cancer. Here, we show that the knockdown of TUBB4B downregulates the expression of pluripotency markers, depletes ALDH1A1+ population, decreases in vitro sphere formation, and diminishes the tumor initiation potential in vivo. As TUBB4B is not known to have any role in transcriptional regulation nor cell signaling, we suspected that its membrane trafficking function plays a role in constituting a CSC niche. The pattern of its expression in tissue sections, forming a gradient in and around the CSCs, reinforced the notion. Later, we explored its possible cooperation with a signaling protein, Ephrin-B1, the abrogation of which reduces the self-renewal of oral cancer stem cells. Expression and survival analyses based on the TCGA dataset of head and neck squamous cell carcinoma (HNSCC) samples indicated that the functional cooperation of TUBB4 and EFNB1 results in a poor prognosis. We also show that TUBB4B and Ephrin-B1 cohabit in the CSC niche. Moreover, depletion of TUBB4B downregulates the membrane expression of Ephrin-B1 and reduces the CSC population. Our results imply that the dynamics of TUBB4B is decisive for the surface localization of proteins, like Ephrin-B1, that sustain CSCs by their concerted signaling.
Collapse
Affiliation(s)
- Dhrishya Dharmapal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Athira Jyothy
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Amrutha Mohan
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Manipal Academy of Higher Education, Manipal, India
| | - P. G. Balagopal
- Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, India
| | | | - Paul Sebastian
- Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, India
| | | | - Suparna Sengupta
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
16
|
Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040075. [PMID: 34940756 PMCID: PMC8704250 DOI: 10.3390/ncrna7040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
Collapse
|
17
|
βIII-tubulin overexpression in cancer: Causes, consequences, and potential therapies. Biochim Biophys Acta Rev Cancer 2021; 1876:188607. [PMID: 34364992 DOI: 10.1016/j.bbcan.2021.188607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022]
Abstract
Class III β-tubulin (βIII-tubulin) is frequently overexpressed in human tumors and is associated with resistance to microtubule-targeting agents, tumor aggressiveness, and poor patient outcome. Understanding the mechanisms regulating βIII-tubulin expression and the varied functions βIII-tubulin may have in different cancers is vital to assess the prognostic value of this protein and to develop strategies to enhance therapeutic benefits in βIII-tubulin overexpressing tumors. Here we gather all the available evidence regarding the clinical implications of βIII-tubulin overexpression in cancer, describe factors that regulate βIII-tubulin expression, and discuss current understanding of the mechanisms underlying βIII-tubulin-mediated resistance to microtubule-targeting agents and tumor aggressiveness. Finally, we provide an overview of emerging therapeutic strategies to target tumors that overexpress βIII-tubulin.
Collapse
|
18
|
Zhu S, Ni Y, Sun G, Wang Z, Chen J, Zhang X, Zhao J, Zhu X, Dai J, Liu Z, Liang J, Zhang H, Zhang Y, Shen P, Zeng H. Exosomal TUBB3 mRNA expression of metastatic castration-resistant prostate cancer patients: Association with patient outcome under abiraterone. Cancer Med 2021; 10:6282-6290. [PMID: 34318630 PMCID: PMC8446399 DOI: 10.1002/cam4.4168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/05/2023] Open
Abstract
Background To use ddPCR to quantify plasma exosomal class III β‐tubulin (βIII‐tubulin, TUBB3, encoded by the TUBB3 gene) mRNA expression in metastatic castration‐resistant prostate cancer (mCRPC) patients, and study the association of this expression with abiraterone efficacy. Methods Blood samples were prospectively collected from 52 mCRPC patients using abiraterone as first‐line therapy to measure plasma exosomal TUBB3 mRNA expression value before the initiation of abiraterone. Study endpoints were PSA response rate, PSA‐progression‐free survival (PSA‐PFS), and overall survival (OS, from CRPC to death). Results Patients with positive exosomal TUBB3 expression showed shorter PSA‐PFS (negative TUBB3 vs. positive TUBB3: 11.0 vs. 7.9 months; p = 0.014). Further analysis demonstrated that patients with strongly positive exosomal TUBB3 (>20 copies/20 µl) was associated with even shorter PSA‐PFS (negative TUBB3 vs. positive TUBB3 [<20 copies/20 µl] vs. strongly positive TUBB3 [>20 copies/20 µl]: 11.0 vs. 8.3 vs. 3.6 months, p = 0.005). In multivariate analyzes, TUBB3 (+) (HR: 2.114, p = 0.033) and ECOG score >2 (HR: 3.039, p = 0.006) were independent prognosticators of poor PSA‐PFS. PSA response and OS did not present significant differences. Conclusion The exosomal TUBB3 mRNA expression level is associated with poor PSA‐PFS of abiraterone in mCRPC patients. The detection of exosomal TUBB3 can be valuable in their management.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuchao Ni
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jindong Dai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoran Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaowen Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Sekino Y, Han X, Babasaki T, Miyamoto S, Kobatake K, Kitano H, Ikeda K, Goto K, Inoue S, Hayashi T, Teishima J, Shiota M, Takeshima Y, Yasui W, Matsubara A. TUBB3 is associated with PTEN, neuroendocrine differentiation, and castration resistance in prostate cancer. Urol Oncol 2021; 39:368.e1-368.e9. [PMID: 33771409 DOI: 10.1016/j.urolonc.2021.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tubulin-β3 encoded by the Tubulin-β3 (TUBB3) gene is a microtubule protein. Previous studies have shown that TUBB3 expression is upregulated in castration-resistant prostate cancer (CaP) and is involved in taxane resistance. However, the biological mechanism of TUBB3 involvement in the progression to castration-resistant CaP is not fully elucidated. This study aimed to analyze the expression and function of TUBB3 in localized and metastatic CaP. METHODS TUBB3 expression was determined using immunohistochemistry in localized and metastatic CaP. We also investigated the association between TUBB3, phosphatase and tensin homolog (PTEN), and neuroendocrine differentiation and examined the involvement of TUBB3 in new antiandrogen drugs (enzalutamide and apalutamide) resistance in metastatic CaP. RESULTS In 155 cases of localized CaP, immunohistochemistry showed that 5 (3.2%) of the CaP cases were positive for tubulin-β3. Kaplan-Meier analysis showed that high expression of tubulin-β3 was associated with poor prostate-specific antigen recurrence-free survival after radical prostatectomy. In 57 cases of metastatic CaP, immunohistochemistry showed that 14 (25%) cases were positive for tubulin-β3. Tubulin-β3 expression was higher in metastatic CaP than in localized CaP. High tubulin-β3 expression was correlated with negative PTEN expression. TUBB3 expression was increased in neuroendocrine CaP based on several public databases. PTEN knockout decreased the sensitivity to enzalutamide and apalutamide in 22Rv-1 cells. TUBB3 knockdown reversed the sensitivity to enzalutamide and apalutamide in PTEN-CRISPR 22Rv-1 cells. High expression of tubulin-β3 and negative expression of PTEN were significantly associated with poor overall survival in metastatic CaP treated with androgen deprivation therapy. CONCLUSIONS These results suggest that TUBB3 may be a useful predictive biomarker for survival and play an essential role in antiandrogen resistance in CaP.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Xiangrui Han
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Babasaki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Miyamoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kohei Kobatake
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Kitano
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Inoue
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Urology, Hiroshima General Hospital, Hatsukaichi, Japan
| |
Collapse
|
20
|
Expression of Class III Beta-Tubulin Is Associated with Invasive Potential and Poor Prognosis in Thyroid Carcinoma. J Clin Med 2020; 9:jcm9123830. [PMID: 33256003 PMCID: PMC7760790 DOI: 10.3390/jcm9123830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Although American Thyroid Association guidelines offer a risk stratification scheme for thyroid cancer patients, there is a continuous need for more sophisticated biomarkers that can predict disease progression. In this study, we aim to evaluate the prognostic value of class III beta-tubulin (TUBB3) and uncover the relationship between TUBB3 and invasive potential in thyroid carcinoma. Immunohistochemistry (IHC) for TUBB3 and E-cadherin was performed on a total of 254 cases of thyroid cancer specimens. Tumor budding at the invasive margin was evaluated. In vitro functional studies were also performed; the protein and mRNA levels of TUBB3 were compared among the five cell types at baseline, with transwell invasion and after blocking of TUBB3 by shRNA. IHC revealed that the levels of TUBB3 were higher in conventional papillary carcinomas (cPTCs) and anaplastic thyroid carcinomas (ATCs). In univariate analysis, high tumor budding and TUBB3 expression were associated with inferior progression-free survival in cPTC. The results of a Western blot and RT-PCR agreed with the IHC finding. The results were further validated through data from The Cancer Genome Atlas database. Our results suggest that high expression of TUBB3 in thyroid carcinoma could predict invasive potential and possibly be linked with epithelial–mesenchymal transition.
Collapse
|
21
|
Rizzo M. Mechanisms of docetaxel resistance in prostate cancer: The key role played by miRNAs. Biochim Biophys Acta Rev Cancer 2020; 1875:188481. [PMID: 33217485 DOI: 10.1016/j.bbcan.2020.188481] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
One of the main problems with the treatment of metastatic prostate cancer is that, despite an initial positive response, the majority of patients develop resistance and progress. In particular, the resistance to docetaxel, the gold standard therapy for metastatic prostate cancer since 2010, represents one of the main factors responsible for the failure of prostate cancer therapy. According to the present knowledge, different processes contribute to the appearance of docetaxel resistance and non-coding RNA seems to play a relevant role in them. In this review, a comprehensive overview of the miRNA network involved in docetaxel resistance is described, highlighting the pathway/s affected by their activity.
Collapse
Affiliation(s)
- Milena Rizzo
- Non-coding RNA Group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.
| |
Collapse
|
22
|
Singh K, Jamshidi N, Zomer R, Piva TJ, Mantri N. Cannabinoids and Prostate Cancer: A Systematic Review of Animal Studies. Int J Mol Sci 2020; 21:E6265. [PMID: 32872551 PMCID: PMC7503992 DOI: 10.3390/ijms21176265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer is a major cause of death among men worldwide. Recent preclinical evidence implicates cannabinoids as powerful regulators of cell growth and differentiation, as well as potential anti-cancer agents. The aim of this review was to evaluate the effect of cannabinoids on in vivo prostate cancer models. The databases searched included PubMed, Embase, Scopus, and Web of Science from inception to August 2020. Articles reporting on the effect of cannabinoids on prostate cancer were deemed eligible. We identified six studies that were all found to be based on in vivo/xenograft animal models. Results: In PC3 and DU145 xenografts, WIN55,212-2 reduced cell proliferation in a dose-dependent manner. Furthermore, in LNCaP xenografts, WIN55,212-2 reduced cell proliferation by 66-69%. PM49, which is a synthetic cannabinoid quinone, was also found to result in a significant inhibition of tumor growth of up to 90% in xenograft models of LNCaP and 40% in xenograft models of PC3 cells, respectively. All studies have reported that the treatment of prostate cancers in in vivo/xenograft models with various cannabinoids decreased the size of the tumor, the outcomes of which depended on the dose and length of treatment. Within the limitation of these identified studies, cannabinoids were shown to reduce the size of prostate cancer tumors in animal models. However, further well-designed and controlled animal studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Kanika Singh
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| | - Negar Jamshidi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia; (N.J.); (T.J.P.)
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, Western Australia 6005, Australia;
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia; (N.J.); (T.J.P.)
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
23
|
Li Y, Zhang B, Xiang L, Xia S, Kucuk O, Deng X, Boise LH, Dong JT. TGF-β causes Docetaxel resistance in Prostate Cancer via the induction of Bcl-2 by acetylated KLF5 and Protein Stabilization. Am J Cancer Res 2020; 10:7656-7670. [PMID: 32685011 PMCID: PMC7359077 DOI: 10.7150/thno.44567] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in the United States. As a first line treatment for hormone-refractory prostate cancer, docetaxel (DTX) treatment leads to suboptimal effect since almost all patients eventually develop DTX resistance. In this study, we investigated whether and how TGF-β affects DTX resistance of prostate cancer. Methods: Cytotoxicity of DTX in DU 145 and PC-3 cells was measured by CCK-8 and Matrigel colony formation assays. Resistance to DTX in DU 145 cells was examined in a xenograft tumorigenesis model. A luciferase reporter system was used to determine transcriptional activities. Gene expression was analyzed by RT-qPCR and Western blotting. Results: We found that KLF5 is indispensable in TGF-β-induced DTX resistance. Moreover, KLF5 acetylation at lysine 369 mediates DTX resistance in vitro and in vivo. We showed that the TGF-β/acetylated KLF5 signaling axis activates Bcl-2 expression transcriptionally. Furthermore, DTX-induced Bcl-2 degradation depends on a proteasome pathway, and TGF-β inhibits DTX-induced Bcl-2 ubiquitination. Conclusion: Our study demonstrated that the TGF-β-acetylated KLF5-Bcl-2 signaling axis mediates DTX resistance in prostate cancer and blockade of this pathway could provide clinical insights into chemoresistance of prostate cancer.
Collapse
|
24
|
Xu J, Qiu Y. Current opinion and mechanistic interpretation of combination therapy for castration-resistant prostate cancer. Asian J Androl 2020; 21:270-278. [PMID: 30924449 PMCID: PMC6498727 DOI: 10.4103/aja.aja_10_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent advances in genomics technology have led to the massive discovery of new drug targets for prostate cancer; however, none of the currently available therapeutics is curative. One of the greatest challenges is drug resistance. Combinations of therapies with distinct mechanisms of action represent a promising strategy that has received renewed attention in recent years. Combination therapies exert cancer killing functions through either concomitant targeting of multiple pro-cancer factors or more effective inhibition of a single pathway. Theoretically, the combination therapy can improve efficacy and efficiency compared with monotherapy. Although increasing numbers of drug combinations are currently being tested in clinical trials, the mechanisms by which these combinations can overcome drug resistance have yet to be fully understood. The purpose of this review is to summarize recent work on therapeutic combinations in the treatment of castration-resistant prostate cancer and discuss emerging mechanisms underlying drug resistance. In addition, we provide an overview of the current preclinical mechanistic studies on potential therapeutic combinations to overcome drug resistance.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yun Qiu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Maahs L, Sanchez BE, Gupta N, Van Harn M, Barrack ER, Reddy PV, Hwang C. Class III β-tubulin expression as a predictor of docetaxel-resistance in metastatic castration-resistant prostate cancer. PLoS One 2019; 14:e0222510. [PMID: 31658275 PMCID: PMC6816559 DOI: 10.1371/journal.pone.0222510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/30/2019] [Indexed: 01/27/2023] Open
Abstract
About half of the patients treated with docetaxel in the setting of metastatic castration-resistant prostate cancer (CRPC) are non-responders. Therefore, a marker of response would be beneficial for clinical decision-making. We evaluated class III β-tubulin (βIII-tubulin) expression as a predictor of resistance in this setting, which previously has been correlated with lack of response to taxanes in other cancers. Patients with CRPC were included if they were treated with at least 3 cycles of docetaxel between 1990 and 2011. βIII-tubulin expression was assessed by immunostaining, which was performed in tissue samples obtained either via biopsy or prostatectomy at the time of diagnosis. Rates of prostate-specific antigen (PSA) response and overall survival (OS) following docetaxel treatment were compared between patients with high (2+ or 3+ staining) vs. low (0 or 1+ staining) βIII-tubulin expression. Of 73 patients, 26 (35%) had a high expression of βIII-tubulin. A PSA decline of 10% or greater occurred in 65% of patients with a high βIII-tubulin expression vs. 89% with a low βIII-tubulin expression (p = 0.0267). The median OS for patients with a high βIII-tubulin expression was 17.4 (95% CI 8.7–21.0) months vs. 19.8 (95% CI 16.6–23.6) months for patients with a low expression (p = 0.039). Our results show that a high βIII-tubulin expression is a negative prognostic factor in metastatic CRPC patients treated with docetaxel.
Collapse
Affiliation(s)
- Lucas Maahs
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| | - Bertha E. Sanchez
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, MI, United States of America
| | - Meredith Van Harn
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States of America
| | - Evelyn R. Barrack
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, United States of America
| | - Prem-veer Reddy
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, United States of America
| | - Clara Hwang
- Division of Hematology/Oncology, Henry Ford Health System, Detroit, MI, United States of America
- * E-mail:
| |
Collapse
|
26
|
Reader J, Harper AK, Legesse T, Staats PN, Goloubeva O, Rao GG, Fulton A, Roque DM. EP4 and Class III β-Tubulin Expression in Uterine Smooth Muscle Tumors: Implications for Prognosis and Treatment. Cancers (Basel) 2019; 11:cancers11101590. [PMID: 31635323 PMCID: PMC6826612 DOI: 10.3390/cancers11101590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
The microtubule-stabilizing agent docetaxel in combination with gemcitabine represents one of the most effective regimens against the aggressive gynecologic tumor leiomyosarcoma (LMS). Upregulation of class III β-tubulin has previously been shown to confer taxane resistance in a variety of human cancers. Prostaglandin E2 receptor EP4 is linked to progression of a variety of human cancers and may represent a novel target for tumor inhibition in LMS. We evaluated the hypotheses that EP4 and class III β-tubulin have increased expression in LMS in comparison to normal myometrium or benign tumors and that expression of class III β-tubulin correlates with resistance to taxanes and poor clinical outcome. Gene expression was examined using TCGA data and correlated with clinicopathologic outcome which demonstrated that class III β-tubulin is more highly expressed in more aggressive sarcomas with EP4 being widely expressed in all subtypes of sarcoma. Immunohistochemistry for EP4 and class III β-tubulin was performed on patients with LMS, leiomyomatosis/STUMP, leiomyoma, and normal myometrium. Expression of EP4 and class III β-tubulin were characterized for cell lines SK-UT-1, SK-UT-1B, and PHM-41 and these cell lines were treated with docetaxel alone and in combination with EP4 inhibitors. In taxane-resistant cell lines that overexpress class III β-tubulin and EP4, treatment with EP4 inhibitor resulted in at least 2-fold sensitization to docetaxel. Expression of class III β-tubulin and EP4 in LMS may identify patients at risk of resistance to standard chemotherapies and candidates for augmentation of therapy through EP4 inhibition.
Collapse
Affiliation(s)
- Jocelyn Reader
- Division of Gynecologic Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
| | - Amy K Harper
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Teklu Legesse
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Paul N Staats
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Olga Goloubeva
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Gautam G Rao
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Amy Fulton
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
| | - Dana M Roque
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
27
|
Sekino Y, Han X, Kawaguchi T, Babasaki T, Goto K, Inoue S, Hayashi T, Teishima J, Shiota M, Yasui W, Matsubara A. TUBB3 Reverses Resistance to Docetaxel and Cabazitaxel in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20163936. [PMID: 31412591 PMCID: PMC6719236 DOI: 10.3390/ijms20163936] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
Recent studies have reported that TUBB3 overexpression is involved in docetaxel (DTX) resistance in prostate cancer (PCa). The aim of this study was to clarify the role of TUBB3 in DTX and cabazitaxel (CBZ) resistance, and cross-resistance between DTX and CBZ in PCa. We analyzed the effect of TUBB3 knockdown on DTX and CBZ resistance and examined the interaction between TUBB3 and PTEN. We also investigated the role of phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) in DTX and CBZ resistance. TUBB3 expression was upregulated in DTX-resistant and CBZ-resistant cells. TUBB3 knockdown re-sensitized DTX-resistant cells to DTX and CBZ-resistant cells to CBZ. Additionally, TUBB3 knockdown re-sensitized DTX-resistant cell lines to CBZ, indicating that TUBB3 mediates cross-resistance between DTX and CBZ. Knockdown of TUBB3 enhanced PTEN expression, and PTEN knockout enhanced TUBB3 expression. LY294002 suppressed TUBB3 expression in DTX-resistant and CBZ-resistant cell lines. LY294002 re-sensitized DTX-resistant cell lines to DTX and CBZ-resistant cell lines to CBZ. These results suggest that TUBB3 is involved in DTX resistance and CBZ resistance. A combination of LY294002/DTX and that of LY294002/CBZ could be potential strategies for PCa treatment.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Xiangrui Han
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takafumi Kawaguchi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takashi Babasaki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shogo Inoue
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
28
|
TUBB4B Downregulation Is Critical for Increasing Migration of Metastatic Colon Cancer Cells. Cells 2019; 8:cells8080810. [PMID: 31375012 PMCID: PMC6721557 DOI: 10.3390/cells8080810] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Tumor metastasis, the major problem for clinical oncology in colon cancer treatment, is linked with an epithelial-mesenchymal transition (EMT). The observed cellular transformation in this process is manifested by cell elongation, enhanced cell migration and invasion ability, coordinated by cytoskeleton reorganization. In the present study, we examined the role of tubulin-β4 (TUBB4B) downregulation that occurs during EMT in colon cancer cells, in the modulation of the function of microtubules. Based on biochemical and behavioral analysis (transmigration) we posit that the decrease of the TUBB4B level is critical for microtubule-vimentin interaction and contributes to the maintenance of polarity in migrating cells. The microscopic studies revealed that TUBB4B decrease is accompanied by cell elongation and increased number of matured focal adhesion sites, which is a characteristic of the cell metastatic stage. We also demonstrated faster polymerization of microtubules in cells with a lower level of TUBB4B. Simultaneous TUBB3 upregulation, reported during EMT, acts additively in this process. Our studies suggest that the protein level of TUBB4B could be used as a marker for detection of the preinvasive stages of the colon cancer cells. We also concluded that chemotherapy enriched to increase TUBB4B level and/or to stabilize microtubule polymerization might more effectively prevent metastasis in colon cancer development.
Collapse
|
29
|
Bumbaca B, Li W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharm Sin B 2018; 8:518-529. [PMID: 30109177 PMCID: PMC6089846 DOI: 10.1016/j.apsb.2018.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Despite its good initial response and significant survival benefit in patients with castration-resistant prostate cancer (CRPC), taxane therapy inevitably encounters drug resistance in all patients. Deep understandings of taxane resistant mechanisms can significantly facilitate the development of new therapeutic strategies to overcome taxane resistance and improve CRPC patient survival. Multiple pathways of resistance have been identified as potentially crucial areas of intervention. First, taxane resistant tumor cells typically have mutated microtubule binding sites, varying tubulin isotype expression, and upregulation of efflux transporters. These mechanisms contribute to reducing binding affinity and availability of taxanes. Second, taxane resistant tumors have increased stem cell like characteristics, indicating higher potential for further mutation in response to therapy. Third, the androgen receptor pathway is instrumental in the proliferation of CRPC and multiple hypotheses leading to this pathway reactivation have been reported. The connection of this pathway to the AKT pathway has received significant attention due to the upregulation of phosphorylated AKT in CRPC. This review highlights recent advances in elucidating taxane resistant mechanisms and summarizes potential therapeutic strategies for improved treatment of CRPC.
Collapse
|
30
|
Bascetta L, Oliviero A, D'Aurizio R, Evangelista M, Mercatanti A, Pellegrini M, Marrocolo F, Bracarda S, Rizzo M. The Prostate Cancer Cells Resistant to Docetaxel as in vitro Model for Discovering MicroRNAs Predictive of the Onset of Docetaxel Resistance. Int J Mol Sci 2017; 18:ijms18071512. [PMID: 28703747 PMCID: PMC5536002 DOI: 10.3390/ijms18071512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 01/09/2023] Open
Abstract
On the grounds that miRNAs present in the blood of prostate cancer (PCa) patients are released in the growth medium by PCa cells, it is conceivable that PCa cells resistant to docetaxel (DCT) (DCTR) will release miRNAs that may be found in PCa patients under DCT therapy if resistant PCa cells appear. We isolated DCTR clones respectively from 22Rv1 and DU-145 PCa cell lines and performed through next-generation sequencing (NGS) the miRNAs profiles of the released miRNAs. The analysis of the NGS data identified 105 and 1 miRNAs which were differentially released in the growth medium of the 22Rv1/DCTR and DU-145/DCTR clones, respectively. Using additional filters, we selected 12 and 1 miRNA more released by all 22Rv1/DCTR and DU-145/DCTR clones, respectively. Moreover, we showed that 6 of them were more represented in the growth medium of the DCTR cells than the ones of DCT-treated cells. We speculated that they have the pre-requisite to be tested as predictive biomarkers of the DCT resistance in PCa patients under DCT therapy. We propose the utilization of clones resistant to a given drug as in vitro model to identify the differentially released miRNAs, which in perspective could be tested as predictive biomarkers of drug resistance in tumor patients under therapy.
Collapse
Affiliation(s)
- Lorenzo Bascetta
- Non-Coding RNA Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Arianna Oliviero
- Non-Coding RNA Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Romina D'Aurizio
- Laboratory for Integrative System Medicine (LISM), Institute of Informatics and Telematics (IIT), National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Monica Evangelista
- Non-Coding RNA Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Alberto Mercatanti
- Non-Coding RNA Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Marco Pellegrini
- Laboratory for Integrative System Medicine (LISM), Institute of Informatics and Telematics (IIT), National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Francesca Marrocolo
- Department of Oncology, San Donato Hospital, Azienda USL Toscana Sud-Est, via P. Nenni 20, 52100 Arezzo, Italy.
| | - Sergio Bracarda
- Department of Oncology, San Donato Hospital, Azienda USL Toscana Sud-Est, via P. Nenni 20, 52100 Arezzo, Italy.
- Istituto Toscano Tumori (ITT), via T. Alderotti 26/N, 50139 Firenze, Italy.
| | - Milena Rizzo
- Non-Coding RNA Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), via G. Moruzzi 1, 56124 Pisa, Italy.
- Istituto Toscano Tumori (ITT), via T. Alderotti 26/N, 50139 Firenze, Italy.
| |
Collapse
|
31
|
Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev 2017; 57:16-27. [PMID: 28527407 DOI: 10.1016/j.ctrv.2017.04.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Patients with metastatic castration-resistant prostate cancer (mCPRC) now have an unprecedented number of approved treatment options, including chemotherapies (docetaxel, cabazitaxel), androgen receptor (AR)-targeted therapies (enzalutamide, abiraterone), a radioisotope (radium-223) and a cancer vaccine (sipuleucel-T). However, the optimal treatment sequencing pathway is unknown, and this problem is exacerbated by the issues of primary and acquired resistance. This review focuses on mechanisms of resistance to AR-targeted therapies and taxane-based chemotherapy. Patients treated with abiraterone, enzalutamide, docetaxel or cabazitaxel may present with primary resistance, or eventually acquire resistance when on treatment. Multiple resistance mechanisms to AR-targeted agents have been proposed, including: intratumoral androgen production, amplification, mutation, or expression of AR splice variants, increased steroidogenesis, upregulation of signals downstream of the AR, and development of androgen-independent tumor cells. Known mechanisms of resistance to chemotherapy are distinct, and include: tubulin alterations, increased expression of multidrug resistance genes, TMPRSS2-ERG fusion genes, kinesins, cytokines, and components of other signaling pathways, and epithelial-mesenchymal transition. Utilizing this information, biomarkers of resistance/response have the potential to direct treatment decisions. Expression of the AR splice variant AR-V7 may predict resistance to AR-targeted agents, but available biomarker assays are yet to be prospectively validated in the clinic. Ongoing prospective trials are evaluating the sequential use of different drugs, or combination regimens, and the results of these studies, combined with a deeper understanding of mechanisms of primary and acquired resistance to treatment, have the potential to drive future treatment decisions in mCRPC.
Collapse
|
32
|
Wang W, Zhang H, Wang X, Patterson J, Winter P, Graham K, Ghosh S, Lee JC, Katsetos CD, Mackey JR, Tuszynski JA, Wong GKS, Ludueña RF. Novel mutations involving βI-, βIIA-, or βIVB-tubulin isotypes with functional resemblance to βIII-tubulin in breast cancer. PROTOPLASMA 2017; 254:1163-1173. [PMID: 27943021 DOI: 10.1007/s00709-016-1060-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Tubulin is the target for very widely used anti-tumor drugs, including Vinca alkaloids, taxanes, and epothilones, which are an important component of chemotherapy in breast cancer and other malignancies. Paclitaxel and other tubulin-targeting drugs bind to the β subunit of tubulin, which is a heterodimer of α and β subunits. β-Tubulin exists in the form of multiple isotypes, which are differentially expressed in normal and neoplastic cells and differ in their ability to bind to drugs. Among them, the βIII isotype is overexpressed in many aggressive and metastatic cancers and may serve as a prognostic marker in certain types of cancer. The underpinning mechanisms accounting for the overexpression of this isotype in cancer cells are unclear. To better understand the role of β-tubulin isotypes in cancer, we analyzed over 1000 clones from 90 breast cancer patients, sequencing their β-tubulin isotypes, in search of novel mutations. We have elucidated two putative emerging molecular subgroups of invasive breast cancer, each of which involve mutations in the βI-, βIIA-, or βIVB isotypes of tubulin that increase their structural, and possibly functional, resemblance to the βIII isotype. A unifying feature of the first of the two subgroups is the mutation of the highly reactive C239 residue of βI- or βIVB-tubulin to L239, R239, Y239, or P239, culminating in probable conversion of these isotypes from ROS-sensitive to ROS-resistant species. In the second subgroup, βI, βIIA, and βIVB have up to seven mutations to the corresponding residues in βIII-tubulin. Given that βIII-tubulin has emerged as a pro-survival factor, overexpression of this isotype may confer survival advantages to certain cancer cell types. In this mini-review, we bring attention to a novel mechanism by which cancer cells may undergo adaptive mutational changes involving alternate β-tubulin isotypes to make them acquire some of the pro-survival properties of βIII-tubulin. These "hybrid" tubulins, combining the sequences and/or properties of two wild-type tubulins (βIII and either βI, βIIA, or βIVB), are novel isotypes expressed solely in cancer cells and may contribute to the molecular understanding and stratification of invasive breast cancer and provide novel molecular targets for rational drug development.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Hangxiao Zhang
- Beijing Institute of Genomics, Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xumin Wang
- Beijing Institute of Genomics, Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jordan Patterson
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Philip Winter
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Kathryn Graham
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Sunita Ghosh
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - John C Lee
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Christos D Katsetos
- Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, 19134, USA
- Department of Pathology and Laboratory Medicine, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, 19134, USA
| | - John R Mackey
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Gane Ka-Shu Wong
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Richard F Ludueña
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
33
|
Hotte SJ. Addressing taxane resistance in metastatic castration-resistant prostate cancer: a focus on chaperone proteins. Future Oncol 2017; 13:369-379. [DOI: 10.2217/fon-2016-0279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the significant survival benefit of taxane therapy in metastatic castration-resistant prostate cancer (mCRPC), all patients inevitably develop treatment resistance. An understanding of resistance mechanisms has led to new therapies for prostate cancer (cabazitaxel, abiraterone and enzalutamide), all of which have improved survival following first-line docetaxel. Another treatment, currently in development, targets the prosurvival molecule clusterin. Custirsen, an antisense molecule that inhibits clusterin production, has shown promise in combination with docetaxel in mCRPC patients at risk for poor outcomes. Although optimal sequence and combination of available therapies is unclear, the heterogeneity of mCRPC suggests a continuing need for personalized treatment regimens and improved abilities to predict which patients will respond to the available treatment options.
Collapse
Affiliation(s)
- Sebastien J Hotte
- Department of Oncology, Division of Medical Oncology, Juravinski Cancer Centre, 699 Concession Street, Hamilton, Ontario, L8V 5C2, Canada
| |
Collapse
|
34
|
Abstract
Prostate cancer is the second leading cause of cancer deaths in the USA. The challenge in managing castration-resistant prostate cancer (CRPC) stems not from the lack of therapeutic options but from the limited duration of clinical and survival benefit offered by treatments in this setting due to primary and acquired resistance. The remarkable molecular heterogeneity and tumor adaptability in advanced prostate cancer necessitate optimization of such treatment strategies. While the future of CRPC management will involve newer targeted therapies in deliberately biomarker-selected patients, interventions using current approaches may exhibit improved clinical benefit if employed in the context of optimal sequencing and combinations. This review outlines our current understanding of mechanisms of therapeutic resistance in progression to and after the development of castration resistance, highlighting targetable and reversible mechanisms of resistance.
Collapse
Affiliation(s)
- Mary Nakazawa
- Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer Biology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA
| | - Channing Paller
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Natasha Kyprianou
- Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer Biology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA.
| |
Collapse
|
35
|
Armstrong CM, Gao AC. Adaptive pathways and emerging strategies overcoming treatment resistance in castration resistant prostate cancer. Asian J Urol 2016. [PMID: 28642838 PMCID: PMC5477778 DOI: 10.1016/j.ajur.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The therapies available for prostate cancer patients whom progress from hormone-sensitive to castration resistant prostate cancer include both systemic drugs, including docetaxel and cabazitaxel, and drugs that inhibit androgen signaling such as enzalutamide and abiraterone. Unfortunately, it is estimated that up to 30% of patients have primary resistance to these treatments and over time even those who initially respond to therapy will eventually develop resistance and their disease will continue to progress regardless of the presence of the drug. Determining the mechanisms involved in the development of resistance to these therapies has been the area of intense study and several adaptive pathways have been uncovered. Androgen receptor (AR) mutations, expression of AR-V7 (or other constitutively active androgen receptor variants), intracrine androgen production and overexpression of androgen synthesis enzymes such as Aldo-Keto Reductase Family 1, Member C3 (AKR1C3) are among the many mechanisms associated with resistance to anti-androgens. In regards to the taxanes, one of the key contributors to drug resistance is increased drug efflux through ATP Binding Cassette Subfamily B Member 1 (ABCB1). Targeting these resistance mechanisms using different strategies has led to various levels of success in overcoming resistance to current therapies. For instance, targeting AR-V7 with niclosamide or AKR1C3 with indomethacin can improve enzalutamide and abiraterone treatment. ABCB1 transport activity can be inhibited by the dietary constituent apigenin and antiandrogens such as bicalutamide which in turn improves response to docetaxel. A more thorough understanding of how drug resistance develops will lead to improved treatment strategies. This review will cover the current knowledge of resistance mechanisms to castration resistant prostate cancer therapies and methods that have been identified which may improve treatment response.
Collapse
Affiliation(s)
| | - Allen C Gao
- Department of Urology, University of California, Davis, Sacramento, CA, USA.,Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA.,VA Northern California Health Care System, Sacramento, CA, USA
| |
Collapse
|
36
|
Daoud G, Monzer A, Bahmad H, Chamaa F, Hamdar L, Mouhieddine TH, Shayya S, Eid A, Kobeissy F, Liu YN, Abou-Kheir W. Primary versus castration-resistant prostate cancer: modeling through novel murine prostate cancer cell lines. Oncotarget 2016; 7:28961-28975. [PMID: 27036046 PMCID: PMC5045370 DOI: 10.18632/oncotarget.8436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/04/2016] [Indexed: 12/12/2022] Open
Abstract
Cell lines representing the progression of prostate cancer (PC) from an androgen-dependent to an androgen-independent state are scarce. In this study, we used previously characterized prostate luminal epithelial cell line (Plum), under androgen influence, to establish cellular models of PC progression. Cells derived from orthotopic tumors have been isolated to develop an androgen-dependent (PLum-AD) versus an androgen-independent (PLum-AI) model. Upon immunofluorescent, qRT-PCR and Western blot analyses, PLum-AD cells mostly expressed prostate epithelial markers while PLum-AI cells expressed mesenchymal cell markers. Interestingly, both cell lines maintained a population of stem/progenitor cells. Furthermore, our data suggest that both cell lines are tumorigenic; PLum-AD resulted in an adenocarcinoma whereas PLum-AI resulted in a sarcomatoid carcinoma when transplanted subcutaneously in NOD-SCID mice. Finally, gene expression profiles showed enrichment in functions involved in cell migration, apoptosis, as well as neoplasm invasiveness and metastasis in PLum-AI cells. In conclusion, these data suggest that the newly isolated cell lines represent a new in vitro model of androgen-dependent and -independent PC.
Collapse
Affiliation(s)
- Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hisham Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Layal Hamdar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tarek H. Mouhieddine
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sami Shayya
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
37
|
Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 2016; 4:365-80. [PMID: 26814148 PMCID: PMC4708226 DOI: 10.3978/j.issn.2223-4683.2015.05.02] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite advances in prostate cancer diagnosis and management, morbidity from prostate cancer remains high. Approximately 20% of men present with advanced or metastatic disease, while 29,000 men continue to die of prostate cancer each year. Androgen deprivation therapy (ADT) has been the standard of care for initial management of advanced or metastatic prostate cancer since Huggins and Hodges first introduced the concept of androgen-dependence in 1972, but progression to castration-resistant prostate cancer (CRPC) occurs within 2-3 years of initiation of ADT. CRPC, previously defined as hormone-refractory prostate cancer, is now understood to still be androgen dependent. Multiple mechanisms of resistance help contribute to the progression to castration resistant disease, and the androgen receptor (AR) remains an important driver in this progression. These mechanisms include AR amplification and hypersensitivity, AR mutations leading to promiscuity, mutations in coactivators/corepressors, androgen-independent AR activation, and intratumoral and alternative androgen production. More recently, identification of AR variants (ARVs) has been established as another mechanism of progression to CRPC. Docetaxel chemotherapy has historically been the first-line treatment for CRPC, but in recent years, newer agents have been introduced that target some of these mechanisms of resistance, thereby providing additional survival benefit. These include AR signaling inhibitors such as enzalutamide (Xtandi, ENZA, MDV-3100) and CYP17A1 inhibitors such as abiraterone acetate (Zytiga). Ultimately, these agents will also fail to suppress CRPC. While some of the mechanisms by which these agents fail are unique, many share similarities to the mechanisms contributing to CRPC progression. Understanding these mechanisms of resistance to ADT and currently approved CRPC treatments will help guide future research into targeted therapies.
Collapse
Affiliation(s)
| | - Joy C Yang
- Department of Urology, University of California, Davis, CA, USA
| | - Allen C Gao
- Department of Urology, University of California, Davis, CA, USA
| | | |
Collapse
|
38
|
Biomarkers for prostate cancer: present challenges and future opportunities. Future Sci OA 2015; 2:FSO72. [PMID: 28031932 PMCID: PMC5137959 DOI: 10.4155/fso.15.72] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 01/30/2023] Open
Abstract
Prostate cancer (PCa) has variable biological potential with multiple treatment options. A more personalized approach, therefore, is needed to better define men at higher risk of developing PCa, discriminate indolent from aggressive disease and improve risk stratification after treatment by predicting the likelihood of progression. This may improve clinical decision-making regarding management, improve selection for active surveillance protocols and minimize morbidity from treatment. Discovery of new biomarkers associated with prostate carcinogenesis present an opportunity to provide patients with novel genetic signatures to better understand their risk of developing PCa and help forecast their clinical course. In this review, we examine the current literature evaluating biomarkers in PCa. We also address current limitations and present several ideas for future studies.
Collapse
|
39
|
Weaver EM, Zamora FJ, Hearne JL, Martin-Caraballo M. Posttranscriptional regulation of T-type Ca 2+ channel expression by interleukin-6 in prostate cancer cells. Cytokine 2015. [DOI: 10.1016/j.cyto.2015.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Puhr M, Hoefer J, Neuwirt H, Eder IE, Kern J, Schäfer G, Geley S, Heidegger I, Klocker H, Culig Z. PIAS1 is a crucial factor for prostate cancer cell survival and a valid target in docetaxel resistant cells. Oncotarget 2015; 5:12043-56. [PMID: 25474038 PMCID: PMC4322998 DOI: 10.18632/oncotarget.2658] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022] Open
Abstract
Occurrence of an inherent or acquired resistance to the chemotherapeutic drug docetaxel is a major burden for patients suffering from different kinds of malignancies, including castration resistant prostate cancer (PCa). In the present study we address the question whether PIAS1 targeting can be used to establish a basis for improved PCa treatment. The expression status and functional relevance of PIAS1 was evaluated in primary tumors, in metastatic lesions, in tissue of patients after docetaxel chemotherapy, and in docetaxel resistant cells. Patient data were complemented by functional studies on PIAS1 knockdown in vitro as well as in chicken chorioallantoic membrane and mouse xenograft in vivo models. PIAS1 was found to be overexpressed in local and metastatic PCa and its expression was further elevated in tumors after docetaxel treatment as well as in docetaxel resistant cells. Furthermore, PIAS1 knockdown experiments revealed an increased expression of tumor suppressor p21 and declined expression of anti-apoptotic protein Mcl1, which caused diminished cell proliferation and tumor growth in vitro and in vivo. In summary, the presented data indicate that PIAS1 is crucial for parental and docetaxel resistant PCa cell survival and is therefore a promising new target for treatment of primary, metastatic, and chemotherapy resistant PCa.
Collapse
Affiliation(s)
- Martin Puhr
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hoefer
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannes Neuwirt
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck, Austria
| | - Iris E Eder
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Kern
- Oncotyrol Laboratory for Tumor Biology and Angiogenesis, Innsbruck, Austria
| | - Georg Schäfer
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Innsbruck Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Heidegger
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Chandrasekar T, Yang JC, Gao AC, Evans CP. Targeting molecular resistance in castration-resistant prostate cancer. BMC Med 2015; 13:206. [PMID: 26329698 PMCID: PMC4556222 DOI: 10.1186/s12916-015-0457-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022] Open
Abstract
Multiple mechanisms of resistance contribute to the inevitable progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). Currently approved therapies for CRPC include systemic chemotherapy (docetaxel and cabazitaxel) and agents targeting the resistance pathways leading to CRPC, including enzalutamide and abiraterone. While there is significant survival benefit, primary and secondary resistance to these therapies develops rapidly. Up to one-third of patients have primary resistance to enzalutamide and abiraterone; the remaining patients eventually progress on treatment. Understanding the mechanisms of resistance resulting in progression as well as identifying new targetable pathways remains the focus of current prostate cancer research. We review current knowledge of mechanisms of resistance to the currently approved treatments, development of adjunctive therapies, and identification of new pathways being targeted for therapeutic purposes.
Collapse
Affiliation(s)
| | - Joy C Yang
- Department of Urology, University of California, Davis, USA.
| | - Allen C Gao
- Department of Urology, University of California, Davis, USA.
| | - Christopher P Evans
- Department of Urology, University of California, Davis, USA. .,, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
42
|
Armstrong CM, Gao AC. Drug resistance in castration resistant prostate cancer: resistance mechanisms and emerging treatment strategies. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2015; 3:64-76. [PMID: 26309896 PMCID: PMC4539108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
Several mechanisms facilitate the progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). At present, the approved chemotherapies for CRPC include systemic drugs (docetaxel and cabazitaxel) and agents that target androgen signaling, including enzalutamide and abiraterone. While up to 30% of patients have primary resistance to these treatments, each of these drugs confers a significant survival benefit for many. Over time, however, all patients inevitably develop resistance to treatment and their disease will continue to progress. Several key mechanisms have been identified that give rise to drug resistance. Expression of constitutively active variants of the androgen receptor, such as AR-V7, intracrine androgens and overexpression of androgen synthesis enzymes like AKR1C3, and increased drug efflux through ABCB1 are just some of the many discovered mechanisms of drug resistance. Treatment strategies are being developed to target these pathways and reintroduce drug sensitivity. Niclosamide has been discovered to reduce AR-V7 activity and synergized to enzalutamide. Indomethacin has been explored to inhibit AKR1C3 activity and showed to be able to reverse resistance to enzalutamide. ABCB1 transport activity can be mitigated by the phytochemical apigenin and by antiandrogens such as bicalutamide, with each improving cellular response to chemotherapeutics. By better understanding the mechanisms by which drug resistance develops improved treatment strategies will be made possible. Herein, we review the existing knowledge of CRPC therapies and resistance mechanisms as well as methods that have been identified which may improve drug sensitivity.
Collapse
Affiliation(s)
| | - Allen C Gao
- Department of Urology, University of California at DavisSacramento, CA, USA
- Comprehensive Cancer Center, University of California at DavisSacramento, CA, USA
| |
Collapse
|
43
|
Mariani M, Karki R, Spennato M, Pandya D, He S, Andreoli M, Fiedler P, Ferlini C. Class III β-tubulin in normal and cancer tissues. Gene 2015; 563:109-14. [PMID: 25839941 DOI: 10.1016/j.gene.2015.03.061] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
Microtubules are polymeric structures composed of tubulin subunits. Each subunit consists of a heterodimer of α- and β-tubulin. At least seven β-tubulin isotypes, or classes, have been identified in human cells, and constitutive isotype expression appears to be tissue specific. Class III β-tubulin (βIII-tubulin) expression is normally confined to testes and tissues derived from neural cristae. However, its expression can be induced in other tissues, both normal and neoplastic, subjected to a toxic microenvironment characterized by hypoxia and poor nutrient supply. In this review, we will summarize the mechanisms underlying βIII-tubulin constitutive and induced expression. We will also illustrate its capacity to serve as a biomarker of neural commitment in normal tissues and as a pure prognostic biomarker in cancer patients.
Collapse
Affiliation(s)
| | - Roshan Karki
- Danbury Hospital Research Institute, Danbury, CT, USA
| | | | - Deep Pandya
- Danbury Hospital Research Institute, Danbury, CT, USA
| | - Shiquan He
- Danbury Hospital Research Institute, Danbury, CT, USA
| | | | - Paul Fiedler
- Danbury Hospital Research Institute, Danbury, CT, USA
| | | |
Collapse
|
44
|
Martin SK, Kyprianou N. Exploitation of the Androgen Receptor to Overcome Taxane Resistance in Advanced Prostate Cancer. Adv Cancer Res 2015; 127:123-58. [PMID: 26093899 DOI: 10.1016/bs.acr.2015.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer is a tumor addicted to androgen receptor (AR) signaling, even in its castration resistant state, and recently developed antiandrogen therapies including Abiraterone acetate and enzalutamide effectively target the androgen signaling axis, but there is ultimately recurrence to lethal disease. Development of advanced castration-resistant prostate cancer (CRPC) is a biological consequence of lack of an apoptotic response of prostate tumor cells to androgen ablation. Taxanes represent the major clinically relevant chemotherapy for the treatment of patients with metastatic CRPC; unfortunately, they do not deliver a cure but an extension of overall survival. First-generation taxane chemotherapies, Docetaxel (Taxotere), effectively target the cytoskeleton by stabilizing the interaction of β-tubulin subunits of microtubules preventing depolymerization, inducing G2M arrest and apoptosis. Shifting the current paradigm is a growing evidence to indicate that Docetaxel can effectively target the AR signaling axis by blocking its nuclear translocation and transcriptional activity in androgen-sensitive and castration-resistant prostate cancer cells, implicating a new mechanism of cross-resistance between microtubule-targeting chemotherapy and antiandrogen therapies. More recently, Cabazitaxel has emerged as a second-line taxane chemotherapy capable of conferring additional survival benefit to patients with CRPC previously treated with Docetaxel or in combination with antiandrogens. Similar to Docetaxel, Cabazitaxel induces apoptosis and G2M arrest; in contrast to Docetaxel, it sustains AR nuclear accumulation although it reduces the overall AR levels and FOXO1 expression. Cabazitaxel treatment also leads to downregulation of the microtubule-depolymerizing mitotic kinesins, MCAK, and HSET, preventing their ability to depolymerize microtubules and thus enhancing sensitivity to taxane treatment. The molecular mechanisms underlying taxane resistance involve mutational alterations in the tubulin subunits, microtubule dynamics, phenotyping programming of the epithelial-to-mesenchymal transition landscape, and the status of AR activity. This chapter discusses the mechanisms driving the therapeutic resistance of taxanes and antiandrogen therapies in CRPC, and the role of AR in potential interventions toward overcoming such resistance in patients with advanced metastatic disease.
Collapse
Affiliation(s)
- Sarah K Martin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Natasha Kyprianou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Department of Pathology and Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
45
|
Tan Q, Joshua AM, Saggar JK, Yu M, Wang M, Kanga N, Zhang JY, Chen X, Wouters BG, Tannock IF. Effect of pantoprazole to enhance activity of docetaxel against human tumour xenografts by inhibiting autophagy. Br J Cancer 2015; 112:832-40. [PMID: 25647012 PMCID: PMC4453951 DOI: 10.1038/bjc.2015.17] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Autophagy allows recycling of cellular components and may facilitate cell survival after chemotherapy. Pantoprazole inhibits proton pumps and is reported to inhibit autophagy. Here we evaluate the effects of pantoprazole to modify cytotoxicity of the anticancer drug docetaxel, and underlying mechanisms. METHODS Effects of docetaxel±pantoprazole were studied against wild-type and autophagy-deficient PC3 cells and against four human xenografts. Effects of pantoprazole on autophagy were evaluated by quantifying LC3-I, LC3-II and p62 proteins in western blots, and by fluorescent microscopy of cells transfected with RFP-GFP-LC3. The distribution of drug effects and of autophagy was quantified in tumour sections in relation to blood vessels and hypoxia by immunohistochemistry using γH2AX, cleaved caspase-3, Ki67 and LC3/ p62. RESULTS Pantoprazole increased the toxicity of docetaxel in vitro, increased docetaxel-induced expression of γH2AX and cleaved caspase-3, and decreased Ki67 in tumour sections. Pantoprazole increased growth delay of four human xenografts of low, moderate and high sensitivity to docetaxel, with minimal increase in toxicity. Docetaxel led to increased autophagy throughout tumour sections. Pantoprazole inhibited autophagy, and effects of pantoprazole were reduced against genetically modified cells with decreased ability to undergo autophagy. CONCLUSIONS Autophagy is a mechanism of resistance to docetaxel chemotherapy that may be modified by pantoprazole to improve therapeutic index.
Collapse
Affiliation(s)
- Q Tan
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
| | - A M Joshua
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center and University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
- Institute of Medical Science, University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
| | - J K Saggar
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
| | - M Yu
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
| | - M Wang
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
| | - N Kanga
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
| | - J Y Zhang
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
| | - X Chen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center and University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
| | - B G Wouters
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
| | - I F Tannock
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center and University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
- Institute of Medical Science, University Health Network, University of Toronto, Toronto, ON, Canada M5G2M9
| |
Collapse
|
46
|
Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA, Dráberová E, Dráber P. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22:49-72. [PMID: 25976261 DOI: 10.1016/j.spen.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Luca D'Agostino
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Agustin Legido
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Jack A Tuszyn Ski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
47
|
Drake CG, Sharma P, Gerritsen W. Metastatic castration-resistant prostate cancer: new therapies, novel combination strategies and implications for immunotherapy. Oncogene 2014; 33:5053-64. [PMID: 24276248 PMCID: PMC4876694 DOI: 10.1038/onc.2013.497] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022]
Abstract
For the past decade, docetaxel has remained the global standard of care for frontline treatment of metastatic castration-resistant prostate cancer (mCRPC). Until recently, there were limited options for patients with mCRPC following docetaxel failure or resistance, but now the approved treatment choices for these patients have expanded to include abiraterone acetate, cabazitaxel and enzalutamide. Additionally, the radioactive therapeutic agent radium-223 dichloride has been recently approved in patients with CRPC with bone metastases. Although each of these agents has been shown to convey significant survival benefit as a monotherapy, preclinical findings suggest that combining such innovative strategies with traditional treatments may achieve additive or synergistic effects, further augmenting patient benefit. This review will discuss the transformation of the post-docetaxel space in mCRPC, highlighting the spectrum of newly approved agents in this setting in the USA and the European Union, as well as summarizing treatments with non-chemotherapeutic mechanisms of action that have demonstrated promising results in recent phase 3 trials. Lastly, this review will address the potential of combinatorial regimens in mCRPC, including the pairing of novel immunotherapeutic approaches with chemotherapy, radiotherapy or androgen ablation.
Collapse
Affiliation(s)
- CG Drake
- Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - P Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Gerritsen
- Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
48
|
MAGADOUX L, ISAMBERT N, PLENCHETTE S, JEANNIN J, LAURENS V. Emerging targets to monitor and overcome docetaxel resistance in castration resistant prostate cancer (Review). Int J Oncol 2014; 45:919-28. [DOI: 10.3892/ijo.2014.2517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/18/2014] [Indexed: 11/06/2022] Open
|
49
|
Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front Oncol 2014; 4:153. [PMID: 24995158 PMCID: PMC4061531 DOI: 10.3389/fonc.2014.00153] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers, and are involved in cell movement, intracellular trafficking, and mitosis. In the context of cancer, the tubulin family of proteins is recognized as the target of the tubulin-binding chemotherapeutics, which suppress the dynamics of the mitotic spindle to cause mitotic arrest and cell death. Importantly, changes in microtubule stability and the expression of different tubulin isotypes as well as altered post-translational modifications have been reported for a range of cancers. These changes have been correlated with poor prognosis and chemotherapy resistance in solid and hematological cancers. However, the mechanisms underlying these observations have remained poorly understood. Emerging evidence suggests that tubulins and microtubule-associated proteins may play a role in a range of cellular stress responses, thus conferring survival advantage to cancer cells. This review will focus on the importance of the microtubule-protein network in regulating critical cellular processes in response to stress. Understanding the role of microtubules in this context may offer novel therapeutic approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| | - Joshua A McCarroll
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
50
|
Pernicová Z, Slabáková E, Fedr R, Šimečková Š, Jaroš J, Suchánková T, Bouchal J, Kharaishvili G, Král M, Kozubík A, Souček K. The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells. Mol Cancer 2014; 13:113. [PMID: 24884804 PMCID: PMC4229954 DOI: 10.1186/1476-4598-13-113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 05/13/2014] [Indexed: 11/13/2022] Open
Abstract
Background Tumor heterogeneity and the plasticity of cancer cells present challenges for effective clinical diagnosis and therapy. Such challenges are epitomized by neuroendocrine transdifferentiation (NED) and the emergence of neuroendocrine-like cancer cells in prostate tumors. This phenomenon frequently arises from androgen-depleted prostate adenocarcinoma and is associated with the development of castration-resistant prostate cancer and poor prognosis. Results In this study, we showed that NED was evoked in both androgen receptor (AR)-positive and AR-negative prostate epithelial cell lines by growing the cells to a high density. Androgen depletion and high-density cultivation were both associated with cell cycle arrest and deregulated expression of several cell cycle regulators, such as p27Kip1, members of the cyclin D protein family, and Cdk2. Dual inhibition of Cdk1 and Cdk2 using pharmacological inhibitor or RNAi led to modulation of the cell cycle and promotion of NED. We further demonstrated that the cyclic adenosine 3′, 5′-monophosphate (cAMP)-mediated pathway is activated in the high-density conditions. Importantly, inhibition of cAMP signaling using a specific inhibitor of adenylate cyclase, MDL-12330A, abolished the promotion of NED by high cell density. Conclusions Taken together, our results imply a new relationship between cell cycle attenuation and promotion of NED and suggest high cell density as a trigger for cAMP signaling that can mediate reversible NED in prostate cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v,v,i, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| |
Collapse
|