1
|
Hvidtfeldt UA, Chen J, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Katsouyanni K, Ketzel M, Leander K, Magnusson PKE, Nagel G, Pershagen G, Rizzuto D, Samoli E, So R, Stafoggia M, Tjønneland A, Weinmayr G, Wolf K, Zhang J, Zitt E, Brunekreef B, Hoek G, Raaschou-Nielsen O. Long-term air pollution exposure and malignant intracranial tumours of the central nervous system: a pooled analysis of six European cohorts. Br J Cancer 2023; 129:656-664. [PMID: 37420001 PMCID: PMC10421949 DOI: 10.1038/s41416-023-02348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Risk factors for malignant tumours of the central nervous system (CNS) are largely unknown. METHODS We pooled six European cohorts (N = 302,493) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) and malignant intracranial CNS tumours defined according to the International Classification of Diseases ICD-9/ICD-10 codes 192.1/C70.0, 191.0-191.9/C71.0-C71.9, 192.0/C72.2-C72.5. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS During 5,497,514 person-years of follow-up (average 18.2 years), we observed 623 malignant CNS tumours. The results of the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.07 (0.95, 1.21) per 10 μg/m³ NO2, 1.17 (0.96, 1.41) per 5 μg/m³ PM2.5, 1.10 (0.97, 1.25) per 0.5 10-5m-1 BC, and 0.99 (0.84, 1.17) per 10 μg/m³ O3. CONCLUSIONS We observed indications of an association between exposure to NO2, PM2.5, and BC and tumours of the CNS. The PM elements were not consistently associated with CNS tumour incidence.
Collapse
Affiliation(s)
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate-interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, London, UK
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Departments of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, GU2 7XH, UK
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rina So
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jiawei Zhang
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria
- Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
2
|
Foss-Skiftesvik J, Hagen CM, Mathiasen R, Adamsen D, Bækvad-Hansen M, Børglum AD, Nordentoft M, Werge T, Christiansen M, Schmiegelow K, Juhler M, Mortensen PB, Hougaard DM, Bybjerg-Grauholm J. Genome-wide association study across pediatric central nervous system tumors implicates shared predisposition and points to 1q25.2 (PAPPA2) and 11p12 (LRRC4C) as novel candidate susceptibility loci. Childs Nerv Syst 2021; 37:819-830. [PMID: 33226468 DOI: 10.1007/s00381-020-04946-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Central nervous system (CNS) tumors constitute the most common form of solid neoplasms in children, but knowledge on genetic predisposition is sparse. In particular, whether susceptibility attributable to common variants is shared across CNS tumor types in children has not been investigated. The purpose of this study was to explore potential common genetic risk variants exhibiting pleiotropic effects across pediatric CNS tumors. We also investigated whether such susceptibility differs between early and late onset of disease. METHOD A Danish nationwide genome-wide association study (GWAS) of 1,097 consecutive patients (< 15 years of age) with CNS tumors and a cohort of 4,745 population-based controls. RESULTS For both the overall cohort and patients diagnosed after the age of four, the strongest association was rs12064625 which maps to PAPPA2 at 1q25.2 (p = 3.400 × 10-7 and 9.668 × 10-8, respectively). PAPPA2 regulates local bioavailability of insulin-like growth factor I (IGF-I). IGF-I is fundamental to CNS development and is involved in tumorigenesis across a wide range of different cancers. For the younger children, the strongest association was provided by rs11036373 mapping to LRRC4C at 11p12 (p = 7.620 × 10-7), which encoded protein acts as an axon guidance molecule during CNS development and has not formerly been associated with brain tumors. DISCUSSION This GWAS indicates shared susceptibility attributable to common variants across pediatric CNS tumor types. Variations in genetic loci with roles in CNS development appear to be involved, possibly via altered IGF-I related pathways.
Collapse
Affiliation(s)
- Jon Foss-Skiftesvik
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark.
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark.
| | - Christian Munch Hagen
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - René Mathiasen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Dea Adamsen
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
- Department of Biomedicine, Aarhus University and Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Aarhus Genome Center, Aarhus, Denmark
| | - Merete Nordentoft
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Michael Christiansen
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - David Michael Hougaard
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| |
Collapse
|
3
|
Family history of cancer and the risk of childhood brain tumors: a pooled analysis of the ESCALE and ESTELLE studies (SFCE). Cancer Causes Control 2019; 30:1075-1085. [PMID: 31399828 DOI: 10.1007/s10552-019-01214-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Although some specific genetic syndromes such as neurofibromatosis (NF) have been identified as risk factor of childhood brain tumors (CBT), the potential role of inherited susceptibility in CBT has yet to be elucidated. METHODS To further investigate this, we conducted a pooled analysis of two nationwide case-control studies ESCALE and ESTELLE. The mothers of 509 CBT cases and 3,102 controls aged under 15 years who resided in France at diagnosis/interview, frequency-matched by age and gender, responded to a telephone interview conducted by trained interviewers. Pooled odds ratio (OR) and 95% confidence intervals (95% CI) were estimated using unconditional logistic regression. RESULTS CBT was significantly associated with the family history of cancer in relatives (OR 1.2, 95% CI 1.0-1.5). The OR was slightly higher for maternal relatives than for paternal relatives, and when at least two relatives had a history of cancer. CBT was significantly associated with a family history of brain tumor (OR 2.1, 95% CI 1.3-3.7). This association seemed stronger for first-degree relatives (mother, father, and siblings), for whom, by contrast, no association was seen for cancers other than CBT. No specificity by CBT subtypes or by age of the children were found for any of these findings. CONCLUSION Our findings support the hypothesis of a familial susceptibility of CBT, not due to being a known NF carrier.
Collapse
|
4
|
Family history of cancer and the risk of childhood solid tumours: a Norwegian nationwide register-based cohort study. Br J Cancer 2018; 118:905-912. [PMID: 29462129 PMCID: PMC5886124 DOI: 10.1038/bjc.2017.493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 11/15/2022] Open
Abstract
Background: It is not clear if family history of cancer increases risk of cancer in children. Methods: We followed-up a total of 2 610 937 children born between 1960 and 2001 for cancer risk, and their parents and siblings. In this period, 2477 primary childhood solid tumours (except lymphoma) were diagnosed. The data from the Norwegian Family and Life Course Study and from the Norwegian Cancer Register were used. Classification of hereditary cancer syndromes was based on tumour histology, pedigrees and Chompret’s criteria. Results: An association between risk of childhood tumours and first-degree family history of early onset of solid tumours was observed for central nervous system tumours (2.3-fold), neuroblastoma (2.3-fold), retinoblastoma (6.1-fold), hepatic tumours (4.0-fold), and melanomas (8.3-fold). Elevated risk was also seen for osteosarcomas (1.5-fold) when considering first-degree family history of cancer diagnosed at any age. The risk of hepatic tumours, neuroblastomas and melanomas remained elevated even after controlling for probable hereditary cancer syndromes. Conclusions: The increased risk for several childhood solid site cancers among those with first-degree relatives diagnosed with solid cancer suggests that genetic or environmental factors are involved. The fact that these associations remained after controlling for hereditary cancer syndromes indicates other genetic mechanisms might be involved.
Collapse
|
5
|
Abstract
Public perception and anxiety of familial cancer have increased demands for clinical counseling, which may be well equipped for gene testing but less prepared for counseling of the large domain of familial cancer with unknown genetic background. The aim of the present study was to highlight the full scope of familial cancer and the variable levels of risk that need to be considered. Data on the 25 most common cancers were obtained from the Swedish Family Cancer Database and a Poisson regression model was applied to estimate relative risks (RR) distinguishing between family histories of single or multiple affected first-degree relatives and their diagnostic ages. For all cancers, individual risks were significantly increased if a parent or a sibling had a concordant cancer. While the RRs were around 2.00 for most cancers, risks were up to 10-fold increased for some cancers. Familial risks were even higher when multiple relatives were affected. Although familial risks were highest at ages below 60 years, most familial cases were diagnosed at older ages. The results emphasized the value of a detailed family history as a readily available tool for individualized counseling and its preventive potential for a large domain of non-syndromatic familial cancers.
Collapse
|
6
|
Hemminki K, Försti A, Fallah M, Sundquist J, Sundquist K, Ji J. Risk of cancer in patients with medically diagnosed hay fever or allergic rhinitis. Int J Cancer 2014; 135:2397-403. [DOI: 10.1002/ijc.28873] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Kari Hemminki
- Division of Molecular Genetic Epidemiology; German Cancer Research Center (DKFZ); Heidelberg Germany
- Center for Primary Health Care Research; Lund University; Malmö Sweden
| | - Asta Försti
- Division of Molecular Genetic Epidemiology; German Cancer Research Center (DKFZ); Heidelberg Germany
- Center for Primary Health Care Research; Lund University; Malmö Sweden
| | - Mahdi Fallah
- Division of Molecular Genetic Epidemiology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Jan Sundquist
- Center for Primary Health Care Research; Lund University; Malmö Sweden
- Stanford Prevention Research Center, Stanford University School of Medicine; Stanford CA
| | - Kristina Sundquist
- Center for Primary Health Care Research; Lund University; Malmö Sweden
- Stanford Prevention Research Center, Stanford University School of Medicine; Stanford CA
| | - Jianguang Ji
- Center for Primary Health Care Research; Lund University; Malmö Sweden
| |
Collapse
|
7
|
Neale RE, Stiller CA, Bunch KJ, Milne E, Mineau GP, Murphy MFG. Familial aggregation of childhood and adult cancer in the Utah genealogy. Int J Cancer 2013; 133:2953-60. [PMID: 23733497 DOI: 10.1002/ijc.28300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 11/07/2022]
Abstract
A small proportion of childhood cancer is attributable to known hereditary syndromes, but whether there is any familial component to the remainder remains uncertain. We explored familial aggregation of cancer in a population-based case-control study using genealogical record linkage and designed to overcome limitations of previous studies. Subjects were selected from the Utah Population Database. We compared risk of cancer in adult first-degree relatives of children who were diagnosed with cancer with the risk in relatives of children who had not had a cancer diagnosed. We identified 1,894 childhood cancer cases and 3,788 controls; 7,467 relatives of cases and 14,498 relatives of controls were included in the analysis. Relatives of children with cancer had a higher risk of cancer in adulthood than relatives of children without cancer [odds ratio (OR) 1.31, 95% confidence interval (CI) 1.11-1.56]; this was restricted to mothers and siblings and was not evident in fathers. Familial aggregation appeared stronger among relatives of cases diagnosed before 5 years of age (OR 1.48, 95% CI 1.13-1.95) than among relatives of cases who were older when diagnosed (OR 1.22, 95% CI 0.98-1.51). These findings provide evidence of a generalized excess of cancer in the mothers and siblings of children with cancer. The tendency for risk to be higher in the relatives of children who were younger at cancer diagnosis should be investigated in other large data sets. The excesses of thyroid cancer in parents of children with cancer and of any cancer in relatives of children with leukemia merit further investigation.
Collapse
Affiliation(s)
- Rachel E Neale
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Royal Brisbane Hospital, QLD, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Kaasinen E, Aavikko M, Vahteristo P, Patama T, Li Y, Saarinen S, Kilpivaara O, Pitkänen E, Knekt P, Laaksonen M, Artama M, Lehtonen R, Aaltonen LA, Pukkala E. Nationwide registry-based analysis of cancer clustering detects strong familial occurrence of Kaposi sarcoma. PLoS One 2013; 8:e55209. [PMID: 23365693 PMCID: PMC3554690 DOI: 10.1371/journal.pone.0055209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/23/2012] [Indexed: 11/18/2022] Open
Abstract
Many cancer predisposition syndromes are rare or have incomplete penetrance, and traditional epidemiological tools are not well suited for their detection. Here we have used an approach that employs the entire population based data in the Finnish Cancer Registry (FCR) for analyzing familial aggregation of all types of cancer, in order to find evidence for previously unrecognized cancer susceptibility conditions. We performed a systematic clustering of 878,593 patients in FCR based on family name at birth, municipality of birth, and tumor type, diagnosed between years 1952 and 2011. We also estimated the familial occurrence of the tumor types using cluster score that reflects the proportion of patients belonging to the most significant clusters compared to all patients in Finland. The clustering effort identified 25,910 birth name-municipality based clusters representing 183 different tumor types characterized by topography and morphology. We produced information about familial occurrence of hundreds of tumor types, and many of the tumor types with high cluster score represented known cancer syndromes. Unexpectedly, Kaposi sarcoma (KS) also produced a very high score (cluster score 1.91, p-value <0.0001). We verified from population records that many of the KS patients forming the clusters were indeed close relatives, and identified one family with five affected individuals in two generations and several families with two first degree relatives. Our approach is unique in enabling systematic examination of a national epidemiological database to derive evidence of aberrant familial aggregation of all tumor types, both common and rare. It allowed effortless identification of families displaying features of both known as well as potentially novel cancer predisposition conditions, including striking familial aggregation of KS. Further work with high-throughput methods should elucidate the molecular basis of the potentially novel predisposition conditions found in this study.
Collapse
Affiliation(s)
- Eevi Kaasinen
- Genome-Scale Biology Research Program, and Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Mervi Aavikko
- Genome-Scale Biology Research Program, and Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Pia Vahteristo
- Genome-Scale Biology Research Program, and Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Toni Patama
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| | - Yilong Li
- Genome-Scale Biology Research Program, and Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Silva Saarinen
- Genome-Scale Biology Research Program, and Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Outi Kilpivaara
- Genome-Scale Biology Research Program, and Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Esa Pitkänen
- Genome-Scale Biology Research Program, and Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Paul Knekt
- National Institute of Health and Welfare, Helsinki, Finland
| | | | - Miia Artama
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| | - Rainer Lehtonen
- Genome-Scale Biology Research Program, and Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Lauri A. Aaltonen
- Genome-Scale Biology Research Program, and Department of Medical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Eero Pukkala
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
- School of Health Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
9
|
Kharazmi E, da Silva Filho MI, Pukkala E, Sundquist K, Thomsen H, Hemminki K. Familial risks for childhood acute lymphocytic leukaemia in Sweden and Finland: far exceeding the effects of known germline variants. Br J Haematol 2012; 159:585-588. [PMID: 23025517 DOI: 10.1111/bjh.12069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/27/2012] [Indexed: 02/05/2023]
Abstract
Despite recent successes in the identification of genetic susceptibility loci, no familial risk has been demonstrated for childhood acute lymphoblastic leukaemia (ALL). We identified 3994 childhood ALL cases from two cancer registries; family members were obtained from population registers. The standardized incidence ratio for familial risk in singleton siblings and twins was 3·2 (95% confidence interval 1·5-5·9) and 162·6 (70·2-320·4), respectively. The present data constitute the first demonstration of familial risk for singleton siblings; the high risk for twins is believed to result from shared prenatal blood circulation. The data suggest that currently unidentified genetic loci underlie these observed familial effects.
Collapse
Affiliation(s)
- Elham Kharazmi
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Current world literature. Curr Opin Oncol 2011; 23:700-9. [PMID: 21993416 DOI: 10.1097/cco.0b013e32834d384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LAG, Eheman C, Jemal A, Anderson RN, Ajani UA, Edwards BK. Annual report to the nation on the status of cancer, 1975-2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst 2011; 103:714-36. [PMID: 21454908 PMCID: PMC3086878 DOI: 10.1093/jnci/djr077] [Citation(s) in RCA: 479] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The American Cancer Society, the Centers for Disease Control and Prevention (CDC), the National Cancer Institute, and the North American Association of Central Cancer Registries (NAACCR) collaborate annually to provide updated information on cancer occurrence and trends in the United States. This year’s report highlights brain and other nervous system (ONS) tumors, including nonmalignant brain tumors, which became reportable on a national level in 2004. Methods Cancer incidence data were obtained from the National Cancer Institute, CDC, and NAACCR, and information on deaths was obtained from the CDC’s National Center for Health Statistics. The annual percentage changes in age-standardized incidence and death rates (2000 US population standard) for all cancers combined and for the top 15 cancers for men and for women were estimated by joinpoint analysis of long-term (1992–2007 for incidence; 1975–2007 for mortality) trends and short-term fixed interval (1998–2007) trends. Analyses of malignant neuroepithelial brain and ONS tumors were based on data from 1980–2007; data on nonmalignant tumors were available for 2004–2007. All statistical tests were two-sided. Results Overall cancer incidence rates decreased by approximately 1% per year; the decrease was statistically significant (P < .05) in women, but not in men, because of a recent increase in prostate cancer incidence. The death rates continued to decrease for both sexes. Childhood cancer incidence rates continued to increase, whereas death rates continued to decrease. Lung cancer death rates decreased in women for the first time during 2003–2007, more than a decade after decreasing in men. During 2004–2007, more than 213 500 primary brain and ONS tumors were diagnosed, and 35.8% were malignant. From 1987–2007, the incidence of neuroepithelial malignant brain and ONS tumors decreased by 0.4% per year in men and women combined. Conclusions The decrease in cancer incidence and mortality reflects progress in cancer prevention, early detection, and treatment. However, major challenges remain, including increasing incidence rates and continued low survival for some cancers. Malignant and nonmalignant brain tumors demonstrate differing patterns of occurrence by sex, age, and race, and exhibit considerable biologic diversity. Inclusion of nonmalignant brain tumors in cancer registries provides a fuller assessment of disease burden and medical resource needs associated with these unique tumors.
Collapse
Affiliation(s)
- Betsy A Kohler
- North American Association of Central Cancer Registries, Springfield, IL 62404, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|