1
|
Regulating quantal size of neurotransmitter release through a GPCR voltage sensor. Proc Natl Acad Sci U S A 2020; 117:26985-26995. [PMID: 33046653 DOI: 10.1073/pnas.2005274117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Current models emphasize that membrane voltage (Vm) depolarization-induced Ca2+ influx triggers the fusion of vesicles to the plasma membrane. In sympathetic adrenal chromaffin cells, activation of a variety of G protein coupled receptors (GPCRs) can inhibit quantal size (QS) through the direct interaction of G protein Giβγ subunits with exocytosis fusion proteins. Here we report that, independently from Ca2+, Vm (action potential) per se regulates the amount of catecholamine released from each vesicle, the QS. The Vm regulation of QS was through ATP-activated GPCR-P2Y12 receptors. D76 and D127 in P2Y12 were the voltage-sensing sites. Finally, we revealed the relevance of the Vm dependence of QS for tuning autoinhibition and target cell functions. Together, membrane voltage per se increases the quantal size of dense-core vesicle release of catecholamine via Vm → P2Y12(D76/D127) → Giβγ → QS → myocyte contractility, offering a universal Vm-GPCR signaling pathway for its functions in the nervous system and other systems containing GPCRs.
Collapse
|
2
|
von Kügelgen I. Structure, Pharmacology and Roles in Physiology of the P2Y 12 Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:123-138. [PMID: 28921447 DOI: 10.1007/5584_2017_98] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. The platelet ADP-receptor which has been denominated P2Y12 receptor is an important target in pharmacotherapy. The receptor couples to Gαi2 mediating an inhibition of cyclic AMP accumulation and additional downstream events including the activation of phosphatidylinositol-3-kinase and Rap1b proteins. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel block P2Y12 receptors and, thereby, inhibit ADP-induced platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events such as acute coronary syndromes or stroke. The recently published three-dimensional crystal structures of the human P2Y12 receptor in complex with agonists and antagonists will facilitate the development of novel therapeutic agents with reduced adverse effects. P2Y12 receptors are also expressed on vascular smooth muscle cells and may be involved in the pathophysiology of atherogenesis. P2Y12 receptors on microglial cells operate as sensors for adenine nucleotides released during brain injury. A recent study indicated the involvement of microglial P2Y12 receptors in the activity-dependent neuronal plasticity. Interestingly, there is evidence for changes in P2Y12 receptor expression in CNS pathologies including Alzheimer's diseases and multiple sclerosis. P2Y12 receptors may also be involved in systemic immune modulating responses and the susceptibility to develop bronchial asthma.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
3
|
Zheng F, Zhou Q, Cao Y, Shi H, Wu H, Zhang B, Huang F, Wu X. P2Y 12 deficiency in mouse impairs noradrenergic system in brain, and alters anxiety-like neurobehavior and memory. GENES BRAIN AND BEHAVIOR 2018; 18:e12458. [PMID: 29341465 DOI: 10.1111/gbb.12458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 01/29/2023]
Abstract
Purinergic receptor P2Y12 (P2Y12 ), a G protein-coupled purinergic receptor, is widely distributed in nervous system and involved in the progression of neurological diseases such as multiple sclerosis and neuropathic pain. The central noradrenergic system actively participates in a number of neurophysiological processes. Nevertheless, whether there is any direct relevance between P2Y12 and noradrenergic signal transduction remains unknown. In the present study, we tested the hypothesis that lack of P2Y12 impaired noradrenergic signal transduction in mouse brain. Our results showed that P2Y12 knockout (KO) mice exhibited increased anxiety-like behavior in the open-field test (OFT) and elevated plus maze test and displayed deficits in memory in the radial-arm maze test (RAMT) and Morris water maze test (MWMT). They also exhibited reduced locomotion in the OFT and MWMT. Moreover, loss of P2Y12 decreased the level of noradrenaline and the expression of noradrenergic α receptors, subtypes α2 (ARα2b) in mouse cerebellum and hippocampus. Meanwhile, it hampered the protein kinase A (PKA)/cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway in these brain regions. Taken together, our results showed for the first time that P2Y12 KO altered the anxiety, memory and locomotion of mice, which was closely associated with abnormal state of noradrenergic system in the brain. The findings implicate that P2Y12 plays an indispensable role in noradrenergic signal transduction; its deficit is insufficient to limit anxiety responses or supports cognitive performance and activity.
Collapse
Affiliation(s)
- F Zheng
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Q Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Y Cao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - H Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - H Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - B Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - F Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - X Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Abstract
Neuronal survival, electrical signaling and synaptic activity require a well-balanced micro-environment in the central nervous system. This is achieved by the blood-brain barrier (BBB), an endothelial barrier situated in the brain capillaries, that controls near-to-all passage in and out of the brain. The endothelial barrier function is highly dependent on signaling interactions with surrounding glial, neuronal and vascular cells, together forming the neuro-glio-vascular unit. Within this functional unit, connexin (Cx) channels are of utmost importance for intercellular communication between the different cellular compartments. Connexins are best known as the building blocks of gap junction (GJ) channels that enable direct cell-cell transfer of metabolic, biochemical and electric signals. In addition, beyond their role in direct intercellular communication, Cxs also form unapposed, non-junctional hemichannels in the plasma membrane that allow the passage of several paracrine messengers, complementing direct GJ communication. Within the NGVU, Cxs are expressed in vascular endothelial cells, including those that form the BBB, and are eminent in astrocytes, especially at their endfoot processes that wrap around cerebral vessels. However, despite the density of Cx channels at this so-called gliovascular interface, it remains unclear as to how Cx-based signaling between astrocytes and BBB endothelial cells may converge control over BBB permeability in health and disease. In this review we describe available evidence that supports a role for astroglial as well as endothelial Cxs in the regulation of BBB permeability during development as well as in disease states.
Collapse
|
5
|
De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia 2016; 64:1097-123. [DOI: 10.1002/glia.22960] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/16/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Valérie Van Haver
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Roosmarijn E. Vandenbroucke
- Inflammation Research Center, VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Elke Decrock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| |
Collapse
|
6
|
Swiatkowski P, Murugan M, Eyo UB, Wang Y, Rangaraju S, Oh SB, Wu LJ. Activation of microglial P2Y12 receptor is required for outward potassium currents in response to neuronal injury. Neuroscience 2016; 318:22-33. [PMID: 26791526 DOI: 10.1016/j.neuroscience.2016.01.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
Microglia, the resident immune cells in the central nervous system (CNS), constantly survey the surrounding neural parenchyma and promptly respond to brain injury. Activation of purinergic receptors such as P2Y12 receptors (P2Y12R) in microglia has been implicated in chemotaxis toward ATP that is released by injured neurons and astrocytes. Activation of microglial P2Y12R elicits outward potassium current that is associated with microglial chemotaxis in response to injury. This study aimed at investigating the identity of the potassium channel implicated in microglial P2Y12R-mediated chemotaxis following neuronal injury and understanding the purinergic signaling pathway coupled to the channel. Using a combination of two-photon imaging, electrophysiology and genetic tools, we found the ATP-induced outward current to be largely dependent on P2Y12R activation and mediated by G-proteins. Similarly, P2Y12R-coupled outward current was also evoked in response to laser-induced single neuron injury. This current was abolished in microglia obtained from mice lacking P2Y12R. Dissecting the properties of the P2Y12R-mediated current using a pharmacological approach revealed that both the ATP and neuronal injury-induced outward current in microglia was sensitive to quinine (1mM) and bupivacaine (400μM), but not tetraethylammonium (TEA) (10mM) and 4-aminopyridine (4-AP) (5mM). These results suggest that the quinine/bupivacaine-sensitive potassium channels are the functional effectors of the P2Y12R-mediated signaling in microglia activation following neuronal injury.
Collapse
Affiliation(s)
- P Swiatkowski
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States; Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, United States
| | - M Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - U B Eyo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Y Wang
- Stomatological Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - S Rangaraju
- Department of Neurology, Emory University School of Medicine, 12 Executive Park Drive NE, Atlanta, GA 30329, United States
| | - S B Oh
- Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - L-J Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States.
| |
Collapse
|
7
|
A new angle on blood-CNS interfaces: A role for connexins? FEBS Lett 2014; 588:1259-70. [DOI: 10.1016/j.febslet.2014.02.060] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 12/12/2022]
|
8
|
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
9
|
Baszczyňski O, Janeba Z. Medicinal Chemistry of Fluorinated Cyclic and Acyclic Nucleoside Phosphonates. Med Res Rev 2013; 33:1304-44. [PMID: 23893552 DOI: 10.1002/med.21296] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ondřej Baszczyňski
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; v.v.i. Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; v.v.i. Flemingovo nám. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
10
|
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108:1-20. [PMID: 23851106 DOI: 10.1016/j.pneurobio.2013.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.
Collapse
Affiliation(s)
- Marijke De Bock
- Dept. of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Choi RCY, Chu GKY, Siow NL, Yung AWY, Yung LY, Lee PSC, Lo CCW, Simon J, Dong TTX, Barnard EA, Tsim KWK. Activation of UTP-sensitive P2Y2 receptor induces the expression of cholinergic genes in cultured cortical neurons: a signaling cascade triggered by Ca2+ mobilization and extracellular regulated kinase phosphorylation. Mol Pharmacol 2013; 84:50-61. [PMID: 23592515 DOI: 10.1124/mol.112.084160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ATP functions as an extracellular signaling molecule that is costored and coreleased with neurotransmitters at central and peripheral neuronal synapses. Stimulation by ATP upregulates the expression of synaptic genes in muscle-including the genes for nicotine acetylcholine receptor (α-, δ-, and ε-subunits) and acetylcholinesterase (AChE)-via the P2Y receptor (P2YR), but the trophic response of neurons to the activation of P2YRs is less well understood. We reported that cultured cortical neurons and the developing rat brain expressed different types of P2YRs, and among these the UTP-sensitive P2Y2R was the most abundant. P2Y2R was found to exist in membrane rafts and it colocalized with the postsynaptic protein PSD-95 in cortical neurons. Notably, agonist-dependent stimulation of P2Y2R elevated the neuronal expression of cholinergic genes encoding AChE, PRiMA (an anchor for the globular form AChE), and choline acetyltransferase, and this induction was mediated by a signaling cascade that involved Ca(2+) mobilization and extracellular regulated kinases 1/2 activation. The importance of P2Y2R action was further shown by the receptor's synergistic effect with P2Y1R in enhancing cholinergic gene expression via the robust stimulation of Ca(2+) influx. Taken together our results revealed a developmental function of P2Y2R in promoting synaptic gene expression and demonstrated the influence of costimulation of P2Y1R and P2Y2R in neurons.
Collapse
Affiliation(s)
- Roy C Y Choi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Molecular pharmacology, physiology, and structure of the P2Y receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:373-415. [PMID: 21586365 DOI: 10.1016/b978-0-12-385526-8.00012-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The P2Y receptors are a widely expressed group of eight nucleotide-activated G protein-coupled receptors (GPCRs). The P2Y(1)(ADP), P2Y(2)(ATP/UTP), P2Y(4)(UTP), P2Y(6)(UDP), and P2Y(11)(ATP) receptors activate G(q) and therefore robustly promote inositol lipid signaling responses. The P2Y(12)(ADP), P2Y(13)(ADP), and P2Y(14)(UDP/UDP-glucose) receptors activate G(i) leading to inhibition of adenylyl cyclase and to Gβγ-mediated activation of a range of effector proteins including phosphoinositide 3-kinase-γ, inward rectifying K(+) (GIRK) channels, phospholipase C-β2 and -β3, and G protein-receptor kinases 2 and 3. A broad range of physiological responses occur downstream of activation of these receptors ranging from Cl(-) secretion by epithelia to aggregation of platelets to neurotransmission. Useful structural models of the P2Y receptors have evolved from extensive genetic analyses coupled with molecular modeling based on three-dimensional structures obtained for rhodopsin and several other GPCRs. Selective ligands have been synthesized for most of the P2Y receptors with the most prominent successes attained with highly selective agonist and antagonist molecules for the ADP-activated P2Y(1) and P2Y(12) receptors. The widely prescribed drug, clopidogrel, which results in irreversible blockade of the platelet P2Y(12) receptor, is the most important therapeutic agent that targets a P2Y receptor.
Collapse
|
13
|
Siow NL, Choi RCY, Xie HQ, Kong LW, Chu GKY, Chan GKL, Simon J, Barnard EA, Tsim KWK. ATP induces synaptic gene expressions in cortical neurons: transduction and transcription control via P2Y1 receptors. Mol Pharmacol 2010; 78:1059-71. [PMID: 20847060 PMCID: PMC2993467 DOI: 10.1124/mol.110.066506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/16/2010] [Indexed: 01/02/2023] Open
Abstract
Studies in vertebrate neuromuscular synapses have revealed previously that ATP, via P2Y receptors, plays a critical role in regulating postsynaptic gene expressions. An equivalent regulatory role of ATP and its P2Y receptors would not necessarily be expected for the very different situation of the brain synapses, but we provide evidence here for a brain version of that role. In cultured cortical neurons, the expression of P2Y(1) receptors increased sharply during neuronal differentiation. Those receptors were found mainly colocalized with the postsynaptic scaffold postsynaptic density protein 95 (PSD-95). This arises through a direct interaction of a PDZ domain of PSD-95 with the C-terminal PDZ-binding motif, D-T-S-L of the P2Y(1) receptor, confirmed by the full suppression of the colocalization upon mutation of two amino acids therein. This interaction is effective in recruiting PSD-95 to the membrane. Specific activation of P2Y(1) (G-protein-coupled) receptors induced the elevation of intracellular Ca(2+) and activation of a mitogen-activated protein kinase/Raf-1 signaling cascade. This led to distinct up-regulation of the genes encoding acetylcholinesterase (AChE(T) variant), choline acetyltransferase, and the N-methyl-d-aspartate receptor subunit NR2A. This was confirmed, in the example of AChE, to arise from P2Y(1)-dependent stimulation of a human ACHE gene promoter. That involved activation of the transcription factor Elk-1; mutagenesis of the ACHE promoter revealed that Elk-1 binding at its specific responsive elements in that promoter was induced by P2Y(1) receptor activation. The combined findings reveal that ATP, via its P2Y(1) receptor, can act trophically in brain neurons to regulate the gene expression of direct effectors of synaptic transmission.
Collapse
Affiliation(s)
- Nina L Siow
- Department of Biology and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Filippov AK, Choi RCY, Simon J, Barnard EA, Brown DA. Activation of P2Y1 nucleotide receptors induces inhibition of the M-type K+ current in rat hippocampal pyramidal neurons. J Neurosci 2006; 26:9340-8. [PMID: 16957090 PMCID: PMC1855006 DOI: 10.1523/jneurosci.2635-06.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 07/31/2006] [Accepted: 08/03/2006] [Indexed: 01/30/2023] Open
Abstract
We have shown previously that stimulation of heterologously expressed P2Y1 nucleotide receptors inhibits M-type K+ currents in sympathetic neurons. We now report that activation of endogenous P2Y1 receptors induces inhibition of the M-current in rat CA1/CA3 hippocampal pyramidal cells in primary neuron cultures. The P2Y1 agonist adenosine 5'-[beta-thio]diphosphate trilithium salt (ADPbetaS) inhibited M-current by up to 52% with an IC50 of 84 nM. The hydrolyzable agonist ADP (10 microM) produced 32% inhibition, whereas the metabotropic glutamate receptor 1/5 agonist DHPG [(S)-3,5-dihydroxyphenylglycine] (10 microM) inhibited M-current by 44%. The M-channel blocker XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride] produced 73% inhibition at 3 microM; neither ADPbetaS nor ADP produced additional inhibition in the presence of XE991. The effect of ADPbetaS was prevented by a specific P2Y1 antagonist, MRS 2179 (2'-deoxy-N'-methyladenosine-3',5'-bisphosphate tetra-ammonium salt) (30 microM). Inhibition of the M-current by ADPbetaS was accompanied by increased neuronal firing in response to injected current pulses. The neurons responding to ADPbetaS were judged to be pyramidal cells on the basis of (1) morphology, (2) firing characteristics, and (3) their distinctive staining for the pyramidal cell marker neurogranin. Strong immunostaining for P2Y1 receptors was shown in most cells in these cultures: 74% of the cells were positive for both P2Y1 and neurogranin, whereas 16% were only P2Y1 positive. These results show the presence of functional M-current-inhibitory P2Y1 receptors on hippocampal pyramidal neurons, as predicted from their effects when expressed in sympathetic neurons. However, the mechanism of inhibition in the two cell types seems to differ because, unlike nucleotide-mediated M-current inhibition in sympathetic neurons, that in hippocampal neurons did not appear to result from raised intracellular calcium.
Collapse
Affiliation(s)
- Alexander K Filippov
- Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | |
Collapse
|
15
|
Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 2006; 58:281-341. [PMID: 16968944 PMCID: PMC3471216 DOI: 10.1124/pr.58.3.3] [Citation(s) in RCA: 1007] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors de-orphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review.
Collapse
Affiliation(s)
- Maria P Abbracchio
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
May C, Weigl L, Karel A, Hohenegger M. Extracellular ATP activates ERK1/ERK2 via a metabotropic P2Y1 receptor in a Ca2+ independent manner in differentiated human skeletal muscle cells. Biochem Pharmacol 2006; 71:1497-509. [PMID: 16533496 DOI: 10.1016/j.bcp.2006.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/30/2022]
Abstract
ATP is released at the neuromuscular junction to regulate development and proliferation. The sequential expression of P2X and P2Y receptors has been correlated to these effects in many species and cell lines. We have therefore investigated ATP mediated signalling in differentiated primary human skeletal muscle cells. ATP was capable to trigger Ca2+ transients in these cells via P2Y receptors which were not attributable to Ca2+ influx via P2X receptors. Instead, ATP propagated the formation of inositol phosphate (IP) with an EC50 of 21.3 microM. The Ca2+ transient provoked by ATP was abrogated roughly 75% by the phospholipase C (PLC) inhibitor, U73122. Interestingly, the ryanodine sensitive Ca2+ pool was not involved in ATP triggered Ca2+ release. On mRNA level and by a pharmacological approach we confirmed the presence of the P2Y1, P2Y2, P2Y4 and P2Y6 receptors. Substantially, ATP activated IP formation via a P2Y1 receptor. In addition, ATP elicited extracellular signal regulated kinase (ERK)1/2 phosphorylation in a time and concentration dependent manner, again mainly via P2Y1 receptors. The ATP mediated ERK1/2 phosphorylation was strictly dependent on phospholipase C and PI3 kinase activity. Importantly, ATP mediated ERK1/2 phosphorylation was Ca2+ independent. This observation was corroborated by the finding that conventional protein kinase C inhibitors did not suppress ATP triggered ERK1/2 phosphorylation. Taken together, these observations highlight the importance of ATP as a co-neurotransmitter at the neuromuscular junction via dual signalling, i.e. IP3 receptor mediated Ca2+ transients and Ca2+ insensitive phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Christopher May
- Institute of Pharmacology, Medical University Vienna, Austria
| | | | | | | |
Collapse
|
17
|
Ding Z, Kim S, Kunapuli SP. Identification of a potent inverse agonist at a constitutively active mutant of human P2Y12 receptor. Mol Pharmacol 2006; 69:338-45. [PMID: 16234484 DOI: 10.1124/mol.105.014654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human platelets express two P2Y receptors: G(q)-coupled P2Y(1), and G(i)-coupled P2Y(12). Both P2Y(1) and P2Y(12) are ADP receptors on human platelets and are essential for ADP-induced platelet aggregation that plays pivotal roles in thrombosis and hemostasis. Numerous constitutively active G protein-coupled receptors have been described in natural or recombinant systems, but in the P2Y receptors, to date, no constitutive activity has been reported. In our effort to identify G protein coupling domains of the human platelet ADP receptor, we constructed a chimeric hemagglutinin-tagged human P2Y(12) receptor with its C terminus replaced by the corresponding part of human P2Y(1) receptor and stably expressed it in Chinese hamster ovary-K1 cells. It is interesting that the chimeric P2Y(12) mutant exhibited a high level of constitutive activity, as evidenced by decreased cAMP levels in the absence of agonists. The constitutive activation of the chimeric P2Y(12) mutant was dramatically inhibited by pertussis toxin, a G(i) inhibitor. The constitutively active P2Y(12) mutant retained normal responses to 2-methylthio-ADP, with an EC(50) of 0.15 +/- 0.04 nM. The constitutively active P2Y(12) mutant caused Akt phosphorylation that was abolished by the addition of pertussis toxin. Pharmacological evaluation of several P2Y(12) antagonists revealed (E)-N-[1-[7-(hexylamino)-5-(propylthio)-3H-1,2,3-triazolo-[4,5-d]-pyrimidin-3-yl]-1,5,6-trideoxy-beta-d-ribo-hept-5-enofuranuronoyl]-l-aspartic acid (AR-C78511) as a potent P2Y(12) inverse agonist and 5'-adenylic acid, N-[2-(methylthio)ethyl]-2-[(3,3,3-trifluoropropyl)thio]-, monoanhydride with (dichloromethylene)bis[phosphonic acid] (AR-C69931MX) as a neutral antagonist. In conclusion, this is the first report of a cell line stably expressing a constitutively active mutant of human platelet P2Y(12) receptor and the identification of potent inverse agonist.
Collapse
Affiliation(s)
- Zhongren Ding
- Department of Physiology, Temple University School of Medicine, 3420 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
18
|
Gachet C. The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacol Ther 2005; 108:180-92. [PMID: 15955565 DOI: 10.1016/j.pharmthera.2005.03.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 03/24/2005] [Indexed: 12/15/2022]
Abstract
Platelet activation by ADP and ATP plays a crucial role in haemostasis and thrombosis, and their so-called P2 receptors are potential targets for antithrombotic drugs. The ATP-gated channel P2X1 and the 2 G protein-coupled P2Y1 and P2Y12 ADP receptors selectively contribute to platelet aggregation. The P2Y1 receptor is responsible for ADP-induced shape change and weak and transient aggregation, while the P2Y12 receptor is responsible for the completion and amplification of the response to ADP and to all platelet agonists, including thromboxane A2 (TXA2), thrombin, and collagen. The P2X1 receptor is involved in platelet shape change and in activation by collagen under shear conditions. Due to its central role in the formation and stabilization of a thrombus, the P2Y12 receptor is a well-established target of antithrombotic drugs like ticlopidine or clopidogrel, which have proved efficacy in many clinical trials and experimental models of thrombosis. Competitive P2Y12 antagonists have also been shown to be effective in experimental thrombosis as well as in several clinical trials. Studies in P2Y1 and P2X1 knockout mice and experimental thrombosis models using selective P2Y1 and P2X1 antagonists have shown that, depending on the conditions, these receptors could also be potential targets for new antithrombotic drugs.
Collapse
Affiliation(s)
- Christian Gachet
- INSERM U.311, Etablissement Français du Sang-Alsace, 10 rue Spielmann, B.P. No. 36, 67065 Strasbourg Cedex, France.
| |
Collapse
|
19
|
Abstract
In this study, we have used reverse transcriptase polymerase chain reaction and immunocytochemistry to show that P2X1, P2X2, P2X4, P2X5, P2X6 and P2X7 receptor messenger RNA and protein are expressed in the rat choroid plexus taken from the fourth and lateral ventricles. In some epithelial cells, the apical surfaces were stained more intensely than the basal surfaces. Some of the epithelial cells showed strong staining, others weak or no staining. Double immunostaining with P2X and cytokeratin antibodies or isolectin B4 binding confirmed that P2X receptors were localized in subpopulations of the choroid plexus epithelial cells, rather than the endothelial cells of capillaries. The results suggest that P2X receptors might be involved in the regulation of cerebrospinal fluid composition.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Biochemistry and Molecular Biology, Second Military Medical University 200433 Shanghai, PR China
| | | |
Collapse
|
20
|
Kauffenstein G, Hechler B, Cazenave JP, Gachet C. Adenine triphosphate nucleotides are antagonists at the P2Y receptor. J Thromb Haemost 2004; 2:1980-8. [PMID: 15550030 DOI: 10.1111/j.1538-7836.2004.00926.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to characterize the pharmacological profile of the P2Y(12) receptor for several adenine triphosphate nucleotides in view of their possible roles as partial agonists or true antagonists. Two distinct cellular systems were used: P2Y(1) receptor deficient mouse platelets ( platelets) previously shown to express a native and functional P2Y(12) receptor and 1321 N1 astrocytoma cells stably expressing the human P2Y(12) receptor (1321 N1 P2Y(12)). ADP and its structural analogues inhibited cAMP accumulation in a dose-dependent manner in both platelets and 1321 N1 P2Y(12) cells with a similar rank order of potency, 2 methylthio-ADP (2MeSADP) >>ADP - Adenosine 5'-(betathio) diphosphate (AlphaDPbetaS). Commercial ATP, 2 chloro; ATP (2ClATP) and 2 methylthio-ATP (2MeSATP) also inhibited cAMP accumulation in both cell systems. In contrast, after creatine phosphate (CP)/creatine phosphokinase (CPK) regeneration, adenine triphosphate nucleotides lost their agonistic effect on platelets and behaved as antagonists of ADP (0.5 microm)-induced adenylyl cyclase inhibition with IC(50) of 13.5 +/- 4.8, 838 +/- 610, 1280 +/- 1246 microm for 2MeSATP, ATP and 2ClATP, respectively. In 1321 N1 P2Y(12) cells, CP/CPK regenerated ATP and 2ClATP lost their agonistic effect only when CP/CPK was maintained during the cAMP assay. The stable ATP analogue ATPgammaS antagonized ADPbetaS-induced inhibition of cAMP accumulation in both platelets and 1321 N1 P2Y(12) cells. Thus, ATP and its triphosphate analogues are not agonists but rather antagonists at the P2Y(12) receptor expressed in platelets or transfected cells, provided care is taken to remove diphosphate contaminants and to prevent the generation of diphosphate nucleotide derivatives by cell ectonucleotidases.
Collapse
Affiliation(s)
- G Kauffenstein
- INSERM U.311, Etablissement Français du Sang-Alsace, Strasbourg, France
| | | | | | | |
Collapse
|
21
|
Tung EKK, Choi RCY, Siow NL, Jiang JXS, Ling KKY, Simon J, Barnard EA, Tsim KWK. P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions. Mol Pharmacol 2004; 66:794-806. [PMID: 15258260 DOI: 10.1124/mol.104.003269] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At the vertebrate neuromuscular junction (nmj), ATP is known to be coreleased with acetylcholine from the synaptic vesicles. We have previously shown that the P2Y1 receptor is localized at the nmj. Here, we extend the findings to show that another nucleotide receptor, P2Y2, is also localized there and with P2Y1 jointly mediates trophic responses to ATP. The P2Y2 receptor mRNA in rat muscle increased during development and peaked in adulthood. The P2Y2 receptor protein was shown to become restricted to the nmjs during embryonic development, in chick and in rat. In both rat and chick myotubes, P2Y1 and P2Y2 are expressed, increasing with differentiation, but P2Y4 is absent. The P2Y2 agonist UTP stimulated there inositol trisphosphate production and phosphorylation of extracellular signal-regulated kinases, in a dose-dependent manner. These UTP-induced responses were insensitive to the P2Y1-specific antagonist MRS 2179 (2'-deoxy-N6-methyl adenosine 3',5'-diphosphate diammonium salt). In differentiated myotubes, P2Y2 activation induced expression of acetylcholinesterase (AChE) protein (but not control alpha-tubulin). This was shown to arise from AChE promoter activation, mediated by activation of the transcription factor Elk-1. Two Elk-1-responsive elements, located in intron-1 of the AChE promoter, were found by mutation to act in this gene activation initiated at the P2Y2 receptor and also in that initiated at the P2Y1 receptor. Furthermore, the promoters of different acetylcholine receptor subunits were also stimulated by application of UTP to myotubes. These results indicate that ATP regulates postsynaptic gene expressions via a common pathway triggered by the activation of P2Y1 and P2Y2 receptors at the nmjs.
Collapse
Affiliation(s)
- Edmund K K Tung
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay Rd., Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Waldo GL, Harden TK. Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol 2004; 65:426-36. [PMID: 14742685 DOI: 10.1124/mol.65.2.426] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human P2Y1 receptor (P2Y1-R) was purified after high-level expression from a recombinant baculovirus in Sf9 insect cells. Quantification by protein staining and with a radioligand binding assay using the high-affinity P2Y1-R antagonist [3H]MRS2279 ([3H]2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bis-phosphate) indicated a nearly homogenous preparation of receptor protein. Ki values determined in [3H]MRS2279 binding assays for antagonists with the purified P2Y1-R were in good agreement with the Ki and KB values determined for these molecules in membrane binding and activity assays, respectively. Availability of P2Y1-R in purified form allowed direct determination of nucleotide agonist affinities under conditions not compromised by nucleotide metabolism/interconversion, and an order of affinities of 2-methylthio-ADP (2MeSADP) > ADP = 2-methylthioATP = adenosine-5'-O-(3-thio)triphosphate = adenosine-5'-O(2-thiodiphosphate) >> ATP was obtained. The signaling activity of the purified P2Y1-R was quantified after reconstitution in proteoliposomes with heterotrimeric G proteins. Steady-state GTP hydrolysis in vesicles reconstituted with P2Y1-R and Galpha(q)beta(1)gamma(2) was stimulated by the addition of either 2MeADP or RGS4 alone and was increased by up to 50-fold in their combined presence. EC50 values of agonists for activation of the purified P2Y1-R were similar to their respective Ki values determined in radioligand binding experiments with the purified receptor. Moreover, ATP exhibited 20-fold higher EC50 and Ki values than did ADP and was a partial agonist relative to ADP and 2MeSADP under conditions in which no metabolism of the nucleotide occurred. Both RGS4 and PLC-beta1 were potent and efficacious GTPase-activating proteins for Galphaq and Galpha11 in P2Y1-R-containing vesicles. These results illustrate that the binding and signaling properties of the human P2Y1-R can be studied with purified proteins under conditions that circumvent the complications that occur in vivo.
Collapse
Affiliation(s)
- Gary L Waldo
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365, USA
| | | |
Collapse
|
23
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
24
|
Barnard EA, Simon J, Tsim KW, Filippov AK, Brown DA. Signalling pathways and ion channel regulations of P2Y receptors. Drug Dev Res 2003. [DOI: 10.1002/ddr.10200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Reifel Saltzberg JM, Garvey KA, Keirstead SA. Pharmacological characterization of P2Y receptor subtypes on isolated tiger salamander Müller cells. Glia 2003; 42:149-59. [PMID: 12655599 DOI: 10.1002/glia.10198] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Müller cells express a variety of neurotransmitter receptors that permit them to "sense" the extracellular environment within the retina. We have used a battery of agonists and antagonists to characterize the purinergic receptor subtypes expressed on isolated tiger salamander Müller cells. Changes in intracellular calcium ion concentration ([Ca(2+)](i)) in Müller cells were measured using the Ca(2+) indicator dye Fura-2 and digital imaging microscopy. ATP, 2-methylthio-ATP, 2-methylthio-ADP, ADP, UTP, UDP, deoxyATP, and 3'-O-(4-benzoyl)benzoyl ATP evoked increases in [Ca(2+)](i) in both the presence and absence of extracellular Ca(2+). Therefore, the increases we observed were likely due to intracellular Ca(2+) release mediated by G-protein-coupled P2Y receptor activation, rather than Ca(2+) influx via P2X receptor channels. The P2Y(1) receptor agonists 2-methylthio-ATP, 2-methylthio-ADP, and ADP evoked increases in [Ca(2+)](i) that were inhibited by the P2Y(1) receptor antagonists adenosine 3'-phosphate 5'-phosphosulfate and 2'-deoxy-N(6)-methyleneadenosine-3',5'-bisphosphate. Responses to ADP were not completely inhibited by the P2Y(1) receptor antagonists. The residual response to ADP could be mediated by P2Y(13) receptors. UTP evoked an increase in [Ca(2+)](i) that was partially inhibited by suramin, suggesting that Müller cells express P2Y(2) and P2Y(4) receptors. The P2Y(6) receptor agonist UDP, and the P2Y(11) receptor agonists deoxyATP, and 3'-O-(4-benzoyl)benzoyl ATP, evoked increases in [Ca(2+)](i) in Müller cells. We conclude that isolated tiger salamander Müller cells express P2Y(1), P2Y(2), P2Y(6), P2Y(11), and possibly P2Y(4) and P2Y(13) receptors. Therefore, the physiological release of ATP, ADP, UTP, and UDP and/or their accumulation in the retina under pathological conditions could stimulate increases in [Ca(2+)](i) in Müller cells.
Collapse
|
26
|
Kubista H, Lechner SG, Wolf AM, Boehm S. Attenuation of the P2Y receptor-mediated control of neuronal Ca2+ channels in PC12 cells by antithrombotic drugs. Br J Pharmacol 2003; 138:343-50. [PMID: 12540525 PMCID: PMC1573666 DOI: 10.1038/sj.bjp.0705037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. In PC12 cells, adenine nucleotides inhibit voltage-activated Ca(2+) currents and adenylyl cyclase activity, and the latter effect was reported to involve P2Y(12) receptors. To investigate whether these two effects are mediated by one P2Y receptor subtype, we used the antithrombotic agents 2-methylthio-AMP (2-MeSAMP) and N(6)-(2-methyl-thioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene-ATP (AR-C69931MX). 2. ADP reduced A(2A) receptor-dependent cyclic AMP synthesis with half maximal effects at 0.1-0.17 micro M. In the presence of 30 micro M 2-MeSAMP or 100 nM AR-C69931MX, concentration response curves were shifted to the right by factors of 39 and 30, indicative of pA(2) values of 6.1 and 8.5, respectively. 3. The inhibition of Ca(2+) currents by ADP was attenuated by 10-1000 nM AR-C69931MX and by 3-300 micro M 2-MeSAMP. ADP reinhibited Ca(2+) currents after removal of 2-MeSAMP within less than 15 s, but required 2 min to do so after removal of AR-C69931MX. 4. ADP inhibited Ca(2+) currents with half maximal effects at 5-20 micro M. AR-C69931MX (10-100 nM) displaced concentration response curves to the right, and the resulting Schild plot showed a slope of 1.09 and an estimated pK(B) value of 8.7. Similarly, 10-100 micro M 2-MeSAMP also caused rightward shifts resulting in a Schild plot with a slope of 0.95 and an estimated pK(B) of 5.4. 5. The inhibition of Ca(2+) currents by 2-methylthio-ADP and ADPbetaS was also antagonized by AR-C69931MX, which (at 30 nM) caused a rightward shift of the concentration response curve for ADPbetaS by a factor of 3.8, indicative of a pA(2) value of 8.1. 6. These results show that antithrombotic drugs antagonize the inhibition of neuronal Ca(2+) channels by adenine nucleotides, which suggests that this effect is mediated by P2Y(12) receptors.
Collapse
Affiliation(s)
- Helmut Kubista
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Stefan G Lechner
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Angelika M Wolf
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Stefan Boehm
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
- Author for correspondence:
| |
Collapse
|
27
|
Waldo GL, Corbitt J, Boyer JL, Ravi G, Kim HS, Ji XD, Lacy J, Jacobson KA, Harden TK. Quantitation of the P2Y(1) receptor with a high affinity radiolabeled antagonist. Mol Pharmacol 2002; 62:1249-57. [PMID: 12391289 PMCID: PMC4367814 DOI: 10.1124/mol.62.5.1249] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-Chloro-N(6)-methyl-(N )-methanocarba-2'-deoxyadenosine-3',5'- bisphosphate (MRS2279) was developed previously as a selective high-affinity, non-nucleotide P2Y(1) receptor (P2Y1-R) antagonist (J Med Chem 43:829-842, 2002; Br J Pharmacol 135:2004-2010, 2002). We have taken advantage of the N(6)-methyl substitution in the adenine base to incorporate [(3)H]methylamine into the synthesis of [(3)H]MRS2279 to high (89 Ci/mmol) specific radioactivity and have used this molecule as a radioligand for the P2Y1-R. [(3)H]MRS2279 bound to membranes from Sf9 insect cells expressing recombinant human P2Y1-R but not to membranes from wild-type Sf9 cells or Sf9 cells expressing high levels of recombinant P2Y(2) or P2Y(12) receptors. Equilibrium binding of [(3)H]MRS2279 to P2Y1-R expressed in Sf9 membranes was with a high affinity (K(d) = 8 nM) essentially identical to the apparent affinity of MRS2279 determined previously in studies of P2Y1-R-promoted inositol phosphate accumulation or platelet aggregation. A kinetically derived K(d) calculated from independent determinations of the rate constants of association (7.15 x 10(7) M(-1) min(-1)) and dissociation (0.72 min(-1)) of [(3)H]MRS2279 also was in good agreement with the K(d) derived from equilibrium binding studies. Competition binding assays with [(3)H]MRS2279 and P2Y1-R expressing Sf9 cell membranes revealed K(i) values for the P2Y1-R antagonists MRS2279 (K(i) = 13 nM), N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179; K(i) = 84 nM), adenosine-3', 5'-bisphosphate (K(i)=900 nM), and pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (K(i) = 6 microM) that were in good agreement with antagonist activities of these molecules previously determined at the P2Y1-R in intact tissues. Moreover, [(3)H]MRS2279 also bound with high affinity (K(d) = 4-8 nM) to Chinese hamster ovary (CHO) or 1321N1 human astrocytoma cells stably expressing the human P2Y1-R, but specific binding was not observed in wild-type CHO or 1321N1 cells. [(3)H]MRS2279 bound with high affinity (K(d) = 16 nM) to a binding site on out-dated human platelets (5-35 receptors/platelet) and rat brain membranes (210 fmol/mg protein) that fit the expected drug selectivity of a P2Y1-R. Taken together, these results indicate that [(3)H]MRS2279 is the first broadly applicable antagonist radioligand for a P2Y receptor.
Collapse
Affiliation(s)
- Gary L Waldo
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jacobson KA, Jarvis MF, Williams M. Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 2002; 45:4057-93. [PMID: 12213051 DOI: 10.1021/jm020046y] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases/NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
29
|
Simon J, Filippov AK, Göransson S, Wong YH, Frelin C, Michel AD, Brown DA, Barnard EA. Characterization and channel coupling of the P2Y(12) nucleotide receptor of brain capillary endothelial cells. J Biol Chem 2002; 277:31390-400. [PMID: 12080041 DOI: 10.1074/jbc.m110714200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat brain capillary endothelial (B10) cells express an unidentified nucleotide receptor linked to adenylyl cyclase inhibition. We show that this receptor in B10 cells is identical in sequence to the P2Y(12) ADP receptor ("P2Y(T)") of platelets. When expressed heterologously, 2-methylthio-ADP (2-MeSADP; EC(50), 2 nm), ADP, and adenosine 5'-O-(2-thio)diphosphate were agonists of cAMP decrease, and 2-propylthio-D-beta,gamma-difluoromethylene-ATP was a competitive antagonist (K(B), 28 nm), as in platelets. However, 2-methylthio-ATP (2-MeSATP) (EC(50), 0.4 nm), ATP (1.9 microm), and 2-chloro-ATP (190 nm), antagonists in the platelet, were also agonists. 2-MeSADP activated (EC(50), 0.1 nm) GIRK1/GIRK2 inward rectifier K(+) channels when co-expressed with P2Y(12) receptors in sympathetic neurons. Surprisingly, P2Y(1) receptors expressed likewise gave that response; however, a full inactivation followed, absent with P2Y(12) receptors. A new P2Y(12)-mediated transduction was found, the closing of native N-type Ca(2+) channels; again both 2-MeSATP and 2-MeSADP are agonists (EC(50), 0.04 and 0.1 nm, respectively). That action, like their cAMP response, was pertussis toxin-sensitive. The Ca(2+) channel inhibition and K(+) channel activation are mediated by beta gamma subunit release from a heterotrimeric G-protein. G alpha subunit types in B10 cells were also identified. The presence in the brain capillary endothelial cell of the P2Y(12) receptor is a significant extension of its functional range.
Collapse
MESH Headings
- Adenylate Cyclase Toxin
- Adenylyl Cyclases/metabolism
- Amino Acid Sequence
- Animals
- Astrocytoma
- Binding, Competitive
- Brain Neoplasms
- CHO Cells
- Capillaries/physiology
- Cerebrovascular Circulation/physiology
- Cloning, Molecular
- Cricetinae
- Endothelium, Vascular/physiology
- GTP-Binding Proteins/metabolism
- Humans
- Ion Channels/physiology
- Kinetics
- Membrane Proteins
- Molecular Sequence Data
- Pertussis Toxin
- Plasmids
- Rats
- Receptor Cross-Talk/physiology
- Receptors, Purinergic P2/chemistry
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2Y12
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transfection
- Tumor Cells, Cultured
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- Joseph Simon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Unterberger U, Moskvina E, Scholze T, Freissmuth M, Boehm S. Inhibition of adenylyl cyclase by neuronal P2Y receptors. Br J Pharmacol 2002; 135:673-84. [PMID: 11834615 PMCID: PMC1573178 DOI: 10.1038/sj.bjp.0704514] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
P2Y receptors inhibiting adenylyl cyclase have been found in blood platelets, glioma cells, and endothelial cells. In platelets and glioma cells, these receptors were identified as P2Y(12). Here, we have used PC12 cells to search for adenylyl cyclase inhibiting P2Y receptors in a neuronal cellular environment. ADP and ATP (0.1 - 100 microM) left basal cyclic AMP accumulation unaltered, but reduced cyclic AMP synthesis stimulated by activation of endogenous A(2A) or recombinant beta(2) receptors. Forskolin-dependent cyclic AMP production was reduced by <or=1 microM and enhanced by 10 - 100 microM ADP; this latter effect was turned into an inhibition when A(2A) receptors were blocked. The nucleotide inhibition of cyclic AMP synthesis was not altered when P2X receptors were blocked, but abolished by pertussis toxin. The rank order of agonist potencies for the reduction of cyclic AMP was (IC(50) values): 2-methylthio-ADP (0.12 nM)=2-methylthio-ATP (0.13 nM)>ADPbetaS (71 nM)>ATP (164 nM)=ADP (244 nM). The inhibition by ADP was not antagonized by suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid, or adenosine-3'-phosphate-5'-phosphate, but attenuated by reactive blue 2, ATP(alpha)S, and 2-methylthio-AMP. RT - PCR demonstrated the expression of P2Y(2), P2Y(4), P2Y(6), and P2Y(12), but not P2Y(1), receptors in PC12 cells. In Northern blots, only P2Y(2) and P2Y(12) were detectable. Differentiation with NGF did not alter these hybridization signals and left the nucleotide inhibition of adenylyl cyclase unchanged. We conclude that P2Y(12) receptors are expressed in neuronal cells and inhibit adenylyl cyclase activity.
Collapse
Affiliation(s)
- Ursula Unterberger
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Eugenia Moskvina
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Thomas Scholze
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | - Stefan Boehm
- Institute of Pharmacology, University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
- Author for correspondence:
| |
Collapse
|
31
|
Expression of the P2Y1 nucleotide receptor in chick muscle: its functional role in the regulation of acetylcholinesterase and acetylcholine receptor. J Neurosci 2002. [PMID: 11717356 DOI: 10.1523/jneurosci.21-23-09224.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vertebrate neuromuscular junctions, ATP is stored at the motor nerve terminals and is co-released with acetylcholine during neural stimulation. Here, we provide several lines of evidence that the synaptic ATP can act as a synapse-organizing factor to induce the expression of acetylcholinesterase (AChE) and acetylcholine receptor (AChR) in muscles, mediated by a metabotropic ATP receptor subtype, the P2Y(1) receptor. The activation of the P2Y(1) receptor by adenine nucleotides stimulated the accumulation of inositol phosphates and intracellular Ca(2+) mobilization in cultured chick myotubes. P2Y(1) receptor mRNA in chicken muscle is very abundant before hatching and again increases in the adult. The P2Y(1) receptor protein is shown to be restricted to the neuromuscular junctions and colocalized with AChRs in adult muscle (chicken, Xenopus, and rat) but not in the chick embryo. In chicks after hatching, this P2Y(1) localization develops over approximately 3 weeks. Denervation or crush of the motor nerve (in chicken or rat) caused up to 90% decrease in the muscle P2Y(1) transcript, which was restored on regeneration, whereas the AChR mRNA greatly increased. Last, mRNAs encoding the AChE catalytic subunit and the AChR alpha-subunit were induced when the P2Y(1) receptors were activated by specific agonists or by overexpression of P2Y(1) receptors in cultured myotubes; those agonists likewise induced the activity in the myotubes of promoter-reporter gene constructs for those subunits, actions that were blocked by a P2Y(1)-specific antagonist. These results provide evidence for a novel function of ATP in regulating the gene expression of those two postsynaptic effectors.
Collapse
|
32
|
Choi RC, Man ML, Ling KK, Ip NY, Simon J, Barnard EA, Tsim KW. Expression of the P2Y1 nucleotide receptor in chick muscle: its functional role in the regulation of acetylcholinesterase and acetylcholine receptor. J Neurosci 2001; 21:9224-34. [PMID: 11717356 PMCID: PMC6763911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2001] [Revised: 09/06/2001] [Accepted: 09/12/2001] [Indexed: 02/22/2023] Open
Abstract
In vertebrate neuromuscular junctions, ATP is stored at the motor nerve terminals and is co-released with acetylcholine during neural stimulation. Here, we provide several lines of evidence that the synaptic ATP can act as a synapse-organizing factor to induce the expression of acetylcholinesterase (AChE) and acetylcholine receptor (AChR) in muscles, mediated by a metabotropic ATP receptor subtype, the P2Y(1) receptor. The activation of the P2Y(1) receptor by adenine nucleotides stimulated the accumulation of inositol phosphates and intracellular Ca(2+) mobilization in cultured chick myotubes. P2Y(1) receptor mRNA in chicken muscle is very abundant before hatching and again increases in the adult. The P2Y(1) receptor protein is shown to be restricted to the neuromuscular junctions and colocalized with AChRs in adult muscle (chicken, Xenopus, and rat) but not in the chick embryo. In chicks after hatching, this P2Y(1) localization develops over approximately 3 weeks. Denervation or crush of the motor nerve (in chicken or rat) caused up to 90% decrease in the muscle P2Y(1) transcript, which was restored on regeneration, whereas the AChR mRNA greatly increased. Last, mRNAs encoding the AChE catalytic subunit and the AChR alpha-subunit were induced when the P2Y(1) receptors were activated by specific agonists or by overexpression of P2Y(1) receptors in cultured myotubes; those agonists likewise induced the activity in the myotubes of promoter-reporter gene constructs for those subunits, actions that were blocked by a P2Y(1)-specific antagonist. These results provide evidence for a novel function of ATP in regulating the gene expression of those two postsynaptic effectors.
Collapse
MESH Headings
- Acetylcholinesterase/metabolism
- Adenine Nucleotides/pharmacology
- Adenosine Triphosphate/metabolism
- Aging/metabolism
- Animals
- COS Cells
- Calcium/metabolism
- Cells, Cultured
- Chick Embryo
- Chickens
- Inositol Phosphates/metabolism
- Motor Neurons/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Nerve Crush
- Nerve Regeneration/physiology
- Neuromuscular Junction/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
- Receptors, Purinergic P2/biosynthesis
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2Y1
- Spinal Cord/metabolism
- Transfection
- Xenopus
Collapse
Affiliation(s)
- R C Choi
- Department of Biology, Molecular Neuroscience Center and Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Communi D, Gonzalez NS, Detheux M, Brézillon S, Lannoy V, Parmentier M, Boeynaems JM. Identification of a novel human ADP receptor coupled to G(i). J Biol Chem 2001; 276:41479-85. [PMID: 11546776 DOI: 10.1074/jbc.m105912200] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and expressed a novel human G-protein-coupled receptor closely related to the human P2Y(12) receptor. It corresponds to the orphan receptor called GPR86. GPR86 proved to be a G(i)-coupled receptor displaying a high affinity for ADP, similar to the P2Y(12) receptor and can therefore be tentatively called P2Y(13). In 1321N1 cells, the P2Y(13) receptor coupled to the phosphoinositide pathway only when coexpressed with Galpha(16). Inositol trisphosphate formation was stimulated equipotently by nanomolar concentrations of ADP and 2MeSADP, whereas 2MeSATP and ATP were inactive. In CHO-K1 cells expressing the P2Y(13) receptor, ADP and 2MeSADP had a biphasic effect on the forskolin-stimulated accumulation of cAMP: inhibition at nanomolar concentrations and potentiation at micromolar levels. In the same cells, ADP and 2MeSADP also stimulated the phosphorylation of Erk1 and Erk2, in a pertussis toxin-sensitive way. The tissue distribution of P2Y(13) was investigated by reverse transcriptase-polymerase chain reaction, and the predominant signals were obtained in spleen and brain. Although these can be discriminated by tissue distribution and some pharmacological features, the P2Y(12) and P2Y(13) receptors form a subgroup of related P2Y subtypes that is structurally different from the other P2Y subtypes but share coupling to G(i) and a high affinity for ADP.
Collapse
Affiliation(s)
- D Communi
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
34
|
Grobben B, Claes P, Van Kolen K, Roymans D, Fransen P, Sys SU, Slegers H. Agonists of the P2Y(AC)-receptor activate MAP kinase by a ras-independent pathway in rat C6 glioma. J Neurochem 2001; 78:1325-38. [PMID: 11579141 DOI: 10.1046/j.1471-4159.2001.00524.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that an ecto-NPPase modulates the ATP- and ADP-mediated P2Y(AC)-receptor activation in rat C6 glioma. In the present study, 2MeSADP and Ap(3)A induced no detectable PI turnover and were identified as specific agonists of the P2Y(AC)-receptor with EC(50) values of 250 +/- 37 pM and 1 +/- 0.5 microM, respectively. P2Y(AC)-receptor stimulation increased MAP kinase (ERK1/2) activation that returned to the basal level 4 h after stimulation and was correlated with a gradual desensitization of the P2Y(AC)-purinoceptor. The purinoceptor antagonists DIDS and RB2 blocked MAP kinase activation. An IP(3)-independent Ca(2+)-influx was observed after P2Y(AC)-receptor activation. Inhibition of this influx by Ca(2+)-chelation, did not affect MAP kinase activation. Pertussis toxin, toxin B, selective PKC-inhibitors and a specific MEK-inhibitor inhibited the 2MeSADP- and Ap(3)A-induced MAP kinase activation. In addition, transfection with dominant negative RhoA(Asn19) rendered C6 cells insensitive to P2Y(AC)-receptor-mediated MAP kinase activation whereas dominant negative ras was without effect. Immunoprecipitation experiments indicated a significant increase in the phosphorylation of raf-1 after P2Y(AC)-receptor activation. We may conclude that P2Y(AC)-purinoceptor agonists activate MAP kinase through a G(i)-RhoA-PKC-raf-MEK-dependent, but ras- and Ca(2+)-independent cascade.
Collapse
Affiliation(s)
- B Grobben
- Department of Biochemistry, Cellular Biochemistry, Universiteit Antwerpen, Universitaire Instelling Antwerpen, Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
35
|
Barnard EA, Simon J. An elusive receptor is finally caught: P2Y(12'), an important drug target in platelets. Trends Pharmacol Sci 2001; 22:388-91. [PMID: 11478981 DOI: 10.1016/s0165-6147(00)01759-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite intensive research, the nucleotide P2 receptor that is involved in the aggregation and activation of platelets by ADP has remained elusive. However, now two research groups have independently identified a new platelet receptor of unexpected structure, P2Y(12), that acts with the P2Y(1) receptor to form the site of ADP activation and explains the multiple transduction mechanisms observed in response to ADP in platelets. Recent evidence also suggests that a third component, ATP action on the P2X(1) receptor ion channel, contributes to platelet activation.
Collapse
Affiliation(s)
- E A Barnard
- Dept of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QJ.
| | | |
Collapse
|