1
|
Svensson JE, Bolin M, Thor D, Williams PA, Brautaset R, Carlsson M, Sörensson P, Marlevi D, Spin-Neto R, Probst M, Hagman G, Morén AF, Kivipelto M, Plavén-Sigray P. Evaluating the effect of rapamycin treatment in Alzheimer's disease and aging using in vivo imaging: the ERAP phase IIa clinical study protocol. BMC Neurol 2024; 24:111. [PMID: 38575854 PMCID: PMC10993488 DOI: 10.1186/s12883-024-03596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Rapamycin is an inhibitor of the mechanistic target of rapamycin (mTOR) protein kinase, and preclinical data demonstrate that it is a promising candidate for a general gero- and neuroprotective treatment in humans. Results from mouse models of Alzheimer's disease have shown beneficial effects of rapamycin, including preventing or reversing cognitive deficits, reducing amyloid oligomers and tauopathies and normalizing synaptic plasticity and cerebral glucose uptake. The "Evaluating Rapamycin Treatment in Alzheimer's Disease using Positron Emission Tomography" (ERAP) trial aims to test if these results translate to humans through evaluating the change in cerebral glucose uptake following six months of rapamycin treatment in participants with early-stage Alzheimer's disease. METHODS ERAP is a six-month-long, single-arm, open-label, phase IIa biomarker-driven study evaluating if the drug rapamycin can be repurposed to treat Alzheimer's disease. Fifteen patients will be included and treated with a weekly dose of 7 mg rapamycin for six months. The primary endpoint will be change in cerebral glucose uptake, measured using [18F]FDG positron emission tomography. Secondary endpoints include changes in cognitive measures, markers in cerebrospinal fluid as well as cerebral blood flow measured using magnetic resonance imaging. As exploratory outcomes, the study will assess change in multiple age-related pathological processes, such as periodontal inflammation, retinal degeneration, bone mineral density loss, atherosclerosis and decreased cardiac function. DISCUSSION The ERAP study is a clinical trial using in vivo imaging biomarkers to assess the repurposing of rapamycin for the treatment of Alzheimer's disease. If successful, the study would provide a strong rationale for large-scale evaluation of mTOR-inhibitors as a potential disease-modifying treatment in Alzheimer's disease. TRIAL REGISTRATION ClinicalTrials.gov ID NCT06022068, date of registration 2023-08-30.
Collapse
Affiliation(s)
- Jonas E Svensson
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Bolin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Daniel Thor
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Carlsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Peder Sörensson
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Section for Oral Radiology, Aarhus University, Aarhus C, Denmark
| | - Monika Probst
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Göran Hagman
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences, and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Anton Forsberg Morén
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Miia Kivipelto
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences, and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, London, UK
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
2
|
Zhang Z, Qiu T, Zhou J, Gong X, Yang K, Zhang X, Lan Y, Yang C, Zhou Z, Ji Y. Toxic effects of sirolimus and everolimus on the development and behavior of zebrafish embryos. Biomed Pharmacother 2023; 166:115397. [PMID: 37659200 DOI: 10.1016/j.biopha.2023.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
Sirolimus and everolimus have been widely used in children. These mammalian target of rapamycin (mTOR) inhibitors have shown excellent efficacy not only in organ transplant patients as immunosuppressive agents but also in patients with some other diseases. However, whether mTOR inhibitors can affect the growth and development of children is of great concern. In this study, using zebrafish models, we discovered that sirolimus and everolimus could slow the development of zebrafish, affecting indicators such as survival, hatching, deformities, body length, and movement. In addition to these basic indicators, sirolimus and everolimus had certain slowing effects on the growth and development of the nervous system, blood vessels, and the immune system. These effects were dose dependent. When the drug concentration reached or exceeded 0.5 μM, the impacts of sirolimus and everolimus were very significant. More interestingly, the impact was transient. Over time, the various manifestations of experimental embryos gradually approached those of control embryos. We also compared the effects of sirolimus and everolimus on zebrafish, and we revealed that there was no significant difference between these drugs in terms of their effects. In summary, the dose of sirolimus and everolimus in children should be strictly controlled, and the drug concentration should be monitored over time. Otherwise, drug overdosing may have a certain impact on the growth and development of children.
Collapse
Affiliation(s)
- Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Xuepeng Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Congxia Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zilong Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Cheng Y, Zhang XD, Chen C, He LF, Li FF, Lu ZN, Man WQ, Zhao YJ, Chang ZX, Wu Y, Shen W, Fan LZ, Xu JH. Dynamic evolution of brain structural patterns in liver transplantation recipients: a longitudinal study based on 3D convolutional neuronal network model. Eur Radiol 2023; 33:6134-6144. [PMID: 37014408 DOI: 10.1007/s00330-023-09604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVES To evaluate the dynamic evolution process of overall brain health in liver transplantation (LT) recipients, we employed a deep learning-based neuroanatomic biomarker to measure longitudinal changes of brain structural patterns before and 1, 3, and 6 months after surgery. METHODS Because of the ability to capture patterns across all voxels from a brain scan, the brain age prediction method was adopted. We constructed a 3D-CNN model through T1-weighted MRI of 3609 healthy individuals from 8 public datasets and further applied it to a local dataset of 60 LT recipients and 134 controls. The predicted age difference (PAD) was calculated to estimate brain changes before and after LT, and the network occlusion sensitivity analysis was used to determine the importance of each network in age prediction. RESULTS The PAD of patients with cirrhosis increased markedly at baseline (+ 5.74 years) and continued to increase within one month after LT (+ 9.18 years). After that, the brain age began to decrease gradually, but it was still higher than the chronological age. The PAD values of the OHE subgroup were higher than those of the no-OHE, and the discrepancy was more obvious at 1-month post-LT. High-level cognition-related networks were more important in predicting the brain age of patients with cirrhosis at baseline, while the importance of primary sensory networks increased temporarily within 6-month post-LT. CONCLUSIONS The brain structural patterns of LT recipients showed inverted U-shaped dynamic change in the early stage after transplantation, and the change in primary sensory networks may be the main contributor. KEY POINTS • The recipients' brain structural pattern showed an inverted U-shaped dynamic change after LT. • The patients' brain aging aggravated within 1 month after surgery, and the subset of patients with a history of OHE was particularly affected. • The change of primary sensory networks is the main contributor to the change in brain structural patterns.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Xiao-Dong Zhang
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Cheng Chen
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Ling-Fei He
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Fang-Fei Li
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Zi-Ning Lu
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Wei-Qi Man
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Yu-Jiao Zhao
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | | | - Ying Wu
- School of Statistics and Data Science, Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Ling-Zhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jun-Hai Xu
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China.
| |
Collapse
|
4
|
Elezaby A, Dexheimer R, Sallam K. Cardiovascular effects of immunosuppression agents. Front Cardiovasc Med 2022; 9:981838. [PMID: 36211586 PMCID: PMC9534182 DOI: 10.3389/fcvm.2022.981838] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Immunosuppressive medications are widely used to treat patients with neoplasms, autoimmune conditions and solid organ transplants. Key drug classes, namely calcineurin inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and purine synthesis inhibitors, have direct effects on the structure and function of the heart and vascular system. In the heart, immunosuppressive agents modulate cardiac hypertrophy, mitochondrial function, and arrhythmia risk, while in vasculature, they influence vessel remodeling, circulating lipids, and blood pressure. The aim of this review is to present the preclinical and clinical literature examining the cardiovascular effects of immunosuppressive agents, with a specific focus on cyclosporine, tacrolimus, sirolimus, everolimus, mycophenolate, and azathioprine.
Collapse
Affiliation(s)
- Aly Elezaby
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ryan Dexheimer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Karim Sallam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Karim Sallam
| |
Collapse
|
5
|
Ashkar F, Bhullar KS, Wu J. The Effect of Polyphenols on Kidney Disease: Targeting Mitochondria. Nutrients 2022; 14:nu14153115. [PMID: 35956292 PMCID: PMC9370485 DOI: 10.3390/nu14153115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial function, including oxidative phosphorylation (OXPHOS), mitochondrial biogenesis, and mitochondria dynamics, are essential for the maintenance of renal health. Through modulation of mitochondrial function, the kidneys are able to sustain or recover acute kidney injury (AKI), chronic kidney disease (CKD), nephrotoxicity, nephropathy, and ischemia perfusion. Therapeutic improvement in mitochondrial function in the kidneys is related to the regulation of adenosine triphosphate (ATP) production, free radicals scavenging, decline in apoptosis, and inflammation. Dietary antioxidants, notably polyphenols present in fruits, vegetables, and plants, have attracted attention as effective dietary and pharmacological interventions. Considerable evidence shows that polyphenols protect against mitochondrial damage in different experimental models of kidney disease. Mechanistically, polyphenols regulate the mitochondrial redox status, apoptosis, and multiple intercellular signaling pathways. Therefore, this review attempts to focus on the role of polyphenols in the prevention or treatment of kidney disease and explore the molecular mechanisms associated with their pharmacological activity.
Collapse
Affiliation(s)
| | | | - Jianping Wu
- Correspondence: ; Tel.: +1-780-492-6885; Fax: +1-780-492-8524
| |
Collapse
|
6
|
Moloney PB, Cavalleri GL, Delanty N. Epilepsy in the mTORopathies: opportunities for precision medicine. Brain Commun 2021; 3:fcab222. [PMID: 34632383 PMCID: PMC8495134 DOI: 10.1093/braincomms/fcab222] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 01/16/2023] Open
Abstract
The mechanistic target of rapamycin signalling pathway serves as a ubiquitous regulator of cell metabolism, growth, proliferation and survival. The main cellular activity of the mechanistic target of rapamycin cascade funnels through mechanistic target of rapamycin complex 1, which is inhibited by rapamycin, a macrolide compound produced by the bacterium Streptomyces hygroscopicus. Pathogenic variants in genes encoding upstream regulators of mechanistic target of rapamycin complex 1 cause epilepsies and neurodevelopmental disorders. Tuberous sclerosis complex is a multisystem disorder caused by mutations in mechanistic target of rapamycin regulators TSC1 or TSC2, with prominent neurological manifestations including epilepsy, focal cortical dysplasia and neuropsychiatric disorders. Focal cortical dysplasia type II results from somatic brain mutations in mechanistic target of rapamycin pathway activators MTOR, AKT3, PIK3CA and RHEB and is a major cause of drug-resistant epilepsy. DEPDC5, NPRL2 and NPRL3 code for subunits of the GTPase-activating protein (GAP) activity towards Rags 1 complex (GATOR1), the principal amino acid-sensing regulator of mechanistic target of rapamycin complex 1. Germline pathogenic variants in GATOR1 genes cause non-lesional focal epilepsies and epilepsies associated with malformations of cortical development. Collectively, the mTORopathies are characterized by excessive mechanistic target of rapamycin pathway activation and drug-resistant epilepsy. In the first large-scale precision medicine trial in a genetically mediated epilepsy, everolimus (a synthetic analogue of rapamycin) was effective at reducing seizure frequency in people with tuberous sclerosis complex. Rapamycin reduced seizures in rodent models of DEPDC5-related epilepsy and focal cortical dysplasia type II. This review outlines a personalized medicine approach to the management of epilepsies in the mTORopathies. We advocate for early diagnostic sequencing of mechanistic target of rapamycin pathway genes in drug-resistant epilepsy, as identification of a pathogenic variant may point to an occult dysplasia in apparently non-lesional epilepsy or may uncover important prognostic information including, an increased risk of sudden unexpected death in epilepsy in the GATORopathies or favourable epilepsy surgery outcomes in focal cortical dysplasia type II due to somatic brain mutations. Lastly, we discuss the potential therapeutic application of mechanistic target of rapamycin inhibitors for drug-resistant seizures in GATOR1-related epilepsies and focal cortical dysplasia type II.
Collapse
Affiliation(s)
- Patrick B Moloney
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| | - Gianpiero L Cavalleri
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| | - Norman Delanty
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| |
Collapse
|
7
|
Abdallah CG, Averill LA, Gueorguieva R, Goktas S, Purohit P, Ranganathan M, Sherif M, Ahn KH, D'Souza DC, Formica R, Southwick SM, Duman RS, Sanacora G, Krystal JH. Modulation of the antidepressant effects of ketamine by the mTORC1 inhibitor rapamycin. Neuropsychopharmacology 2020; 45:990-997. [PMID: 32092760 PMCID: PMC7162891 DOI: 10.1038/s41386-020-0644-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/08/2020] [Accepted: 02/12/2020] [Indexed: 02/08/2023]
Abstract
Twenty-four hours after administration, ketamine exerts rapid and robust antidepressant effects that are thought to be mediated by activation of the mechanistic target of rapamycin complex 1 (mTORC1). To test this hypothesis, depressed patients were pretreated with rapamycin, an mTORC1 inhibitor, prior to receiving ketamine. Twenty patients suffering a major depressive episode were randomized to pretreatment with oral rapamycin (6 mg) or placebo 2 h prior to the intravenous administration of ketamine 0.5 mg/kg in a double-blind cross-over design with treatment days separated by at least 2 weeks. Depression severity was assessed using Montgomery-Åsberg Depression Rating Scale (MADRS). Rapamycin pretreatment did not alter the antidepressant effects of ketamine at the 24-h timepoint. Over the subsequent 2-weeks, we found a significant treatment by time interaction (F(8,245) = 2.02, p = 0.04), suggesting a prolongation of the antidepressant effects of ketamine by rapamycin. Two weeks following ketamine administration, we found higher response (41%) and remission rates (29%) following rapamycin + ketamine compared to placebo + ketamine (13%, p = 0.04, and 7%, p = 0.003, respectively). In summary, single dose rapamycin pretreatment failed to block the antidepressant effects of ketamine, but it prolonged ketamine's antidepressant effects. This observation raises questions about the role of systemic vs. local blockade of mTORC1 in the antidepressant effects of ketamine, provides preliminary evidence that rapamycin may extend the benefits of ketamine, and thereby potentially sheds light on mechanisms that contribute to depression relapse after ketamine administration.
Collapse
Affiliation(s)
- Chadi G Abdallah
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA.
| | - Lynnette A Averill
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA
| | - Ralitza Gueorguieva
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Selin Goktas
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA
| | - Prerana Purohit
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA
| | - Mohini Ranganathan
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA
| | - Mohamed Sherif
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA
| | - Kyung-Heup Ahn
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA
| | - Deepak Cyril D'Souza
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA
| | - Richard Formica
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Steven M Southwick
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA
| | - Ronald S Duman
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA
| | - Gerard Sanacora
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA
| | - John H Krystal
- National Center for PTSD - Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA
- Departments of Psychiatry, Neuroscience, and Psychology Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Allocco JB, Alegre ML. Exploiting immunometabolism and T cell function for solid organ transplantation. Cell Immunol 2020; 351:104068. [PMID: 32139072 PMCID: PMC7150626 DOI: 10.1016/j.cellimm.2020.104068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Cellular metabolism is central to T cell function and proliferation, with most of the research to date focusing on cancer and autoimmunity. Cellular metabolism is associated with a host of physiological phenomena, from epigenetic changes, to cellular function and fate. For the purpose of this review, we will discuss the metabolism of T cells relating to their differentiation and function. We will cover a variety of metabolic processes, ranging from glycolysis to amino acid metabolism. Understanding how T cell metabolism informs T cell function may be useful to understand alloimmune responses and design novel therapies to improve graft outcome.
Collapse
Affiliation(s)
- Jennifer B Allocco
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, United States
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
9
|
Calcineurin signaling as a target for the treatment of alcohol abuse and neuroinflammatory disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019. [PMID: 31601401 DOI: 10.1016/bs.pmbts.2019.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Converging lines of evidence point to a significant role of neuroinflammation in a host of psychiatric conditions, including alcohol use disorder, TBI, and PTSD. A complex interaction of both peripheral and central signaling underlies processes involved in neuroinflammation. Calcineurin is a molecule that sits at the nexus of these processes and has been clearly linked to a number of psychiatric disorders including alcohol use disorder (AUD). Like its role in regulating peripheral immune cells, calcineurin (CN) plays an integral role in processes regulating neuroimmune function and neuroinflammatory processes. Targeting CN or elements of its signaling pathways at critical points may aid in the functional recovery from neuroinflammatory related disorders. In this review we will highlight the role of neuroinflammation and calcineurin signaling in AUD, TBI and stress-induced disorders and discuss recent findings demonstrating a therapeutic effect of immunosuppressant-induced calcineurin inhibition in a pre-clinical model of binge alcohol drinking.
Collapse
|
10
|
Schmitz B, Pflugrad H, Tryc AB, Lanfermann H, Jäckel E, Schrem H, Beneke J, Barg-Hock H, Klempnauer J, Weissenborn K, Ding XQ. Brain metabolic alterations in patients with long-term calcineurin inhibitor therapy after liver transplantation. Aliment Pharmacol Ther 2019; 49:1431-1441. [PMID: 31006881 DOI: 10.1111/apt.15256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/24/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Calcineurin inhibitor (CNI) neurotoxicity after liver transplantation might be due to impairment of the cerebral metabolism. AIMS To investigate CNI-related alterations of brain metabolite distributions and associations between cognitive function and brain metabolism in patients with long-term CNI treatment after liver transplantation. METHODS Eighty-two patients (19 CNI free, 34 CNI low-dose and 29 standard-dose CNI immunosuppression) 10 years after liver transplantation and 32 adjusted healthy controls underwent nonlocalised brain phosphorus magnetic resonance spectroscopy (MRS) and single voxel proton MRS in the parietal white matter to estimate brain metabolite contents. The MRS results were correlated with psychometric data assessing cognitive function. RESULTS Phosphorus metabolite concentrations with the exception of phosphocreatine (PCr) were reduced in patients compared to controls. Particularly, patients with low-dose CNI therapy showed a significant decrease in adenosine triphosphate (0.209 ± 0.012 vs 0.222 ± 0.010; P < 0.001) and a significant increase in PCr (0.344 ± 0.026 vs 0.321 ± 0.017; P < 0.001) compared to controls. Myo-Inositol in the CNI free group (2.719 ± 0.549 institutional unit [iu]) was significantly lower compared to controls (3.181 ± 0.425 iu; P = 0.02), patients on low-dose (3.130 ± 0.513 iu; P < 0.05) and standard-dose CNI therapy (3.207 ± 0.632 iu; P < 0.02). Glutamate and glutamine levels correlated negatively with cognitive function (Repeatable Battery for the Assessment of Neuropsychological Status Total Scale: R = -0.362, P = 0.029). CONCLUSION Long-term CNI therapy after liver transplantation might be associated with alterations of brain metabolites.
Collapse
Affiliation(s)
- Birte Schmitz
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Henning Pflugrad
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Centre Transplantation, Hannover Medical School, Hannover, Germany
| | - Anita B Tryc
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Centre Transplantation, Hannover Medical School, Hannover, Germany
| | - Heinrich Lanfermann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Elmar Jäckel
- Integrated Research and Treatment Centre Transplantation, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Harald Schrem
- Core Facility Quality Management and Health Technology Assessment in Transplantation, Hannover Medical School, Hannover, Germany.,Clinic for Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Jan Beneke
- Core Facility Quality Management and Health Technology Assessment in Transplantation, Hannover Medical School, Hannover, Germany
| | - Hannelore Barg-Hock
- Clinic for Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Klempnauer
- Integrated Research and Treatment Centre Transplantation, Hannover Medical School, Hannover, Germany.,Clinic for Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Karin Weissenborn
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Centre Transplantation, Hannover Medical School, Hannover, Germany
| | - Xiao-Qi Ding
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Franz DN, Krueger DA. mTOR inhibitor therapy as a disease modifying therapy for tuberous sclerosis complex. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:365-373. [PMID: 30307123 DOI: 10.1002/ajmg.c.31655] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/07/2022]
Abstract
Between 1993 and 2003, through experiments involving Drosophila sp., cancer biologists identified the protein kinase known as the mammalian target of rapamycin, its pathway, and its relationship to the genes responsible for tuberous sclerosis. Thereafter, clinical research has resulted in regulatory approval of mTOR inhibitors for four distinct manifestations of the disease: giant cell astrocytoma, angiomyolipoma, lymphangioleiomyomatosis, and epilepsy. These developments are summarized and the practical use of mTOR inhibitors to improve the lives of patients with tuberous sclerosis reviewed.
Collapse
Affiliation(s)
- David Neal Franz
- Department of Pediatrics, Division of Child Neurology, Cincinnati Childrens Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Darcy Andrew Krueger
- Department of Pediatrics, Division of Child Neurology, Cincinnati Childrens Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
12
|
El-Yazbi AF, Eid AH, El-Mas MM. Cardiovascular and renal interactions between cyclosporine and NSAIDs: Underlying mechanisms and clinical relevance. Pharmacol Res 2018; 129:251-261. [DOI: 10.1016/j.phrs.2017.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
|
13
|
Klawitter J, Nashan B, Christians U. Everolimus and sirolimus in transplantation-related but different. Expert Opin Drug Saf 2015; 14:1055-70. [PMID: 25912929 DOI: 10.1517/14740338.2015.1040388] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The inhibitors of the mammalian target of rapamycin (mTOR) sirolimus and everolimus are used not only as immunosuppressants after organ transplantation in combination with calcineurin inhibitors (CNIs) but also as proliferation signal inhibitors coated on drug-eluting stents and in cancer therapy. Notwithstanding their related chemical structures, both have distinct pharmacokinetic, pharmacodynamic and toxicodynamic properties. AREAS COVERED The additional hydroxyethyl group at the C(40) of the everolimus molecule results in different tissue and subcellular distribution, different affinities to active drug transporters and drug-metabolizing enzymes as well as differences in drug-target protein interactions including a much higher potency in terms of interacting with the mTOR complex 2 than sirolimus. Said mechanistic differences as well as differences found in clinical trials in transplant patients are reviewed. EXPERT OPINION In comparison to sirolimus, everolimus has higher bioavailability, a shorter terminal half-life, different blood metabolite patterns, the potential to antagonize the negative effects of CNIs on neuronal and kidney cell metabolism (which sirolimus enhances), the ability to stimulate mitochondrial oxidation (which sirolimus inhibits) and to reduce vascular inflammation to a greater extent. A head-to-head, randomized trial comparing the safety and tolerability of these two mTOR inhibitors in solid organ transplant recipients is merited.
Collapse
Affiliation(s)
- Jost Klawitter
- University of Colorado, iC42 Clinical Research and Development , Anschutz Medical Campus, 1999 North Fitzsimons Parkway, Suite 100, Aurora, CO 80045-7503 , USA +1 303 724 5665 ; +1 303 724 5662 ;
| | | | | |
Collapse
|
14
|
Abstract
BACKGROUND Brain subependymal giant cell astrocytomas (SEGAs) in patients with tuberous sclerosis have been reported to respond to everolimus. METHODS A 15-year-old male patient with intractable seizures and multiple SEGAs of the brain developed leptomeningeal enhancement and multiple metastatic, histologically confirmed SEGAs of the spinal cord. He received daily everolimus at a dose of 3 mg/m for 6 weeks, which was then increased to 6 mg/m. RESULTS Magnetic resonance image of the brain and spine showed significant reduction in the size of SEGAs after 6 weeks of treatment. The patient has remained free of progression for 24 months. Additional benefits included: excellent seizure control, decrease in the size of cardiac rhabdomyomas, and improved quality of life. CONCLUSIONS We describe a rare case of metastatic SEGA, which was successfully treated with everolimus.
Collapse
|
15
|
Nashan B. mTOR Inhibitors and their Role in Modern Concepts of Immunosuppression. World J Surg 2014; 38:3199-201. [DOI: 10.1007/s00268-014-2756-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Regulator of calcineurin 1 modulates expression of innate anxiety and anxiogenic responses to selective serotonin reuptake inhibitor treatment. J Neurosci 2013; 33:16930-44. [PMID: 24155299 DOI: 10.1523/jneurosci.3513-12.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulator of calcineurin 1 (RCAN1) controls the activity of calcium/calmodulin-dependent phosphatase calcineurin (CaN), which has been implicated in human anxiety disorders. Previously, we reported that RCAN1 functioned as an inhibitor of CaN activity in the brain. However, we now find enhanced phosphorylation of a CaN substrate, cAMP response element-binding protein (CREB), in the brains of Rcan1 knock-out (KO) mice. Consistent with enhanced CREB activation, we also observe enhanced expression of a CREB transcriptional target, brain-derived neurotrophic factor (BDNF) in Rcan1 KO mice. We also discovered that RCAN1 deletion or blockade of RCAN1-CaN interaction reduced CaN and protein phosphatase-1 localization to nuclear-enriched protein fractions and promoted CREB activation. Because of the potential links between CREB, BDNF, and anxiety, we examined the role of RCAN1 in the expression of innate anxiety. Rcan1 KO mice displayed reduced anxiety in several tests of unconditioned anxiety. Acute pharmacological inhibition of CaN rescued these deficits while transgenic overexpression of human RCAN1 increased anxiety. Finally, we found that Rcan1 KO mice lacked the early anxiogenic response to the selective serotonin reuptake inhibitor (SSRI) fluoxetine and had improved latency for its therapeutic anxiolytic effects. Together, our study suggests that RCAN1 plays an important role in the expression of anxiety-related and SSRI-related behaviors through CaN-dependent signaling pathways. These results identify RCAN1 as a mediator of innate emotional states and possible therapeutic target for anxiety.
Collapse
|
17
|
Skardelly M, Glien A, Groba C, Schlichting N, Kamprad M, Meixensberger J, Milosevic J. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro. Exp Cell Res 2013; 319:3170-81. [PMID: 24001738 DOI: 10.1016/j.yexcr.2013.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/17/2013] [Accepted: 08/19/2013] [Indexed: 11/20/2022]
Abstract
In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC), we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment.
Collapse
Affiliation(s)
- Marco Skardelly
- Department of Neurosurgery, University Hospital, Leipzig, Germany; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Rehman H, Krishnasamy Y, Haque K, Thurman RG, Lemasters JJ, Schnellmann RG, Zhong Z. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin a treatment in rats. PLoS One 2013; 8:e65029. [PMID: 23755172 PMCID: PMC3670924 DOI: 10.1371/journal.pone.0065029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/21/2013] [Indexed: 11/30/2022] Open
Abstract
Our previous studies showed that an extract from Camellia sinenesis (green tea), which contains several polyphenols, attenuates nephrotoxicity caused by cyclosporine A (CsA). Since polyphenols are stimulators of mitochondrial biogenesis (MB), this study investigated whether stimulation of MB plays a role in green tea polyphenol protection against CsA renal toxicity. Rats were fed a powdered diet containing green tea polyphenolic extract (0.1%) starting 3 days prior to CsA treatment (25 mg/kg, i.g. daily for 3 weeks). CsA alone decreased renal nuclear DNA-encoded oxidative phosphorylation (OXPHOS) protein ATP synthase-β (AS-β) by 42%, mitochondrial DNA (mtDNA)-encoded OXPHOS protein NADH dehydrogenase-3 (ND3) by 87% and their associated mRNAs. Mitochondrial DNA copy number was also decreased by 78% by CsA. Immunohistochemical analysis showed decreased cytochrome c oxidase subunit IV (COX-IV), an OXPHOS protein, in tubular cells. Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, the master regulator of MB, and mitochondrial transcription factor-A (Tfam), the transcription factor that regulates mtDNA replication and transcription, were 42% and 90% lower, respectively, in the kidneys of CsA-treated than in untreated rats. These results indicate suppression of MB by chronic CsA treatment. Green tea polyphenols alone and following CsA increased AS-β, ND3, COX-IV, mtDNA copy number, PGC-1α mRNA and protein, decreased acetylated PGC-1α, and increased Tfam mRNA and protein. In association with suppressed MB, CsA increased serum creatinine, caused loss of brush border and dilatation of proximal tubules, tubular atrophy, vacuolization, apoptosis, calcification, and increased neutrophil gelatinase-associated lipocalin expression, leukocyte infiltration, and renal fibrosis. Green tea polyphenols markedly attenuated CsA-induced renal injury and improved renal function. Together, these results demonstrate that green tea polyphenols attenuate CsA-induced kidney injury, at least in part, through the stimulation of MB.
Collapse
Affiliation(s)
- Hasibur Rehman
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yasodha Krishnasamy
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Khujista Haque
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Ronald G. Thurman
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - John J. Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Rick G. Schnellmann
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Zhi Zhong
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
19
|
Budde K, Lehne G, Winkler M, Renders L, Lison A, Fritsche L, Soulillou JP, Fauchald P, Neumayer HH, Dantal J. Influence of Everolimus on Steady-State Pharmacokinetics of Cyclosporine in Maintenance Renal Transplant Patients. J Clin Pharmacol 2013; 45:781-91. [PMID: 15951468 DOI: 10.1177/0091270005277196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To investigate possible interactions of the novel immunosuppressant everolimus with cyclosporine, a multicenter, randomized, double-blind, placebo-controlled, dose-escalating phase I study was performed. Everolimus regimens (0.75-10 mg/d) were administered for 28 days to stable renal allograft recipients receiving the microemulsion form of cyclosporine. Steady-state cyclosporine profiles were assessed at baseline on day 0 (cyclosporine alone) and on day 21 with everolimus on steady state. By day 21, mean dose-normalized cyclosporine AUC0-12 increased by 15% in patients receiving placebo. In everolimus-treated patients, mean increases in cyclosporine AUC0-12 ranged from 7% to 43%, which were not significantly different across all dosing cohorts including placebo. Linear regression of everolimus AUC on day 21 versus the increase in cyclosporine AUC0-12 yielded a slope not significantly different from a horizontal line (P = ns). In conclusion, these results suggest that steady-state everolimus exposure over the wide range assessed in this study did not affect steady-state cyclosporine pharmacokinetics.
Collapse
|
20
|
Bradshaw-Pierce EL, Pitts TM, Kulikowski G, Selby H, Merz AL, Gustafson DL, Serkova NJ, Eckhardt SG, Weekes CD. Utilization of quantitative in vivo pharmacology approaches to assess combination effects of everolimus and irinotecan in mouse xenograft models of colorectal cancer. PLoS One 2013; 8:e58089. [PMID: 23520486 PMCID: PMC3592886 DOI: 10.1371/journal.pone.0058089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/31/2013] [Indexed: 12/12/2022] Open
Abstract
Purpose The PI3K/AKT/mTOR pathway is frequently dysregulated in cancers and inhibition of mTOR has demonstrated the ability to modulate pro-survival pathways. As such, we sought to determine the ability of the mTOR inhibitor everolimus to potentiate the antitumor effects of irinotecan in colorectal cancer (CRC). Experimental Design The combinatorial effects of everolimus and irinotecan were evaluated in vitro and in vivo in CRC cell lines harboring commonly found mutations in PIK3CA, KRAS and/or BRAF. Pharmacokinetically-directed dosing protocols of everolimus and irinotecan were established and used to assess the in vivo antitumor effects of the agents. At the end of treatment, 3–6 tumors per treatment arm were harvested for biomarker analysis by NMR metabolomics. Results Everolimus and irinotecan/SN38 demonstrated synergistic anti-proliferative effects in multiple CRC cell lines in vitro. Combination effects of everolimus and irinotecan were determined in CRC xenograft models using clinically-relevant dosing protocols. Everolimus demonstrated significant tumor growth inhibition alone and when combined with irinotecan in HT29 and HCT116 tumor xenografts. Metabolomic analysis showed that HT29 tumors were more metabolically responsive than HCT116 tumors. Everolimus caused a decrease in glycolysis in both tumor types whilst irinotecan treatment resulted in a profound accumulation of lipids in HT29 tumors indicating a cytotoxic effect. Conclusions Quantitative analysis of tumor growth and metabolomic data showed that the combination of everolimus and irinotecan was more beneficial in the BRAF/PIK3CA mutant HT29 tumor xenografts, which had an additive effect, than the KRAS/PIK3CA mutant HCT116 tumor xenografts, which had a less than additive effect.
Collapse
Affiliation(s)
- Erica L Bradshaw-Pierce
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Barbas AS, Rege AS, Castleberry AW, Gommer J, Ellis MJ, Brennan TV, Collins BH, Martin AE, Ravindra KV, Vikraman DS, Sudan DL. Posterior reversible encephalopathy syndrome independently associated with tacrolimus and sirolimus after multivisceral transplantation. Am J Transplant 2013; 13:808-10. [PMID: 23331705 DOI: 10.1111/ajt.12061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/12/2012] [Accepted: 11/17/2012] [Indexed: 01/25/2023]
Abstract
Posterior reversible encephalopathy syndrome (PRES) is a small vessel microangiopathy of the cerebral vasculature that occurs in 0.5-5% of solid organ transplant recipients, most commonly associated with tacrolimus (Tac). Clinical manifestations include hypertension and neurologic symptoms. We report an adult multivisceral transplant recipient who experienced recurrent PRES initially associated with Tac and subsequently with sirolimus. A 49-year-old woman with short bowel syndrome underwent multivisceral transplantation due to total parenteral nutrition-related liver disease. She was initially maintained on Tac, mycophenalate mofetil (MMF) and prednisone. Three months after transplantation, she developed renal dysfunction, leading to a reduction in Tac and the addition of sirolimus. Eight months after transplantation, she developed PRES. Tac was discontinued and PRES resolved. Sirolimus was increased to maintain trough levels of 12-15 ng/mL. Fourteen months after transplant, she experienced recurrent PRES which resolved after discontinuing sirolimus. Currently 3 years posttransplant, she is maintained on cyclosporine, MMF and prednisone with no PRES recurrence. In addition to calcineurin inhibitors, sirolimus may also be associated with PRES after solid organ transplantation. Ours is the first report of sirolimus-associated PRES in the setting of multivisceral transplantation. Identifying a safe alternative immunosuppression regimen was challenging but ultimately successful.
Collapse
Affiliation(s)
- A S Barbas
- Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu H, Tu L, Wang Q, Sun Y, Ma Y, Cen J, Wei Q, Luo J. Modulation of calcineurin activity in mouse brain by chronic oral administration of cyclosporine A. IUBMB Life 2013; 65:445-53. [DOI: 10.1002/iub.1139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022]
|
23
|
Curatolo P, Moavero R. mTOR Inhibitors in Tuberous Sclerosis Complex. Curr Neuropharmacol 2012; 10:404-15. [PMID: 23730262 PMCID: PMC3520048 DOI: 10.2174/157015912804143595] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/13/2012] [Accepted: 07/24/2012] [Indexed: 01/16/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic multiple organ system disorder that is characterized by the development of tumor-like lesions (hamartomas) and neurodevelopmental disorders. Mutations in the TSC1 and TSC2 tumor suppressor genes occur in the majority of patients with TSC, resulting in hyperactivation of the mammalian target of rapamycin (mTOR) signaling pathway and subsequent abnormalities in numerous cell processes. As a result, mTOR inhibitors such as sirolimus and everolimus have the potential to provide targeted therapy for patients with TSC. Everolimus is the first mTOR inhibitor approved as a treatment option in the USA and in Europe for patients with subependymal giant-cell astrocytomas (SEGAs) associated with TSC. The clinical evidence to date supports the use of mTOR inhibitors in a variety of TSC-associated disease manifestations, including SEGAs, renal angiomyolipoma, skin manifestations, and epilepsy. Furthermore, ongoing clinical trials evaluating mTOR inhibitors in TSC are underway, and the results of these studies are expected to provide further evidence that will firmly establish their role in this setting. This article will discuss the role of the mTOR pathway in TSC and review the pharmacokinetics, pharmacodynamics, clinical efficacy, and tolerability of mTOR inhibitors, along with their current place in clinical practice.
Collapse
Affiliation(s)
- Paolo Curatolo
- Pediatric Neurology Unit, Neuroscience Department, Tor Vergata University Hospital, Rome, Italy
| | | |
Collapse
|
24
|
Everolimus and sirolimus in combination with cyclosporine have different effects on renal metabolism in the rat. PLoS One 2012; 7:e48063. [PMID: 23118926 PMCID: PMC3485290 DOI: 10.1371/journal.pone.0048063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/19/2012] [Indexed: 01/05/2023] Open
Abstract
Enhancement of calcineurin inhibitor nephrotoxicity by sirolimus (SRL) is limiting the clinical use of this drug combination. We compared the dose-dependent effects of the structurally related everolimus (EVL) and sirolimus (SRL) alone, and in combination with cyclosporine (CsA), on the rat kidney. Lewis rats were treated by oral gavage for 28 days using a checkerboard dosing format (0, 3.0, 6.0 and 10.0 CsA and 0, 0.5, 1.5 and 3.0 mg/kg/day SRL or EVL, n = 4/dose combination). After 28 days, oxidative stress, energy charge, kidney histologies, glomerular filtration rates, and concentrations of the immunosuppressants were measured along with 1H-magnetic resonance spectroscopy (MRS) and gas chromatography- mass spectrometry profiles of cellular metabolites in urine. The combination of CsA with SRL led to higher urinary glucose concentrations and decreased levels of urinary Krebs cycle metabolites when compared to controls, suggesting that CsA+SRL negatively impacted proximal tubule metabolism. Unsupervised principal component analysis of MRS spectra distinguished unique urine metabolite patterns of rats treated with CsA+SRL from those treated with CsA+EVL and the controls. SRL, but not EVL blood concentrations were inversely correlated with urine Krebs cycle metabolite concentrations. Interestingly, the higher the EVL concentration, the closer urine metabolite patterns resembled those of controls, while in contrast, the combination of the highest doses of CsA+SRL showed the most significant differences in metabolite patterns. Surprisingly in this rat model, EVL and SRL in combination with CsA had different effects on kidney biochemistry, suggesting that further exploration of EVL in combination with low dose calcineurin inhibitors may be of potential benefit.
Collapse
|
25
|
Klawitter J, Klawitter J, Schmitz V, Brunner N, Crunk A, Corby K, Bendrick-Peart J, Leibfritz D, Edelstein CL, Thurman JM, Christians U. Low-salt diet and cyclosporine nephrotoxicity: changes in kidney cell metabolism. J Proteome Res 2012; 11:5135-44. [PMID: 23057591 DOI: 10.1021/pr300260e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclosporine (CsA) is a highly effective immunosuppressant used in patients after transplantation; however, its use is limited by nephrotoxicity. Salt depletion is known to enhance CsA-induced nephrotoxicity in the rat, but the underlying molecular mechanisms are not completely understood. The goal of our study was to identify the molecular effects of salt depletion alone and in combination with CsA on the kidney using a proteo-metabolomic strategy. Rats (n = 6) were assigned to four study groups: (1) normal controls, (2) low-salt fed controls, (3) 10 mg/kg/d CsA for 28 days on a normal diet, (4) 10 mg/kg/d CsA for 28 days on low-salt diet. Low-salt diet redirected kidney energy metabolism toward mitochondria as indicated by a higher energy charge than in normal-fed controls. Low-salt diet alone reduced phospho-AKT and phospho-STAT3 levels and changed the expression of ion transporters PDZK1 and CLIC1. CsA induced macro- and microvesicular tubular epithelial vacuolization and reduced energy charge, changes that were more significant in low-salt fed animals, probably because of their more pronounced dependence on mitochondria. Here, CsA increased phospho-JAK2 and phospho-STAT3 levels and reduced the phospho-IKKγ and p65 proteins, thus activating NF-κB signaling. Decreased expression of lactate transport regulator CD147 and phospho-AKT was also observed after CsA exposure in low-salt rats, indicating a decrease in glycolysis. In summary, our study suggests a key role for PDZK1, CD147, JAK/STAT, and AKT signaling in CsA-induced nephrotoxicity and proposes mechanistic explanations on why rats fed a low-salt diet have higher sensitivity to CsA.
Collapse
Affiliation(s)
- Jelena Klawitter
- Department of Anesthesiology, University of Colorado, Aurora, Colorado, USA.,Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado, USA
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado, Aurora, Colorado, USA
| | - Volker Schmitz
- Department of Anesthesiology, University of Colorado, Aurora, Colorado, USA.,Department of General-, Visceral- and Transplantation Surgery, Charité, Campus Virchow, Berlin, Germany
| | - Nina Brunner
- Department of Anesthesiology, University of Colorado, Aurora, Colorado, USA.,Department of General-, Visceral- and Transplantation Surgery, Charité, Campus Virchow, Berlin, Germany
| | - Amanda Crunk
- Department of Anesthesiology, University of Colorado, Aurora, Colorado, USA
| | - Kyler Corby
- Department of Anesthesiology, University of Colorado, Aurora, Colorado, USA
| | | | - Dieter Leibfritz
- Institute for Organic Chemistry, Universität Bremen, Bremen, Germany
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado, USA
| | - Joshua M Thurman
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, Colorado, USA
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
26
|
Earla R, Cholkar K, Gunda S, Earla RL, Mitra AK. Bioanalytical method validation of rapamycin in ocular matrix by QTRAP LC-MS/MS: application to rabbit anterior tissue distribution by topical administration of rapamycin nanomicellar formulation. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 908:76-86. [PMID: 23122404 DOI: 10.1016/j.jchromb.2012.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 08/15/2012] [Accepted: 09/09/2012] [Indexed: 10/27/2022]
Abstract
A novel, fast and sensitive 3200 QTRAP LC-MS/MS method was validated for rapamycin analysis in the rabbit eye following 0.2% administration of nanomicellar eye drop formulation. The LC-MS/MS technique was developed with electrospray ionization (ESI) in positive mode. Rapamycin was extracted from individual eye tissues and fluids by a simple protein precipitation method. Samples were reconstituted in 200μL of 80% of acetonitrile in water containing 0.05% formic acid. Twenty microliter of the sample was injected on LC-MS/MS. Chromatographic separations was achieved on reversed phase C 8 Xterra column, 50mm×4.6mm, 5μm. Multiple reactions monitoring (MRM) transition m/z 936.6/409.3 for rapamycin and 734.4/576.5 for erythromycin were employed as internal standard. The calibration curves were linear r(2)>0.9998 over the concentration range from 2.3ng/mL to 1000.0ng/mL. Rapamycin was found to be stable in ocular tissue homogenates for 6weeks at a refrigerated -80°C and -20°C temperatures. Rapamycin concentration was found to be 2260.7±507.1 (mean±S.D.)ng/g tissue and 585.5±80.1 (mean±S.D.)ng/g tissue in the cornea and iris ciliary muscle, respectively. This method has two advantages. First, a volatile base was used in the extraction procedure, which is easy to evaporate and generate consistent results. Second, the sodium adduct is employed that was stable in non-ammoniated mobile phase. The method demonstrates that absorption of rapamycin by a topical application of 0.2% rapamycin nanomicellar formulation generates therapeutically effective concentrations in the anterior segment of the eye.
Collapse
Affiliation(s)
- Ravinder Earla
- UMKC School of Pharmacy, Pharmaceutical Sciences, University of Missouri-Kansas City, 2464 Charlotte Street, 5258 Health Sciences Building, MO 64108, United States
| | | | | | | | | |
Collapse
|
27
|
Beresford T, Fay T, Serkova NJ, Wu PH. Immunophyllin ligands show differential effects on alcohol self-administration in C57BL mice. J Pharmacol Exp Ther 2012; 341:611-6. [PMID: 22375069 PMCID: PMC3362882 DOI: 10.1124/jpet.111.188169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 02/27/2012] [Indexed: 12/24/2022] Open
Abstract
High abstinence rates characterize alcohol-dependent liver graft recipients. The immunosuppressants cyclosporine A (CsA) and tacrolimus (TRL) also inhibit calcineurin (CLN) in the brain. Previously, we found that CsA reduces alcohol consumption in C57BL/6J mice. The goals of the present study were: 1) to compare the ethanol preference effects of CsA against TRL, as well as sirolimus (SRL), an immunosuppressant without CLN inhibition and 2) to establish that reduction of alcohol consumption is not caused by caloric reinforcement from these ligands. C57BL/6J mice trained to imbibe ethanol consumed ethanol or sucrose in a modified limited-access drinking-in-the-dark paradigm; test groups received vehicle or doses of CsA (5-50 mg/kg), TRL (0.5-2.5 mg/kg), or SRL (1.0-5.0 mg/kg) for 5 consecutive days, 30 min before each 2-h limited-access session. Brain CsA, TRL, and SRL concentrations were measured. CsA (p < 0.001) and TRL (p < 0.01) each decreased ethanol consumption, whereas SRL showed no significant effects at any dose. Effective doses included CsA at 10 mg/kg and above and TRL at 2.5 mg/kg. CsA (50 mg/kg) did not reduce sucrose consumption. Both CsA and TRL reached significant brain concentrations compared with very low values of SRL. These data suggest that CsA and TRL may reduce alcohol preference through central CLN inhibition rather than by immunosuppression.
Collapse
Affiliation(s)
- Thomas Beresford
- Psychiatry and Research Services, Department of Veterans Affairs Medical Center, Denver, Colorado, USA.
| | | | | | | |
Collapse
|
28
|
Shing CM, Fassett RG, Brown L, Coombes JS. The effects of immunosuppressants on vascular function, systemic oxidative stress and inflammation in rats. Transpl Int 2012; 25:337-46. [PMID: 22239125 DOI: 10.1111/j.1432-2277.2011.01420.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immunosuppressants have been associated with increased cardiovascular disease risk. We determined the effects of calcineurin and mammalian target of rapamycin (mTOR) inhibitor administration on endothelial dysfunction and associated inflammation and oxidative stress in adult rats. Cyclosporine A (low and high dose), sirolimus, tacrolimus, everolimus and placebo were administered to 8-week-old male Wistar rats for 10 consecutive days. Aortic vascular endothelial and smooth muscle function were assessed ex vivo in organ baths. Maximal aortic contraction to noradrenaline in sirolimus-treated rats was significantly greater than cyclosporine groups, everolimus and placebo, whereas endothelial-dependent relaxation was significantly impaired with cyclosporine and tacrolimus compared with everolimus. Endothelial-independent relaxation was impaired in tacrolimus-treated rats compared with low dose cyclosporine, everolimus and sirolimus. Sirolimus was associated with a reduction in plasma interleukin (IL)-1β and tumour necrosis factor (TNF)-α and higher levels of catalase and total antioxidant status. In nontransplanted rats, vascular dysfunction was evident following administration of cyclosporine A, sirolimus and tacrolimus, whereas everolimus did not compromise aortic endothelial or smooth muscle function. At the doses administered in this model, the immunosuppressants exerted varying effects on vascular function.
Collapse
Affiliation(s)
- Cecilia M Shing
- School of Human Life Sciences, University of Tasmania, Launceston, Australia.
| | | | | | | |
Collapse
|
29
|
Franz DN. Everolimus: an mTOR inhibitor for the treatment of tuberous sclerosis. Expert Rev Anticancer Ther 2012; 11:1181-92. [PMID: 21916571 DOI: 10.1586/era.11.93] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tuberous sclerosis complex (TSC) is a devastating disease affecting virtually all organ systems of the body and is characterized by multiple hamartomas and neurodevelopmental disorders. The majority of patients with TSC have mutations in TSC1 or TSC2, resulting in constitutive activation of mTOR. Because the pathogenesis of the disease is mTOR hyperactivity, mTOR inhibitors have the potential to treat the underlying cause in TSC patients. Everolimus is the first mTOR inhibitor approved in the USA for the treatment of patients with subependymal giant-cell astrocytomas (SEGAs) associated with TSC. Evidence supports and ongoing studies are evaluating the role of mTOR inhibitors in the treatment of a wide spectrum of disease manifestations, including reduction in tumor volume (SEGAs, renal angiomyolipoma) and improvement in epilepsy, lung function and skin manifestations, including facial angiofibromas. In time, the use of mTOR inhibitors in patients with TSC will likely be very well established.
Collapse
Affiliation(s)
- David Neal Franz
- Departments of Pediatrics and Neurology, Tuberous Sclerosis Clinic, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
30
|
Abstract
The buildup of Abeta and tau is believed to directly cause or contribute to the progressive cognitive deficits characteristic of Alzheimer disease. However, the molecular pathways linking Abeta and tau accumulation to learning and memory deficits remain elusive. There is growing evidence that soluble forms of Abeta and tau can obstruct learning and memory by interfering with several signaling cascades. In this review, I will present data showing that the mammalian target of rapamycin (mTOR) may play a role in Abeta and tau induced neurodegeneration.
Collapse
Affiliation(s)
- Salvatore Oddo
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
31
|
Majumder S, Richardson A, Strong R, Oddo S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One 2011; 6:e25416. [PMID: 21980451 PMCID: PMC3182203 DOI: 10.1371/journal.pone.0025416] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/02/2011] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that inducing autophagy ameliorates early cognitive deficits associated with the build-up of soluble amyloid-β (Aβ). However, the effects of inducing autophagy on plaques and tangles are yet to be determined. While soluble Aβ and tau represent toxic species in Alzheimer's disease (AD) pathogenesis, there is well documented evidence that plaques and tangles also are detrimental to normal brain function. Thus, it is critical to assess the effects of inducing autophagy in an animal model with established plaques and tangles. Here we show that rapamycin, when given prophylactically to 2-month-old 3xTg-AD mice throughout their life, induces autophagy and significantly reduces plaques, tangles and cognitive deficits. In contrast, inducing autophagy in 15-month-old 3xTg-AD mice, which have established plaques and tangles, has no effects on AD-like pathology and cognitive deficits. In conclusion, we show that autophagy induction via rapamycin may represent a valid therapeutic strategy in AD when administered early in the disease progression.
Collapse
Affiliation(s)
- Smita Majumder
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Arlan Richardson
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Randy Strong
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Salvatore Oddo
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
32
|
Abstract
Surgical wound complications are more frequent in patients undergoing heart transplantation than in other heart surgery patients. This is probably attributed to the presence of additional risk factors in these patients, such as immunosuppression, mechanical support through assist devices and generally poor health. Analyses of wound infections in heart transplantation are based on smaller patient population than those for general heart surgery, and the reported incidences vary largely. The identification of specific risk factors in heart transplant recipients to date is mainly based on retrospective case-control studies in small patient cohorts, the results are controversial, and the comparability of data is limited because of the lack of application of consistent definitions. The impact of immunosuppression and especially immunosuppression with mammalian target of rapamycin (mTOR) inhibitors on the development of surgical wound complications has been widely discussed following reports of increased occurrence with sirolimus. However, nonheart-transplant specific risk factors should also be considered to develop risk profiles and treatment algorithms for individual patients. Data on surgical wound complications in general heart surgery patients and in heart transplant recipients are compared, the impact of modern immunosuppression reviewed, and areas for further investigation discussed.
Collapse
Affiliation(s)
- Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
33
|
Gottschalk S, Cummins CL, Leibfritz D, Christians U, Benet LZ, Serkova NJ. Age and sex differences in the effects of the immunosuppressants cyclosporine, sirolimus and everolimus on rat brain metabolism. Neurotoxicology 2010; 32:50-7. [PMID: 21075140 DOI: 10.1016/j.neuro.2010.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/21/2010] [Accepted: 10/27/2010] [Indexed: 12/24/2022]
Abstract
Application of the widely used immunosuppressant (ISS) cyclosporine (CsA) is severely limited by a number of serious side-effects such as kidney and neurotoxicity. As we have shown before, CsA exhibits metabolic toxicity in brain-models. The macrolide ISSs sirolimus (SRL) and everolimus (RAD) are capable of modulating these CsA-induced effects. It was our aim to study the age-dependent metabolic changes in the rat brain after ISS-treatment and the possible role of the blood-brain-barrier in modulation of CsA metabolic toxicity. Young and adult rats were treated orally with one ISS alone or in combination with CsA for six days. Metabolic changes were assessed by nuclear magnetic resonance (NMR) spectroscopy of brain extracts as toxicodynamic endpoints. Brain P-glycoprotein (P-gp) and ISS concentrations were determined as pharmacokinetic endpoints. Young rats were more susceptible to CsA-induced inhibition of the Krebs cycle (glutamate: 78% of controls, glutamine: 82%, GABA: 71% in young vs. 85%, 89%, 92% in adult rats). Increased glycolysis after CsA-treatment was sufficient to maintain the energy state at control levels in adult brains, but not in the young rat brains (phosphocreatine: 35%). Tissue concentrations of CsA and SRL within the brain of young rats were three-fold higher, while concentrations of P-gp were three-fold higher in adult rat brains. Our results suggest that age-dependent differences in the blood-brain barrier led to increased ISS brain concentrations and hence inhibition of brain energy metabolism.
Collapse
Affiliation(s)
- Sven Gottschalk
- Max Planck Institute for Biological Cybernetics, High-Field Magnetic Resonance Center, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Illsinger S, Janzen N, Lücke T, Bednarczyk J, Schmidt KH, Hoy L, Sander J, Das AM. Cyclosporine A: impact on mitochondrial function in endothelial cells. Clin Transplant 2010; 25:584-93. [PMID: 20633034 DOI: 10.1111/j.1399-0012.2010.01301.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Although cyclosporine A (CSA) is considered to be an efficient immunosuppressive compound in transplantation, vascular side effects like arterial hypertension, neurologic complications and other adverse reactions occur. Interference of CSA with mitochondrial function may be responsible for these side effects. METHODS We evaluated the effect of CSA on mitochondrial and glycolytic function by measuring fatty acid oxidation (FAO), activities of respiratory chain complexes (RC) and citratesynthase (CS), lactate/pyruvate-ratios, energy-rich phosphates as well as activities of some glycolytic enzymes in human umbilical vein endothelial cells. RESULTS After 48 h of CSA incubation, global FAO, RC-complexes 1 + 3; 4 and 5 as well as CS were compromised while energy charges were not reduced. Lactate/pyruvate-ratios increased; cellular lactate dehydrogenase (LDH)-, hexokinase- and phosphofructokinase-activities were not impaired by CSA. Moderate cellular toxicity, assessed by LDH leakage, appeared only at the highest CSA concentration. CONCLUSION Part of CSA toxicity may arise from alterations in mitochondrial function as judged by impaired FAO and respiratory chain enzymes. To some extent, energy balance seems to be maintained by cytosolic energy production. Although only demonstrated for endothelial cells, it is conceivable that such effects will alter energy metabolism of different organs with high oxidative energy demands.
Collapse
Affiliation(s)
- Sabine Illsinger
- Clinic for Pediatric Kidney-, Liver- and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Klawitter J, Gottschalk S, Hainz C, Leibfritz D, Christians U, Serkova NJ. Immunosuppressant neurotoxicity in rat brain models: oxidative stress and cellular metabolism. Chem Res Toxicol 2010; 23:608-19. [PMID: 20148532 DOI: 10.1021/tx900351q] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coadministration of the calcineurin inhibitor cyclosporine (CsA) and the mTOR inhibitors sirolimus (SRL) or everolimus (RAD) increases the efficacy of immunosuppression after organ transplantation. Neurotoxicity of CsA is a major clinical problem. Our goal was to assess the effects of CsA, SRL, and RAD on brain cell metabolism. The studies included the comparison of immunosuppressant-mediated effects on glucose metabolism, energy production, and reactive oxygen species (ROS) formation in perfused rat brain slices, primary rat astrocytes, and C6 glioma cells. In brain slices and astrocytes, CsA inhibited Krebs cycle metabolism, while activating anaerobic glycolysis, most likely to compensate for the inhibition of mitochondrial energy production. SRL and RAD inhibited cytosolic glycolysis but did not cause changes in mitochondrial energy production. CsA + SRL inhibited Krebs cycle and glycolysis, thus reducing the ability of the cell to compensate for the negative effects of CsA on mitochondrial nucleoside triphosphate synthesis. In contrast to SRL at the concentrations tested, RAD reduced the CsA-induced ROS formation and antagonized CsA-induced effects on glucose and energy metabolism. Surprisingly, in C6 cells, SRL and RAD exposure resulted in high ROS concentrations without significant impairment of cell metabolism. Our results suggested that SRL enhances CsA-induced ROS formation and negative metabolic effects in brain cells, while RAD seems to antagonize the CsA effects. However, the three models showed different metabolic responses when challenged with the study drugs. In contrast to SRL, RAD enhances ROS formation in C6 glioma cells but has only minor effects on normal rat brain tissue.
Collapse
Affiliation(s)
- Jelena Klawitter
- Clinical Research & Development, Department of Anesthesiology, and University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Klawitter J, Klawitter J, Kushner E, Jonscher K, Bendrick-Peart J, Leibfritz D, Christians U, Schmitz V. Association of immunosuppressant-induced protein changes in the rat kidney with changes in urine metabolite patterns: a proteo-metabonomic study. J Proteome Res 2010; 9:865-75. [PMID: 19994912 DOI: 10.1021/pr900761m] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The basic mechanisms underlying calcineurin inhibitor (CI) nephrotoxicity and its enhancement by sirolimus are still largely unknown. We investigated the effects of CIs alone and in combination with sirolimus on the renal proteome and correlated these effects with urine metabolite pattern changes. Thirty-six male Wistar rats were assigned to six treatment groups (n = 4/group for proteome analysis and n = 6/group for urine (1)H NMR metabolite pattern analysis): vehicle controls, sirolimus 1 mg/kg/day, cyclosporine 10 mg/kg/day, cyclosporine 10 mg/kg/day + sirolimus 1 mg/kg/day, tacrolimus 1 mg/kg/day, tacrolimus 1 mg/kg/day + sirolimus 1 mg/kg/day. After 28 days, 24 h-urine was collected for (1)H NMR-based metabolic analysis and kidneys were harvested for 2D-gel electrophoresis and histology. Cyclosporine affected the following groups of proteins: calcium homeostasis (regucalcin, calbindin), cytoskeleton (vimentin, caldesmon), response to hypoxia and mitochondrial function (prolyl 4-hydroxylase, proteasome, NADH dehydrogenase), and cell metabolism (kidney aminoacylase, pyruvate dehydrogenase, fructose-1,6-bis phosphate). Several of the changes in protein expression, confirmed by Western blot, were associated with and explained changes in metabolite concentrations in urine. Representative examples are an increase in kidney aminoacylase expression (decrease of hippurate concentrations in urine), up regulation of pyruvate dehydrogenase and fructose-1,6-bisphosphatase, (increased glucose metabolism), and down regulation of arginine/glycine-amidino transferase (most likely due to an increase in creatinine concentrations). Protein changes explained and qualified immunosuppressant-induced metabolite pattern changes in urine.
Collapse
Affiliation(s)
- Jost Klawitter
- Department of Anesthesiology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kominsky DJ, Klawitter J, Brown JL, Boros LG, Melo JV, Eckhardt SG, Serkova NJ. Abnormalities in glucose uptake and metabolism in imatinib-resistant human BCR-ABL-positive cells. Clin Cancer Res 2009; 15:3442-50. [PMID: 19401345 DOI: 10.1158/1078-0432.ccr-08-3291] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of imatinib resistance has become a significant therapeutic problem in which the etiology seems to be multifactorial and poorly understood. As of today, clinical criteria to predict the development of imatinib resistance in chronic myelogenous leukemia (CML), other than rebound of the myeloproliferation, are under development. However, there is evidence that the control of glucose-substrate flux is an important mechanism of the antiproliferative action of imatinib because imatinib-resistant gastrointestinal stromal KIT-positive tumors reveal highly elevated glucose uptake in radiologic images. We used nuclear magnetic resonance spectroscopy and gas chromatography mass spectrometry to assess (13)C glucose uptake and metabolism (glycolysis, TCA cycle, and nucleic acid ribose synthesis) during imatinib treatment in CML cell lines with different sensitivities to imatinib. Our results show that sensitive K562-s and LAMA84-s BCR-ABL-positive cells have decreased glucose uptake, decreased lactate production, and an improved oxidative TCA cycle following imatinib treatment. The resistant K562-r and LAMA84-r cells maintained a highly glycolytic metabolic phenotype with elevated glucose uptake and lactate production. In addition, oxidative synthesis of RNA ribose from (13)C-glucose via glucose-6-phosphate dehydrogenase was decreased, and RNA synthesis via the nonoxidative transketolase pathway was increased in imatinib-resistant cells. CML cells which exhibited a (oxidative/nonoxidative) flux ratio for nucleic acid ribose synthesis of >1 were sensitive to imatinib. The resistant K562-r and LAMA84-r exhibited a (oxidative/nonoxidative) flux ratio of <0.7. The changes in glucose uptake and metabolism were accompanied by intracellular translocation of GLUT-1 from the plasma membrane into the intracellular fraction in sensitive cells treated with imatinib, whereas GLUT-1 remained located at the plasma membrane in LAMA84-r and K562-r cells. The total protein load of GLUT-1 was unchanged among treated sensitive and resistant cell lines. In summary, elevated glucose uptake and nonoxidative glycolytic metabolic phenotype can be used as sensitive markers for early detection of imatinib resistance in BCR-ABL-positive cells.
Collapse
Affiliation(s)
- Douglas J Kominsky
- Department of Anesthesiology, University of Colorado Health Sciences Center, Denver, CO, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Seron D, Arns W, Chapman JR. Chronic allograft nephropathy--clinical guidance for early detection and early intervention strategies. Nephrol Dial Transplant 2008; 23:2467-73. [DOI: 10.1093/ndt/gfn130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
39
|
Zuckermann A, Manito N, Epailly E, Fiane A, Bara C, Delgado JF, Lehmkuhl H, Ross H, Eisen H, Chapman J, Valantine H. Multidisciplinary insights on clinical guidance for the use of proliferation signal inhibitors in heart transplantation. J Heart Lung Transplant 2008; 27:141-9. [PMID: 18267219 DOI: 10.1016/j.healun.2007.08.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/17/2007] [Accepted: 08/19/2007] [Indexed: 12/17/2022] Open
Abstract
Proliferation signal or mammalian target-of-rapamycin inhibitors (PSI/mTOR inhibitors), everolimus and sirolimus, provide attractive options for use in heart transplantation because they are immunosuppressive and anti-proliferative. PSI/mTOR inhibitors work synergistically with calcineurin inhibitors (CNIs) and thus permit the minimization of CNIs without compromising efficacy. This approach is advantageous for the majority of heart transplant recipients and might provide particular benefit in specific cases, such as patients with cardiac allograft vasculopathy, malignancies and renal dysfunction, or in patients intolerant to other immunosuppressive agents. Drawing on the expertise of transplant cardiologists, cardiac surgeons and nephrologists, we addressed the assessment of renal function; management of adverse events associated with this class of drugs; and clinical guidance, specifically for the use of everolimus, including patient selection, indications for treatment and practicalities of drug initiation and monitoring.
Collapse
Affiliation(s)
- Andreas Zuckermann
- Department of Cardio-Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wong MLH, Kaye AH, Hovens CM. Targeting malignant glioma survival signalling to improve clinical outcomes. J Clin Neurosci 2007; 14:301-8. [PMID: 17276069 DOI: 10.1016/j.jocn.2006.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 09/22/2006] [Accepted: 11/12/2006] [Indexed: 12/27/2022]
Abstract
Malignant gliomas are common and aggressive brain tumours in adults. Current treatments for glioblastoma multiforme result in a poor median survival of less than 12 months. The blood-brain barrier restricts the delivery of many chemotherapies to the central nervous system, contributing to the failure of treatment. PI3K/Akt and Ras/MAPK pathways have been identified as important oncogenic pathways in these tumours. The PI3K/Akt pathway mediates cell survival and growth, whereas the Ras/MAPK pathway signals cell differentiation, proliferation and anti-apoptosis. Modern targeted therapies include antibodies to circulating growth factors and cell surface receptors, as well as inhibitors of receptor tyrosine kinases and specific intracellular signalling proteins. Monotherapy with most targeted therapies produces only modest efficacy. Better results are achieved in combination with cytotoxic chemotherapies. Future therapeutics should focus on combination therapy with small lipophilic molecules.
Collapse
Affiliation(s)
- Michael L H Wong
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, 3050, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
41
|
Peng ZY, Serkova NJ, Kominsky DJ, Brown JL, Wischmeyer PE. Glutamine-mediated attenuation of cellular metabolic dysfunction and cell death after injury is dependent on heat shock factor-1 expression. JPEN J Parenter Enteral Nutr 2006; 30:373-8; discussion 379. [PMID: 16931604 DOI: 10.1177/0148607106030005373] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cellular metabolic dysfunction is associated with occurrence of multiple-organ failure after critical illness. Glutamine (GLN) attenuates cellular metabolic dysfunction in critical illness models. The mechanism of this protection is unclear. We previously demonstrated that GLN's benefit in critical illness might be due to enhanced heat shock protein (HSP) expression. We hypothesize that GLN's attenuation of cellular metabolic dysfunction is dependent on presence of heat shock factor-1 (HSF-1). METHODS HSF-1 wild-type and knockout mouse embryonic fibroblasts (HSF-1+/+ and HSF-1-/-) were used in all experiments. Cells were not treated, or were treated with 8 mmol/L GLN and immediately exposed to heat stress injury (45 degrees C for 45 minutes). Cells were harvested for metabolic analysis by nuclear magnetic resonance (NMR) at 24 hours postinjury. Cell survival was assessed using the MTS assay. RESULTS GLN treatment in HSF-1+/+ cells led to significant attenuation of decreases in adenosine triphosphate (ATP)/adenosine diphosphate (ADP) ratio, phosphomonoester/phosphodiester (PME/PDE) ratio, and cell survival observed in non-GLN-treated HSF-1+/+ cells. In HSF-1-/- cells, the beneficial effect of GLN on preservation of ATP/ADP ratio, PME/PDE proliferation, and cell survival was lost. GLN-treated HSF-1-/- cells had a significant increase in extracellular lactate concentrations vs GLN-treated HSF+/+ cells. CONCLUSIONS GLN treatment attenuated cellular metabolic dysfunction and improved cell membrane recovery only in HSF-1+/+ cells. Cellular injury, as measured by lactate release and cell survival assay, was improved by GLN treatment in HSF-1+/+ cells alone. Thus, GLN's beneficial effect on cellular metabolic dysfunction and cell survival appears to be dependent on HSF-1 expression.
Collapse
Affiliation(s)
- Zhi Yong Peng
- Department of Anesthesiology, University of Colorado Health Sciences Center, Denver, 80262, USA
| | | | | | | | | |
Collapse
|
42
|
Schmitz V, Klawitter J, Bendrick-Peart J, Haschke M, Beckey VE, Laudi S, Neumann U, Schoening W, Neuhaus P, Christians U, Puhl G. Impact of Organ Preservation Using HTK for Graft Flush and Subsequent Storage in UW in Rat Kidney Transplantation. Eur Surg Res 2006; 38:388-98. [PMID: 16847398 DOI: 10.1159/000094600] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/28/2006] [Indexed: 01/15/2023]
Abstract
BACKGROUND In kidney transplantation, preservation has a significant influence on organ function. Since previous reports have indicated a benefit of combining histidine-tryptophan-ketoglutarate (HTK) and University of Wisconsin (UW) solution, we evaluated the effects of initial flush with low viscosity HTK, followed by storage in UW. MATERIAL AND METHODS Kidneys from inbred Lewis rats were procured using HTK or UW for initially perfusion and re-flushed after 30 min with either solution. In a third group, after perfusion with HTK, organs were re-flushed with UW. Organs were stored for 16-24 h (4 degrees C). Study parameters were high-energy phosphates, histology, apoptosis, recipient survival and urine excretion of 15-F2t -isoprostanes (oxidative stress marker). RESULTS Prior to transplantation, tissue ATP/ADP concentrations were: HTK/UW > UW-only > HTK-only. In transplanted kidneys, histological damage was highest after preservation in HTK-only. Twenty-four hours after transplantation (24 h cold ischemia time - CIT), cleaved-PARP was most abundant using UW-only. 16 h of CIT resulted in higher urine concentrations of isoprostanes in the order HTK-only (368 +/- 308) > UW-only (157 +/- 105) > HTK/UW (67 +/- 26), and was lower in HTK/UW after 24 h of CIT (146 +/- 38) vs. UW-only (507 +/- 33 pg/mg creatinine). Survival (24 h CIT) was significantly reduced, and percentage of initial non-functioning (INF) kidneys highest in HTK-only (2.6 +/- 0.3 days, 100%), compared to UW-only (13 +/- 4.4 days, 75%) and HTK/UW (18.5 +/- 4.6 days, 33%). CONCLUSIONS In long-term preservation, UW is superior over HTK. However, our results indicate that perfusion with HTK prior to storage in UW may improve the results of UW alone which is reflected by better survival, lower rate of INF, higher cellular energy conservation and a decrease of free radicals.
Collapse
Affiliation(s)
- Volker Schmitz
- Department of Anesthesiology, University of Colorado Health Sciences Center, Denver, CO, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pascual J, Boletis IN, Campistol JM. Everolimus (Certican) in renal transplantation: a review of clinical trial data, current usage, and future directions. Transplant Rev (Orlando) 2006. [DOI: 10.1016/j.trre.2005.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Borie DC, Larson MJ, Flores MG, Campbell A, Rousvoal G, Zhang S, Higgins JP, Ball DJ, Kudlacz EM, Brissette WH, Elliott EA, Reitz BA, Changelian PS. Combined Use of the JAK3 Inhibitor CP-690,550 with Mycophenolate Mofetil to Prevent Kidney Allograft Rejection in Nonhuman Primates. Transplantation 2005; 80:1756-64. [PMID: 16378072 DOI: 10.1097/01.tp.0000184634.25042.ea] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Immunosuppression via Janus kinase (JAK) 3 inhibition affords significant prolongation of allograft survival. We investigated the effects of an immunosuppressive regimen combining the JAK3 inhibitor CP-690,550 with mycophenolate mofetil (MMF) in nonhuman primates (NHPs). METHODS Life-supporting kidney transplantations were performed between ABO-compatible, MLR-mismatched NHPs. Animals were treated orally twice a day with CP-690,550 and MMF (n=8) or MMF alone (n=2) and were euthanized at day 90 or earlier due to allograft rejection. RESULTS Mean survival time (+/-SEM) in animals treated with MMF alone (23+/-1 days) was significantly extended in animals that concurrently received CP-690,550 (59.5+/-9.8 days, P=0.02). Combination animals exposed to higher levels of CP-690,550 had a significantly better survival (75.2+/-8.7 days) than animals that received less CP-690,550 (33.3+/-12.6 days, P=0.02). Three combination therapy animals were euthanized at day 90 with a subnormal renal function and early-stage acute graft rejection. Rejection, delayed by treatment, ultimately developed in other animals. Anemia and gastrointestinal intolerance was seen in combination therapy animals that otherwise did not show evidence of viral or bacterial infection besides signs consistent with subclinical pyelonephritis (n=3). One incidental lymphosarcoma was noted. CONCLUSIONS Addition of CP-690,550 to MMF significantly improved allograft survival. The observed side effects appear amenable to improvements upon alteration of dosing strategies. Efficacy of this combination regimen suggests that it could become the backbone of calcineurin inhibitor-free regimens.
Collapse
Affiliation(s)
- Dominic C Borie
- Transplantation Immunology Laboratory, Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA 94305-5407, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Niemann CU, Hirose R, Liu T, Behrends M, Brown JL, Kominsky DF, Roberts JP, Serkova N. Ischemic preconditioning improves energy state and transplantation survival in obese Zucker rat livers. Anesth Analg 2005; 101:1577-1583. [PMID: 16301222 DOI: 10.1213/01.ane.0000184897.53609.2a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Livers from obese donors often have fatty infiltrates and are more susceptible to ischemia-reperfusion injury and subsequent graft dysfunction. This often leads to the exclusion of organs from obese donors. We investigated whether ischemic preconditioning (IP, 10 min ischemia, 10 min reperfusion) preserves cellular metabolism in livers from obese Zucker rats during cold ischemia. Liver samples (-IP and +IP) were collected from obese and control lean rats at different time points of cold ischemia (CI) and analyzed by magnetic resonance spectroscopy (1H- and 31P-MRS) to assess whether IP improves hepatic cellular metabolism. IP significantly improved high energy metabolism in IP livers from obese rats when compared with obese controls during the first hours of CI. At 4 h of cold storage, obese IP livers were not different from control lean non-IP livers. The beneficial metabolic effect of IP on livers form obese rats, however, was absent at 8 h of reperfusion. In contrast, in livers from lean rats, IP resulted in improved high-energy metabolism during the entire observation period of 8 h. In a later part of the study, IP of liver grafts from obese rats before 4 h of cold storage improved recipient survival after graft transplantation. IP of liver grafts from obese rats before 4 h of CI increases 24-h survival of recipient animals from 25% to 88%.
Collapse
Affiliation(s)
- Claus U Niemann
- *Department of Anesthesia and Perioperative Care, †Department of Surgery, Division of Transplantation, University of California, San Francisco, California; ‡Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Essen, Germany; §Department of Anesthesiology, Biomedical MRI/MRS, University of Colorado Health Sciences Center, Denver, Colorado
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Paniagua R, Si MS, Flores MG, Rousvoal G, Zhang S, Aalami O, Campbell A, Changelian PS, Reitz BA, Borie DC. Effects of JAK3 Inhibition with CP-690,550 on Immune Cell Populations and Their Functions in Nonhuman Primate Recipients of Kidney Allografts. Transplantation 2005; 80:1283-92. [PMID: 16314797 DOI: 10.1097/01.tp.0000177643.05739.cd] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Janus Kinase (JAK) 3 is a tyrosine kinase essential for proper signal transduction downstream of selected cytokine receptors and for robust T-cell and natural killer cells activation and function. JAK3 inhibition with CP-690,550 prevents acute allograft rejection. To provide further insight into the mechanisms of efficacy, we investigated the immunomodulatory effects of CP-690,550 in vitro and in vivo in nonhuman primates. METHODS Pharmacodynamic assessments of lymphocyte activation, function, proliferation and phenotype were performed in three settings: in vitro in whole blood isolated from untransplanted cynomolgus monkeys (cynos), in vivo in blood from untransplanted cynos dosed with CP-690,550 for 8 days, and in vivo in blood from transplanted cynos immunosuppressed with CP-690,550. Cell surface activation markers expression, IL-2- enhanced IFN-gamma production, lymphocyte proliferation and immune cell phenotype analyzes were performed with multiparametric flow cytometry. RESULTS In vitro exposure to CP-690,550 resulted in significant reduction of IL-2-enhanced IFN-gamma production by T-cells (maximum inhibition of 55-63%), T-cell surface expression of CD25 (50% inhibitory concentration (IC50); 0.18 microM) and CD71 (IC50; 1.6 microM), and T-cell proliferative capacities measured by proliferating cell nuclear antigen expression (IC50; 0.87 microM). Similar results were observed in animals dosed with CP-690,550. In addition, transplanted animals displayed significant reduction of NK cell (90% from baseline) and T-cell numbers whereas CD8 effector memory T-cell populations were unaffected. CONCLUSIONS Potent in vitro and in vivo immunomodulatory effects of the JAK3 inhibitor CP-690,550 likely contribute to its efficacy in the prevention of organ allograft rejection.
Collapse
Affiliation(s)
- Ricardo Paniagua
- Transplantation Immunology Laboratory, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305-5407, and Antibacterials, Inflammation and Immunology, Pfizer Inc., Groton, CT, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Serkova N, Fuller TF, Klawitter J, Freise CE, Niemann CU. H-NMR-based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney Int 2005; 67:1142-51. [PMID: 15698456 DOI: 10.1111/j.1523-1755.2005.00181.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Severe ischemia/reperfusion (IR) injury is a risk factor for delayed graft function. Delayed graft function remains difficult to predict, and it currently relies primarily on serum creatinine (SCr), urine output, and occasionally on graft biopsy. (1)H-NMR (nuclear magnetic resonance spectroscopy) based metabolomics was used to establish IR-specific metabolic markers in both blood and kidney tissue. These markers were compared to SCr and graft histology. METHODS Male Lewis rats were used for kidney transplantation. Two cold ischemia (CI) groups (24- and 42-hour) and two transplantation groups [after 24 (TX24) and after 42 hours (TX42) of CI] were compared to a control group. Whole blood and kidney tissue were collected for further analysis. RESULTS SCr levels taken 24 hours after transplantation were 1.6 +/- 0.12 mg/dL (TX24) and 2.1 +/- 0.5 mg/dL (TX42), (P= n.s.). Histology samples revealed mild injury in the TX24 group and severe injury in the TX42 group. A significantly decreased level of polyunsaturated fatty acids (PUFA) and elevated levels of allantoin, a marker of oxidative stress, was found in the renal tissue. In the blood, both trimethylamine-N-oxide (TMAO), a marker of renal medullary injury, and allantoin were significantly increased. Allantoin levels were low in both the control and CI groups. Levels were significantly increased after reperfusion (control 0.02 +/- 0.03 micromol/mL, TX24 1.13 +/- 0.22, and TX42 1.89 +/- 0.38, P < 0.001), and correlated with cold ischemia time (r= 0.96) and TMAO (r= 0.94). CONCLUSION The (1)H-NMR metabolic profiles of both the mild and severe IR groups revealed significant changes consistent with graft histology, while the SCr did not.
Collapse
Affiliation(s)
- Natalie Serkova
- Department of Anesthesiology, Biomedical MRI/MRS, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | |
Collapse
|
48
|
Borie DC, Changelian PS, Larson MJ, Si MS, Paniagua R, Higgins JP, Holm B, Campbell A, Lau M, Zhang S, Flores MG, Rousvoal G, Hawkins J, Ball DA, Kudlacz EM, Brissette WH, Elliott EA, Reitz BA, Morris RE. Immunosuppression by the JAK3 Inhibitor CP-690,550 Delays Rejection and Significantly Prolongs Kidney Allograft Survival in Nonhuman Primates. Transplantation 2005; 79:791-801. [PMID: 15818321 DOI: 10.1097/01.tp.0000157117.30290.6f] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Janus kinase 3 (JAK3) mediates signal transduction from cytokine receptors using the common chain (gammac). Because mutations in genes encoding gammac or JAK3 result in immunodeficiency, we investigated the potential of a rationally designed inhibitor of JAK3, CP-690,550, to prevent renal allograft rejection in nonhuman primates. METHODS Life-supporting kidney transplantations were performed between mixed leukocyte reaction-mismatched, ABO blood group-matched cynomolgus monkeys. Animals were treated with CP-690,550 (n = 18) or its vehicle (controls, n = 3) and were euthanized at day 90 or earlier if there was allograft rejection. RESULTS Mean survival time (+/- standard error of mean) in animals treated with CP-690,550 (53 +/- 7 days) was significantly longer than in control animals (7 +/- 1 days, P=0.0003) and was positively correlated with exposure to the drug (r = 0.79, P < 0.01). Four treated animals were euthanized at 90 days with a normal renal function and low-grade rejection at final pathology. Occurrence of rejection was significantly delayed in treated animals (46 +/- 7 days from transplantation vs. 7 +/- 1 days in controls, P = 0.0003). Persistent anemia, polyoma virus-like nephritis (n = 2), and urinary calcium carbonate accretions (n = 3) were seen in animals with high exposure. Natural killer cell and CD4 and CD8 T-cell numbers were significantly reduced in treated animals. Blood glucose, serum lipid levels, and arterial blood pressure were within normal range in treated animals, and no cancers were demonstrated. CONCLUSIONS CP-690,550 is the first reported JAK3 inhibitor combining efficacy and good tolerability in a preclinical model of allotransplantation in nonhuman primates and thus has interesting potential for immunosuppression in humans.
Collapse
Affiliation(s)
- Dominic C Borie
- Transplantation Immunology Laboratory, Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res 2005; 10:6661-8. [PMID: 15475456 DOI: 10.1158/1078-0432.ccr-04-0039] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose metabolism in BCR-ABL-positive cells that are sensitive to imatinib exposure. Two human BCR-ABL-positive cell lines (CML-T1 and K562) and one BCR-ABL-negative cell line (HC-1) were incubated with different imatinib concentrations for 96 hours. Magnetic resonance spectroscopy on cell acid extracts was performed to evaluate [1-13C]glucose metabolism, energy state, and changes in endogenous metabolites after incubation with imatinib. Imatinib induced a concentration-dependent inhibition of cell proliferation in CML-T1 (IC50, 0.69 +/- 0.06 micromol/L) and K562 cells (IC50, 0.47 +/- 0.04 micromol/L), but not in HC-1 cells. There were no metabolic changes in imatinib-treated HC-1 cells. In BCR-ABL-positive cells, the relevant therapeutic concentrations of imatinib (0.1-1.0 micromol/L) decreased glucose uptake from the media by suppressing glycolytic cell activity (C3-lactate at 0.25 mmol/L, 65% for K562 and 77% for CML-T1 versus control). Additionally, the activity of the mitochondrial Krebs cycle was increased (C4-glutamate at 0.25 micromol/L, 147% for K562 and 170% for CML-T1). The improvement in mitochondrial glucose metabolism resulted in an increased energy state (nucleoside triphosphate/nucleoside diphosphate at 0.25 micromol/L, 130% for K562 and 125% for CML-T1). Apoptosis was observed at higher concentrations. Unlike standard chemotherapeutics, imatinib, without cytocidal activity, reverses the Warburg effect in BCR-ABL-positive cells by switching from glycolysis to mitochondrial glucose metabolism, resulting in decreased glucose uptake and higher energy state.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Benzamides
- Blotting, Western
- Carbon Isotopes
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Fusion Proteins, bcr-abl/metabolism
- Glucose/metabolism
- Glucose/pharmacokinetics
- Glutamates/metabolism
- Humans
- Imatinib Mesylate
- K562 Cells
- Lactates/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Magnetic Resonance Spectroscopy
- Nucleotides/metabolism
- Phospholipids/metabolism
- Piperazines/pharmacology
- Pyrimidines/pharmacology
Collapse
Affiliation(s)
- Sven Gottschalk
- Department of Biology/Chemistry, University of Bremen, Bremen, Germany
| | | | | | | | | |
Collapse
|
50
|
Singleton KD, Serkova N, Banerjee A, Meng X, Gamboni-Robertson F, Wischmeyer PE. Glutamine attenuates endotoxin-induced lung metabolic dysfunction: Potential role of enhanced heat shock protein 70. Nutrition 2005; 21:214-23. [PMID: 15723751 DOI: 10.1016/j.nut.2004.05.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Revised: 03/06/2004] [Accepted: 05/12/2004] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Septic shock leads to derangement of cellular metabolism. Enhanced heat shock protein 70 (HSP-70) can preserve cellular metabolism after other forms of cellular stress. Glutamine (GLN) can enhance lung HSP-70 expression after lethal endotoxemia. However, it is unknown whether GLN can enhance HSP-70 expression and attenuate lung metabolic dysfunction after sublethal endotoxemia. Our aim was to determine whether GLN could upregulate HSP-70 and attenuate metabolic dysfunction in lung tissue after sublethal endotoxemia. METHODS Sprague-Dawley rats were assigned to one of five groups. The first two groups were treated with Escherichia coli lipopolysaccharide (LPS; 1 mg/kg intravenously). GLN (0.75 g/kg intravenously) or balanced salt solution as a control was administered 5 min after LPS administration. The next two groups of rats were treated with quercetin (HSP-70 inhibitor; 400 mg/kg intraperitoneally) 6 h before LPS administration. The final group received no treatment. Lung tissue was harvested 24-h after LPS and analyzed with immunofluorescence and western blot for HSP-70. Tissue metabolites were quantified by 1H and 31P nuclear magnetic resonance spectroscopy. RESULTS GLN compared with balanced salt solution (BSS) administration in LPS-treated animals led to significant increases in lung HSP-70. Increased HSP-70 expression was observed in lung epithelial cells and macrophages. GLN significantly improved the ratio of adenosine triphosphate to adenosine diphosphate in the lung after LPS. Quercetin inhibited a GLN-mediated increase in lung HSP-70 and blocked a beneficial effect of GLN on the ratio of adenosine triphosphate to adenosine diphosphate after LPS. CONCLUSIONS A single dose of GLN can enhance HSP-70 in pulmonary epithelial cells and macrophages after sublethal endotoxemia. Further, GLN can attenuate endotoxin-induced lung metabolic dysfunction. GLN's beneficial effect on lung tissue after metabolic dysfunction caused by sublethal endotoxemia may be mediated in part by enhanced HSP-70.
Collapse
Affiliation(s)
- Kristen D Singleton
- Department of Anesthesiology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|