1
|
Cui Y, Kassmann M, Nickel S, Zhang C, Alenina N, Anistan YM, Schleifenbaum J, Bader M, Welsh DG, Huang Y, Gollasch M. Myogenic Vasoconstriction Requires Canonical G q/11 Signaling of the Angiotensin II Type 1 Receptor. J Am Heart Assoc 2022; 11:e022070. [PMID: 35132870 PMCID: PMC9245832 DOI: 10.1161/jaha.121.022070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) arterial tone. However, many of the molecular determinants of this response are unknown. We previously found that mice with targeted disruption of the gene encoding the angiotensin II type 1a receptor (AT1AR) (Agtr1a), the major murine angiotensin II type 1 receptor (AT1R) isoform, showed reduced myogenic tone; however, uncontrolled genetic events (in this case, gene ablation) can lead to phenotypes that are difficult or impossible to interpret. Methods and Results We tested the mechanosensitive function of AT1R using tamoxifen-inducible smooth muscle-specific AT1aR knockout (smooth muscle-Agtr1a-/-) mice and studied downstream signaling cascades mediated by Gq/11 and/or β-arrestins. FR900359, Sar1Ile4Ile8-angiotensin II (SII), TRV120027 and TRV120055 were used as selective Gq/11 inhibitor and biased agonists to activate noncanonical β-arrestin and canonical Gq/11 signaling of the AT1R, respectively. Myogenic and Ang II-induced constrictions were diminished in the perfused renal vasculature, mesenteric and cerebral arteries of smooth muscle-Agtr1a-/- mice. Similar effects were observed in arteries of global mutant Agtr1a-/- but not Agtr1b-/- mice. FR900359 decreased myogenic tone and angiotensin II-induced constrictions whereas selective biased targeting of AT1R-β-arrestin signaling pathways had no effects. Conclusions This study demonstrates that myogenic arterial constriction requires Gq/11-dependent signaling pathways of mechanoactivated AT1R but not G protein-independent, noncanonical pathways in smooth muscle cells.
Collapse
Affiliation(s)
- Yingqiu Cui
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Mario Kassmann
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany
| | - Sophie Nickel
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Chenglin Zhang
- Heart and Vascular Institute and School of Biomedical Sciences Chinese University of Hong Kong China
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine Berlin Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin Berlin Germany
| | - Yoland Marie Anistan
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany
| | - Johanna Schleifenbaum
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine Berlin Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Charité - Universitätsmedizin Berlin Berlin Germany.,Institute for Biology University of Lübeck Germany
| | - Donald G Welsh
- Department of Physiology and Pharmacology Robarts, Research Institute Western University London Ontario Canada
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences Chinese University of Hong Kong China.,Department of Biomedical Sciences Campus VirchowCity University of Hong Kong China
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité - Universitätsmedizin Berlin Berlin Germany.,Department of Internal Medicine and Geriatrics University Medicine Greifswald Germany.,Medical Clinic for Nephrology and Internal Intensive Care Campus VirchowCharité - Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
2
|
Kroetsch JT, Lidington D, Bolz SS. The emerging significance of circadian rhythmicity in microvascular resistance. Chronobiol Int 2021; 39:465-475. [PMID: 34915783 DOI: 10.1080/07420528.2021.2009505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The Earth's rotation generates environmental oscillations (e.g., in light and temperature) that have imposed unique evolutionary pressures over millions of years. Consequently, the circadian clock, a ubiquitously expressed molecular system that aligns cellular function to these environmental cues, has become an integral component of our physiology. The resulting functional rhythms optimize and economize physiological performance: perturbing these rhythms, therefore, is frequently deleterious. This perspective article focuses on circadian rhythms in resistance artery myogenic reactivity, a key mechanism governing tissue perfusion, total peripheral resistance and systemic blood pressure. Emerging evidence suggests that myogenic reactivity rhythms are locally generated in a microvascular bed-specific manner at the level of smooth muscle cells. This implies that there is a distinct interface between the molecular clock and the signalling pathways underlying myogenic reactivity in the microvascular beds of different organs. By understanding the precise nature of these molecular links, it may become possible to therapeutically manipulate microvascular tone in an organ-specific manner. This raises the prospect that interventions for vascular pathologies that are challenging to treat, such as hypertension and brain malperfusion, can be significantly improved.
Collapse
Affiliation(s)
- Jeffrey T Kroetsch
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Toronto Centre for Microvascular Medicine at the Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Ontario, Canada.,Heart & Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Duncan JW, Azubuike D, Booz GW, Fisher B, Williams JM, Fan F, Ibrahim T, LaMarca B, Cunningham MW. Angiotensin II type 1 receptor autoantibody blockade improves cerebral blood flow autoregulation and hypertension in a preclinical model of preeclampsia. Hypertens Pregnancy 2020; 39:451-460. [PMID: 33119997 DOI: 10.1080/10641955.2020.1833215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction:Women with preeclampsia (PE) and reduced uterine perfusion pressure (RUPP) pre-clinical rat model of PE have elevated angiotensin II type 1 receptor agonistic autoantibodies (AT1-AA) and cerebrovascular dysfunction. Methods:Sprague Dawley rats had RUPP surgery with/without AT1-AA inhibitor ('n7AAc'144 μg/day) osmotic minipumps. Mean arterial pressure (MAP), CBF autoregulation, blood brain barrier (BBB) permeability, cerebral edema, oxidative stress, and eNOS were assessed. Results:'n7AAc' improved MAP, restored CBF autoregulation, prevented cerebral edema, elevated oxidative stress, and increased phosphorylated eNOS protein in RUPP rats. Conclusion:Inhibiting the AT1-AA in placental ischemic rats prevents hypertension, cerebrovascular dysfunction, and improves cerebral metabolic function.
Collapse
Affiliation(s)
- Jeremy W Duncan
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, MS, USA
| | - Daniel Azubuike
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, MS, USA
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, MS, USA
| | - Brandon Fisher
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, MS, USA
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, MS, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, MS, USA
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, MS, USA
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, MS, USA.,Department of Obstetrics and Gynecology, University of Mississippi Medical Center , Jackson, MS, USA
| | - Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center , Jackson, MS, USA
| |
Collapse
|
4
|
Nademi S, Lu C, Dickhout JG. Enhanced Myogenic Constriction in the SHR Preglomerular Vessels Is Mediated by Thromboxane A2 Synthesis. Front Physiol 2020; 11:853. [PMID: 32792980 PMCID: PMC7387709 DOI: 10.3389/fphys.2020.00853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/25/2020] [Indexed: 11/25/2022] Open
Abstract
Background Spontaneously Hypertensive Rats (SHR) have chronically elevated blood pressures at 30 weeks of age (systolic: 191.0 ± 1.0, diastolic: 128.8 ± 0.9). However, despite this chronic malignant hypertension, SHR kidneys remain relatively free of pathology due to having an augmented myogenic constriction (MC). We hypothesized that the enhanced MC in the SHR preglomerular vessels was due to increased prostaglandin and decreased nitric oxide (NO) synthesis, providing renal protection. Methods SHR and Wistar Kyoto (WKY) arcuate and mesenteric arteries were treated with indomethacin (prostaglandin synthesis inhibitor), N omega-nitro-L-arginine (L-NNA, NO synthase inhibitor), and nifedipine (L-type calcium channel blocker); and MC was measured in these vessels. The role of endothelium in MC was examined by removing endothelium from WKY and SHR preglomerular and mesenteric arteries using human hair, and measuring MC. We also studied the source of prostaglandin in the SHR by treating endothelium-removed arcuate arteries with indomethacin and furegrelate (thromboxane synthase inhibitor). Results MC was enhanced in the SHR preglomerular vessels but not the mesenteric arteries. Indomethacin and LNNA removed the enhanced MC in the SHR. Nifedipine also inhibited MC in both WKY and SHR arcuate and mesenteric arteries. Removing endothelium did not change MC in either arcuate or mesenteric arteries of WKY and SHR rats; and did not remove the augmented MC in the SHR arcuate arteries. Indomethacin and furegrelate decreased MC in endothelium-removed SHR arcuate arteries and obliterated the enhanced MC in the SHR. Conclusion The enhanced MC in the SHR arcuate arteries was due to thromboxane A2 synthesis from the tunica media and/or adventitia layers. MC was not dependent on endothelium, but was dependent on L-type calcium channels. Nevertheless, SHR arcuate arteries displayed differential intracellular calcium signaling compared to the WKYs.
Collapse
Affiliation(s)
- Samera Nademi
- Department of Medicine, Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Chao Lu
- St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Jeffrey G Dickhout
- Department of Medicine, Division of Nephrology, McMaster University, Hamilton, ON, Canada.,St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
5
|
Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M. Purinergic P2Y receptors: Molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther 2017. [DOI: 10.1016/j.pharmthera.2017.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Becari C, Durand MT, Guimaraes AO, Lataro RM, Prado CM, de Oliveira M, Candido SCO, Pais P, Ribeiro MS, Bader M, Pesquero JB, Salgado MCO, Salgado HC. Elastase-2, a Tissue Alternative Pathway for Angiotensin II Generation, Plays a Role in Circulatory Sympathovagal Balance in Mice. Front Physiol 2017; 8:170. [PMID: 28386233 PMCID: PMC5363176 DOI: 10.3389/fphys.2017.00170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 03/07/2017] [Indexed: 12/26/2022] Open
Abstract
In vitro and ex vivo experiments indicate that elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, is an alternative pathway for angiotensin II (Ang II) generation. However, the role played by ELA-2 in vivo is unclear. We examined ELA-2 knockout (ELA-2KO) mice compared to wild-type (WT) mice and determined whether ELA-2 played a role in hemodynamics [arterial pressure (AP) and heart rate (HR)], cardiocirculatory sympathovagal balance and baroreflex sensitivity. The variability of systolic arterial pressure (SAP) and pulse interval (PI) for evaluating autonomic modulation was examined for time and frequency domains (spectral analysis), whereas a symbolic analysis was also used to evaluate PI variability. In addition, baroreflex sensitivity was examined using the sequence method. Cardiac function was evaluated echocardiographically under anesthesia. The AP was normal whereas the HR was reduced in ELA-2KO mice (425 ± 17 vs. 512 ± 13 bpm from WT). SAP variability and baroreflex sensitivity were similar in both strains. The LF power from the PI spectrum (33.6 ± 5 vs. 51.8 ± 4.8 nu from WT) and the LF/HF ratio (0.60 ± 0.1 vs. 1.45 ± 0.3 from WT) were reduced, whereas the HF power was increased (66.4 ± 5 vs. 48.2 ± 4.8 nu from WT) in ELA-2KO mice, indicating a shift toward parasympathetic modulation of HR. Echocardiographic examination showed normal fractional shortening and an ejection fraction in ELA-2KO mice; however, the cardiac output, stroke volume, and ventricular size were reduced. These findings provide the first evidence that ELA-2 acts on the sympathovagal balance of the heart, as expressed by the reduced sympathetic modulation of HR in ELA-2KO mice.
Collapse
Affiliation(s)
- Christiane Becari
- Department of Physiology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil; Department of Cardiovascular Diseases, Mayo ClinicRochester, MN, USA
| | - Marina T Durand
- Department of Physiology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil; Department of Medicine, University of Ribeirão PretoRibeirão Preto, Brazil
| | - Alessander O Guimaraes
- Max Delbruck Center for Molecular MedicineBerlin, Germany; Department of Biophysics, Federal University of São PauloSão Paulo, Brazil
| | - Renata M Lataro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Cibele M Prado
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Mauro de Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Sarai C O Candido
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Paloma Pais
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Mauricio S Ribeiro
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Michael Bader
- Max Delbruck Center for Molecular MedicineBerlin, Germany; Berlin Institute of Health, Charité-University Medicine BerlinBerlin, Germany; German Center for Cardiovascular Research, Partner Site BerlinBerlin, Germany
| | - Joao B Pesquero
- Department of Biophysics, Federal University of São Paulo São Paulo, Brazil
| | - Maria C O Salgado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Becari C, Silva MAB, Durand MT, Prado CM, Oliveira EB, Ribeiro MS, Salgado HC, Salgado MCO, Tostes RC. Elastase-2, an angiotensin II-generating enzyme, contributes to increased angiotensin II in resistance arteries of mice with myocardial infarction. Br J Pharmacol 2017; 174:1104-1115. [PMID: 28222221 DOI: 10.1111/bph.13755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Angiotensin II (Ang II), whose generation largely depends on angiotensin-converting enzyme (ACE) activity, mediates most of the renin-angiotensin-system (RAS) effects. Elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, alternatively generates Ang II in rat arteries. Myocardial infarction (MI) leads to intense RAS activation, but mechanisms involved in Ang II-generation in resistance arteries are unknown. We hypothesized that ELA-2 contributes to vascular Ang II generation and cardiac damage in mice subjected to MI. EXPERIMENTAL APPROACH Concentration-effect curves to Ang I and Ang II were performed in mesenteric resistance arteries from male wild type (WT) and ELA-2 knockout (ELA-2KO) mice subjected to left anterior descending coronary artery ligation (MI). KEY RESULTS MI size was similar in WT and ELA-2KO mice. Ejection fraction and fractional shortening after MI similarly decreased in both strains. However, MI decreased stroke volume and cardiac output in WT, but not in ELA-2KO mice. Ang I-induced contractions increased in WT mice subjected to MI (MI-WT) compared with sham-WT mice. No differences were observed in Ang I reactivity between arteries from ELA-2KO and ELA-2KO subjected to MI (MI-ELA-2KO). Ang I contractions increased in arteries from MI-WT versus MI-ELA-2KO mice. Chymostatin attenuated Ang I-induced vascular contractions in WT mice, but did not affect Ang I responses in ELA-2KO arteries. CONCLUSIONS AND IMPLICATIONS These results provide the first evidence that ELA-2 contributes to increased Ang II formation in resistance arteries and modulates cardiac function after MI, implicating ELA-2 as a key player in ACE-independent dysregulation of the RAS.
Collapse
Affiliation(s)
- Christiane Becari
- Departments of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil.,Physiology, University of Sao Paulo, Ribeirao Preto, SP, Brazil.,Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Marcondes A B Silva
- Departments of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Marina T Durand
- Physiology, University of Sao Paulo, Ribeirao Preto, SP, Brazil.,Department of Medicine, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Cibele M Prado
- Pathology and Legal Medicine, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Eduardo B Oliveira
- Biochemistry and Immunology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Mauricio S Ribeiro
- Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Helio C Salgado
- Physiology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | - Rita C Tostes
- Departments of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
8
|
Hong K, Zhao G, Hong Z, Sun Z, Yang Y, Clifford PS, Davis MJ, Meininger GA, Hill MA. Mechanical activation of angiotensin II type 1 receptors causes actin remodelling and myogenic responsiveness in skeletal muscle arterioles. J Physiol 2016; 594:7027-7047. [PMID: 27531064 PMCID: PMC5134373 DOI: 10.1113/jp272834] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Candesartan, an inverse agonist of the type 1 angiotensin II receptor (AT1 R), causes a concentration-dependent inhibition of pressure-dependent myogenic tone consistent with previous reports of mechanosensitivity of this G protein-coupled receptor. Mechanoactivation of the AT1 R occurs independently of local angiotensin II production and the type 2 angiotensin receptor. Mechanoactivation of the AT1 R stimulates actin polymerization by a protein kinase C-dependent mechanism, but independently of a change in intracellular Ca2+ . Using atomic force microscopy, changes in single vascular smooth muscle cell cortical actin are observed to remodel following mechanoactivation of the AT1 R. ABSTRACT The Gq/11 protein-coupled angiotensin II type 1 receptor (AT1 R) has been shown to be activated by mechanical stimuli. In the vascular system, evidence supports the AT1 R being a mechanosensor that contributes to arteriolar myogenic constriction. The aim of this study was to determine if AT1 R mechanoactivation affects myogenic constriction in skeletal muscle arterioles and to determine underlying cellular mechanisms. Using pressure myography to study rat isolated first-order cremaster muscle arterioles the AT1 R inhibitor candesartan (10-7 -10-5 m) showed partial but concentration-dependent inhibition of myogenic reactivity. Inhibition was demonstrated by a rightward shift in the pressure-diameter relationship over the intraluminal pressure range, 30-110 mmHg. Pressure-induced changes in global vascular smooth muscle intracellular Ca2+ (using Fura-2) were similar in the absence or presence of candesartan, indicating that AT1 R-mediated myogenic constriction relies on Ca2+ -independent downstream signalling. The diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) reversed the inhibitory effect of candesartan, while this rescue effect was prevented by the protein kinase C (PKC) inhibitor GF 109203X. Both candesartan and PKC inhibition caused increased G-actin levels, as determined by Western blotting of vessel lysates, supporting involvement of cytoskeletal remodelling. At the single vascular smooth muscle cell level, atomic force microscopy showed that cell swelling (stretch) with hypotonic buffer also caused thickening of cortical actin fibres and this was blocked by candesartan. Collectively, the present studies support growing evidence for novel modes of activation of the AT1 R in arterioles and suggest that mechanically activated AT1 R generates diacylglycerol, which in turn activates PKC which induces the actin cytoskeleton reorganization that is required for pressure-induced vasoconstriction.
Collapse
Affiliation(s)
- Kwangseok Hong
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
- Robert M. Berne Cardiovascular Research Centre and Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVA22908USA
| | - Guiling Zhao
- College of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIL60612USA
| | - Zhongkui Hong
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Biomedical EngineeringUniversity of South DakotaSioux FallsSD57107USA
| | - Zhe Sun
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| | - Yan Yang
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
| | - Philip S. Clifford
- College of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIL60612USA
| | - Michael J. Davis
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| | - Gerald A. Meininger
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| | - Michael A. Hill
- Dalton Cardiovascular Research CentreUniversity of MissouriColumbiaMO65211USA
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO65211USA
| |
Collapse
|
9
|
Kauffenstein G, Tamareille S, Prunier F, Roy C, Ayer A, Toutain B, Billaud M, Isakson BE, Grimaud L, Loufrani L, Rousseau P, Abraham P, Procaccio V, Monyer H, de Wit C, Boeynaems JM, Robaye B, Kwak BR, Henrion D. Central Role of P2Y6 UDP Receptor in Arteriolar Myogenic Tone. Arterioscler Thromb Vasc Biol 2016; 36:1598-606. [PMID: 27255725 DOI: 10.1161/atvbaha.116.307739] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/17/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Myogenic tone (MT) of resistance arteries ensures autoregulation of blood flow in organs and relies on the intrinsic property of smooth muscle to contract in response to stretch. Nucleotides released by mechanical strain on cells are responsible for pleiotropic vascular effects, including vasoconstriction. Here, we evaluated the contribution of extracellular nucleotides to MT. APPROACH AND RESULTS We measured MT and the associated pathway in mouse mesenteric resistance arteries using arteriography for small arteries and molecular biology. Of the P2 receptors in mouse mesenteric resistance arteries, mRNA expression of P2X1 and P2Y6 was dominant. P2Y6 fully sustained UDP/UTP-induced contraction (abrogated in P2ry6(-/-) arteries). Preventing nucleotide hydrolysis with the ectonucleotidase inhibitor ARL67156 enhanced pressure-induced MT by 20%, whereas P2Y6 receptor blockade blunted MT in mouse mesenteric resistance arteries and human subcutaneous arteries. Despite normal hemodynamic parameters, P2ry6(-/-) mice were protected against MT elevation in myocardial infarction-induced heart failure. Although both P2Y6 and P2Y2 receptors contributed to calcium mobilization, P2Y6 activation was mandatory for RhoA-GTP binding, myosin light chain, P42-P44, and c-Jun N-terminal kinase phosphorylation in arterial smooth muscle cells. In accordance with the opening of a nucleotide conduit in pressurized arteries, MT was altered by hemichannel pharmacological inhibitors and impaired in Cx43(+/-) and P2rx7(-/-) mesenteric resistance arteries. CONCLUSIONS Signaling through P2 nucleotide receptors contributes to MT. This mechanism encompasses the release of nucleotides coupled to specific autocrine/paracrine activation of the uracil nucleotide P2Y6 receptor and may contribute to impaired tissue perfusion in cardiovascular diseases.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.).
| | - Sophie Tamareille
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Fabrice Prunier
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Charlotte Roy
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Audrey Ayer
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Bertrand Toutain
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Marie Billaud
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Brant E Isakson
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Linda Grimaud
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Laurent Loufrani
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Pascal Rousseau
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Pierre Abraham
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Vincent Procaccio
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Hannah Monyer
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Cor de Wit
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Jean-Marie Boeynaems
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Bernard Robaye
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Brenda R Kwak
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| | - Daniel Henrion
- From the MITOVASC Institute, CNRS UMR 6214, INSERM U1083 (G.K., C.R., A.A., B.T., L.G., L.L., P.A., V.P., D.H.) and EA 3860 Cardioprotection Remodelage et Thrombose, University of Angers, Angers, France (S.T., F.P.); Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (M.B., B.E.I.); University Hospital Angers, Angers, France (G.K., P.R., P.A., V.P.); Department of Clinical Neurobiology, University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany (H.M.); Institut für Physiologie, Universität zu Lübeck and Deutsches Zentrum für Herz-Kreislauf-Forschung, Lübeck, Germany (C.d.W.); Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium (J.-M.B., B.R.); and Departments of Pathology and Immunology and Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.)
| |
Collapse
|
10
|
Maupoint J, Besnier M, Gomez E, Bouhzam N, Henry JP, Boyer O, Nicol L, Mulder P, Martinet J, Richard V. Selective Vascular Endothelial Protection Reduces Cardiac Dysfunction in Chronic Heart Failure. Circ Heart Fail 2016; 9:e002895. [DOI: 10.1161/circheartfailure.115.002895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/27/2016] [Indexed: 01/01/2023]
Abstract
Background—
Chronic heart failure (CHF) induces endothelial dysfunction in part because of decreased nitric oxide (NO
·
) production, but the direct link between endothelial dysfunction and aggravation of CHF is not directly established. We previously reported that increased NO production via inhibition of protein tyrosine phosphatase 1B (PTP1B) is associated with reduced cardiac dysfunction in CHF. Investigation of the role of endothelial PTP1B in these effects may provide direct evidence of the link between endothelial dysfunction and CHF.
Methods and Results—
Endothelial deletion of PTP1B was obtained by crossing LoxP-PTP1B with Tie2-Cre mice. CHF was assessed 4 months after myocardial infarction. In some experiments, to exclude gene extinction in hematopoietic cells, Tie2-Cre/LoxP-PTP1B mice were lethally irradiated and reconstituted with bone marrow from wild-type mice, to obtain mouse with endothelial-specific deletion of PTP1B. Vascular function evaluated ex vivo in mesenteric arteries showed that in wild-type mice, CHF markedly impaired NO-dependent flow-mediated dilatation. CHF-induced endothelial dysfunction was less marked in endoPTP1B
−/−
mice, suggesting restored NO production. Echocardiographic, hemodynamic, and histological evaluations demonstrated that the selectively improved endothelial function was associated with reduced left ventricular dysfunction and remodeling, as well as increased survival, in the absence of signs of stimulated angiogenesis or increased cardiac perfusion.
Conclusions—
Prevention of endothelial dysfunction, by endothelial PTP1B deficiency, is sufficient to reduce cardiac dysfunction post myocardial infarction. Our results provide for the first time a direct demonstration that endothelial protection per se reduces CHF and further suggest a causal role for endothelial dysfunction in CHF development.
Collapse
Affiliation(s)
- Julie Maupoint
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., O.B., L.N., P.M., J.M., V.R.); Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., L.N., P.M., V.R.); and Inserm (Institut National de la Santé et de la Recherche Médicale) U905, Department of Immunology, Rouen, France (O.B., J.M.)
| | - Marie Besnier
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., O.B., L.N., P.M., J.M., V.R.); Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., L.N., P.M., V.R.); and Inserm (Institut National de la Santé et de la Recherche Médicale) U905, Department of Immunology, Rouen, France (O.B., J.M.)
| | - Elodie Gomez
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., O.B., L.N., P.M., J.M., V.R.); Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., L.N., P.M., V.R.); and Inserm (Institut National de la Santé et de la Recherche Médicale) U905, Department of Immunology, Rouen, France (O.B., J.M.)
| | - Najime Bouhzam
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., O.B., L.N., P.M., J.M., V.R.); Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., L.N., P.M., V.R.); and Inserm (Institut National de la Santé et de la Recherche Médicale) U905, Department of Immunology, Rouen, France (O.B., J.M.)
| | - Jean-Paul Henry
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., O.B., L.N., P.M., J.M., V.R.); Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., L.N., P.M., V.R.); and Inserm (Institut National de la Santé et de la Recherche Médicale) U905, Department of Immunology, Rouen, France (O.B., J.M.)
| | - Olivier Boyer
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., O.B., L.N., P.M., J.M., V.R.); Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., L.N., P.M., V.R.); and Inserm (Institut National de la Santé et de la Recherche Médicale) U905, Department of Immunology, Rouen, France (O.B., J.M.)
| | - Lionel Nicol
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., O.B., L.N., P.M., J.M., V.R.); Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., L.N., P.M., V.R.); and Inserm (Institut National de la Santé et de la Recherche Médicale) U905, Department of Immunology, Rouen, France (O.B., J.M.)
| | - Paul Mulder
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., O.B., L.N., P.M., J.M., V.R.); Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., L.N., P.M., V.R.); and Inserm (Institut National de la Santé et de la Recherche Médicale) U905, Department of Immunology, Rouen, France (O.B., J.M.)
| | - Jérémie Martinet
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., O.B., L.N., P.M., J.M., V.R.); Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., L.N., P.M., V.R.); and Inserm (Institut National de la Santé et de la Recherche Médicale) U905, Department of Immunology, Rouen, France (O.B., J.M.)
| | - Vincent Richard
- From the Inserm (Institut National de la Santé et de la Recherche Médicale) U1096, Department of Pharmacology, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., O.B., L.N., P.M., J.M., V.R.); Normandy University, Institute for Research and Innovation in Biomedicine, Rouen, France (J.M., M.B., E.G., N.B., J.-P.H., L.N., P.M., V.R.); and Inserm (Institut National de la Santé et de la Recherche Médicale) U905, Department of Immunology, Rouen, France (O.B., J.M.)
| |
Collapse
|
11
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway. PLoS One 2015; 10:e0117937. [PMID: 25734240 PMCID: PMC4348516 DOI: 10.1371/journal.pone.0117937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/05/2015] [Indexed: 01/22/2023] Open
Abstract
Mechanical stress that arises due to deformation of the extracellular matrix (ECM) either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC) via the RhoA/RhoA-associated protein kinase (ROCK) pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853). Because myosin phosphatase targeting subunit 1 (Thr853) is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form) increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188) that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188) induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188). Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells.
Collapse
|
13
|
Sevá Pessôa B, Becher PM, Van Veghel R, De Vries R, Tempel D, Sneep S, Van Beusekom H, Van Der Velden VHJ, Westermann D, Danser AHJ, Roks AJM. Effect of a stable Angiotensin-(1-7) analogue on progenitor cell recruitment and cardiovascular function post myocardial infarction. J Am Heart Assoc 2015; 4:jah3823. [PMID: 25655571 PMCID: PMC4345874 DOI: 10.1161/jaha.114.001510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Angiotensin‐(1–7) improves cardiac function and remodeling after myocardial infarction (MI). This may involve recruitment of hematopoietic progenitor cells that support angiogenesis. However, angiotensin‐(1–7) is rapidly metabolized in plasma and tissue. The authors investigated in mice the effect of a metabolically stable angiotensin‐(1–7) analogue, cyclic angiotensin‐(1–7), on progenitor cell recruitment and on the heart post MI, when given in the angiogenesis phase of remodeling. Methods and Results Angiogenic progenitor cell recruitment was measured by using flow cytometry 24 and 72 hours after a daily bolus injection of cyclic angiotensin‐(1–7) in healthy C57BL/6 mice. Further, mice underwent MI or sham surgery and subsequently received saline or 2 different doses of cyclic angiotensin‐(1–7) for 3 or 9 weeks. Cyclic angiotensin‐(1–7) increased circulating hematopoietic progenitor cells at 24 hours but not 72 hours. Post MI, cyclic angiotensin‐(1–7) diminished cardiomyocyte hypertrophy and reduced myogenic tone, without altering cardiovascular function or cardiac histology at 9 weeks. Importantly, cyclic angiotensin‐(1–7)–treated mice had reduced cardiac capillary density at 3 weeks after MI but not after 9 weeks. Finally, cyclic angiotensin‐(1–7) decreased tube formation by cultured human umbilical vein endothelial cells. Conclusions Our results suggest that cyclic angiotensin‐(1–7), when given early after MI, recruits progenitor cells but does not lead to improved angiogenesis, most likely because it simultaneously exerts antiangiogenic effect in adult endothelial cells. Apparently, optimal treatment with cyclic angiotensin‐(1–7) depends on the time point of onset of application after MI.
Collapse
Affiliation(s)
- Bruno Sevá Pessôa
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Peter Moritz Becher
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Germany (P.M.B., D.W.)
| | - Richard Van Veghel
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - René De Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Dennie Tempel
- Division of Cardiology and Pulmonology, Department of Interventional Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (D.T.)
| | - Stefan Sneep
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (S.S., H.V.B.)
| | - Heleen Van Beusekom
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (S.S., H.V.B.)
| | - Vincent H J Van Der Velden
- Department of Immunology, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (V.J.V.D.V.)
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Germany (P.M.B., D.W.)
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| |
Collapse
|
14
|
Schleifenbaum J, Kassmann M, Szijártó IA, Hercule HC, Tano JY, Weinert S, Heidenreich M, Pathan AR, Anistan YM, Alenina N, Rusch NJ, Bader M, Jentsch TJ, Gollasch M. Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries. Circ Res 2014; 115:263-72. [PMID: 24838176 DOI: 10.1161/circresaha.115.302882] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Vascular wall stretch is the major stimulus for the myogenic response of small arteries to pressure. The molecular mechanisms are elusive, but recent findings suggest that G protein-coupled receptors can elicit a stretch response. OBJECTIVE To determine whether angiotensin II type 1 receptors (AT1R) in vascular smooth muscle cells exert mechanosensitivity and identify the downstream ion channel mediators of myogenic vasoconstriction. METHODS AND RESULTS We used mice deficient in AT1R signaling molecules and putative ion channel targets, namely AT1R, angiotensinogen, transient receptor potential channel 6 (TRPC6) channels, or several subtypes of the voltage-gated K+ (Kv7) gene family (KCNQ3, 4, or 5). We identified a mechanosensing mechanism in isolated mesenteric arteries and in the renal circulation that relies on coupling of the AT1R subtype a to a Gq/11 protein as a critical event to accomplish the myogenic response. Arterial mechanoactivation occurs after pharmacological block of AT1R and in the absence of angiotensinogen or TRPC6 channels. Activation of AT1R subtype a by osmotically induced membrane stretch suppresses an XE991-sensitive Kv channel current in patch-clamped vascular smooth muscle cells, and similar concentrations of XE991 enhance mesenteric and renal myogenic tone. Although XE991-sensitive KCNQ3, 4, and 5 channels are expressed in vascular smooth muscle cells, XE991-sensitive K+ current and myogenic contractions persist in arteries deficient in these channels. CONCLUSIONS Our results provide definitive evidence that myogenic responses of mouse mesenteric and renal arteries rely on ligand-independent, mechanoactivation of AT1R subtype a. The AT1R subtype a signal relies on an ion channel distinct from TRPC6 or KCNQ3, 4, or 5 to enact vascular smooth muscle cell activation and elevated vascular resistance.
Collapse
Affiliation(s)
- Johanna Schleifenbaum
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Mario Kassmann
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - István András Szijártó
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Hantz C Hercule
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Jean-Yves Tano
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Stefanie Weinert
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Matthias Heidenreich
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Asif R Pathan
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Yoland-Marie Anistan
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Natalia Alenina
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Nancy J Rusch
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Michael Bader
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Thomas J Jentsch
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Maik Gollasch
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.).
| |
Collapse
|
15
|
Kauffenstein G, Pizard A, Le Corre Y, Vessières E, Grimaud L, Toutain B, Labat C, Mauras Y, Gorgels TG, Bergen AA, Le Saux O, Lacolley P, Lefthériotis G, Henrion D, Martin L. Disseminated arterial calcification and enhanced myogenic response are associated with abcc6 deficiency in a mouse model of pseudoxanthoma elasticum. Arterioscler Thromb Vasc Biol 2014; 34:1045-56. [PMID: 24675664 DOI: 10.1161/atvbaha.113.302943] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Pseudoxanthoma elasticum is an inherited metabolic disorder resulting from ABCC6 gene mutations. It is characterized by progressive calcification and fragmentation of elastic fibers in the skin, retina, and the arterial wall. Despite calcium accumulation in the arteries of patients with pseudoxanthoma elasticum, functional consequences remain unknown. In the present study, we investigated arterial structure and function in Abcc6(-/-) mice, a model of the human disease. APPROACH AND RESULTS Arterial calcium accumulation was evaluated using alizarin red stain and atomic absorption spectrometry. Expression of genes involved in osteochondrogenic differentiation was measured by polymerase chain reaction. Elastic arterial properties were evaluated by carotid echotracking. Vascular reactivity was evaluated using wire and pressure myography and remodeling using histomorphometry. Arterial calcium accumulation was 1.5- to 2-fold higher in Abcc6(-/-) than in wild-type mice. Calcium accumulated locally leading to punctuate pattern. Old Abcc6(-/-) arteries expressed markers of both osteogenic (Runx2, osteopontin) and chondrogenic lineage (Sox9, type II collagen). Abcc6(-/-) arteries displayed slight increase in arterial stiffness and vasoconstrictor tone in vitro tended to be higher in response to phenylephrine and thromboxane A2. Pressure-induced (myogenic) tone was significantly higher in Abcc6(-/-) arteries than in wild type. Arterial blood pressure was not significantly changed in Abcc6(-/-), despite higher variability. CONCLUSIONS Scattered arterial calcium depositions are probably a result of osteochondrogenic transdifferentiation of vascular cells. Lower elasticity and increased myogenic tone without major changes in agonist-dependent contraction evidenced in aged Abcc6(-/-) mice suggest a reduced control of local blood flow, which in turn may alter vascular homeostasis in the long term.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- From the CNRS UMR 6214, INSERM U1083, l'UNAM (G.K., Y.L.C., E.V., L.G., B.T., G.L., D.H., L.M.) and Laboratoire de Pharmacologie-Toxicologie, l'UNAM, Université d'Angers (Y.M.), University Hospital Angers, Angers, France; INSERM, U1116 (A.P., C.L., P.L.), Université de Lorraine, Vandoeuvre-lès-Nancy, France; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI (O.L.S.); Molecular Ophthalmogenetics, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands (T.G.G., A.A.B.); and Departments of Ophthalmology (A.A.B.) and Clinical Genetics (A.A.B.), Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Qin F, Lu Y, He X, Zhao M, Bi X, Yu X, Liu J, Zang W. Pyridostigmine prevents peripheral vascular endothelial dysfunction in rats with myocardial infarction. Clin Exp Pharmacol Physiol 2014; 41:202-9. [DOI: 10.1111/1440-1681.12198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Fangfang Qin
- Department of Pharmacology; School of Medicine; Xi'an Jiaotong University; Shaanxi China
| | - Yi Lu
- Department of Pharmacology; School of Medicine; Xi'an Jiaotong University; Shaanxi China
| | - Xi He
- Department of Pharmacology; School of Medicine; Xi'an Jiaotong University; Shaanxi China
| | - Ming Zhao
- Department of Pharmacology; School of Medicine; Xi'an Jiaotong University; Shaanxi China
| | - Xueyuan Bi
- Department of Pharmacology; School of Medicine; Xi'an Jiaotong University; Shaanxi China
| | - Xiaojiang Yu
- Department of Pharmacology; School of Medicine; Xi'an Jiaotong University; Shaanxi China
| | - Jinjun Liu
- Department of Pharmacology; School of Medicine; Xi'an Jiaotong University; Shaanxi China
- Department of Physiology and Pathophysiology; School of Medicine; Xi'an Jiaotong University; Shaanxi China
| | - Weijin Zang
- Department of Pharmacology; School of Medicine; Xi'an Jiaotong University; Shaanxi China
| |
Collapse
|
17
|
Bhattachariya A, Dahan D, Turczyńska KM, Swärd K, Hellstrand P, Albinsson S. Expression of microRNAs is essential for arterial myogenic tone and pressure-induced activation of the PI3-kinase/Akt pathway. Cardiovasc Res 2013; 101:288-96. [PMID: 24233972 DOI: 10.1093/cvr/cvt253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS The myogenic response is the intrinsic ability of small arteries to constrict in response to increased intraluminal pressure. Although microRNAs have been shown to play a role in vascular smooth muscle function, their importance in the regulation of the myogenic response is not known. In this study, we investigate the role of microRNAs in the regulation of myogenic tone by using smooth muscle-specific and tamoxifen-inducible deletion of the endonuclease Dicer in mice. METHODS AND RESULTS In order to avoid effects of Dicer deletion on smooth muscle differentiation and growth, we used an early time point (5 weeks) after the tamoxifen-induction of Dicer knockout (KO). At this time point, we found that myogenic tone was completely absent in the mesenteric arteries of Dicer KO mice. This was associated with a reduced pressure-induced Akt-phosphorylation, possibly via increased phosphatase and tensin homologue (PTEN) expression, which was found to be a target of miR-26a. Furthermore, loss of myogenic tone was associated with a decreased depolarization-induced calcium influx, and was restored by the L-type channel agonist Bay K 8644 or by transient stimulation with angiotensin II (Ang II). The effect of Ang II was dependent on AT1-receptors and activation of the PI3-kinase/Akt pathway. CONCLUSION In this study we have identified novel mechanisms that regulate myogenic tone in resistance arteries, which involves microRNA-dependent control of PI3-kinase/Akt signalling and L-type calcium influx. Furthermore, we have demonstrated that transient stimulation by Ang II can have long-lasting effects by potentiating myogenic tone.
Collapse
Affiliation(s)
- Anirban Bhattachariya
- Department of Experimental Medical Sciences, Lund University, BMC D12, SE-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Renal myogenic constriction protects the kidney from age-related hypertensive renal damage in the Fawn-Hooded rat. J Hypertens 2013; 31:1637-45. [DOI: 10.1097/hjh.0b013e328361d506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Kroetsch JT, Bolz SS. The TNF-α/sphingosine-1-phosphate signaling axis drives myogenic responsiveness in heart failure. J Vasc Res 2013; 50:177-85. [PMID: 23594703 DOI: 10.1159/000350528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 03/06/2013] [Indexed: 12/23/2022] Open
Abstract
Heart failure (HF) is hallmarked by an increase in total peripheral resistance (TPR) that compensates for the drop in cardiac output. While initially allowing for the maintenance of mean arterial pressure at acceptable levels, the long-term upregulation of TPR is prone to compromise cardiac performance and tissue perfusion, and to ultimately accelerate disease progression. Augmented vasoconstriction of terminal arteries, the site of TPR regulation, is cooperatively driven by mechanisms such as: (i) endothelial dysfunction, (ii) increased sympathetic activity and (iii) enhanced pressure-induced myogenic responsiveness. Herein, we review emerging evidence that the increase in myogenic responsiveness is central to the long-term elevation of TPR in HF. On a molecular level, this augmented intrinsic response is governed by an activation of the tumor necrosis factor-α (TNF-α)/sphingosine-1-phosphate signaling axis in microvascular smooth muscle cells. The beneficial effect of TNF-α scavenging strategies on tissue perfusion in HF mouse models adds to the gaining momentum to revisit the use of anti-TNF-α treatment modalities in discrete HF patient populations.
Collapse
|
20
|
Wan E, Kushner JS, Zakharov S, Nui XW, Chudasama N, Kelly C, Waase M, Doshi D, Liu G, Iwata S, Shiomi T, Katchman A, D'Armiento J, Homma S, Marx SO. Reduced vascular smooth muscle BK channel current underlies heart failure-induced vasoconstriction in mice. FASEB J 2013; 27:1859-67. [PMID: 23325318 DOI: 10.1096/fj.12-223511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Excessively increased peripheral vasoconstriction is a hallmark of heart failure (HF). Here, we show that in mice with systolic HF post-myocardial infarction, the myogenic tone of third-order mesenteric resistance vessels is increased, the vascular smooth muscle (VSM) membrane potential is depolarized by ~20 mV, and vessel wall intracellular [Ca(2+)] is elevated relative to that in sham-operated control mice. Despite the increased [Ca(2+)], the frequency and amplitude of spontaneous transient outward currents (STOCs), mediated by large conductance, Ca(2+)-activated BK channels, were reduced by nearly 80% (P<0.01) and 25% (P<0.05), respectively, in HF. The expression of the BK α and β1 subunits was reduced in HF mice compared to controls (65 and 82% lower, respectively, P<0.01). Consistent with the importance of a reduction in BK channel expression and function in mediating the HF-induced increase in myogenic tone are two further findings: a blunting of paxilline-induced increase in myogenic tone in HF mice compared to controls (0.9 vs. 10.9%, respectively), and that HF does not alter the increased myogenic tone of BK β1-null mice. These findings identify electrical dysregulation within VSM, specifically the reduction of BK currents, as a key molecular mechanism sensitizing resistance vessels to pressure-induced vasoconstriction in systolic HF.
Collapse
Affiliation(s)
- Elaine Wan
- Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lidington D, Schubert R, Bolz SS. Capitalizing on diversity: an integrative approach towards the multiplicity of cellular mechanisms underlying myogenic responsiveness. Cardiovasc Res 2012. [PMID: 23180720 DOI: 10.1093/cvr/cvs345] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The intrinsic ability of resistance arteries to respond to transmural pressure is the single most important determinant of their function. Despite an ever-growing catalogue of signalling pathways that underlie the myogenic response, it remains an enigmatic mechanism. The myogenic response's mechanistic diversity has largely been attributed to 'hard-wired' differences across species and vascular beds; however, emerging evidence suggests that the mechanistic basis for the myogenic mechanism is, in fact, 'plastic'. This means that the myogenic response can change quantitatively (i.e. change in magnitude) and qualitatively (i.e. change in mechanistic basis) in response to environmental challenges (e.g. disease conditions). Consequently, understanding the dynamics of how the myogenic response capitalizes on its mechanistic diversity is key to unlocking clinically viable interventions. Using myogenic sphingosine-1-phosphate (S1P) signalling as an example, this review illustrates the remarkable plasticity of the myogenic response. We propose that currently unidentified 'organizational programmes' dictate the contribution of individual signalling pathways to the myogenic response and introduce the concept that certain signalling elements act as 'divergence points' (i.e. as the potential higher level regulatory sites). In the context of pressure-induced S1P signalling, the S1P-generating enzyme sphingosine kinase 1 serves as a divergence point, by orchestrating the calcium-dependent and -independent signalling pathways underlying microvascular myogenic responsiveness. By acting on divergence points, the proposed 'organizational programmes' could form the basis for the flexible recruitment and fine-tuning of separate signalling streams that underlie adaptive changes to the myogenic response and its distinctiveness across species and vascular beds.
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
22
|
Vavrinec P, Henning RH, Goris M, Vavrincova-Yaghi D, Buikema H, van Dokkum RPE. Vascular smooth muscle function of renal glomerular and interlobar arteries predicts renal damage in rats. Am J Physiol Renal Physiol 2012; 303:F1187-95. [PMID: 22791345 DOI: 10.1152/ajprenal.00653.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, it was shown that individuals with good baseline (a priori) endothelial function in isolated (in vitro) renal arteries developed less renal damage after 5/6 nephrectomy (5/6Nx; Gschwend S, Buikema H, Navis G, Henning RH, de Zeeuw D, van Dokkum RP. J Am Soc Nephrol 13: 2909-2915, 2002). In this study, we investigated whether preexisting glomerular vascular integrity predicts subsequent renal damage after 5/6Nx, using in vivo intravital microscopy and in vitro myogenic constriction of small renal arteries. Moreover, we aimed to elucidate the role of renal ANG II type 1 receptor (AT1R) expression in this model. Anesthetized rats underwent intravital microscopy to visualize constriction to ANG II of glomerular afferent and efferent arterioles, with continuous measurement of blood pressure, heart rate, and renal blood flow. Thereafter, 5/6Nx was performed, interlobar arteries were isolated from the extirpated kidney, and myogenic constriction was assessed in a perfused vessel setup. Blood pressure and proteinuria were assessed weekly for 12 wk, and focal glomerulosclerosis (FGS) was determined at the end of study. Relative expression AT1R in the kidney cortex obtained at 5/6Nx was determined by PCR. Infusion of ANG II induced significant constriction of both afferent and efferent glomerular arterioles, which strongly positively correlated with proteinuria and FGS at 12 wk after 5/6Nx. Furthermore, in vitro measured myogenic constriction of small renal arteries negatively correlated with proteinuria 12 wk after 5/6Nx. Moreover, in vivo vascular reactivity negatively correlated with in vitro reactivity. Additionally, relative expression of AT1R positively correlated with responses of glomerular arterioles and with markers of renal damage. Both in vivo afferent and efferent responses to ANG II and in vitro myogenic constriction of small renal arteries in the healthy rat predict the severity of renal damage induced by 5/6Nx. This vascular responsiveness is highly dependent on AT1R expression. Intraorgan vascular integrity may provide a useful tool to guide the prevention and treatment of renal end-organ damage.
Collapse
Affiliation(s)
- Peter Vavrinec
- Department of Clinical Pharmacology, Groningen University Institute for Drug Exploration, University Medical Center Groningen, A. Deusinglaan 1, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Horman S, Beauloye C, Vanoverschelde JL, Bertrand L. AMP-activated Protein Kinase in the Control of Cardiac Metabolism and Remodeling. Curr Heart Fail Rep 2012; 9:164-73. [DOI: 10.1007/s11897-012-0102-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Kauffenstein G, Laher I, Matrougui K, Guérineau NC, Henrion D. Emerging role of G protein-coupled receptors in microvascular myogenic tone. Cardiovasc Res 2012; 95:223-32. [PMID: 22637750 DOI: 10.1093/cvr/cvs152] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Blood flow autoregulation results from the ability of resistance arteries to reduce or increase their diameters in response to changes in intravascular pressure. The mechanism by which arteries maintain a constant blood flow to organs over a range of pressures relies on this myogenic response, which defines the intrinsic property of the smooth muscle to contract in response to stretch. The resistance to flow created by myogenic tone (MT) prevents tissue damage and allows the maintenance of a constant perfusion, despite fluctuations in arterial pressure. Interventions targeting MT may provide a more rational therapeutic approach in vascular disorders, such as hypertension, vasospasm, chronic heart failure, or diabetes. Despite its early description by Bayliss in 1902, the cellular and molecular mechanisms underlying MT remain poorly understood. We now appreciate that MT requires a complex mechanotransduction converting a physical stimulus (pressure) into a biological response (change in vessel diameter). Although smooth muscle cell depolarization and a rise in intracellular calcium concentration are recognized as cornerstones of the myogenic response, the role of wall strain-induced formation of vasoactive mediators is less well established. The vascular system expresses a large variety of Class 1 G protein-coupled receptors (GPCR) activated by an eclectic range of chemical entities, including peptides, lipids, nucleotides, and amines. These messengers can function in blood vessels as vasoconstrictors. This review focuses on locally generated GPCR agonists and their proposed contributions to MT. Their interplay with pivotal G(q-11) and G(12-13) protein signalling is also discussed.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- Biologie Neurovasculaire et Mitochondriale Intégrée, UMR CNRS 6214 INSERM 1083, Université d'Angers, France
| | | | | | | | | |
Collapse
|
25
|
Role of myosin light chain kinase and myosin light chain phosphatase in the resistance arterial myogenic response to intravascular pressure. Arch Biochem Biophys 2011; 510:160-73. [DOI: 10.1016/j.abb.2011.02.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 12/19/2022]
|
26
|
Vavrinec P, van Dokkum RP, Goris M, Buikema H, Henning RH. Losartan protects mesenteric arteries from ROS-associated decrease in myogenic constriction following 5/6 nephrectomy. J Renin Angiotensin Aldosterone Syst 2011; 12:184-94. [PMID: 21393360 DOI: 10.1177/1470320310391328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Chronic renal failure (CRF) is associated with hypertension, proteinuria, loss of myogenic constriction (MC) of mesenteric arteries and increased production of reactive oxygen species (ROS) under experimental conditions. Previous results showed that ACE (angiotensin-converting enzyme activity) inhibitor therapy is effective in slowing down the progression of disease. Therefore, we wanted to study whether the inverse AT(1) (angiotensin II type 1) receptor agonist, losartan (LOS) was effective in preventing loss of MC in a rat model of CRF and whether acute ROS scavengers could improve MC. METHODS Rats underwent 5/6 nephrectomy (5/6 Nx) and were treated with vehicle or LOS (20 mg/kg/day; 5/6 Nx + LOS) for 12 weeks. Thereafter, the MC of the mesenteric arteries were measured in the presence and/or absence of tempol and catalase. Systolic blood pressure and proteinuria were measured weekly. RESULTS Systolic blood pressure and proteinuria in the 5/6 Nx + LOS group were significantly lower than in the 5/6 Nx group. Moreover, the MC of 5/6 Nx + LOS arteries was significantly increased compared with the untreated 5/6 Nx group (maximum MC, 32.3 ± 6.9 vs 8.9 ± 3.8% (p < 0.01)). Tempol + catalase significantly increased the MC in the 5/6 Nx group, but not in the 5/6 Nx + LOS group (increase in MC, 59.7 ± 13.0 (p < 0.05) vs. 17.0 ± 15.1%). CONCLUSION These results support the roles of the RAAS (renin-angiotensin-aldosterone system) and ROS in the vascular dysfunction of systemic vessels in CRF.
Collapse
Affiliation(s)
- Peter Vavrinec
- Department of Clinical Pharmacology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Enouri S, Monteith G, Johnson R. Characteristics of myogenic reactivity in isolated rat mesenteric veins. Am J Physiol Regul Integr Comp Physiol 2011; 300:R470-8. [DOI: 10.1152/ajpregu.00491.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms of mechanically induced venous tone and its interaction with the endothelium and key vasoactive neurohormones are not well established. We investigated the contribution of the endothelium, l-type voltage-operated calcium channels (l-VOCCs), and PKC and Rho kinase to myogenic reactivity in mesenteric vessels exposed to increasing transmural pressure. The interaction of myogenic reactivity with norepinephrine (NE) and endothelin-1 (ET-1) was also investigated. Pressure myography was used to study isolated, cannulated, third-order rat mesenteric small veins and arteries. NE and ET-1 concentration response curves were constructed at low, intermediate, and high transmural pressures. Myogenic reactivity was not altered by nitric oxide synthase inhibition with Nω-nitro-l-arginine (l-NNA; 100 μM) or endothelium removal in both vessels. l-VOCCs blockade (nifedipine, 1 μM) completely abolished arterial tone, while only partially reducing venous tone. PKC (chelerythrine, 2.5 μM) and Rho kinase (Y27632, 3 μM) inhibitors largely abolished venous and arterial myogenic reactivity. There was no significant difference in the sensitivity of NE or ET-1-induced contractions within vessels. However, veins were more sensitive to NE and ET-1 when compared with corresponding arteries at low, intermediate, and high transmural pressures, respectively. These results suggest that 1) myogenic factors are important contributors to net venous tone in mesenteric veins; 2) PKC and Rho activation are important in myogenic reactivity in both vessels, while l-VOCCs play a limited role in the veins vs. the arteries, and the endothelium does not appear to modulate myogenic reactivity in either vessel type; and 3) mesenteric veins maintain an enhanced sensitivity to NE and ET-1 compared with the arteries when studied under conditions of changing transmural distending pressure.
Collapse
Affiliation(s)
| | - Gabrielle Monteith
- Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
28
|
Hoefer J, Azam MA, Kroetsch JTE, Leong-Poi H, Momen MA, Voigtlaender-Bolz J, Scherer EQ, Meissner A, Bolz SS, Husain M. Sphingosine-1-phosphate-dependent activation of p38 MAPK maintains elevated peripheral resistance in heart failure through increased myogenic vasoconstriction. Circ Res 2010; 107:923-33. [PMID: 20671234 DOI: 10.1161/circresaha.110.226464] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Mechanisms underlying vasomotor abnormalities and increased peripheral resistance exacerbating heart failure (HF) are poorly understood. OBJECTIVE To explore the role and molecular basis of myogenic responses in HF. METHODS AND RESULTS 10 weeks old C57Bl6 mice underwent experimental myocardial infarction (MI) or sham surgery. At 1 to 12 weeks postoperative, mice underwent hemodynamic studies, mesenteric, cerebral, and cremaster artery perfusion myography and Western blot. Organ weights and hemodynamics confirmed HF and increased peripheral resistance after MI. Myogenic responses, ie, pressure-induced vasoconstriction, were increased as early as 1 week after MI and remained elevated. Vasoconstrictor responses to phenylephrine were decreased 1 week after MI, but not at 2 to 6 weeks after MI, whereas those to endothelin (ET)-1 and sphingosine-1-phosphate (S1P) were increased at all time points after MI. An antagonist (JTE-013) for the most abundant S1P receptor detected in mesenteric arteries (S1P(2)R) abolished the enhanced myogenic responses of HF, with significantly less effect on controls. Mice with genetic absence of sphingosine-kinases or S1P(2)R (Sphk1(-/-); Sphk1(-/-)/Sphk2(+/-); S1P(2)R(-/-)) did not manifest enhanced myogenic responses after MI. Mesenteric arteries from HF mice exhibited increased phosphorylation of myosin light chain, with deactivation of its phosphatase (MLCP). Among known S1P-responsive regulators of MLCP, GTP-Rho levels were unexpectedly reduced in HF, whereas levels of activated p38 MAPK and ERK1/2 (extracellular signal-regulated kinase 1/2) were increased. Inhibiting p38 MAPK abolished the myogenic responses of animals with HF, with little effect on controls. CONCLUSIONS Rho-independent p38 MAPK-mediated deactivation of MLCP underlies S1P/S1P(2)R-regulated increases in myogenic vasoconstriction observed in HF. Therapeutic targeting of these findings in HF models deserves study.
Collapse
Affiliation(s)
- Judith Hoefer
- Toronto General Hospital Research Institute, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu Y, Henning RH, Sandovici M, van der Want JJ, van Gilst WH, Buikema H. Enhanced myogenic constriction of mesenteric artery in heart failure relates to decreased smooth muscle cell caveolae numbers and altered AT1- and epidermal growth factor-receptor function. Eur J Heart Fail 2009; 11:246-55. [PMID: 19147448 DOI: 10.1093/eurjhf/hfn027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIMS We previously showed that enhanced myogenic constriction (MC) of peripheral resistance arteries involves active AT(1) receptors in chronic heart failure (CHF). Recent data suggest both transactivation of EGF receptors and caveolae-like microdomains to be implicated in the activity of AT(1) receptors. Thus, we assessed their roles in increased MC in mesenteric arteries of CHF rats. METHODS AND RESULTS Male Wistar rats underwent myocardial infarction to induce CHF and were sacrificed after 12 weeks. The number of caveolae in smooth muscle cells (SMC) of mesenteric arteries of CHF rats was decreased by 43.6 +/- 4.0%, this was accompanied by increased MC, which was fully normalized to the level of sham by antagonists of the AT(1)-receptor (losartan) or EGF-receptor (AG1478). Acute disruption of caveolae in sham rats affected caveolae numbers and MC to a similar extent as CHF, however MC was only reversed by the antagonist of the EGF-receptor, but not by the AT(1)-receptor antagonist. Further, in sham rats, MC was increased by a sub-threshold concentration of angiotensin II and reversed by both AT(1)- as well as EGF-receptor inhibition. In contrast, increased MC by a sub-threshold concentration of EGF was only reversed by EGF receptor inhibition. CONCLUSION These findings provide the first evidence that decreased SMC caveolae numbers are involved in enhanced MC in small mesenteric arteries, by affecting AT(1)- and EGF-receptor function. This suggests a novel mechanism involved in increased peripheral resistance in CHF.
Collapse
Affiliation(s)
- Ying Xu
- Department of Clinical Pharmacology, Groningen University Institute for Drug Exploration (GUIDE), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Langager AM, Hammerberg BE, Rotella DL, Stauss HM. Very low-frequency blood pressure variability depends on voltage-gated L-type Ca2+ channels in conscious rats. Am J Physiol Heart Circ Physiol 2007; 292:H1321-7. [PMID: 17056668 DOI: 10.1152/ajpheart.00874.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms generating high- frequency (HF) and low-frequency (LF) blood pressure variability (BPV) are reasonably well understood. However, little is known about the origin of very low-frequency (VLF) BPV. We tested the hypothesis that VLF BPV is generated by L-type Ca2+ channel-dependent mechanisms. In conscious rats, arterial blood pressure was recorded during control conditions ( n = 8) and ganglionic blockade ( n = 7) while increasing doses (0.01–5.0 mg·100 μl−1·h−1) of the L-type Ca2+ channel blocker nifedipine were infused intravenously. VLF (0.02–0.2 Hz), LF (0.2–0.6 Hz), and HF (0.6–3.0 Hz) BPV were assessed by spectral analysis of systolic blood pressure. During control conditions, nifedipine caused dose-dependent declines in VLF and LF BPV, whereas HF BPV was not affected. At the highest dose of nifedipine, VLF BPV was reduced by 86% compared with baseline, indicating that VLF BPV is largely mediated by L-type Ca2+ channel-dependent mechanisms. VLF BPV appeared to be relatively more dependent on L-type Ca2+ channels than LF BPV because lower doses of nifedipine were required to significantly reduce VLF BPV than to reduce LF BPV. Ganglionic blockade markedly reduced VLF and LF BPV and abolished the nifedipine-induced dose-dependent declines in VLF and LF BPV, suggesting that VLF and LF BPV require sympathetic activity to be evident. In conclusion, VLF BPV is largely mediated by L-type Ca2+ channel-dependent mechanisms. We speculate that VLF BPV is generated by myogenic vascular responses to spontaneously occurring perturbations of blood pressure. Other factors, such as sympathetic nervous system activity, may elicit a permissive effect on VLF BPV by increasing vascular myogenic responsiveness.
Collapse
Affiliation(s)
- Amanda M Langager
- Dept of Integrative Physiology, The Univ of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
31
|
Abstract
1. Blood pressure and organ perfusion are controlled by a variety of cardiovascular control systems, such as the baroreceptor reflex and the renin-angiotensin system (RAS), and by local vascular mechanisms, such as shear stress-induced release of nitric oxide (NO) from the endothelium and the myogenic vascular response. Deviations in arterial blood pressure from its set point activate these mechanisms in an attempt to restore blood pressure and/or secure organ perfusion. However, the response times at which different cardiovascular mechanisms operate differ considerably (e.g. blood pressure control by the RAS is slower than blood pressure control via the baroreceptor reflex). 2. Owing to these different response times, some cardiovascular control systems affect blood pressure more rapidly and others more slowly. Thus, identifying the frequency components of blood pressure variability (BPV) by power spectral analysis can potentially provide important information on individual blood pressure control mechanisms. 3. Evidence is presented that the RAS, catecholamines, endothelial-derived NO and myogenic vascular function affect BPV at very low frequencies (0.02-0.2 Hz) and that low-frequency (LF) BPV (0.2-0.6 Hz) is affected by sympathetic modulation of vascular tone and endothelial-derived NO in rats. In humans, LF BPV (0.075-0.15 Hz) is affected by sympathetic modulation of vascular tone and myogenic vascular function. The impact of the RAS and endothelial-derived NO on BPV in humans requires further investigation. 4. In conclusion, power spectral analysis is a powerful diagnostic tool that allows identification of pathophysiological mechanisms contributing to cardiovascular diseases, such as hypertension, heart failure and stroke, because it can separate slow from fast cardiovascular control mechanisms. The limitation that some cardiovascular control mechanisms affect the same frequency components of BPV requires the combination of blood pressure spectral analysis with other techniques.
Collapse
Affiliation(s)
- Harald M Stauss
- Department of Integrative Physiology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
32
|
Vettoretti S, Ochodnicky P, Buikema H, Henning RH, Kluppel CA, de Zeeuw D, van Dokkum RPE. Altered myogenic constriction and endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries of hypertensive subtotally nephrectomized rats. J Hypertens 2006; 24:2215-23. [PMID: 17053543 DOI: 10.1097/01.hjh.0000249699.04113.36] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Chronic renal failure (CRF) is associated with altered systemic arterial tone and hypertension. Myogenic constriction and endothelium-derived hyperpolarizing factor (EDHF)-dependent relaxation represent major vasoregulatory mechanisms in small systemic arteries. Elevated myogenic response and impaired EDHF might participate in the development of essential hypertension; however, their role in CRF-related hypertension is unknown. We investigated whether myogenic response and EDHF are altered in subtotally nephrectomized (sNX) rats and whether these changes are modifiable by chronic treatment with angiotensin-converting enzyme (ACE) inhibitor. METHODS In a pressure arteriograph, myogenic constriction and EDHF-mediated relaxation were evaluated in small mesenteric arteries isolated from male Wistar rats 15 weeks after either sham operation (n = 7) (SHAM), sNX (n = 12) or sNX followed by 9 weeks of treatment with lisinopril (sNX + LIS, 2.5 mg/kg, n = 13). RESULTS Surprisingly, myogenic response was reduced in hypertensive CRF rats (maximal myogenic tone: 37 +/- 2 and 18 +/- 4%, P < 0.01; peak myogenic index: -0.80 +/- 0.08 and -0.40 +/- 0.12%/mmHg, P < 0.05 in SHAM and sNX respectively). At the same time EDHF-mediated relaxation was also impaired (maximal response: 92 +/- 2 and 77 +/- 5%, P < 0.01; pD2: 6.5 +/- 0.1 and 5.9 +/- 0.1, P < 0.05). Both myogenic response and EDHF were inversely related to the severity of renal failure and restored by treatment with lisinopril to levels found in SHAM animals. CONCLUSION Major constrictive (myogenic) and dilatory (EDHF) mechanisms of small systemic arteries are impaired in hypertensive CRF rats. These alterations do not seem to participate in the development of hypertension, being rather directly related to the severity of renal impairment. Both systemic vascular changes might be restored by renoprotective treatment with ACE inhibitor.
Collapse
Affiliation(s)
- Simone Vettoretti
- Department of Clinical Pharmacology, University Medical Center Groningen and Groningen Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Just A. Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1-17. [PMID: 16990493 DOI: 10.1152/ajpregu.00332.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autoregulation of renal blood flow (RBF) is caused by the myogenic response (MR), tubuloglomerular feedback (TGF), and a third regulatory mechanism that is independent of TGF but slower than MR. The underlying cause of the third regulatory mechanism remains unclear; possibilities include ATP, ANG II, or a slow component of MR. Other mechanisms, which, however, exert their action through modulation of MR and TGF are pressure-dependent change of proximal tubular reabsorption, resetting of RBF and TGF, as well as modulating influences of ANG II and nitric oxide (NO). MR requires < 10 s for completion in the kidney and normally follows first-order kinetics without rate-sensitive components. TGF takes 30-60 s and shows spontaneous oscillations at 0.025-0.033 Hz. The third regulatory component requires 30-60 s; changes in proximal tubular reabsorption develop over 5 min and more slowly for up to 30 min, while RBF and TGF resetting stretch out over 20-60 min. Due to these kinetic differences, the relative contribution of the autoregulatory mechanisms determines the amount and spectrum of pressure fluctuations reaching glomerular and postglomerular capillaries and thereby potentially impinge on filtration, reabsorption, medullary perfusion, and hypertensive renal damage. Under resting conditions, MR contributes approximately 50% to overall RBF autoregulation, TGF 35-50%, and the third mechanism < 15%. NO attenuates the strength, speed, and contribution of MR, whereas ANG II does not modify the balance of the autoregulatory mechanisms.
Collapse
Affiliation(s)
- Armin Just
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA.
| |
Collapse
|
34
|
Koba S, Gao Z, Xing J, Sinoway LI, Li J. Sympathetic responses to exercise in myocardial infarction rats: a role of central command. Am J Physiol Heart Circ Physiol 2006; 291:H2735-42. [PMID: 16844916 DOI: 10.1152/ajpheart.00522.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In congestive heart failure (CHF), exaggerated sympathetic activation is observed during exercise, which elicits excess peripheral vasoconstriction. The mechanisms causing this abnormality are not fully understood. Central command is a central neural process that induces parallel activation of motor and cardiovascular systems. This study was undertaken to determine whether central command serves as a mechanism that contributes to the exaggerated sympathetic response to exercise in CHF. In decerebrated rats, renal and lumbar sympathetic nerve responses (RSNA and LSNA, respectively) to 30 s of fictive locomotion were examined. The fictive locomotion was induced by electrical stimulation of the mesencephalic locomotor region (MLR). The study was performed in control animals (fractional shortening > 40%) and animals with myocardial infarctions (MI; fractional shortening < 30%). With low stimulation of the MLR (current intensity = 20 microA), the sympathetic responses were not significantly different in the control (RSNA: +18 +/- 4%; LSNA: +3 +/- 2%) and MI rats (RSNA: +16 +/- 5%; LSNA: +8 +/- 3%). With intense stimulation of the MLR (50 microA), the responses were significantly greater in MI rats (RSNA: +127 +/- 15%; LSNA: +57 +/- 10%) than in the control rats (RSNA: +62 +/- 5%; LSNA: +21 +/- 6%). In this study, the data demonstrate that RSNA and LSNA responses to intense stimulation of the MLR are exaggerated in MI rats. We suggest that intense activation of central command may play a role in evoking exaggerated sympathetic activation and inducing excessive peripheral vasoconstriction during exercise in CHF.
Collapse
Affiliation(s)
- Satoshi Koba
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
35
|
Xu Y, Henning RH, Lipsic E, van Buiten A, van Gilst WH, Buikema H. Acetylcholine stimulated dilatation and stretch induced myogenic constriction in mesenteric artery of rats with chronic heart failure. Eur J Heart Fail 2006; 9:144-51. [PMID: 16828577 DOI: 10.1016/j.ejheart.2006.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 01/19/2006] [Accepted: 05/03/2006] [Indexed: 12/18/2022] Open
Abstract
Rats with chronic heart failure (CHF) develop increased myogenic constriction in mesenteric resistance arteries. Here we investigated increased myogenic constriction in relation to alterations in EDHF- and NO-mediated dilatation in CHF-rats. Male Spraque-Dawley rats were subjected to myocardial-infarction or sham-surgery. At 9-10 weeks after surgery, isolated mesenteric artery ring preparations were studied in a wire-myograph. Stretch-induced myogenic constriction was obtained by stepwise increase of the internal circumference diameter (0.5-1.2 L100). Cyclooxygenase- and eNOS-inhibitors were employed to study NO- and EDHF-mediated dilatation in response to acetylcholine. Rats with CHF (n=8), but not sham-rats (n=6), developed significant myogenic constriction. In addition, the contribution of endothelial dilator mediators was significantly altered in CHF-rats, with increased dependency on NO and decreased EDHF-mediated dilatation. Moreover, EDHF-mediated dilatation was inversely correlated with myogenic constriction in individual CHF-rats (r=-0.74, p=0.04). These data demonstrate increased myogenic constriction in mesenteric arteries of rats with CHF post-MI to be correlated to decreased EDHF-mediated dilatation. These findings extend the previous observation that myogenic constriction antagonizes EDHF-mediated dilatation in rat coronary artery under normal conditions, and suggests this relationship also to become functional in mesenteric arteries under pathophysiological conditions of CHF.
Collapse
Affiliation(s)
- Y Xu
- Groningen University Institute for Drug Exploration, Department of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, A.Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Koida S, Ohyanagi M, Ueda A, Mori Y, Iwasaka T. Mechanism of increased alpha-adrenoceptor-mediated contraction in small resistance arteries of rats with heart failure. Clin Exp Pharmacol Physiol 2006; 33:47-52. [PMID: 16445698 DOI: 10.1111/j.1440-1681.2006.04322.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Alterations in a(1)-adrenoceptor signalling that result in enhanced contraction in resistance arteries in heart failure are not well characterized. To clarify whether this enhanced constriction is due to Ca(2+)-dependent or -independent effects, we measured the phenylephrine-induced changes in [Ca(2+)](i) in the presence of a Rho kinase inhibitor or an inositol 1,4,5-trisphosphate (IP(3)) receptor inhibitor. 2. Heart failure was induced in rats by ligation of the left coronary artery. Changes in the internal diameter of pressurized small femoral arteries were examined using videomicroscopy. Phenylephrine concentration-response curves, constructed in the presence of the Rho kinase inhibitor Y27632 (0.3 micromol/L) or the IP(3) receptor inhibitor xestospongin C (0.3 micromol/L), were compared in heart failure rats and sham-operated (control) rats; fura-2 Ca(2+) signals were measured in the arteries of both groups. 3. The heart : bodyweight ratio, lung : bodyweight ratio, left ventricular end-diastolic pressure and plasma B-type natriuretic peptide were significantly higher in heart failure rats compared with control rats. Phenylephrine-induced contractile responses and increases in [Ca(2+)](i) were significantly greater in arteries from heart failure rats compared with arteries from control rats. At 0.3 micromol/L, Y27632 selectively inhibited phenylephrine-induced constrictions of heart failure arteries, but had no effect on the increase in [Ca(2+)](i). 4. Immunohistochemical staining for Rho kinase was greater in heart failure rats compared with control rats. 5. The degree of inhibition of both the phenylephrine-induced constriction and the increase in [Ca(2+)](i) by xestospongin C (0.3 micromol/L) was greater in arteries from heart failure rats than in those from control rats. 6. The increased contractile response to phenylephrine in arteries of heart failure rats results from IP(3)-dependent increases in [Ca(2+)](i) and from an enhanced Ca(2+) sensitivity via a Rho kinase-dependent mechanism.
Collapse
Affiliation(s)
- Satsuki Koida
- Department of Internal Medicine, Division of Coronary Heart Disease, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | | | | | | | | |
Collapse
|
37
|
Westendorp B, Schoemaker RG, van Gilst WH, Buikema H. Improvement of EDHF by Chronic ACE Inhibition Declines Rapidly After Withdrawal in Rats With Myocardial Infarction. J Cardiovasc Pharmacol 2005; 46:766-72. [PMID: 16306800 DOI: 10.1097/01.fjc.0000187175.05780.e2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heart failure after myocardial infarction (MI) is associated with endothelial dysfunction. There is conflicting evidence on the exact nature of this endothelial dysfunction and how endothelium-dependent vasodilation is affected by angiotensin-converting enzyme inhibitor (ACE-I) therapy. Furthermore, consequences of acute ACE-I withdrawal are largely unknown. Therefore, we studied the contribution of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) to the effects of ACE-I therapy and its withdrawal on endothelial function in MI rats. Rats were subjected to coronary ligation to induce MI and were assigned to quinapril or vehicle from 2 weeks to 8 months post-MI. In parallel, MI rats treated for 14 months with quinapril were subjected to treatment withdrawal for 0, 4, and 6 weeks. Acetylcholine (ACh)-induced relaxation and underlying endothelium-derived mediators were studied in isolated aortic rings. Long-term quinapril (8 months) resulted in markedly improved endothelium-dependent vasodilation in rats with myocardial infarction, which could be attributed to marked improvement in non-NO/prostanoid-mediated relaxation (ie, EDHF). After 14 months of follow-up, maximum vasodilation was still preserved by quinapril. Withdrawal after 14 months of treatment caused significantly impaired ACh-induced EDHF-mediated relaxation within 4 weeks. A marked reduction in EDHF-mediated relaxation caused this impairment. NO-mediated relaxation was unaffected. These findings highlight the importance of EDHF impairment in development of endothelial dysfunction after myocardial infarction and the possibility of improving EDHF-mediated vasodilation with chronic ACE inhibitor therapy. In addition, withdrawal of chronic ACE inhibition after MI should be considered carefully, as profound endothelial dysfunction may develop rapidly.
Collapse
Affiliation(s)
- Bart Westendorp
- Department of Clinical Pharmacology, University Medical Center, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Hemmings DG, Williams SJ, Davidge ST. Increased myogenic tone in 7-month-old adult male but not female offspring from rat dams exposed to hypoxia during pregnancy. Am J Physiol Heart Circ Physiol 2005; 289:H674-82. [PMID: 15833805 DOI: 10.1152/ajpheart.00191.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of cardiovascular disease later in life. Vascular dysfunction occurs in adult offspring from animal models of IUGR including maternal undernutrition, but the influence of reduced fetal oxygen supply on adult vascular function is unclear. Myogenic responses, essential for vascular tone regulation, have not been evaluated in these offspring. We hypothesized that 7-mo-old offspring from hypoxic (12% O(2); H) or nutrient-restricted (40% of control; NR) rat dams would show greater myogenic responses than their 4-mo-old littermates or control (C) offspring through impaired modulation by vasodilators. Growth restriction occurred in male H (P < 0.01), male NR (P < 0.01), and female NR (P < 0.02), but not female H, offspring. Myogenic responses in mesenteric arteries from males but not females were increased at 7 mo in H (P < 0.01) and NR (P < 0.05) vs. C offspring. There was less modulation of myogenic responses after inhibition of nitric oxide synthase (P < 0.05), prostaglandin H synthase (P < 0.005), or both enzymes (P < 0.001) in arteries from 7-mo male H vs. C offspring. Thus reduced vasodilator modulation may explain elevated myogenic responses in 7-mo male H offspring. In contrast, there was increased modulation of myogenic responses in arteries from 7-mo female H vs. C or NR offspring after inhibition of both enzymes (P < 0.05). Thus increased vasodilator modulation may maintain myogenic responses in female H offspring at control levels. In summary, vascular responses in adult offspring from adverse intrauterine environments are impaired in a gender-specific, age-dependent, and maternal insult-dependent manner, with males more profoundly affected.
Collapse
Affiliation(s)
- D G Hemmings
- Perinatal Research Centre, Department of Obstetrics and Gynecology, 220 Heritage Medical Research Centre, Univ. of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | |
Collapse
|
39
|
Wijetunge S, Hughes AD. Mechanism of Contraction of Rat Isolated Tail Arteries by Hyposmotic Solutions. J Vasc Res 2005; 42:93-100. [PMID: 15650317 DOI: 10.1159/000083368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 10/20/2004] [Indexed: 11/19/2022] Open
Abstract
Contraction induced by hyposmotic swelling was examined in rat tail arteries mounted on a myograph containing a modified Krebs physiological saline solution (PSS) containing 50 mM mannitol (300 mosm/l). Hyposmotic swelling was induced by removing mannitol. In arteries having basal tone or arteries precontracted with K(+) or the thromboxane mimetic U-46619, removal of mannitol caused a concentration dependent contraction of rat tail arteries. Concurrent measurement of tension and intracellular calcium [Ca(2+)](i )in arteries loaded with fura-2 showed that both tension and [Ca(2+)](i) increased on exposure to a hyposmotic solution. Removal of endothelium or inhibition of nitric oxide and cyclooxygenase together did not affect contractile responses. Removal of extracellular Ca(2+) abolished the contractile response to hyposmotic solution and NiCl(2), a nonspecific inhibitor of Ca(2+) influx pathways, blocked the rise in [Ca(2+)](i) and tension in response to a hyposmotic solution. Verapamil and nisoldipine, inhibitors of Ca(v)1.2 (L-type) calcium channels significantly reduced the contractile response to a hyposmotic solution. Addition of NiCl(2) to nisoldipine caused an additional inhibition of the response to a hyposmotic solution. Inhibition of calcium release from the sarcoplasmic reticulum by ryanodine or cyclopiazonic acid (CPA) did not cause any change in the tension response to a hyposmotic solution. CPA did not significantly inhibit the response to a hyposmotic solution in the presence of N(G)-methyl-L-arginine, oxyhaemoglobin and indomethacin. We conclude that contraction induced by a hyposmotic solution is largely due to Ca(v)1.2 calcium channels although other Ca(2+) influx pathways also contribute.
Collapse
Affiliation(s)
- S Wijetunge
- Clinical Pharmacology, NHLI Division, Faculty of Medicine, Imperial College London, South Wharf Road, London W2 1NY, UK
| | | |
Collapse
|
40
|
Luo G, Xu CB, Cao YX, Edvinsson L. Transcriptional Up-Regulation in Expression of 5-Hydroxytryptamine2A and Transcriptional Down-Regulation of Angiotensin II type 1 Receptors during Organ Culture of Rat Mesenteric Artery. Basic Clin Pharmacol Toxicol 2004; 95:280-7. [PMID: 15569273 DOI: 10.1111/j.1742-7843.2004.t01-1-pto950506.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to investigate in rat mesenteric artery if there is up-regulation of 5-hydroxytryptamine (5-HT) receptors and angiotensin II receptors and the potential role of protein kinase C activation in the smooth muscle cells during organ culture. Angiotensin II, 5-HT and potassium induced contraction of ring segments without endothelium, monitored by a sensitive in vitro pharmacology method. After the culture of the arterial ring segments for 24 hr, the concentration-contraction curves induced by 5-HT slightly shifted towards to the left with pEC(50) from 6.64+/-0.11 to 6.84+/-0.11 and a significant increase in E(max) from 147+/-11% to 246+/-15% (P<0.05), compared with that obtained in fresh segments. In contrast, the angiotensin II concentration-contraction curve only showed a significant decrease in E(max) from 99+/-10% to 37+/-8%. Specific antagonists for the 5-HT type 2A receptors (5-HT(2A)) and angiotensin II type 1 receptors (AT(1)) demonstrated that the contractions occurred via 5-HT(2A) and AT(1) receptors, respectively. Real-time PCR revealed that the 5-HT(2A) receptor mRNA was up-regulated in parallel with the contractile response while there was a down-regulation of AT(1) receptor mRNA. Transcriptional inhibitor actinomycin D and specific protein kinase C inhibitor Ro31-8220 demonstrated that it was a transcriptional mechanism with involvement of protein kinase C that regulated the enhanced expression of 5-HT(2A) receptors in the mesenteric artery.
Collapse
MESH Headings
- Angiotensin II
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Cycloheximide/pharmacology
- Dactinomycin/pharmacology
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Indoles/pharmacology
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Organ Culture Techniques
- Polymerase Chain Reaction
- Potassium
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Serotonin
- Serotonin 5-HT2 Receptor Agonists
- Transcription, Genetic/drug effects
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Guogang Luo
- Division of Experimental Vascular Research, Institute of Medicine, Lund University, SE-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
41
|
Wackenfors A, Pantev E, Emilson M, Edvinsson L, Malmsjö M. Angiotensin II Receptor mRNA Expression and Vasoconstriction in Human Coronary Arteries: Effects of Heart Failure and Age. Basic Clin Pharmacol Toxicol 2004; 95:266-72. [PMID: 15569271 DOI: 10.1111/j.1742-7843.2004.t01-1-pto950504.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Angiotensin II is a potent vasoconstrictor that is implicated in the pathogenesis of hypertension, heart failure and atherosclerosis. In the present study, angiotensin II receptor mRNA expression levels were quantified by real-time polymerase chain reaction and the vasocontractile responses to angiotensin II were characterised by in vitro pharmacology in endothelium-denuded human coronary arteries. Angiotensin II type 1 (AT(1)) and type 2 (AT(2)) receptor mRNA expression levels were significantly down-regulated in arteries from patients with heart failure as compared to controls. The angiotensin II-induced vasoconstriction diminished with increasing age in patients with heart failure (r(2)=0.31, P<0.05). Also, the AT(1) receptor mRNA expression levels decreased with increasing age in patients with heart failure (r(2)=0.74, P<0.05), while no such correlation could be shown in the control group (r(2)=0.04, P=n.s.). The AT(2) receptor mRNA expression levels did not correlate with age in patients with heart failure or controls. In conclusion, the diminished angiotensin II vasoconstriction with age in heart failure patients is most likely due to a lower density of AT(1) receptors and may result from a longer period of exposure to heart failure in older patients.
Collapse
MESH Headings
- Adult
- Age Factors
- Aged
- Aged, 80 and over
- Angiotensin II/pharmacology
- Angiotensin II/physiology
- Cardiac Output, Low/etiology
- Cardiac Output, Low/metabolism
- Case-Control Studies
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Female
- Humans
- In Vitro Techniques
- Male
- Middle Aged
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Angelica Wackenfors
- Division of Experimental Vascular Research, Department of Internal Medicine, Lund University Hospital, SE-221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Ledoux J, Gee DM, Leblanc N. Increased peripheral resistance in heart failure: new evidence suggests an alteration in vascular smooth muscle function. Br J Pharmacol 2003; 139:1245-8. [PMID: 12890702 PMCID: PMC1573961 DOI: 10.1038/sj.bjp.0705366] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Increased peripheral resistance is a hallmark of chronic heart failure and has been primarily attributed to neurohumoral pathways involving both the renin-angiotensin and sympathetic nervous systems. The increased resistance is thought to serve as a compensatory mechanism to help maintain perfusion to the vital organs by sustaining blood pressure in the fate of a failing heart. Local mechanisms, and in particular endothelial dysfunction, have also been shown to be important contributors in regulating arterial resistance and vascular remodeling in this disease. In this issue of the British Journal of Pharmacology, Gschwend et al. (2003) present new data suggesting that in the absence of a functional endothelium, myogenic constriction of small pressurized mesenteric arteries, an intrinsic property of vascular smooth muscle cells, is enhanced in a coronary artery ligation-induced myocardial infarction model of congestive heart failure (CHF) in the rat. The increased myogenic tone appears to be tightly linked to angiotensin II type 1 receptors (AT(1)). The possibility that CHF-induced stimulation of myogenic constriction is due to the local release of preformed angiotensin II or constitutive upregulation of the AT(1) receptor signaling pathways are discussed along with other potential cellular and molecular mechanisms previously suggested to play a role in myogenic reactivity.
Collapse
Affiliation(s)
- Jonathan Ledoux
- Department of Physiology, University of Montréal and Research Center, Montréal Heart Institute, Montréal, Québec, Canada
| | - Daniel M Gee
- Department of Pharmacology, Centre of Biomedical Research Excellence (COBRE), Manville Sciences Building, University of Nevada School of Medicine, Reno, Nevada 89557-0270, U.S.A
| | - Normand Leblanc
- Department of Pharmacology, Centre of Biomedical Research Excellence (COBRE), Manville Sciences Building, University of Nevada School of Medicine, Reno, Nevada 89557-0270, U.S.A
- Author for correspondence:
| |
Collapse
|