1
|
Wu H, Hui Y, Qian X, Wang X, Xu J, Wang F, Pan S, Chen K, Liu Z, Gao W, Bai J, Liang G. Exosomes derived from mesenchymal stem cells ameliorate impaired glucose metabolism in myocardial Ischemia/reperfusion injury through miR-132-3p/PTEN/AKT pathway. Cell Cycle 2025:1-20. [PMID: 40181235 DOI: 10.1080/15384101.2025.2485834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
Exosomes secreted by mesenchymal stem cells (MSCs) have been considered as a novel biological therapy for myocardial ischemia/reperfusion injury (MIRI). However, the underlying mechanism of exosomes has not been completely established, especially in the early stage of MIRI. In this study, we primarily investigated the protective effect of exosomes on MIRI from both in vitro and ex vivo perspectives. Bioinformatic analysis was conducted to identify exosomal miRNA associated with myocardial protection, Genes and proteins related to functional studies and myocardial energy metabolism were analyzed and evaluated using techniques such as Polymerase Chain Re-action (PCR), Western blotting, double luciferase biochemical techniques, flow cytometry assay, etc. It was discovered that exosomes ameliorated cardiomyocyte injury t by delivery of miR-132-3p.This process reduced the expression of Phosphatase and tensin homolog (PTEN) mRNA and protein, enhanced the expression of phosphorylated protein kinase (pAKT), regulated the insulin signaling pathway, facilitated intracellular Glucose transporter 4 (GLUT4) protein membrane translocation, and enhanced glucose uptake and Adenosine Triphosphate (ATP) production. This study confirmed, for the first time, that MSC-EXO can provide myocardial protection in the early stages of MIRI through miR-132/PTEN/AKT pathway. This research establishes a theoretical and experimental foundation for the clinical application of MSC-derived exosomes.
Collapse
Affiliation(s)
- Hongkun Wu
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yongpeng Hui
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xingkai Qian
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueting Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, China
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, China
| | - Feng Wang
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Sisi Pan
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaiyuan Chen
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhou Liu
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weilong Gao
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jue Bai
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Guiyou Liang
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Erkens R, Duse DA, Brum A, Chadt A, Becher S, Siragusa M, Quast C, Müssig J, Roden M, Cortese-Krott M, Ibáñez B, Lammert E, Fleming I, Jung C, Al-Hasani H, Heusch G, Kelm M. Inhibition of proline-rich tyrosine kinase 2 restores cardioprotection by remote ischaemic preconditioning in type 2 diabetes. Br J Pharmacol 2024; 181:4174-4194. [PMID: 38956895 DOI: 10.1111/bph.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Remote ischaemic preconditioning (rIPC) for cardioprotection is severely impaired in diabetes, and therapeutic options to restore it are lacking. The vascular endothelium plays a key role in rIPC. Given that the activity of endothelial nitric oxide synthase (eNOS) is inhibited by proline-rich tyrosine kinase 2 (Pyk2), we hypothesized that pharmacological Pyk2 inhibition could restore eNOS activity and thus restore remote cardioprotection in diabetes. EXPERIMENTAL APPROACH New Zealand obese (NZO) mice that demonstrated key features of diabetes were studied. The consequence of Pyk2 inhibition on endothelial function, rIPC and infarct size after myocardial infarction were evaluated. The impact of plasma from mice and humans with or without diabetes was assessed in isolated buffer perfused murine hearts and aortic rings. KEY RESULTS Plasma from nondiabetic mice and humans, both subjected to rIPC, caused remote tissue protection. Similar to diabetic humans, NZO mice demonstrated endothelial dysfunction. NZO mice had reduced circulating nitrite levels, elevated arterial blood pressure and a larger infarct size after ischaemia and reperfusion than BL6 mice. Pyk2 increased the phosphorylation of eNOS at its inhibitory site (Tyr656), limiting its activity in diabetes. The cardioprotective effects of rIPC were abolished in diabetic NZO mice. Pharmacological Pyk2 inhibition restored endothelial function and rescued cardioprotective effects of rIPC. CONCLUSION AND IMPLICATIONS Endothelial function and remote tissue protection are impaired in diabetes. Pyk2 is a novel target for treating endothelial dysfunction and restoring cardioprotection through rIPC in diabetes.
Collapse
Affiliation(s)
- Ralf Erkens
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Dragos Andrei Duse
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Amanda Brum
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
| | - Stefanie Becher
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Mauro Siragusa
- Center for Molecular Medicine, Institute for Vascular Signalling, Goethe University Frankfurt, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site RhineMain, Frankfurt, Germany
| | - Christine Quast
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Johanna Müssig
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University and University Hospital Duesseldorf, Duesseldorf, Germany
- Institute for Clinical Diabetology, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | - Miriam Cortese-Krott
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- CARID Cardiovascular Research Institute Duesseldorf, Duesseldorf, Germany
| | - Borja Ibáñez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Eckhard Lammert
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
- Institute of Metabolic Physiology, Heinrich-Heine University, Duesseldorf, Germany
| | - Ingrid Fleming
- Center for Molecular Medicine, Institute for Vascular Signalling, Goethe University Frankfurt, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site RhineMain, Frankfurt, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Deutsches Diabetes Zentrum at Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Duesseldorf, Neuherberg, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University School of Medicine Essen, Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- CARID Cardiovascular Research Institute Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
3
|
Trinh VH, Nguyen Huu T, Sah DK, Choi JM, Yoon HJ, Park SC, Jung YS, Lee SR. Redox Regulation of PTEN by Reactive Oxygen Species: Its Role in Physiological Processes. Antioxidants (Basel) 2024; 13:199. [PMID: 38397797 PMCID: PMC10886030 DOI: 10.3390/antiox13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumor suppressor due to its ability to regulate cell survival, growth, and proliferation by downregulating the PI3K/AKT signaling pathway. In addition, PTEN plays an essential role in other physiological events associated with cell growth demands, such as ischemia-reperfusion, nerve injury, and immune responsiveness. Therefore, recently, PTEN inhibition has emerged as a potential therapeutic intervention in these situations. Increasing evidence demonstrates that reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), are produced and required for the signaling in many important cellular processes under such physiological conditions. ROS have been shown to oxidize PTEN at the cysteine residue of its active site, consequently inhibiting its function. Herein, we provide an overview of studies that highlight the role of the oxidative inhibition of PTEN in physiological processes.
Collapse
Affiliation(s)
- Vu Hoang Trinh
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
- Department of Oncology, Department of Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea;
| | - Yu Seok Jung
- Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea; (V.H.T.); (T.N.H.); (D.K.S.); (J.M.C.); (H.J.Y.)
| |
Collapse
|
4
|
Wu B, Shi L, Wu Y. PTEN Inhibitor Treatment Lowers Muscle Plasma Membrane Damage and Enhances Muscle ECM Homeostasis after High-Intensity Eccentric Exercise in Mice. Int J Mol Sci 2023; 24:9954. [PMID: 37373102 DOI: 10.3390/ijms24129954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Exercise-induced muscle damage (EIMD) is a common occurrence in athletes and can lead to delayed onset muscle soreness, reduced athletic performance, and an increased risk of secondary injury. EIMD is a complex process involving oxidative stress, inflammation, and various cellular signaling pathways. Timely and effective repair of the extracellular matrix (ECM) and plasma membrane (PM) damage is critical for recovery from EIMD. Recent studies have shown that the targeted inhibition of phosphatase and tension homolog (PTEN) in skeletal muscles can enhance the ECM environment and reduce membrane damage in Duchenne muscular dystrophy (DMD) mice. However, the effects of PTEN inhibition on EIMD are unknown. Therefore, the present study aimed to investigate the potential therapeutic effects of VO-OHpic (VO), a PTEN inhibitor, on EIMD symptoms and underlying mechanisms. Our findings indicate that VO treatment effectively enhances skeletal muscle function and reduces strength loss during EIMD by upregulating membrane repair signals related to MG53 and ECM repair signals related to the tissue inhibitor of metalloproteinases (TIMPs) and matrix metalloproteinase (MMPs). These results highlight the potential of pharmacological PTEN inhibition as a promising therapeutic approach for EIMD.
Collapse
Affiliation(s)
- Baile Wu
- Department of Exercise Physiology, School of Sports Science, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Sports and Physical Health of the Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Ying Wu
- Department of Exercise Physiology, School of Sports Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
5
|
Tahtasakal R, Sener EF, Delibasi N, Hamurcu Z, Mehmetbeyoglu E, Bayram KK, Gunes I, Goksuluk D, Emirogullari ON. Overexpression of the PTEN Gene in Myocardial Tissues of Coronary Bypass Surgery Patients. Arq Bras Cardiol 2023; 120:e20220169. [PMID: 37042855 PMCID: PMC10263415 DOI: 10.36660/abc.20220169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Coronary artery disease is a complex disorder that causes death worldwide. One of the genes involved in developing this disease may be PTEN. OBJECTIVES This study aimed to investigate the PTEN gene and protein expression in tissue and blood samples taken from coronary bypass surgery patients. METHODS Molecular studies were performed at Erciyes University Genome and Stem Cell Center (GENKOK). Right atrial appendage and blood samples were taken from the central vein of 22 coronary bypass surgery patients before starting and ending cardiopulmonary bypass. PTEN expression was determined using quantitative real-time PCR and western blot analysis. The significance level was accepted as p<0.05. RESULTS There was no significant difference in the PTEN gene expression in blood samples taken before and after cardiopulmonary bypass. However, a substantial increase in both protein and gene expression levels of P-PTEN and PTEN was observed in the tissue samples. Myocardial expression of the PTEN gene was significantly increased at the end of the cardiopulmonary bypass. PTEN gene expression in the post-cardiopulmonary bypass period was increased when compared to the pre-bypass period, but it was insignificant when compared to healthy controls. CONCLUSION This study first revealed the role of the PTEN gene by analyzing both mRNA and protein expression in coronary bypass patients, appearing in both myocardial tissue and blood samples. Increased levels of PTEN may be a marker in myocardial tissue for patients with coronary artery disease.
Collapse
Affiliation(s)
- Reyhan Tahtasakal
- Erciyes University Medical Faculty Department of Medical BiologyKayseriTurquiaErciyes University Medical Faculty Department of Medical Biology, Kayseri – Turquia
- Erciyes University Genome and Stem Cell CenterKayseriTurquiaErciyes University Genome and Stem Cell Center, Kayseri – Turquia
| | - Elif Funda Sener
- Erciyes University Medical Faculty Department of Medical BiologyKayseriTurquiaErciyes University Medical Faculty Department of Medical Biology, Kayseri – Turquia
- Erciyes University Genome and Stem Cell CenterKayseriTurquiaErciyes University Genome and Stem Cell Center, Kayseri – Turquia
| | - Nesrin Delibasi
- Erciyes University Genome and Stem Cell CenterKayseriTurquiaErciyes University Genome and Stem Cell Center, Kayseri – Turquia
| | - Zuhal Hamurcu
- Erciyes University Medical Faculty Department of Medical BiologyKayseriTurquiaErciyes University Medical Faculty Department of Medical Biology, Kayseri – Turquia
- Erciyes University Genome and Stem Cell CenterKayseriTurquiaErciyes University Genome and Stem Cell Center, Kayseri – Turquia
| | - Ecmel Mehmetbeyoglu
- Erciyes University Genome and Stem Cell CenterKayseriTurquiaErciyes University Genome and Stem Cell Center, Kayseri – Turquia
| | - Keziban Korkmaz Bayram
- Ankara Yildirim Beyazit UniversityMedical FacultyDepartment of Medical GeneticsAnkaraTurquiaAnkara Yildirim Beyazit University Medical Faculty Department of Medical Genetics, Ankara – Turquia
| | - Isin Gunes
- Erciyes UniversityMedical FacultyDepartment of Anesthesiology and ReanimationKayseriTurquiaErciyes University Medical Faculty Department of Anesthesiology and Reanimation, Kayseri – Turquia
| | - Dincer Goksuluk
- Erciyes UniversityMedical FacultyDepartment of Department of Biostatistics and Medical InformaticsKayseriTurquiaErciyes University Medical Faculty Department of Department of Biostatistics and Medical Informatics, Kayseri – Turquia
| | - Omer Naci Emirogullari
- Erciyes UniversityMedical FacultyDepartment of Cardiovascular SurgeryKayseriTurquiaErciyes University Medical Faculty Department of Cardiovascular Surgery, Kayseri – Turquia
| |
Collapse
|
6
|
Wu B, Cao Y, Meng M, Jiang Y, Tao H, Zhang Y, Huang C, Li R. Gabapentin alleviates myocardial ischemia-reperfusion injury by increasing the protein expression of GABA ARδ. Eur J Pharmacol 2023; 944:175585. [PMID: 36791842 DOI: 10.1016/j.ejphar.2023.175585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Gabapentin is a commonly used analgesic in the clinic to reduce opioid consumption. It is well known that gabapentin can reduce cerebral ischemia-reperfusion injury (IRI). However, it remains unclear whether gabapentin can reduce myocardial IRI. Before the performance of myocardial ischemia and reperfusion (I/R), rats received gabapentin without or with an intravenous injection of PI3K inhibitor (LY294002), or an intraspinal injection of lentivirus-mediated GABAARδ-shRNA. The myocardial IRI were evaluated by calculating the infarction area, arrhythmia score and myocardial apoptosis. The activity of PI3K/Akt and the expression of GABAARδ were quantified by western blotting. The effect of gabapentin on myocardial I/R was further demonstrated in vitro by establishing oxygen-glucose deprivation and reoxygenation in cardiomyocytes. After I/R in vivo, there were significant increases in infarction area, arrhythmia and Bax protein expression in the myocardium, as well as a decrease of GABAARδ in the spinal cord. Meanwhile, I/R also decreased the protein expression of PI3K/Akt and Bcl-2. Gabapentin pretreatment successfully attenuated IRI including reducing the myocardial infarction area and apoptosis. This effect was abolished by both the systemic inhibition of PI3K/Akt and the intraspinal suppression of GABAARδ. However, gabapentin pretreatment failed to prevent cellular injury induced by OGD/R in cardiomyocytes. Therefore, the myocardial protective effect of gabapentin may be attributed to activating PI3K/Akt in the myocardium and upregulating GABAARδ in the spinal cord. Gabapentin achieved a potent protective effect on the myocardium during the course of routine clinical treatment.
Collapse
Affiliation(s)
- Bin Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Yahong Cao
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - MingZhu Meng
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Yanwan Jiang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| |
Collapse
|
7
|
Sun M, Wang R, Xia R, Xia Z, Wu Z, Wang T. Amelioration of myocardial ischemia/reperfusion injury in diabetes: A narrative review of the mechanisms and clinical applications of dexmedetomidine. Front Pharmacol 2022; 13:949754. [PMID: 36120296 PMCID: PMC9470922 DOI: 10.3389/fphar.2022.949754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms contributing to the pathogenesis of myocardial ischemia-reperfusion (I/R) injury are complex and multifactorial. Many strategies have been developed to ameliorate myocardial I/R injuries based on these mechanisms. However, the cardioprotective effects of these strategies appear to diminish in diabetic states. Diabetes weakens myocardial responses to therapies by disrupting intracellular signaling pathways which may be responsible for enhancing cellular resistance to damage. Intriguingly, it was found that Dexmedetomidine (DEX), a potent and selective α2-adrenergic agonist, appears to have the property to reverse diabetes-related inhibition of most intervention-mediated myocardial protection and exert a protective effect. Several mechanisms were revealed to be involved in DEX’s protection in diabetic rodent myocardial I/R models, including PI3K/Akt and associated GSK-3β pathway stimulation, endoplasmic reticulum stress (ERS) alleviation, and apoptosis inhibition. In addition, DEX could attenuate diabetic myocardial I/R injury by up-regulating autophagy, reducing ROS production, and inhibiting the inflammatory response through HMGB1 pathways. The regulation of autonomic nervous function also appeared to be involved in the protective mechanisms of DEX. In the present review, the evidence and underlying mechanisms of DEX in ameliorating myocardial I/R injury in diabetes are summarized, and the potential of DEX for the treatment/prevention of myocardial I/R injury in diabetic patients is discussed.
Collapse
Affiliation(s)
- Meng Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhilin Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| |
Collapse
|
8
|
Cao S, Han C, Xuan C, Li X, Wen J, Xu D. Effects of cGMP/Akt/GSK-3β signaling pathway on atrial natriuretic peptide secretion in rabbits with rapid atrial pacing. Front Physiol 2022; 13:861981. [PMID: 36060704 PMCID: PMC9437264 DOI: 10.3389/fphys.2022.861981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial natriuretic peptide (ANP) plays a pivotal role in the regulation of the cardiovascular system. The ANP level increases during atrial fibrillation (AF), suggesting that AF may provoke ANP secretion, but its potential mechanism is still unclear. In the present study, the potential mechanisms of rapid atrial pacing (RAP) regulating ANP secretion was explored. Rabbits were subjected to burst RAP, ANP secretion increased whereas cyclic guanosine monophosphate (cGMP) concentrations decreased during RAP. The p-Akt and p-GSK-3β levels decreased in atrial tissues. Natriuretic peptide receptor A (NPR-A) protein and particulate guanylate cyclase (PGC) activity were detected. The sensitivity of NPR-A to ANP decreased, leading to the decrease of PGC activity. Also, the isolated atrial perfusion system were made in the rabbit model, cGMP was shown to inhibit ANP secretion, and the Akt inhibitor LY294002 (LY) and GSK-3β inhibitor SB216763 (SB) attenuated the inhibitory effects of cGMP on ANP secretion and enhanced the inhibitory effects of cGMP on atrial dynamics. In conclusion, NPR-A interacts with ANP to regulate PGC expression, and influence the expression of cGMP during RAP, which involves in the Akt/GSK-3β signaling pathway. From the aforementioned points we conclude that cGMP regulates ANP secretion by the Akt/GSK-3β signaling pathway during atrial pacing.
Collapse
Affiliation(s)
- Shuxia Cao
- Center of Morphological Experiment, Medical College of Yanbian University, Jilin, China
| | - Chengyong Han
- Center of Morphological Experiment, Medical College of Yanbian University, Jilin, China
| | - Chunhua Xuan
- Department of Cardiology, Affiliated Hospital of Yanbian University, Jilin, China
| | - Xiangdan Li
- Center of Morphological Experiment, Medical College of Yanbian University, Jilin, China
| | - Jing Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Dongyuan Xu
- Center of Morphological Experiment, Medical College of Yanbian University, Jilin, China
| |
Collapse
|
9
|
Walkowski B, Kleibert M, Majka M, Wojciechowska M. Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart. Cells 2022; 11:cells11091553. [PMID: 35563860 PMCID: PMC9105930 DOI: 10.3390/cells11091553] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite the significant decline in mortality, cardiovascular diseases are still the leading cause of death worldwide. Among them, myocardial infarction (MI) seems to be the most important. A further decline in the death rate may be achieved by the introduction of molecularly targeted drugs. It seems that the components of the PI3K/Akt signaling pathway are good candidates for this. The PI3K/Akt pathway plays a key role in the regulation of the growth and survival of cells, such as cardiomyocytes. In addition, it has been shown that the activation of the PI3K/Akt pathway results in the alleviation of the negative post-infarct changes in the myocardium and is impaired in the state of diabetes. In this article, the role of this pathway was described in each step of ischemia and subsequent left ventricular remodeling. In addition, we point out the most promising substances which need more investigation before introduction into clinical practice. Moreover, we present the impact of diabetes and widely used cardiac and antidiabetic drugs on the PI3K/Akt pathway and discuss the molecular mechanism of its effects on myocardial ischemia and left ventricular remodeling.
Collapse
Affiliation(s)
- Bartosz Walkowski
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
10
|
Zhou J, He S, Wang B, Yang W, Zheng Y, Jiang S, Li D, Lin J. Construction and Bioinformatics Analysis of circRNA-miRNA-mRNA Network in Acute Myocardial Infarction. Front Genet 2022; 13:854993. [PMID: 35422846 PMCID: PMC9002054 DOI: 10.3389/fgene.2022.854993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Acute myocardial infarction (AMI) is one of the main fatal diseases of cardiovascular diseases. Circular RNA (circRNA) is a non-coding RNA (ncRNA), which plays a role in cardiovascular disease as a competitive endogenous RNA (ceRNA). However, their role in AMI has not been fully clarified. This study aims to explore the mechanism of circRNA-related ceRNA network in AMI, and to identify the corresponding immune infiltration characteristics. Materials and Methods: The circRNA (GSE160717), miRNA (GSE24548), and mRNA (GSE60993) microarray datasets of AMI were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed circRNAs (DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified by the “limma” package. After integrating the circRNA, miRNA and mRNA interaction, we constructed a circRNA-miRNA-mRNA network. The “clusterProfiler” package and String database were used for functional enrichment analysis and protein-protein interaction (PPI) analysis, respectively. After that, we constructed a circRNA-miRNA-hub gene network and validated the circRNAs and mRNAs using an independent dataset (GSE61144) as well as qRT-PCR. Finally, we used CIBERSORTx database to analyze the immune infiltration characteristics of AMI and the correlation between hub genes and immune cells. Results: Using the “limma” package of the R, 83 DEcircRNAs, 54 DEmiRNAs, and 754 DEmRNAs were identified in the microarray datasets of AMI. Among 83 DEcircRNAs, there are 55 exonic DEcircRNAs. Then, a circRNA-miRNA-mRNA network consists of 21 DEcircRNAs, 11 DEmiRNAs, and 106 DEmRNAs were predicted by the database. After that, 10 hub genes from the PPI network were identified. Then, a new circRNA-miRNA-hub gene network consists of 14 DEcircRNAs, 7 DEmiRNAs, and 9 DEmRNAs was constructed. After that, three key circRNAs (hsa_circ_0009018, hsa_circ_0030569 and hsa_circ_0031017) and three hub genes (BCL6, PTGS2 and PTEN) were identified from the network by qRT-PCR. Finally, immune infiltration analysis showed that hub genes were significantly positively correlated with up-regulated immune cells (neutrophils, macrophages and plasma cells) in AMI. Conclusion: Our study constructed a circRNA-related ceRNA networks in AMI, consists of hsa_circ_0031017/hsa-miR-142-5p/PTEN axis, hsa_circ_0030569/hsa-miR-545/PTGS2 axis and hsa_circ_0009018/hsa-miR-139-3p/BCL6 axis. These three hub genes were significantly positively correlated with up-regulated immune cells (neutrophils, macrophages and plasma cells) in AMI. It helps improve understanding of AMI mechanism and provides future potential therapeutic targets.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
LncRNA NORAD promotes the progression of myocardial infarction by targeting the miR-22-3p/PTEN axis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:463-473. [PMID: 35607965 PMCID: PMC9828058 DOI: 10.3724/abbs.2022037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
NORAD is a newly identified long non-coding RNA (lncRNA) that plays an important role in cancers. NORAD has been found to be highly expressed in the mouse model of acute myocardial infarction (AMI). However, the role of NORAD in the regulation of AMI remains unknown. In the present study, we aimed to investigate the function of NORAD in AMI and explore the potential regulatory mechanisms. A mouse model of AMI was established and NORAD was knocked-down. The infarcted size of heart tissues and the cardiac function were evaluated. In addition, two cardiomyocyte cell lines were treated with hypoxia/re-oxygenation (H/R) to mimic AMI . Luciferase reporter assay, RNA pull-down assay, fluorescence hybridization, qRT-PCR, and western blot analysis were performed. Apoptotic cells and the levels of L-lactate dehydrogenase (LDH) and malondialdehyde (MDA) were detected. Our results show that downregulation of NORAD efficiently attenuates heart damage in the AMI mouse model. NORAD interacts with miR-22-3p. Knock-down of NORAD inhibits H/R-induced cell apoptosis and reduces LDH and MDA levels, while its effects are abolished by miR-22-3p inhibitor. MiR-22-3p interacts with PTEN and inhibits its expression. Overexpression of miR-22-3p inhibits H/R-induced cell apoptosis and reduces LDH and MDA levels, while its effects are abolished by overexpression of PTEN. Finally, overexpression of NORAD inhibits the AKT/mTOR signaling pathway, and its effects are attenuated by overexpression of miR-22-3p. Taken together, our study reveals that NORAD promotes the progression of AMI by regulating the miR-22-3p/PTEN axis, and the AKT/mTOR signaling may also be involved in the regulatory processes.
Collapse
|
12
|
Long X, Huang Y, He J, Zhang X, Zhou Y, Wei Y, Tang Y, Liu L. Upregulation of miR‑335 exerts protective effects against sepsis‑induced myocardial injury. Mol Med Rep 2021; 24:806. [PMID: 34542164 PMCID: PMC8477184 DOI: 10.3892/mmr.2021.12446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Septicemia is associated with excessive inflammation, oxidative stress and apoptosis, causing myocardial injury that results in high mortality and disability rates worldwide. The abnormal expression of multiple microRNAs (miRNAs/miRs) is associated with more severe sepsis‑induced myocardial injury (SIMI) and miR‑335 has been shown to protect cardiomyocytes from oxidative stress. The present study aimed to investigate the role of miR‑335 in SIMI. An SIMI model was established by cecal ligation and puncture (CLP) in mice. An miRNA‑335 precursor (pre‑miR‑335) was transfected to accelerate miR‑335 expression and an miR‑335 inhibitor (anti‑miR‑335) was used to inhibit miR‑335 expression. CLP or sham surgery was performed on pre‑miR‑335, anti‑miR‑335 and wild‑type mice and miR‑335 expression was determined by reverse transcription‑quantitative PCR. Inflammatory factors (TNF‑α, IL‑6 and IL‑10) and troponin (cTNI), brain natriuretic peptide (BNP), creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were assessed using commercial kits. Apoptosis was detected by flow cytometry and cardiac function was assessed using a Langendorff isolated cardiac perfusion system. miR‑335 expression was upregulated and an elevation in inflammatory factors and cTNI, BNP, CK, LDH and AST was observed. Compared with the wild‑type control group, pre‑miR‑335 mice treated with CLP exhibited significantly reduced left ventricular development pressure, maximum pressure increased reduction rates, as well as decreased levels of TNF‑α, IL‑6 and IL‑10, myocardial injury and apoptosis; by contrast, these features were amplified in CLP‑treated anti‑miR‑335 mice. In conclusion, the upregulation of miR‑335 exerted ameliorative effects on myocardial injury following sepsis and may indicate a novel therapeutic intervention for SIMI.
Collapse
Affiliation(s)
- Xian Long
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
- Department of Pharmacology, Hunan Academy of Chinese Medicine, Changsha, Hunan 410008, P.R. China
- Department of Pharmacology, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Yongpan Huang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Huaihua, Affiliated to University of South China, Huaihua, Hunan 418000, P.R. China
| | - Xiang Zhang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Yan Zhou
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Yingmin Wei
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Ying Tang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Lijing Liu
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| |
Collapse
|
13
|
Liang T, Gao F, Chen J. Role of PTEN-less in cardiac injury, hypertrophy and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:25. [PMID: 34337686 PMCID: PMC8326232 DOI: 10.1186/s13619-021-00087-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Cardiomyocytes are capable of coordinated contractions, which are mainly responsible for pumping blood. When cardiac stress occurs, cardiomyocytes undergo transition from physiological homeostasis to hypertrophic growth, proliferation, or apoptosis. During these processes, many cellular factors and signaling pathways participate. PTEN is a ubiquitous dual-specificity phosphatase and functions by dephosphorylating target proteins or lipids, such as PIP3, a second messenger in the PI3K/AKT signaling pathway. Downregulation of PTEN expression or inhibiting its biologic activity improves heart function, promotes cardiomyocytes proliferation, reduces cardiac fibrosis as well as dilation, and inhibits apoptosis following ischemic stress such as myocardial infarction. Inactivation of PTEN exhibits a potentially beneficial therapeutic effects against cardiac diseases. In this review, we summarize various strategies for PTEN inactivation and highlight the roles of PTEN-less in regulating cardiomyocytes during cardiac development and stress responses.
Collapse
Affiliation(s)
- Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
14
|
Pei Y, Xie S, Li J, Jia B. Bone marrow-mesenchymal stem cell-derived exosomal microRNA-141 targets PTEN and activates β-catenin to alleviate myocardial injury in septic mice. Immunopharmacol Immunotoxicol 2021; 43:584-593. [PMID: 34308733 DOI: 10.1080/08923973.2021.1955920] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) and their derived exosomes have shown potentials in the control of myocardial dysfunction. This study aimed to reveal the function of bone marrow (BM)-MSC-derived exosomes in sepsis-induced myocardial injury and the molecular mechanism. METHODS BM-MSC-derived exosomes were obtained and identified. A mouse model with sepsis was induced by cecalligation puncture (CLP) and treated with exosomes. The myocardial function of mice, the production of creatine kinase MB (CK-MB) and lactate dehydrogenase (LDH) in serum, the phosphorylation of a key myocardial contractility-related protein phospholamban (PLB), and the pathological changes in the myocardial tissues were examined. A microRNA (miRNA) microarray analysis was performed to examine the candidate miRNAs carried by the exosomes. Rescue experiments were conducted to validate the involvement of miR-141. RESULTS CLP treatment led to sepsis and notably reduced the myocardial function in mice. Further treatment of BM-MSC-derived exosomes alleviated the CLP-induced myocardial impairment, production of CK-MB and LDH, and inflammatory infiltration and cell apoptosis in mouse myocardial tissues, and restored the PLB phosphorylation. miR-141 was the most upregulated miRNA in the myocardial tissues after exosome treatment. Downregulation of miR-141 blocked the myocardium-protective functions of the exosomes. miR-141 was found to bind to and suppress PTEN expression, which further enhanced the activity of β-catenin. CONCLUSION This study suggested that BM-MSC derived exosomes ameliorates myocardial injury in septic mice through conveying miRNA-141 and regulating the PTEN/β-catenin axis, and exosomes may serve as promising tools for the management of myocardial injury induced by sepsis or other factors.
Collapse
Affiliation(s)
- Yongju Pei
- Department of Respiratory Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou, P.R. China.,Department of Respiratory Intensive Care Unit, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Shutang Xie
- Department of Respiratory Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou, P.R. China.,Department of Respiratory Intensive Care Unit, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jiang Li
- Zhengzhou Railway Vocational and Technical College, Zhengzhou, P.R. China.,Henan Provincial Engineering Research Center of Natural Drug Extraction and Medical Technology Application, Zhengzhou, P.R. China
| | - Baohui Jia
- Department of Central ICU, ZhengZhou Central Hospital, Zhengzhou, P.R. China
| |
Collapse
|
15
|
Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6614009. [PMID: 34055195 PMCID: PMC8149218 DOI: 10.1155/2021/6614009] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Myocardial ischemia is a disease with high morbidity and mortality, for which reperfusion is currently the standard intervention. However, the reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MI/RI). Oxidative stress is one of the most important pathological mechanisms in reperfusion injury, which causes apoptosis, autophagy, inflammation, and some other damage in cardiomyocytes through multiple pathways, thus causing irreversible cardiomyocyte damage and cardiac dysfunction. This article reviews the pathological mechanisms of oxidative stress involved in reperfusion injury and the interventions for different pathways and targets, so as to form systematic treatments for oxidative stress-induced myocardial reperfusion injury and make up for the lack of monotherapy.
Collapse
|
16
|
Redox Control in Acute Lymphoblastic Leukemia: From Physiology to Pathology and Therapeutic Opportunities. Cells 2021; 10:cells10051218. [PMID: 34067520 PMCID: PMC8155968 DOI: 10.3390/cells10051218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy originating from B- or T-lymphoid progenitor cells. Recent studies have shown that redox dysregulation caused by overproduction of reactive oxygen species (ROS) has an important role in the development and progression of leukemia. The application of pro-oxidant therapy, which targets redox dysregulation, has achieved satisfactory results in alleviating the conditions of and improving the survival rate for patients with ALL. However, drug resistance and side effects are two major challenges that must be addressed in pro-oxidant therapy. Oxidative stress can activate a variety of antioxidant mechanisms to help leukemia cells escape the damage caused by pro-oxidant drugs and develop drug resistance. Hematopoietic stem cells (HSCs) are extremely sensitive to oxidative stress due to their low levels of differentiation, and the use of pro-oxidant drugs inevitably causes damage to HSCs and may even cause severe bone marrow suppression. In this article, we reviewed research progress regarding the generation and regulation of ROS in normal HSCs and ALL cells as well as the impact of ROS on the biological behavior and fate of cells. An in-depth understanding of the regulatory mechanisms of redox homeostasis in normal and malignant HSCs is conducive to the formulation of rational targeted treatment plans to effectively reduce oxidative damage to normal HSCs while eradicating ALL cells.
Collapse
|
17
|
Penna C, Andreadou I, Aragno M, Beauloye C, Bertrand L, Lazou A, Falcão‐Pires I, Bell R, Zuurbier CJ, Pagliaro P, Hausenloy DJ. Effect of hyperglycaemia and diabetes on acute myocardial ischaemia-reperfusion injury and cardioprotection by ischaemic conditioning protocols. Br J Pharmacol 2020; 177:5312-5335. [PMID: 31985828 PMCID: PMC7680002 DOI: 10.1111/bph.14993] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/19/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic patients are at increased risk of developing coronary artery disease and experience worse clinical outcomes following acute myocardial infarction. Novel therapeutic strategies are required to protect the myocardium against the effects of acute ischaemia-reperfusion injury (IRI). These include one or more brief cycles of non-lethal ischaemia and reperfusion prior to the ischaemic event (ischaemic preconditioning [IPC]) or at the onset of reperfusion (ischaemic postconditioning [IPost]) either to the heart or to extracardiac organs (remote ischaemic conditioning [RIC]). Studies suggest that the diabetic heart is resistant to cardioprotective strategies, although clinical evidence is lacking. We overview the available animal models of diabetes, investigating acute myocardial IRI and cardioprotection, experiments investigating the effects of hyperglycaemia on susceptibility to acute myocardial IRI, the response of the diabetic heart to cardioprotective strategies e.g. IPC, IPost and RIC. Finally we highlight the effects of anti-hyperglycaemic agents on susceptibility to acute myocardial IRI and cardioprotection. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Manuela Aragno
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | | | - Luc Bertrand
- Division of CardiologyCliniques Universitaires Saint‐LucBrusselsBelgium
- Pole of Cardiovascular Research, Institut de Recherche Experimetnale et CliniqueUCLouvainBrusselsBelgium
| | - Antigone Lazou
- School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Ines Falcão‐Pires
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Robert Bell
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
| | - Coert J. Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Amsterdam UMCUniversity of Amsterdam, Cardiovascular SciencesAmsterdamThe Netherlands
| | - Pasquale Pagliaro
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Derek J. Hausenloy
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular and Metabolic Disorders ProgramDuke–NUS Medical SchoolSingapore
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Cardiovascular Research Center, College of Medical and Health SciencesAsia UniversityTaiwan
| |
Collapse
|
18
|
Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart. Mol Cell Biochem 2020; 473:111-132. [PMID: 32602016 DOI: 10.1007/s11010-020-03812-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
We recently reported that non-preconditioned hearts from diet-induced obese rats showed, compared to controls, a significant reduction in infarct size after ischaemia/reperfusion, whilst ischaemic preconditioning was without effect. In view of the high circulating FFA concentration in diet rats, the aims of the present study were to: (i) compare the effect of palmitate on the preconditioning potential of hearts from age-matched controls and diet rats (ii) elucidate the effects of substrate manipulation on ischaemic preconditioning. Substrate manipulation was done with dichloroacetate (DCA), which enhances glucose oxidation and decreases fatty acid oxidation. Isolated hearts from diet rats, age-matched controls or young rats, were perfused in the working mode using the following substrates: glucose (10 mM); palmitate (1.2 mM)/3% albumin) + glucose (10 mM) (HiFA + G); palmitate (1.2 mM/3% albumin) (HiFA); palmitate (0.4 mM/3% albumin) + glucose(10 mM) (LoFA + G); palmitate (0.4 mM/3% albumin) (LoFA). Hearts were preconditioned with 3 × 5 min ischaemia/reperfusion, followed by 35 min coronary ligation and 60 min reperfusion for infarct size determination (tetrazolium method) or 20 min global ischaemia/10 or 30 min reperfusion for Western blotting (ERKp44/42, PKB/Akt). Preconditioning of glucose-perfused hearts from age-matched control (but not diet) rats reduced infarct size, activated ERKp44/42 and PKB/Akt and improved functional recovery during reperfusion (ii) perfusion with HiFA + G abolished preconditioning and activation of ERKp44/42 (iii) DCA pretreatment largely reversed the harmful effects of HiFA. Hearts from non-preconditioned diet rats exhibited smaller infarcts, but could not be preconditioned, regardless of the substrate. Similar results were obtained upon substrate manipulation of hearts from young rats. Abolishment of preconditioning in diet rats may be due to altered myocardial metabolic patterns resulting from changes in circulating FA. The harmful effects of HiFA were attenuated by stimulation of glycolysis and inhibition of FA oxidation.
Collapse
|
19
|
Diabetic Cardiomyopathy and Ischemic Heart Disease: Prevention and Therapy by Exercise and Conditioning. Int J Mol Sci 2020; 21:ijms21082896. [PMID: 32326182 PMCID: PMC7215312 DOI: 10.3390/ijms21082896] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome, diabetes, and ischemic heart disease are among the leading causes of death and disability in Western countries. Diabetic cardiomyopathy is responsible for the most severe signs and symptoms. An important strategy for reducing the incidence of cardiovascular disease is regular exercise. Remote ischemic conditioning has some similarity with exercise and can be induced by short periods of ischemia and reperfusion of a limb, and it can be performed in people who cannot exercise. There is abundant evidence that exercise is beneficial in diabetes and ischemic heart disease, but there is a need to elucidate the specific cardiovascular effects of emerging and unconventional forms of exercise in people with diabetes. In addition, remote ischemic conditioning may be considered among the options to induce beneficial effects in these patients. The characteristics and interactions of diabetes and ischemic heart disease, and the known effects of exercise and remote ischemic conditioning in the presence of metabolic syndrome and diabetes, are analyzed in this brief review.
Collapse
|
20
|
PTEN inhibitor VO-OHpic attenuates GC-associated endothelial progenitor cell dysfunction and osteonecrosis of the femoral head via activating Nrf2 signaling and inhibiting mitochondrial apoptosis pathway. Stem Cell Res Ther 2020; 11:140. [PMID: 32228695 PMCID: PMC7106818 DOI: 10.1186/s13287-020-01658-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/23/2020] [Accepted: 03/19/2020] [Indexed: 01/03/2023] Open
Abstract
Background Glucocorticoid (GC)-associated osteonecrosis of the femoral head (ONFH) is the most common in non-traumatic ONFH. Despite a strong relationship between GC and ONFH, the detailed mechanisms have remained elusive. Recent studies have shown that GC could directly injure the blood vessels and reduce blood supply in the femoral head. Endothelial progenitor cells (EPCs), which were inhibited quantitatively and functionally during ONFH, play an important role in maintaining the normal structure and function of vascular endothelium. Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene that promotes cell apoptosis, and its expression was found to be elevated in GC-associated ONFH patients. However, whether direct inhibition of PTEN attenuates GC-associated apoptosis and dysfunction of the EPCs remains largely unknown. Methods We investigated the effect of, VO-OHpic, a potent inhibitor of PTEN, in attenuating GC-associated apoptosis and dysfunction of EPCs and the molecular mechanism. SD rats were used to study the effect of VO-OHpic on angiogenesis and osteonecrosis in vivo. Results The results revealed that methylprednisolone (MPS) obviously inhibit angiogenesis of EPCs by inducing apoptosis, destroying the normal mitochondrial structure, and disrupting function of mitochondria. VO-OHpic treatment is able to reverse the harmful effects by inhibiting the mitochondrial apoptosis pathway and activating the NF-E2-related factor 2 (Nrf2) signaling. Si-Nrf2 transfection significantly reduced the protective effects of VO-OHpic on EPCs. Our in vivo studies also showed that intraperitoneal injection of VO-OHpic obviously attenuates the osteonecrosis of the femoral head induced by MPS and potently increases the blood supply in the femoral head. Conclusion Taken together, the data suggests that inhibition of PTEN with VO-OHpic attenuates apoptosis and promotes angiogenesis of EPCs in vitro via activating Nrf2 signaling pathway and inhibiting the mitochondrial apoptosis pathway. Moreover, VO-OHpic also mitigates GC-associated ONFH and potentiates angiogenesis in the femoral head.
Collapse
|
21
|
Zhang X, Liu C, Li H, Guo L. Effects of miR-21 on proliferation and apoptosis of WT cells via PTEN/Akt pathway. Exp Ther Med 2020; 19:2155-2160. [PMID: 32104279 PMCID: PMC7027200 DOI: 10.3892/etm.2019.8376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/13/2019] [Indexed: 12/29/2022] Open
Abstract
Micro ribonucleic acid (miR)-21 in the proliferation and apoptosis of Wilms' tumor (WT) cells was explored. SK-NEP-1 cells were transfected with miR-21 inhibitor to silence the expression of miR-21. Then, the effects of miR-21 silencing on the proliferation and apoptosis of WT SK-NEP-1 cells were detected through cell counting kit-8 (CCK-8), colony formation assay and flow cytometry. The targets of miR-21 were analyzed via TargetScan database. Fluorescence real-time quantitative polymerase chain reaction (RT-qPCR) assay and western blot analysis were conducted to detect the changes in messenger RNA (mRNA) and protein expression levels of gene of phosphate and tension homology deleted on chromosome ten (PTEN) after silencing miR-21. Whether miR-21 directly binds to PTEN was examined by activity detection via dual luciferase reporter gene assay. Western blotting was employed to detect the correlation of miR-21 with PTEN and protein kinase B (Akt). Compared with normal control (NC) group, miR-21 inhibitor group had significantly inhibited proliferation of SK-NEP-1 cells (P<0.05), notably reduced number of clones (P<0.05) and overtly raised proportion of apoptotic cells (P<0.05). The suppression of miR-21 expression upregulated the mRNA and protein expression levels of PTEN, and the results of activity detection via dual luciferase reporter gene assay indicated that miR-21 bound to PTEN 3'-untranslated region (UTR) to repress its expression (P<0.05). PTEN silencing increased phosphorylated Akt (p-Akt) level in SK-NEP-1 cells, but there was no changes in Akt protein level. After silencing both PTEN and miR-21, the decrease in p-Akt was reversed, thereby reversing the inhibitory effect of miR-21 on the proliferation of SK-NEP-1 cells (P<0.05). miR-21 affects the proliferation and apoptosis of WT SK-NEP-1 cells via the PTEN/Akt pathway.
Collapse
Affiliation(s)
- Xiuli Zhang
- Pediatrics Intensive Care Unit, Shanxian Central Hospital, Heze, Shandong 274300, P.R. China
| | - Chunyan Liu
- Pediatrics Intensive Care Unit, Shanxian Central Hospital, Heze, Shandong 274300, P.R. China
| | - Haiyan Li
- Pediatrics Intensive Care Unit, Shanxian Central Hospital, Heze, Shandong 274300, P.R. China
| | - Li Guo
- Pediatrics Intensive Care Unit, Shanxian Central Hospital, Heze, Shandong 274300, P.R. China
| |
Collapse
|
22
|
The role of MicroRNAs on endoplasmic reticulum stress in myocardial ischemia and cardiac hypertrophy. Pharmacol Res 2019; 150:104516. [DOI: 10.1016/j.phrs.2019.104516] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
|
23
|
Caccioppo A, Franchin L, Grosso A, Angelini F, D'Ascenzo F, Brizzi MF. Ischemia Reperfusion Injury: Mechanisms of Damage/Protection and Novel Strategies for Cardiac Recovery/Regeneration. Int J Mol Sci 2019; 20:E5024. [PMID: 31614414 PMCID: PMC6834134 DOI: 10.3390/ijms20205024] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemic diseases in an aging population pose a heavy social encumbrance. Moreover, current therapeutic approaches, which aimed to prevent or minimize ischemia-induced damage, are associated with relevant costs for healthcare systems. Early reperfusion by primary percutaneous coronary intervention (PPCI) has undoubtedly improved patient's outcomes; however, the prevention of long-term complications is still an unmet need. To face these hurdles and improve patient's outcomes, novel pharmacological and interventional approaches, alone or in combination, reducing myocardium oxygen consumption or supplying blood flow via collateral vessels have been proposed. A number of clinical trials are ongoing to validate their efficacy on patient's outcomes. Alternative options, including stem cell-based therapies, have been evaluated to improve cardiac regeneration and prevent scar formation. However, due to the lack of long-term engraftment, more recently, great attention has been devoted to their paracrine mediators, including exosomes (Exo) and microvesicles (MV). Indeed, Exo and MV are both currently considered to be one of the most promising therapeutic strategies in regenerative medicine. As a matter of fact, MV and Exo that are released from stem cells of different origin have been evaluated for their healing properties in ischemia reperfusion (I/R) settings. Therefore, this review will first summarize mechanisms of cardiac damage and protection after I/R damage to track the paths through which more appropriate interventional and/or molecular-based targeted therapies should be addressed. Moreover, it will provide insights on novel non-invasive/invasive interventional strategies and on Exo-based therapies as a challenge for improving patient's long-term complications. Finally, approaches for improving Exo healing properties, and topics still unsolved to move towards Exo clinical application will be discussed.
Collapse
Affiliation(s)
- Andrea Caccioppo
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Luca Franchin
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Alberto Grosso
- Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Filippo Angelini
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy.
| | | |
Collapse
|
24
|
Yang X, Li X, Lin Q, Xu Q. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene 2019; 715:143995. [PMID: 31336140 DOI: 10.1016/j.gene.2019.143995] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Diabetic cardiomyopathy (DCM) refers to the myocardial dysfunction in the absence of coronary artery disease and hypertension. Recently, the role of microRNAs (miRs) in gene expression regulation has attracted much more attention. Studies have shown that the PI3K/Akt signaling pathway is involved in the growth, metabolism and apoptosis of myocardial cells. Therefore, this study aimed to explore the regulatory role of miR-203 in myocardial fibrosis in mice with DCM via involvement of the PI3K/Akt signaling pathway. Firstly, mouse model of diabetes mellitus (DM) was established and injected with agomir, antagomir or IGF-1 (PI3K/Akt signaling pathway activator) for investigating the role of miR-203 in PIK3CA and the PI3K/Akt signaling pathway. PIK3CA was identified as a target gene of miR-203, and overexpressed miR-203 inhibited the activation of PI3K/Akt signaling pathway. The obtained results indicated that up-regulation of miR-203 reduced myocardial hypertrophy, myocardial fibrosis, myocardial apoptosis, and levels of PIK3CA, PI3K, Akt, CoI I, CoI III, ANP, MDA and ROS in the myocardial tissues, by which DM-induced cardiac dysfunction and pathological changes could be ameliorated. Collectively, our present study highlighted that overexpression of miR-203 may function as a cardioprotective regulator in DCM by targeting PIK3CA via inactivation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xubin Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Xiaoshan Li
- Department of Ultrasonography, Guangzhou YueXiu District Hospital of Traditional Chinese Medicine, Guangzhou 510030, PR China
| | - Qiongyan Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Quanfu Xu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, PR China
| |
Collapse
|
25
|
Martínez PN, Menéndez ST, Villaronga MDLÁ, Ubelaker DH, García-Pedrero JM, C Zapico S. "The big sleep: Elucidating the sequence of events in the first hours of death to determine the postmortem interval". Sci Justice 2019; 59:418-424. [PMID: 31256813 DOI: 10.1016/j.scijus.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 12/20/2022]
Abstract
Recent developments on postmortem interval estimation (PMI) take an advantage of the autolysis process, pointing out to the analysis of the expression of apoptosis and autophagy genes towards this purpose. Oxidative stress plays a role in this signaling as a regulatory mechanism and/or as a consequence of cell death. Additionally, melatonin has been implicated on apoptosis and autophagy signaling, making melatonin a suitable target for PMI determination. The aim of this study was to investigate the early PMI through the analysis of the expression of autophagy genes as well as oxidative stress and melatonin receptor. Our results demonstrated a rapidly increased on the expression of autophagy genes according to the expected sequence of events, then a marked decrease in this expression, matched with the switch to the apoptosis signaling. These results revealed potential candidates to analyze the PMI in the first hours of death, helping to estimate the time-since-death.
Collapse
Affiliation(s)
- Paula Núñez Martínez
- Departamento de Biología Funcional (Área de Fisiología), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Spain
| | - Sofía T Menéndez
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - María de Los Ángeles Villaronga
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Douglas H Ubelaker
- Anthropology Department, NMNH, Smithsonian Institution, MRC 112, Washington, DC, USA
| | - Juana M García-Pedrero
- Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain; CIBER de Cáncer (CIBERONC), Madrid, Spain
| | - Sara C Zapico
- Anthropology Department, NMNH, Smithsonian Institution, MRC 112, Washington, DC, USA; Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
26
|
Nariman-saleh-fam Z, Vahed SZ, Aghaee-Bakhtiari SH, Daraei A, Saadatian Z, Kafil HS, Yousefi B, Eyvazi S, Khaheshi I, Parsa SA, Moravej A, Mousavi N, Bastami M, Mansoori Y. Expression pattern of miR-21, miR-25 and PTEN in peripheral blood mononuclear cells of patients with significant or insignificant coronary stenosis. Gene 2019; 698:170-178. [DOI: 10.1016/j.gene.2019.02.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/10/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
|
27
|
Byun J, Del Re DP, Zhai P, Ikeda S, Shirakabe A, Mizushima W, Miyamoto S, Brown JH, Sadoshima J. Yes-associated protein (YAP) mediates adaptive cardiac hypertrophy in response to pressure overload. J Biol Chem 2019; 294:3603-3617. [PMID: 30635403 DOI: 10.1074/jbc.ra118.006123] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/27/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death globally, and heart failure is a major component of CVD-related morbidity and mortality. The development of cardiac hypertrophy in response to hemodynamic overload is initially considered to be beneficial; however, this adaptive response is limited and, in the presence of prolonged stress, will transition to heart failure. Yes-associated protein (YAP), the central downstream effector of the Hippo signaling pathway, regulates proliferation and survival in mammalian cells. Our previous work demonstrated that cardiac-specific loss of YAP leads to increased cardiomyocyte (CM) apoptosis and impaired CM hypertrophy during chronic myocardial infarction (MI) in the mouse heart. Because of its documented cardioprotective effects, we sought to determine the importance of YAP in response to acute pressure overload (PO). Our results indicate that endogenous YAP is activated in the heart during acute PO. YAP activation that depended upon RhoA was also observed in CMs subjected to cyclic stretch. To examine the function of endogenous YAP during acute PO, Yap +/ flox;Cre α-MHC (YAP-CHKO) and Yap +/ flox mice were subjected to transverse aortic constriction (TAC). We found that YAP-CHKO mice had attenuated cardiac hypertrophy and significant increases in CM apoptosis and fibrosis that correlated with worsened cardiac function after 1 week of TAC. Loss of CM YAP also impaired activation of the cardioprotective kinase Akt, which may underlie the YAP-CHKO phenotype. Together, these data indicate a prohypertrophic, prosurvival function of endogenous YAP and suggest a critical role for CM YAP in the adaptive response to acute PO.
Collapse
Affiliation(s)
- Jaemin Byun
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Dominic P Del Re
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Peiyong Zhai
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Shohei Ikeda
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Akihiro Shirakabe
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Wataru Mizushima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Shigeki Miyamoto
- the Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Joan H Brown
- the Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| |
Collapse
|
28
|
Johnson TA, Singla DK. PTEN inhibitor VO-OHpic attenuates inflammatory M1 macrophages and cardiac remodeling in doxorubicin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 2018; 315:H1236-H1249. [PMID: 30095997 PMCID: PMC6297808 DOI: 10.1152/ajpheart.00121.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Doxorubicin (Doxo) is an effective agent commonly used in cancer therapeutics. Unfortunately, Doxo treatment can stimulate cardiomyopathy and subsequent heart failure, limiting the use of this drug. The role of phosphatase and tensin homolog (PTEN) in apoptosis has been documented in Doxo-induced cardiomyopathy (DIC) and heart failure models. However, whether direct inhibition of PTEN attenuates apoptosis, cardiac remodeling, and inflammatory M1 macrophages in the DIC model remains elusive. Therefore, the present study was designed to understand the effects of VO-OHpic (VO), a potent inhibitor of PTEN, in reducing apoptosis and cardiac remodeling. At day 56, echocardiography was performed, which showed that VO treatment significantly ( P < 0.05) improved heart function. Immunohistochemistry, TUNEL, and histological staining were used to determine apoptosis, proinflammatory M1 macrophages, anti-inflammatory M2 macrophages, and cardiac remodeling. Our data show a significant increase in apoptosis, hypertrophy, fibrosis, and proinflammatory M1 macrophages with Doxo treatment, whereas VO treatment significantly reduced apoptosis, adverse cardiac remodeling, and proinflammatory M1 macrophages significantly ( P < 0.05) compared with the Doxo-treated group. Western blot analysis confirmed the reduction of phosphorylated PTEN and increase in phosphorylated AKT protein expression in the Doxo + VO-treated group. Moreover, VO administration increased anti-inflammatory M2 macrophages. Collectively, our data suggest that VO treatment attenuates apoptosis and adverse cardiac remodeling, a process that is mediated through the PTEN/AKT pathway, resulting in improved heart function in DIC. NEW & NOTEWORTHY Doxorubicin-induced cardiomyopathy (DIC) is still a major issue in patients with cancer. These novel findings on the phosphatase and tensin homolog inhibitor VO-OHpic in DIC is the first report, as per the best of our knowledge, that VO-OHpic significantly decreases apoptosis, fibrosis, hypertrophy, adverse cardiac remodeling, and proinflammatory M1 macrophages and increases anti-inflammatory M2 macrophages along with significantly improved cardiac function. VO-OHpic could be a future therapeutic agent for patients with DIC.
Collapse
Affiliation(s)
- Taylor A Johnson
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida
| |
Collapse
|
29
|
Cheng Y, Sun T, Yin C, Wang S, Li Z, Tao Y, Zhang J, Li Z, Zhang H. Downregulation of PTEN by sodium orthovanadate protects the myocardium against ischemia/reperfusion injury after chronic atorvastatin treatment. J Cell Biochem 2018; 120:3709-3715. [PMID: 30368869 DOI: 10.1002/jcb.27651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
Acute statin treatment has been reported to be critical in protecting the cardiac cells against ischemia/reperfusion injury by activating PI3K/Akt signal pathway. In vitro rat myocardial ischemia/reperfusion model, chronic statin treatment led to upregulation of phosphatase and tensin homolog (PTEN). This has been potentially indicated the correlation in PTEN and protective effect of statin on myocardium. In this current study, we evaluated the role of sodium orthovanadate a nonspecific inhibitor to PTEN and its correlation with atorvastatin on protecting myocardium against ischemia/reperfusion injury. We found a long-term statin treatment could increase the PTEN level, and this process was counteracted in the presence of sodium orthovanadate. However, the phosphotyrosine level was not affected by this statin. Besides, this process was mediated by Akt signaling since phosphorylated Akt level was altered by statin and sodium orthovanadate treatment. In a conclusion, this study showed a potential mechanism underlying PTEN-induced attenuation in long-term statin's therapeutic effect, which provided the new insight into the synergic role of PTEN and atorvastatin in protecting cardiac cells against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yutong Cheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tao Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengqian Yin
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Su Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhao Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ying Tao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jingmei Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhizhong Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongju Zhang
- Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
30
|
Emerging Role of mTOR Signaling-Related miRNAs in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6141902. [PMID: 30305865 PMCID: PMC6165581 DOI: 10.1155/2018/6141902] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Mechanistic/mammalian target of rapamycin (mTOR), an atypical serine/threonine kinase of the phosphoinositide 3-kinase- (PI3K-) related kinase family, elicits a vital role in diverse cellular processes, including cellular growth, proliferation, survival, protein synthesis, autophagy, and metabolism. In the cardiovascular system, the mTOR signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of both physiological and pathological processes. MicroRNAs (miRs), a class of short noncoding RNA, are an emerging intricate posttranscriptional modulator of critical gene expression for the development and maintenance of homeostasis across a wide array of tissues, including the cardiovascular system. Over the last decade, numerous studies have revealed an interplay between miRNAs and the mTOR signaling circuit in the different cardiovascular pathophysiology, like myocardial infarction, hypertrophy, fibrosis, heart failure, arrhythmia, inflammation, and atherosclerosis. In this review, we provide a comprehensive state of the current knowledge regarding the mechanisms of interactions between the mTOR signaling pathway and miRs. We have also highlighted the latest advances on mTOR-targeted therapy in clinical trials and the new perspective therapeutic strategies with mTOR-targeting miRs in cardiovascular diseases.
Collapse
|
31
|
Das A, Samidurai A, Salloum FN. Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Front Cardiovasc Med 2018; 5:73. [PMID: 30013975 PMCID: PMC6036139 DOI: 10.3389/fcvm.2018.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun Samidurai
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
32
|
|
33
|
Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 2018; 117:76-89. [PMID: 29373843 DOI: 10.1016/j.freeradbiomed.2018.01.024] [Citation(s) in RCA: 577] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 02/06/2023]
Abstract
Ischemia-reperfusion (IR) injury is central to the pathology of major cardiovascular diseases, such as stroke and myocardial infarction. IR injury is mediated by several factors including the elevated production of reactive oxygen species (ROS), which occurs particularly at reperfusion. The mitochondrial respiratory chain and NADPH oxidases of the NOX family are major sources of ROS in cardiomyocytes. The first part of this review discusses recent findings and controversies on the mechanisms of superoxide production by the mitochondrial electron transport chain during IR injury, as well as the contribution of the NOX isoforms expressed in cardiomyocytes, NOX1, NOX2 and NOX4, to this damage. It then focuses on the effects of ROS on the opening of the mitochondrial permeability transition pore (mPTP), an inner membrane non-selective pore that causes irreversible damage to the heart. The second part analyzes the redox mechanisms of cardiomyocyte mitochondrial protection; specifically, the activation of the hypoxia-inducible factor (HIF) pathway and the antioxidant transcription factor Nrf2, which are both regulated by the cellular redox state. Redox mechanisms involved in ischemic preconditioning, one of the most effective ways of protecting the heart against IR injury, are also reviewed. Interestingly, several of these protective pathways converge on the inhibition of mPTP opening during reperfusion. Finally, the clinical and translational implications of these cardioprotective mechanisms are discussed.
Collapse
Affiliation(s)
- Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain.
| |
Collapse
|
34
|
Shi B, Wang Y, Zhao R, Long X, Deng W, Wang Z. Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLoS One 2018; 13:e0191616. [PMID: 29444190 PMCID: PMC5812567 DOI: 10.1371/journal.pone.0191616] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
Stem cell (SC) therapy for ischemic cardiomyopathy is hampered by poor survival of the implanted cells. Recently, SC-derived exosomes have been shown to facilitate cell proliferation and survival by transporting various proteins and non-coding RNAs (such as microRNAs and lncRNAs). In this study, miR-21 was highly enriched in exosomes derived from bone marrow mesenchymal stem cells (MSCs). Interestingly, exosomes collected from hydrogen peroxide (H2O2)-treated MSCs (H-Exo) contained higher levels of miR-21 than exosomes released from MSCs under normal conditions (N-Exo). The pre-treatment of C-kit+ cardiac stem cells (CSCs) with H-Exos resulted in significantly increased levels of miR-21 and phosphor-Akt (pAkt) and decreased levels of PTEN, which is a known target of miR-21. AnnexinV-FITC/PI analysis further demonstrated that the degree of oxidative stress-induced apoptosis was markedly lower in H-Exo-treated C-kit+ CSCs than that in N-Exo-treated cells. These protective effects could be blocked by both a miR-21 inhibitor and the PI3K/Akt inhibitor LY294002. Therefore, exosomal miR-21 derived from H2O2-treated MSCs could be transported to C-kit+ cardiac stem cells to functionally inhibit PTEN expression, thereby activating PI3K/AKT signaling and leading to protection against oxidative stress-triggered cell death. Thus, exosomes derived from MSCs could be used as a new therapeutic vehicle to facilitate C-kit+ CSC therapies in the ischemic myocardium.
Collapse
Affiliation(s)
- Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, China
- * E-mail:
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Ranzhun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Wenwen Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Zhenglong Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| |
Collapse
|
35
|
Rossello X, Riquelme JA, Davidson SM, Yellon DM. Role of PI3K in myocardial ischaemic preconditioning: mapping pro-survival cascades at the trigger phase and at reperfusion. J Cell Mol Med 2018; 22:926-935. [PMID: 29159980 PMCID: PMC5783840 DOI: 10.1111/jcmm.13394] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/21/2017] [Indexed: 01/16/2023] Open
Abstract
The Reperfusion Injury Salvage Kinase (RISK) pathway is considered the main pro-survival kinase cascade mediating the ischaemic preconditioning (IPC) cardioprotective effect. To assess the role of PI3K-Akt, its negative regulator PTEN and other pro-survival proteins such as ERK and STAT3 in the context of IPC, C57BL/6 mouse hearts were retrogradely perfused in a Langendorff system and subjected to 4 cycles of 5 min. ischaemia and 5 min. reperfusion prior to 35 min. of global ischaemia and 120 min. of reperfusion. Wortmannin, a PI3K inhibitor, was administered either at the stabilization period or during reperfusion. Infarct size was assessed using triphenyl tetrazolium staining, and phosphorylation levels of Akt, PTEN, ERK, GSK3β and STAT3 were evaluated using Western blot analyses. IPC reduced infarct size in hearts subjected to lethal ischaemia and reperfusion, but this effect was lost in the presence of Wortmannin, whether it was present only during preconditioning or only during early reperfusion. IPC increased the levels of Akt phosphorylation during both phases and this effect was fully abrogated by PI3K, whilst its downstream GSK3β was phosphorylated only during the trigger phase after IPC. Both PTEN and STAT3 were phosphorylated during both phases after IPC, but this was PI3K independent. IPC increases ERK phosphorylation during both phases, being only PI3K-dependent during the IPC phase. In conclusion, PI3K-Akt plays a major role in IPC-induced cardioprotection. However, PTEN, ERK and STAT3 are also phosphorylated by IPC through a PI3K-independent pathway, suggesting that cardioprotection is mediated through more than one cell signalling cascade.
Collapse
Affiliation(s)
- Xavier Rossello
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
| | - Jaime A Riquelme
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Advanced Center for Chronic Diseases (ACCDiS)Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Sean M Davidson
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
| | - Derek M Yellon
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
| |
Collapse
|
36
|
Pulido R. PTEN Inhibition in Human Disease Therapy. Molecules 2018; 23:molecules23020285. [PMID: 29385737 PMCID: PMC6017825 DOI: 10.3390/molecules23020285] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor PTEN is a major homeostatic regulator, by virtue of its lipid phosphatase activity against phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], which downregulates the PI3K/AKT/mTOR prosurvival signaling, as well as by its protein phosphatase activity towards specific protein targets. PTEN catalytic activity is crucial to control cell growth under physiologic and pathologic situations, and it impacts not only in preventing tumor cell survival and proliferation, but also in restraining several cellular regeneration processes, such as those associated with nerve injury recovery, cardiac ischemia, or wound healing. In these conditions, inhibition of PTEN catalysis is being explored as a potentially beneficial therapeutic intervention. Here, an overview of human diseases and conditions in which PTEN inhibition could be beneficial is presented, together with an update on the current status of specific small molecule inhibitors of PTEN enzymatic activity, their use in experimental models, and their limitations as research or therapeutic drugs.
Collapse
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
37
|
Ke ZP, Xu P, Shi Y, Gao AM. MicroRNA-93 inhibits ischemia-reperfusion induced cardiomyocyte apoptosis by targeting PTEN. Oncotarget 2018; 7:28796-805. [PMID: 27119510 PMCID: PMC5045357 DOI: 10.18632/oncotarget.8941] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/04/2016] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs have been implicated in some biological and pathological processes, including the myocardial ischemia/reperfusion (I/R) injury. Recent findings demonstrated that miR-93 might provide a potential cardioprotective effect on ischemic heart disease. This study was to investigate the role of miR-93 in I/R-induced cardiomyocyte injury and the potential mechanism. In this study, we found that hypoxia/reoxygenation (H/R) dramatically increased LDH release, MDA contents, ROS generation, and endoplasmic reticulum stress (ERS)-mediated cardiomyocyte apoptosis, which were attenuated by co-transfection with miR-93 mimic. Phosphatase and tensin homolog (PTEN) was identified as the target gene of miR-93. Furthermore, miR-93 mimic significantly increased p-Akt levels under H/R, which was partially released by LY294002. In addtion, Ad-miR-93 also attenuated myocardial I/R injury in vivo, manifested by reduced LDH and CK levels, infarct area and cell apoptosis. Taken together, our findings indicates that miR-93 could protect against I/R-induced cardiomyocyte apoptosis by inhibiting PI3K/AKT/PTEN signaling.
Collapse
Affiliation(s)
- Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Peng Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yan Shi
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, China
| | - Ai-Mei Gao
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Sun G, Lu Y, Li Y, Mao J, Zhang J, Jin Y, Li Y, Sun Y, Liu L, Li L. miR-19a protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis via PTEN/PI3K/p-Akt pathway. Biosci Rep 2017; 37:BSR20170899. [PMID: 29054970 PMCID: PMC5715126 DOI: 10.1042/bsr20170899] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/10/2017] [Accepted: 10/18/2017] [Indexed: 12/24/2022] Open
Abstract
miRNAs have been implicated in processing of cardiac hypoxia/reoxygenation (H/R)-induced injury. Recent studies demonstrated that miR-19a might provide a potential cardioprotective effect on myocardial disease. However, the effect of miR-19a in regulating myocardial ischemic injury has not been previously addressed. The present study was to investigate the effect of miR-19a on myocardial ischemic injury and identified the potential molecular mechanisms involved. Using the H/R model of rat cardiomyocytes H9C2 in vitro, we found that miR-19a was in low expression in H9C2 cells after H/R treatment and H/R dramatically decreased cardiomyocyte viability, and increased lactate dehydrogenase (LDH) release and cardiomyocyte apoptosis, which were attenuated by co-transfection with miR-19a mimic. Dual-luciferase reporter assay and Western blotting assay revealed that PTEN was a direct target gene of miR-19a, and miR-19a suppressed the expression of PTEN via binding to its 3'-UTR. We further identified that overexpression of miR-19a inhibited the expression of PTEN at the mRNA and protein levels. Moreover, PTEN was highly expressed in H/R H9C2 cells and the apoptosis induced by H/R was associated with the increase in PTEN expression. Importantly, miR-19a mimic significantly increased p-Akt levels under H/R. In conclusion, our findings indicate that miR-19a could protect against H/R-induced cardiomyocyte apoptosis by inhibiting PTEN /PI3K/p-Akt signaling pathway.
Collapse
Affiliation(s)
- Guochao Sun
- Deparment of Pathology and Forensics, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Ying Lu
- Teaching Laboratory of Morphology, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Yingxia Li
- Department of Spine Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jun Mao
- Deparment of Pathology and Forensics, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Jun Zhang
- Teaching Affairs Department, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Yanling Jin
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Li
- Department of Anatomy, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Yan Sun
- Deparment of Pathology and Forensics, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Lei Liu
- Deparment of Pathology and Forensics, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| | - Lianhong Li
- Deparment of Pathology and Forensics, Dalian Medical University, No.9 West Section, Lvshun Road, Dalian 116044, China
| |
Collapse
|
39
|
Ren ZH, Ke ZP, Luo M, Shi Y. Icariin protects against ischemia‑reperfusion injury in H9C2 cells by upregulating heat shock protein 20. Mol Med Rep 2017; 17:3336-3343. [PMID: 29257284 DOI: 10.3892/mmr.2017.8251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/30/2017] [Indexed: 11/06/2022] Open
Abstract
Icariin (ICA) has been implicated in certain biological and pathological processes, including myocardial ischemia/reperfusion (I/R) injury. The aim of the present study was to investigate the role of ICA in I/R‑induced cardiomyocyte injury and the potential underlying mechanism. Cell proliferation and apoptosis of H9C2 cells was determined by cell counting kit‑8 and flow cytometry assays. In addition, reactive oxygen species (ROS) production in H9C2 cells was measured by flow cytometry. Reverse transcription‑quantitative polymerase chain reaction and western blot assay were performed to examine the expression levels of proteins, including HSP20, B‑cell lymphoma 2 (Bcl‑2), cytochrome complex (Cyt‑c), apoptotic protease activating factor 1 (APAF1), caspase‑9 andcaspase‑3, and the phosphorylation of Akt (p‑Akt) in H9C2 cells. The present results demonstrated that, compared with the control group, the I/R group demonstrated significantly reduced levels of HSP20 expression and cell proliferation, and increased apoptosis and ROS production in H9C2 cells. In parallel, the expression levels of Cyt‑c, APAF1, caspase‑9 and caspase‑3 were significantly increased in the I/R group, although Bcl‑2 and p‑Akt/Akt expression levels were decreased. Furthermore, compared with the I/R group, ICA treatment and/or HSP20 overexpression significantly improved cardiac function, as evidenced by promoted cell proliferation and inhibited apoptosis of H9C2 cells. The current study indicates that ICA exerts a cardioprotective effect against I/R injury, which is associated with the upregulation of HSP20.
Collapse
Affiliation(s)
- Zhi-Hong Ren
- Department of Pediatrics, The Central Hospital of Huanggang, Huanggang, Hubei 438000, P.R. China
| | - Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Man Luo
- Department of Emergency, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yan Shi
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223302, P.R. China
| |
Collapse
|
40
|
Shi B, Deng W, Long X, Zhao R, Wang Y, Chen W, Xu G, Sheng J, Wang D, Cao S. miR-21 increases c-kit + cardiac stem cell proliferation in vitro through PTEN/PI3K/Akt signaling. PeerJ 2017; 5:e2859. [PMID: 28168101 PMCID: PMC5289448 DOI: 10.7717/peerj.2859] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/03/2016] [Indexed: 01/04/2023] Open
Abstract
The low survival rate of cardiac stem cells (CSCs) in the ischemic myocardium is one of the obstacles in ischemic cardiomyopathy cell therapy. The MicroRNA (miR)-21 and one of its target protein, the tensin homolog deleted on chromosome ten (PTEN), contributes to the proliferation of many kinds of tissues and cell types. It is reported that miR-21 promotes proliferation through PTEN/PI3K/Akt pathway, but its effects on c-kit+ CSC remain unclear. The authors hypothesized that miR-21 promotes the proliferation in c-kit + CSC, and evaluated the involvement of PTEN/PI3K/Akt pathway in vitro. miR-21 up-regulation with miR-21 efficiently mimics accelerated cell viability and proliferation in c-kit + CSC, which was evidenced by the CCK-8, EdU and cell cycle analyses. In addition, the over-expression of miR-21 in c-kit + CSCs notably down-regulated the protein expression of PTEN although the mRNA level of PTEN showed little change. Gain-of-function of miR-21 also increased the phosphor-Akt (p-Akt) level. Phen, the selective inhibitor of PTEN, reproduced the pro-proliferation effects of miR-21, while PI3K inhibitor, LY294002, totally attenuated the pro-survival effect of miR-21. These results indicate that miR-21 is efficient in promoting proliferation in c-kit+ CSCs, which is contributed by the PTEN/PI3K/Akt pathway. miR-21 holds the potential to facilitate CSC therapy in ischemic myocardium.
Collapse
Affiliation(s)
- Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Wenwen Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Wenming Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Guanxue Xu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Jin Sheng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Dongmei Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Song Cao
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| |
Collapse
|
41
|
Makhdoumi P, Roohbakhsh A, Karimi G. MicroRNAs regulate mitochondrial apoptotic pathway in myocardial ischemia-reperfusion-injury. Biomed Pharmacother 2016; 84:1635-1644. [DOI: 10.1016/j.biopha.2016.10.073] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022] Open
|
42
|
miR-21 Reduces Hydrogen Peroxide-Induced Apoptosis in c-kit + Cardiac Stem Cells In Vitro through PTEN/PI3K/Akt Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5389181. [PMID: 27803763 PMCID: PMC5075640 DOI: 10.1155/2016/5389181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
Abstract
The low survival rate of cardiac stem cells (CSCs) in the infarcted myocardium hampers cell therapy for ischemic cardiomyopathy. MicroRNA-21 (miR-21) and one of its target proteins, PTEN, contribute to the survival and proliferation of many cell types, but their prosurvival effects in c-kit+ CSC remain unclear. Thus, we hypothesized that miR-21 reduces hydrogen peroxide- (H2O2-) induced apoptosis in c-kit+ CSC and estimated the contribution of PTEN/PI3K/Akt signaling to this oxidative circumstance. miR-21 mimics efficiently reduced H2O2-induced apoptosis in c-kit+ CSC, as evidenced by the downregulation of the proapoptosis proteins caspase-3 and Bax and upregulation of the antiapoptotic Bcl-2. In addition, the gain of function of miR-21 in c-kit+ CSC downregulated the protein level of PTEN although its mRNA level changed slightly; in the meantime, miR-21 overexpression also increased phospho-Akt (p-Akt). The antiapoptotic effects of miR-21 were comparable with Phen (bpV), the selective inhibitor of PTEN, while miR-21 inhibitor or PI3K's inhibitor LY294002 efficiently attenuated the antiapoptotic effect of miR-21. Taken together, these results indicate that the anti-H2O2-induced apoptosis effect of miR-21 in c-kit+ CSC is contributed by PTEN/PI3K/Akt signaling. miR-21 could be a potential molecule to facilitate the c-kit+ CSC therapy in ischemic myocardium.
Collapse
|
43
|
Remote ischemic postconditioning protects against renal ischemia/reperfusion injury by activation of T-LAK-cell-originated protein kinase (TOPK)/PTEN/Akt signaling pathway mediated anti-oxidation and anti-inflammation. Int Immunopharmacol 2016; 38:395-401. [PMID: 27355132 DOI: 10.1016/j.intimp.2016.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Recent clinical and animal studies suggested that remote limb ischemic postconditioning (RIPostC) can invoke potent cardioprotection or neuroprotection. However, the effect and mechanism of RIPostC against renal ischemia/reperfusion injury (IRI) are poorly understood. T-LAK-cell-originated protein kinase (TOPK) is crucial for the proliferation and migration of tumor cells. However, the function of TOPK and the molecular mechanism underlying renal protection remain unknown. Therefore, this study aimed to evaluate the role of TOPK in renoprotection induced by RIPostC. MATERIALS AND METHODS The renal IRI model was induced by left renal pedicle clamping for 45min followed by 24h reperfusion and right nephrectomy. All mice were intraperitoneally injected with vehicle, TOPK inhibitor HI-TOPK-032 or Akt inhibitor LY294002. After 24h reperfusion, renal histology, function, and inflammatory cytokines and oxidative stress were assessed. The proteins were measured by Western blotting. RESULTS The results showed that RIPostC significantly protected the kidneys against IRI. The protective effects were accompanied by the attenuation of renal dysfunction, tubular damage, inflammation and oxidative stress. In addition, RIPostC increased the phosphorylation of TOPK, PTEN, Akt, GSK3β and the nuclear translocation of Nrf2 and decreased the nuclear translocation of NF-κB. However, all of the above renoprotective effects of RIPostC were eliminated either by the inhibition of TOPK or Akt with HI-TOPK-032 or LY294002. CONCLUSIONS The current data reveal that RIPostC protects against renal IRI via activation of TOPK/PTEN/Akt signaling pathway mediated anti-oxidation and anti-inflammation.
Collapse
|
44
|
Liu Y, Chen X, Qiang S, Lin Q, He F, Dong X, Xiao Z. Effects of EGF on apoptosis of adipose derived stem cells by regulating miRNA-21. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.wndm.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Lejay A, Fang F, John R, Van JA, Barr M, Thaveau F, Chakfe N, Geny B, Scholey JW. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol 2016; 91:11-22. [DOI: 10.1016/j.yjmcc.2015.12.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/15/2015] [Accepted: 12/20/2015] [Indexed: 01/08/2023]
|
46
|
Zhou J, Du T, Li B, Rong Y, Verkhratsky A, Peng L. Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion. ASN Neuro 2015; 7:7/5/1759091415602463. [PMID: 26442853 PMCID: PMC4601130 DOI: 10.1177/1759091415602463] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species-dependent increase in phosphatase and tensin homolog activity in reperfusion period relieves ERK1/2 from inhibition of AKT.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Ting Du
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Yan Rong
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain University of Nizhny Novgorod, Russia
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| |
Collapse
|
47
|
Martin-Puig S, Tello D, Aragonés J. Novel perspectives on the PHD-HIF oxygen sensing pathway in cardioprotection mediated by IPC and RIPC. Front Physiol 2015; 6:137. [PMID: 26042040 PMCID: PMC4438228 DOI: 10.3389/fphys.2015.00137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/17/2015] [Indexed: 12/31/2022] Open
Abstract
Reperfusion of ischemic cardiac tissue is the standard treatment for improving clinical outcome following myocardial infarction but is inevitably associated with ischemia-reperfusion injury (IRI). Ischemic myocardial injury can be alleviated by exposing the heart to brief episodes of sublethal ischemia-reperfusion prior to the ischemic insult, a phenomenon that has been termed ischemic preconditioning (IPC). Similarly, remote IPC (RIPC) is defined as transient episodes of ischemia at a distant site before a subsequent prolonged injury of the target organ. In this setting, adaptive responses to hypoxia/ischemia in peripheral tissues include the release of soluble factors that have the potential to protect cardiomyocytes remotely. Oxygen fluctuations is a hallmark of insufficient tissue perfusion and ischemic episodes. Emerging evidence indicates that prolyl hydroxylase oxygen sensors (PHDs) and hypoxia-inducible transcription factors (HIFs) are critical regulators of IPC and RIPC. In this review, we discuss recent findings concerning the role of the PHD-HIF axis in IPC and RIPC-mediated cardioprotection and examine molecular pathways and cell types that might be involved. We also appraise the therapeutic value of targeting the PHD-HIF axis to enhance cardiac tolerance against IRI.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Cell and Developmental Biology Department, Centro Nacional de Investigaciones Cardiovasculares Madrid, Spain
| | - Daniel Tello
- Research Unit, Hospital Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid Madrid, Spain
| | - Julián Aragonés
- Research Unit, Hospital Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid Madrid, Spain
| |
Collapse
|
48
|
Jing L, Jin C, Lu Y, Huo P, Zhou L, Wang Y, Tian Y. Investigation of microRNA expression profiles associated with human alcoholic cardiomyopathy. Cardiology 2015; 130:223-33. [PMID: 25791397 DOI: 10.1159/000370028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/20/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVES We aimed to investigate the differentially expressed microRNAs (miRNAs) and their target genes in human alcoholic cardiomyopathy (ACM). METHODS The expression levels of plasma miRNAs of 78 male ACM patients and 78 healthy men were detected by using the 6th-generation miRCURY™ LNA array (v.16.0). The prediction analysis for microarrays (PAM) method was used to identify the differentially expressed miRNAs. Target genes of the identified differentially expressed miRNAs were predicted using TargetScan 5.2 and Miranda. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to perform functional annotation and pathway enrichment analysis of target genes respectively, followed by real-time RT-PCR analysis to validate the expression changes of miRNAs. RESULTS Twenty-one differentially expressed miRNAs were identified. Nine differentially expressed miRNAs (hsa-miR-506, hsa-miR-1285, hsa-miR-512-3P, hsa-miR-138, hsa-miR-485-5P, hsa-miR-4262, hsa-miR-548c-3P, has-miR-548a-5P and kshv-miR-K12-1), involved in multiple functions and pathways, were selected for real-time RT-PCR confirmation. Moreover, two significantly important subpathways (neurotrophin signaling pathway and inositol phosphate metabolism) were predicted. CONCLUSION The screened differentially expressed miRNAs may be involved in the development of ACM. Specific miRNAs, such as miR-138, may be considered as a new target for the early diagnosis and treatment of human ACM.
Collapse
Affiliation(s)
- Ling Jing
- Department of Cardiology, First Clinical College of Harbin Medical University, Harbin, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Protective Effects of Berberine on Isoproterenol-Induced Acute Myocardial Ischemia in Rats through Regulating HMGB1-TLR4 Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:849783. [PMID: 25477998 PMCID: PMC4247925 DOI: 10.1155/2014/849783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/19/2014] [Accepted: 10/25/2014] [Indexed: 12/21/2022]
Abstract
Berberine, an isoquinoline alkaloid originally isolated from the Chinese herb Coptis chinensis (Huanglian), has been shown to display a wide array of pharmacological activities. The present study was to investigate the effects of berberine against myocardial ischemia produced in rats by isoproterenol. 50 male Sprague-Dawley rats were randomized equally into five groups: a control group, an untreated model group, berberine (30, 60 mg/kg) treatment, or propranolol (30 mg/kg). Rats were treated for 12 days and then given isoproterenol, 85 mg/kg for 2 consecutive days by subcutaneous injection. ST-segment elevation was measured after the last administration. Serum levels of creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were measured after the rats were sacrificed. The hearts were excised for determining heart weight index, microscopic examination, high mobility group box 1 (HMGB1), toll-like receptor (TLR4), prodeath protein (Bax), antideath protein (Bcl-2), and tumor necrosis factor (TNF-α) protein were determined by western blot. Berberine decreased the ST elevation induced by acute myocardial ischemia, and decreased serum levels of CK-MB, LDH, TNF-α, and IL-6. Berberine increased total superoxide dismutase (T-SOD) activity and decreased malondialdehyde (MDA) content in myocardial tissue. Berberine can regulate HMGB1-TLR4 axis to protect myocardial ischemia.
Collapse
|
50
|
Tetievsky A, Assayag M, Ben-Hamo R, Efroni S, Cohen G, Abbas A, Horowitz M. Heat acclimation memory: do the kinetics of the deacclimated transcriptome predispose to rapid reacclimation and cytoprotection? J Appl Physiol (1985) 2014; 117:1262-77. [PMID: 25237184 DOI: 10.1152/japplphysiol.00422.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Faster reinduction of heat acclimation (AC) after its decline indicates "AC memory." Our previous results revealed involvement of epigenetic mechanisms of transcriptional regulation. We hypothesized that the decline of AC (DeAC) is a period of "dormant memory" during which many processes are alerted to enable rapid reacclimation (ReAC). Using a genomewide approach we studied the AC, DeAC, and ReAC transcriptomes, to uncover hallmark pathways linked to "molecular memory" in the cardioacclimatome. Fifty rats subjected to heat acclimation [34°C for 2d (AC2d) or 30d (AC30)], DeAC (24°C, 30 days), ReAC (34°C, 2 days), and untreated controls were used. The GeneChip Rat Gene 1.0 ST Array was employed for left ventricular (cardiac) mRNA hybridization. Three independent bioinformatic analyses showed that 1) during AC2d enrichment of DNA impair/repair-linked genes is seen, and this is the molecular on-switch of acclimation; 2) genes activated in AC30 underlie the qualitative physiological adaptations of cardiac performance; 3) particular molecular programs encompassing constitutive upregulation of p38 MAPK, Jak/Stat, and Akt pathways and targets are specifically activated during DeAC and ReAC; and 4) epigenetic markers such as linker histones (histones H1 cluster), associated with nucleosome spacing, transcriptional chromatin modifiers, poly-(ADP-ribose) polymerase-1 (PARP1) linked to chromatin compaction, and microRNAs are only altered during DeAC/ReAC. The latter are newcomers to the AC/DeAC puzzle. We suggest that these transcriptional responses maintain euchromatin and proteostasis and enable faster physiological recovery upon ReAC by rapidly reestablishing the protected acclimated cardiophenotype. We propose that the cardiac AC model can be applied to acclimation processes in general.
Collapse
Affiliation(s)
- Anna Tetievsky
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University, Jerusalem, Israel; and
| | - Miri Assayag
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University, Jerusalem, Israel; and
| | - Rotem Ben-Hamo
- The Mina and Everard Goodman Faculty of Life Science Bar Ilan University, Ramat Gan, Israel
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Science Bar Ilan University, Ramat Gan, Israel
| | - Gal Cohen
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University, Jerusalem, Israel; and
| | - Atallah Abbas
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University, Jerusalem, Israel; and
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University, Jerusalem, Israel; and
| |
Collapse
|