1
|
Joshi A, Chen S, Rahman FM, Nair S, Cheng X, Govindarajan R. Bile acids inhibit equilibrative adenosine transport to alter adenosine receptor signaling in cholestasis. J Biol Chem 2025; 301:108563. [PMID: 40316019 DOI: 10.1016/j.jbc.2025.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025] Open
Abstract
High plasma bile acid (BA) levels in individuals with cholestasis affect adenosine (Ado) receptor (AdoR) signaling, but the underlying mechanisms are unclear. Here, we investigated BA interference with cellular Ado transport as a putative mechanism for altering extracellular Ado availability for AdoR signaling. Computational modeling and experimental studies revealed that equilibrative nucleoside transporter 2 (ENT2), but not ENT1, is capable of translocating BAs across the mammalian plasma membrane. ENT2-mediated BA transport has low affinity, is pH independent, and is partially sensitive to inhibition by nitrobenzylthioinosine (NBMPR). At cholestatic plasma concentrations of BAs, however, BAs interfere with Na+-independent, NBMPR-sensitive, ENTs without affecting Na+-driven, NBMPR-insensitive, concentrative nucleoside transporters. Interestingly, this BA interference with ENT transport was largely selective for Ado, with minimal to no impact on the transport of other purine or pyrimidine nucleosides. Xenopus oocyte-based studies demonstrated that BA inhibition of Ado transport is in the order ENT3≥ENT2>ENT1, which also corresponds to the intrinsic ability of individual ENTs to transport BAs. In silico analysis revealed that Ado and BA tend to occupy similar spaces within the ENT translocation pores and that the polar and hydrophilic pore-lining residues determine the interaction of ENTs with BAs. Furthermore, in vivo studies indicated that the accumulation of extraneously administered Ado decreases in the livers of cholestatic mice and that interference with Ado transport alters AdoR signaling. Together, these findings reveal novel ENT-dependent BA‒Ado interactions that may have implications for BA dysregulation of AdoR signaling in cholestatic liver diseases.
Collapse
Affiliation(s)
- Arnav Joshi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Sijie Chen
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Fazlur Md Rahman
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Sreenath Nair
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA; Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA; Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
2
|
Karsten REH, Gier K, de Meijer VE, Huibers WHC, Permentier HP, Verpoorte E, Olinga P. Studying the intracellular bile acid concentration and toxicity in drug-induced cholestasis: Comprehensive LC-MS/MS analysis with human liver slices. Toxicol In Vitro 2025; 104:106011. [PMID: 39855581 DOI: 10.1016/j.tiv.2025.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Drug-induced cholestasis (DIC) is a leading cause of drug-induced liver injury post-drug marketing, characterized by bile flow obstruction and toxic bile constituent accumulation within hepatocytes. This study investigates the toxicity associated with intracellular bile acid (BA) accumulation during DIC development. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, we examined intracellular BA concentrations in human precision-cut liver slices (PCLS) following the administration of cyclosporin A and chlorpromazine, both with and without an established BA mixture. Our findings indicate toxicity of cyclosporin A upon BA addition, while chlorpromazine's toxicity remained unaffected. Although neither drug led to the accumulation of all BAs intracellularly, BA mixture addition resulted in the accumulation of unconjugated BAs associated with DIC, such as deoxycholic acid (DCA) and cholic acid (CA). Additionally, cyclosporin A increased taurolithocholic acid (TLCA) concentrations. In the absence of the BA mixture, a decrease in conjugated BAs was observed, suggesting inhibition of BA metabolism by cholestatic drugs and warranting further investigation. The evident increase in CA and DCA for both drugs (and TLCA for cyclosporin A), despite not exacerbating toxicity with chlorpromazine, suggests these increases may be related to DIC development and possible toxicity. In conclusion, the current human PCLS model is appropriate for investigating and detecting essential contributors to DIC and can be used in future studies elucidating DIC ex vivo.
Collapse
Affiliation(s)
- R E H Karsten
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - K Gier
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - V E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - W H C Huibers
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, A. Deusinglaan 16, 9713 AV Groningen, the Netherlands
| | - H P Permentier
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, A. Deusinglaan 16, 9713 AV Groningen, the Netherlands
| | - E Verpoorte
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Analysis, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - P Olinga
- University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
3
|
Wang X, Zhang G, Bian Z, Chow V, Grimaldi M, Carivenc C, Sirounian S, Li H, Sladekova L, Motta S, Luperi Y, Gong Y, Costello C, Li L, Jachimowicz M, Guo M, Hu S, Wilson D, Balaguer P, Bourguet W, Mani S, Bonati L, Peng H, March J, Wang H, Wang S, Krause HM, Liu J. An abundant ginger compound furanodienone alleviates gut inflammation via the xenobiotic nuclear receptor PXR in mice. Nat Commun 2025; 16:1280. [PMID: 39900639 PMCID: PMC11791082 DOI: 10.1038/s41467-025-56624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
The literature documenting the value of drug-like molecules found in natural products is vast. Although many dietary and herbal remedies have been found to be effective for treating intestinal inflammation, the identification of their active components has lagged behind. In this study, we find that a major ginger component, furanodienone (FDN), is a selective pregnane X receptor (PXR) ligand with agonistic transcriptional outcomes. We show that FDN binds within a sub-pocket of the PXR ligand binding domain (LBD), with subsequent alterations in LBD structure. Using male mice, we show that orally provided FDN has potent PXR-dependant anti-inflammatory outcomes that are colon-specific. Increased affinity and target gene activation in the presence of synergistically acting agonists indicates further opportunities for augmenting FDN activity, efficacy and safety. Collectively, these results support the translational potential of FDN as a therapeutic agent for the treatment and prevention of colonic diseases.
Collapse
Affiliation(s)
- Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Guohui Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Zhiwei Bian
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Vimanda Chow
- Department of Chemistry, York University, Toronto, ON, Canada
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Coralie Carivenc
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Savannah Sirounian
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Hao Li
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lucia Sladekova
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Yulia Luperi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Cait Costello
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Matthew Jachimowicz
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Miao Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Shian Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Derek Wilson
- Department of Chemistry, York University, Toronto, ON, Canada
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - William Bourguet
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Sridhar Mani
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| | - John March
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China.
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Liang HF, Yang X, Li HL, Li X, Tian JN, Su HG, Huang M, Fang JH, Bi HC. Activation of pregnane X receptor protects against cholestatic liver injury by inhibiting hepatocyte pyroptosis. Acta Pharmacol Sin 2025; 46:147-158. [PMID: 39112769 PMCID: PMC11696769 DOI: 10.1038/s41401-024-01357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/05/2024] [Indexed: 01/04/2025]
Abstract
Our previous study shows that activation of pregnane X receptor (PXR) exerts hepatoprotection against lithocholic acid (LCA)-induced cholestatic liver injury. In this study we investigated whether PXR activation could inhibit hepatocyte pyroptosis, as well as the underlying mechanisms. Male mice were treated with mouse PXR agonist pregnenolone 16α-carbonitrile (PCN, 50 mg·kg-1·d-1, i.p.) for 7 days, and received LCA (125 mg/kg, i.p., bid) from D4, then sacrificed 12 h after the last LCA injection. We showed that LCA injection resulted in severe cholestatic liver injury characterized by significant increases in gallbladder size, hepatocellular necrosis, and neutrophil infiltration with a mortality rate of 68%; PCN treatment significantly inhibited hepatocyte pyroptosis during LCA-induced cholestatic liver injury, as evidenced by reduced serum lactic dehydrogenase (LDH) levels, TUNEL-positive cells and hepatocyte membrane damage. Furthermore, PXR activation suppressed both the NOD-like receptor protein 3 (NLRP3) inflammasome-induced canonical pyroptosis and the apoptosis protease activating factor-1 (APAF-1) pyroptosome-induced non-canonical pyroptosis. Inhibition of the nuclear factor kappa B (NF-κB) and forkhead box O1 (FOXO1) signaling pathways was also observed following PXR activation. Notably, dual luciferase reporter assay showed that PXR activation inhibited the transcriptional effects of NF-κB on NLRP3, as well as FOXO1 on APAF-1. Our results demonstrate that PXR activation protects against cholestatic liver injury by inhibiting the canonical pyroptosis through the NF-κB-NLRP3 axis and the non-canonical pyroptosis through the FOXO1-APAF-1 axis, providing new evidence for PXR as a prospective anti-cholestatic target.
Collapse
Affiliation(s)
- Hang-Fei Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guandong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China.
| | - Hui-Lin Li
- Guandong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guandong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Ning Tian
- Guandong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Guo Su
- Guandong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Huang
- Guandong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian-Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui-Chang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guandong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Current Landscape and Evolving Therapies for Primary Biliary Cholangitis. Cells 2024; 13:1580. [PMID: 39329760 PMCID: PMC11429758 DOI: 10.3390/cells13181580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
6
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
7
|
Su H, Liang H, Tian J, Zheng L, Li H, Yang X, Yin S, Bi H. Discovery of PXR agonists from Hypericum japonicum: A class of novel nonaromatic acylphloroglucinol-terpenoid adducts. Bioorg Chem 2024; 147:107354. [PMID: 38599054 DOI: 10.1016/j.bioorg.2024.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Pregnane X receptor (PXR) has been considered as a promising therapeutic target for cholestasis due to its crucial regulation in bile acid biosynthesis and metabolism. To search promising natural PXR agonists, the PXR agonistic activities of five traditional Chinese medicines (TCMs) with hepatoprotective efficacy were assayed, and Hypericum japonicum as the most active one was selected for subsequent phytochemical investigation, which led to the isolation of eight nonaromatic acylphloroglucinol-terpenoid adducts including seven new compounds (1 - 4, 5a, 5b and 6). Their structures including absolute configurations were determined by comprehensive spectroscopic, computational and X-ray diffraction analysis. Meanwhile, the PXR agonistic activities of aplenty compounds were evaluated via dual-luciferase reporter assay, RT-qPCR and immunofluorescence. Among them, compounds 1 - 4 showed more potent activity than the positive drug rifampicin. Furthermore, the molecular docking revealed that 1 - 4 were docked well on the PXR ligand binding domain and formed hydrogen bonds with amino acid residues Gln285, Ser247 and His409. This investigation revealed that H. japonicum may serve as a rich source of natural PXR agonists.
Collapse
Affiliation(s)
- Haiguo Su
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hangfei Liang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianing Tian
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huilin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Sheng Yin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| |
Collapse
|
8
|
Zhang Z, Lv T, Wang X, Wu M, Zhang R, Yang X, Fu Y, Liu Z. Role of the microbiota-gut-heart axis between bile acids and cardiovascular disease. Biomed Pharmacother 2024; 174:116567. [PMID: 38583340 DOI: 10.1016/j.biopha.2024.116567] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Bile acid (BA) receptors (e.g., farnesoid X-activated receptor, muscarinic receptor) are expressed in cardiomyocytes, endothelial cells, and vascular smooth muscle cells, indicating the relevance of BAs to cardiovascular disease (CVD). Hydrophobic BAs are cardiotoxic, while hydrophilic BAs are cardioprotective. For example, fetal cardiac insufficiency in maternal intrahepatic cholestasis during pregnancy, and the degree of fetal cardiac abnormality, is closely related to the level of hydrophobic BAs in maternal blood and infant blood. However, ursodeoxycholic acid (the most hydrophilic BA) can reverse/prevent these detrimental effects of increased levels of hydrophobic BAs on the heart. The gut microbiota (GM) and GM metabolites (especially secondary BAs) have crucial roles in hypertension, atherosclerosis, unstable angina, and heart failure. Herein, we describe the relationship between CVD and the GM at the BA level. We combine the concept of the "microbiota-gut-heart axis" (MGHA) and postulate the role and mechanism of BAs in CVD development. In addition, the strategies for treating CVD with BAs under the MGHA are proposed.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Cardiovascular Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, PR China; Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Tingting Lv
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China; Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, PR China
| | - Xiang Wang
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Menglu Wu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Ruolin Zhang
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Xiaopeng Yang
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Yongping Fu
- Department of Cardiovascular Medicine, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, PR China.
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China.
| |
Collapse
|
9
|
Gao Y, Deng H, Zhao Y, Li M, Wang L, Zhang Y. Gene Expression of Abcc2 and Its Regulation by Chicken Xenobiotic Receptor. TOXICS 2024; 12:55. [PMID: 38251011 PMCID: PMC10818656 DOI: 10.3390/toxics12010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Membrane transporter multidrug resistance-associated protein 2 (MRP2/Abcc2) exhibits high pharmaco-toxicological relevance because it exports multiple cytotoxic compounds from cells. However, no detailed information about the gene expression and regulation of MRP2 in chickens is yet available. Here, we sought to investigate the expression distribution of Abcc2 in different tissues of chicken and then determine whether Abcc2 expression is induced by chicken xenobiotic receptor (CXR). The bioinformatics analyses showed that MRP2 transporters have three transmembrane structural domains (MSDs) and two highly conserved nucleotide structural domains (NBDs), and a close evolutionary relationship with turkeys. Tissue distribution analysis indicated that Abcc2 was highly expressed in the liver, kidney, duodenum, and jejunum. When exposed to metyrapone (an agonist of CXR) and ketoconazole (an antagonist of CXR), Abcc2 expression was upregulated and downregulated correspondingly. We further confirmed that Abcc2 gene regulation is dependent on CXR, by overexpressing and interfering with CXR, respectively. We also demonstrated the induction of Abcc2 expression and the activity of ivermectin, with CXR being a likely mediator. Animal experiments demonstrated that metyrapone and ivermectin induced Abcc2 in the liver, kidney, and duodenum of chickens. Together, our study identified the gene expression of Abcc2 and its regulation by CXR in chickens, which may provide novel targets for the reasonable usage of veterinary drugs.
Collapse
Affiliation(s)
- Yanhong Gao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Huacheng Deng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Yuying Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Mei Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Liping Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yujuan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| |
Collapse
|
10
|
Cifuentes-Silva E, Cabello-Verrugio C. Bile Acids as Signaling Molecules: Role of Ursodeoxycholic Acid in Cholestatic Liver Disease. Curr Protein Pept Sci 2024; 25:206-214. [PMID: 37594109 DOI: 10.2174/1389203724666230818092800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Ursodeoxycholic acid (UDCA) is a natural substance physiologically produced in the liver. Initially used to dissolve gallstones, it is now successfully used in treating primary biliary cirrhosis and as adjuvant therapy for various hepatobiliary cholestatic diseases. However, the mechanisms underlying its beneficial effects still need to be clarified. Evidence suggests three mechanisms of action for UDCA that could benefit humans with cholestatic liver disease (CLD): protection of cholangiocytes against hydrophobic bile acid (BA) cytotoxicity, stimulation of hepatobiliary excretion, and protection of hepatocytes against BA-induced apoptosis. These mechanisms may act individually or together to potentiate them. At the molecular level, it has been observed that UDCA can generate modifications in the transcription and translation of proteins essential in the transport of BA, correcting the deficit in BA secretion in CLD, in addition to activating signaling pathways to translocate these transporters to the sites where they should fulfill their function. Inhibition of BA-induced hepatocyte apoptosis may play a role in CLD, characterized by BA retention in the hepatocyte. Thus, different mechanisms of action contribute to the improvement after UDCA administration in CLD. On the other hand, the effects of UDCA on tissues that possess receptors that may interact with BAs in pathological contexts, such as skeletal muscle, are still unclear. This work aims to describe the main molecular mechanisms by which UDCA acts in the human body, emphasizing the interaction in tissues other than the liver.
Collapse
Affiliation(s)
- Eduardo Cifuentes-Silva
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
11
|
Lan H, Zhang Y, Fan M, Wu B, Wang C. Pregnane X receptor as a therapeutic target for cholestatic liver injury. Drug Metab Rev 2023; 55:371-387. [PMID: 37593784 DOI: 10.1080/03602532.2023.2248680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Cholestatic liver injury (CLI) is caused by toxic bile acids (BAs) accumulation in the liver and can lead to inflammation and liver fibrosis. The mechanisms underlying CLI development remain unclear, and this disease has no effective cure. However, regulating BA synthesis and homeostasis represents a promising therapeutic strategy for CLI treatment. Pregnane X receptor (PXR) plays an essential role in the metabolism of endobiotics and xenobiotics via the transcription of metabolic enzymes and transporters, which can ultimately modulate BA homeostasis and exert anticholestatic effects. Furthermore, recent studies have demonstrated that PXR exhibits antifibrotic and anti-inflammatory properties, providing novel insights into treating CLI. Meanwhile, several drugs have been identified as PXR agonists that improve CLI. Nevertheless, the precise role of PXR in CLI still needs to be fully understood. This review summarizes how PXR improves CLI by ameliorating cholestasis, inhibiting inflammation, and reducing fibrosis and discusses the progress of promising PXR agonists for treating CLI.
Collapse
Affiliation(s)
- Huan Lan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Ying Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Minqi Fan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Bingxin Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
12
|
Saran C, Brouwer KLR. Hepatic Bile Acid Transporters and Drug-induced Hepatotoxicity. Toxicol Pathol 2023; 51:405-413. [PMID: 37982363 PMCID: PMC11014762 DOI: 10.1177/01926233231212255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Drug-induced liver injury (DILI) remains a major concern in drug development from a patient safety perspective because it is the leading cause of acute liver failure. One mechanism of DILI is altered bile acid homeostasis and involves several hepatic bile acid transporters. Functional impairment of some hepatic bile acid transporters by drugs, disease, or genetic mutations may lead to toxic accumulation of bile acids within hepatocytes and increase DILI susceptibility. This review focuses on the role of hepatic bile acid transporters in DILI. Model systems, primarily in vitro and modeling tools, such as DILIsym, used in assessing transporter-mediated DILI are discussed. Due to species differences in bile acid homeostasis and drug-transporter interactions, key aspects and challenges associated with the use of preclinical animal models for DILI assessment are emphasized. Learnings are highlighted from three case studies of hepatotoxic drugs: troglitazone, tolvaptan, and tyrosine kinase inhibitors (dasatinib, pazopanib, and sorafenib). The development of advanced in vitro models and novel biomarkers that can reliably predict DILI is critical and remains an important focus of ongoing investigations to minimize patient risk for liver-related adverse reactions associated with medication use.
Collapse
Affiliation(s)
- Chitra Saran
- Transporter Sciences, Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics (PDMB), Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Kim L. R. Brouwer
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Song G, Zou B, Zhao J, Weng Y, Li Y, Xu X, Zhang S, Yan D, Jin J, Sun X, Liu C, Qiu F. Yinchen decoction protects against cholic acid diet-induced cholestatic liver injury in mice through liver and ileal FXR signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116560. [PMID: 37149065 DOI: 10.1016/j.jep.2023.116560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestasis is a pathophysiological syndrome characterized by the accumulation of bile acids (BAs) that leads to severe liver disease. Artemisia capillaris is documented in Chinese Pharmacopoeia as the authentic resources for Yinchen. Although Yinchen (Artemisia capillaris Thunb.) decoction (YCD) has been used in China for thousands of years to treat jaundice, the underlying mechanisms to ameliorate cholestatic liver injury have not been elucidated. AIM OF THE STUDY To investigate the molecular mechanism of how YCD protects against 1% cholic acid (CA) diet-induced intrahepatic cholestasis through FXR signaling. MATERIALS AND METHODS Wild-type and Fxr-deficient mice were fed a diet containing 1% CA to establish the intrahepatic cholestasis model. The mice received low-, medium-, or high-dose YCD for 10 days. Plasma biochemical markers were analyzed, liver injury was identified by histopathology, and hepatic and plasma BA content was analyzed. Western blot was used to determine the expression levels of transporters and enzymes involved in BA homeostasis in the liver and intestine. RESULTS In wild-type mice, YCD significantly improved plasma transaminase levels, multifocal hepatocellular necrosis, and hepatic and plasma BA contents, upregulated the expression of hepatic FXR and downstream target enzymes and transporters. Meanwhile, YCD significantly induced the expressions of intestinal FXR and FGF15 and hepatic FGFR4. In contrast, the hepatic protective effect of YCD on cholestasis was abolished in Fxr-deficient mice. CONCLUSION YCD protects against cholestatic liver injury induced by a CA diet by restoring the homeostasis of BAs via activation of the liver FXR/SHP and ileal FXR/FGF15 signaling pathways. Furthermore, chlorogenic acid and caffeic acid may be the pharmacological agents in YCD responsible for protecting against cholestatic liver injury.
Collapse
Affiliation(s)
- Guochao Song
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Zou
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhao
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yifeng Weng
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoqing Xu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuang Zhang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dongming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Sun
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chenghai Liu
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
14
|
Lu ZN, He HW, Zhang N. Advances in understanding the regulatory mechanism of organic solute transporter α-β. Life Sci 2022; 310:121109. [DOI: 10.1016/j.lfs.2022.121109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
|
15
|
Bertolini A, Fiorotto R, Strazzabosco M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin Immunopathol 2022; 44:547-564. [PMID: 35415765 PMCID: PMC9256560 DOI: 10.1007/s00281-022-00935-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
Bile acids participate in the intestinal emulsion, digestion, and absorption of lipids and fat-soluble vitamins. When present in high concentrations, as in cholestatic liver diseases, bile acids can damage cells and cause inflammation. After the discovery of bile acids receptors about two decades ago, bile acids are considered signaling molecules. Besides regulating bile acid, xenobiotic, and nutrient metabolism, bile acids and their receptors have shown immunomodulatory properties and have been proposed as therapeutic targets for inflammatory diseases of the liver. This review focuses on bile acid-related signaling pathways that affect inflammation in the liver and provides an overview of the preclinical and clinical applications of modulators of these pathways for the treatment of cholestatic and autoimmune liver diseases.
Collapse
Affiliation(s)
- Anna Bertolini
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, Groningen, The Netherlands
| | - Romina Fiorotto
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale Liver Center, Yale School of Medicine, PO Box 208019, New Haven, CT, 06520-8019, USA.
| |
Collapse
|
16
|
Hepatic Vps33b deficiency aggravates cholic acid-induced cholestatic liver injury in male mice. Acta Pharmacol Sin 2022; 43:933-940. [PMID: 34253877 DOI: 10.1038/s41401-021-00723-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Vacuolar protein sorting 33B (VPS33B) is important for intracellular vesicular trafficking process and protein interactions, which is closely associated with the arthrogryposis, renal dysfunction, and cholestasis syndrome. Our previous study has shown a crucial role of Vps33b in regulating metabolisms of bile acids and lipids in hepatic Vps33b deficiency mice with normal chow, but it remains unknown whether VPS33B could contribute to cholestatic liver injury. In this study we investigated the effects of hepatic Vps33b deficiency on bile acid metabolism and liver function in intrahepatic cholestatic mice. Cholestasis was induced in Vps33b hepatic knockout and wild-type male mice by feeding 1% CA chow diet for 5 consecutive days. We showed that compared with the wild-type mice, hepatic Vps33b deficiency greatly exacerbated CA-induced cholestatic liver injury as shown in markedly increased serum ALT, AST, and ALP activities, serum levels of total bilirubin, and total bile acid, as well as severe hepatocytes necrosis and inflammatory infiltration. Target metabolomics analysis revealed that hepatic Vps33b deficiency caused abnormal profiles of bile acids in cholestasis mice, evidenced by the upregulation of conjugated bile acids in serum, liver, and bile. We further demonstrated that the metabolomics alternation was accompanied by gene expression changes in bile acid metabolizing enzymes and transporters including Cyp3a11, Ugt1a1, Ntcp, Oatp1b1, Bsep, and Mrp2. Overall, these results suggest a crucial role of hepatic Vps33b deficiency in exacerbating cholestasis and liver injury, which is associated with the altered metabolism of bile acids.
Collapse
|
17
|
Sultana H, Komai M, Shirakawa H. The Role of Vitamin K in Cholestatic Liver Disease. Nutrients 2021; 13:nu13082515. [PMID: 34444675 PMCID: PMC8400302 DOI: 10.3390/nu13082515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Vitamin K (VK) is a ligand of the pregnane X receptor (PXR), which plays a critical role in the detoxification of xenobiotics and metabolism of bile acids. VK1 may reduce the risk of death in patients with chronic liver failure. VK deficiency is associated with intrahepatic cholestasis, and is already being used as a drug for cholestasis-induced liver fibrosis in China. In Japan, to treat osteoporosis in patients with primary biliary cholangitis, VK2 formulations are prescribed, along with vitamin D3. Animal studies have revealed that after bile duct ligation-induced cholestasis, PXR knockout mice manifested more hepatic damage than wild-type mice. Ligand-mediated activation of PXR improves biochemical parameters. Rifampicin is a well-known human PXR ligand that has been used to treat intractable pruritus in severe cholestasis. In addition to its anti-cholestatic properties, PXR has anti-fibrotic and anti-inflammatory effects. However, because of the scarcity of animal studies, the mechanism of the effect of VK on cholestasis-related liver disease has not yet been revealed. Moreover, the application of VK in cholestasis-related diseases is controversial. Considering this background, the present review focuses on the effect of VK in cholestasis-related diseases, emphasizing its function as a modulator of PXR.
Collapse
Affiliation(s)
- Halima Sultana
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
- Correspondence: ; Tel.: +81-22-757-4402
| |
Collapse
|
18
|
Cai X, Young GM, Xie W. The xenobiotic receptors PXR and CAR in liver physiology, an update. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166101. [PMID: 33600998 DOI: 10.1016/j.bbadis.2021.166101] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022]
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two nuclear receptors that are well-known for their roles in xenobiotic detoxification by regulating the expression of drug-metabolizing enzymes and transporters. In addition to metabolizing drugs and other xenobiotics, the same enzymes and transporters are also responsible for the production and elimination of numerous endogenous chemicals, or endobiotics. Moreover, both PXR and CAR are highly expressed in the liver. As such, it is conceivable that PXR and CAR have major potentials to affect the pathophysiology of the liver by regulating the homeostasis of endobiotics. In recent years, the physiological functions of PXR and CAR in the liver have been extensively studied. Emerging evidence has suggested the roles of PXR and CAR in energy metabolism, bile acid homeostasis, cell proliferation, to name a few. This review summarizes the recent progress in our understanding of the roles of PXR and CAR in liver physiology.
Collapse
Affiliation(s)
- Xinran Cai
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gregory M Young
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
19
|
Wang JQ, Yang Y, Cai CY, Teng QX, Cui Q, Lin J, Assaraf YG, Chen ZS. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist Updat 2021; 54:100743. [PMID: 33513557 DOI: 10.1016/j.drup.2021.100743] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate the ATP-driven translocation of structurally and mechanistically distinct substrates against steep concentration gradients. Among the seven human ABC subfamilies namely ABCA-ABCG, ABCC is the largest subfamily with 13 members. In this respect, 9 of the ABCC members are termed "multidrug resistance proteins" (MRPs1-9) due to their ability to mediate cancer multidrug resistance (MDR) by extruding various chemotherapeutic agents or their metabolites from tumor cells. Furthermore, MRPs are also responsible for the ATP-driven efflux of physiologically important organic anions such as leukotriene C4, folic acid, bile acids and cAMP. Thus, MRPs are involved in important regulatory pathways. Blocking the anticancer drug efflux function of MRPs has shown promising results in overcoming cancer MDR. As a result, many novel MRP modulators have been developed in the past decade. In the current review, we summarize the structure, tissue distribution, biological and pharmacological functions as well as clinical insights of MRPs. Furthermore, recent updates in MRP modulators and their therapeutic applications in clinical trials are also discussed.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony Brook, NY, 11794, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
20
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
21
|
Wei S, Ma X, Niu M, Wang R, Yang T, Wang D, Wen J, Li H, Zhao Y. Mechanism of Paeoniflorin in the Treatment of Bile Duct Ligation-Induced Cholestatic Liver Injury Using Integrated Metabolomics and Network Pharmacology. Front Pharmacol 2020; 11:586806. [PMID: 33192530 PMCID: PMC7641625 DOI: 10.3389/fphar.2020.586806] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Paeoniflorin (PF) is the main active component of Paeonia lactiflora Pall., which is used in the treatment of severe cholestatic hepatitis. However, its biological mechanism in regulating bile acid metabolism and cholestatic liver injury has not been fully revealed. Our study aimed to reveal the mechanism of PF in the treatment of cholestatic liver injury in an in vivo metabolic environment using bioinformatics analysis. The serum of rats with bile duct ligation (BDL)-induced cholestatic liver injury treated with PF was analyzed by UHPLC-Q-TOF, and specific metabolites were screened using a metabolomics method. These specific metabolites were further analyzed by network pharmacology to identify the upstream signaling pathways and key protein targets. Finally, the key target proteins were verified by immunohistochemistry using cholestatic rat liver tissue. The serum ALT, AST, TBA, and TBIL levels, as well as the pathological state of the liver tissues, were significantly improved by PF. Twenty-five specific metabolites and 157 corresponding target proteins were screened for the treatment of cholestatic liver injury by PF. The “PF-target-metabolite” interaction network was constructed, and five protein targets (MAP2K1, MAPK1, ILBP, ABCB1, and LTA4H) that may regulate specific metabolites were obtained. The results of immunohistochemistry showed that PF improved the expression of these proteins. The integrated application of multiple bioinformatics methods revealed that PF plays a key role in the treatment of cholestatic liver injury by intervening in important targets related to bile acid metabolism and inflammation.
Collapse
Affiliation(s)
- Shizhang Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Department of Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Tao Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Dan Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Beaudoin JJ, Brouwer KLR, Malinen MM. Novel insights into the organic solute transporter alpha/beta, OSTα/β: From the bench to the bedside. Pharmacol Ther 2020; 211:107542. [PMID: 32247663 PMCID: PMC7480074 DOI: 10.1016/j.pharmthera.2020.107542] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Organic solute transporter alpha/beta (OSTα/β) is a heteromeric solute carrier protein that transports bile acids, steroid metabolites and drugs into and out of cells. OSTα/β protein is expressed in various tissues, but its expression is highest in the gastrointestinal tract where it facilitates the recirculation of bile acids from the gut to the liver. Previous studies established that OSTα/β is upregulated in liver tissue of patients with extrahepatic cholestasis, obstructive cholestasis, and primary biliary cholangitis (PBC), conditions that are characterized by elevated bile acid concentrations in the liver and/or systemic circulation. The discovery that OSTα/β is highly upregulated in the liver of patients with nonalcoholic steatohepatitis (NASH) further highlights the clinical relevance of this transporter because the incidence of NASH is increasing at an alarming rate with the obesity epidemic. Since OSTα/β is closely linked to the homeostasis of bile acids, and tightly regulated by the nuclear receptor farnesoid X receptor, OSTα/β is a potential drug target for treatment of cholestatic liver disease, and other bile acid-related metabolic disorders such as obesity and diabetes. Obeticholic acid, a semi-synthetic bile acid used to treat PBC, under review for the treatment of NASH, and in development for the treatment of other metabolic disorders, induces OSTα/β. Some drugs associated with hepatotoxicity inhibit OSTα/β, suggesting a possible role for OSTα/β in drug-induced liver injury (DILI). Furthermore, clinical cases of homozygous genetic defects in both OSTα/β subunits resulting in diarrhea and features of cholestasis have been reported. This review article has been compiled to comprehensively summarize the recent data emerging on OSTα/β, recapitulating the available literature on the structure-function and expression-function relationships of OSTα/β, the regulation of this important transporter, the interaction of drugs and other compounds with OSTα/β, and the comparison of OSTα/β with other solute carrier transporters as well as adenosine triphosphate-binding cassette transporters. Findings from basic to more clinically focused research efforts are described and discussed.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
23
|
Yang T, Wang X, Yuan Z, Miao Y, Wu Z, Chai Y, Yu Q, Wang H, Sun L, Huang X, Zhang L, Jiang Z. Sphingosine 1-phosphate receptor-1 specific agonist SEW2871 ameliorates ANIT-induced dysregulation of bile acid homeostasis in mice plasma and liver. Toxicol Lett 2020; 331:242-253. [PMID: 32579994 DOI: 10.1016/j.toxlet.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated bile acid (BA) homeostasis is an extremely significant pathological phenomenon of intrahepatic cholestasis, and the accumulated BA could further trigger hepatocyte injury. Here, we showed that the expression of sphingosine-1-phosphate receptor 1 (S1PR1) was down-regulated by α-naphthylisothiocyanate (ANIT) in vivo and in vitro. The up-regulated S1PR1 induced by SEW2871 (a specific agonist of S1PR1) could improve ANIT-induced deficiency of hepatocyte tight junctions (TJs), cholestatic liver injury and the disrupted BA homeostasis in mice. BA metabolic profiles showed that SEW2871 not only reversed the disruption of plasma BA homeostasis, but also alleviated BA accumulation in the liver of ANIT-treated mice. Further quantitative analysis of 19 BAs showed that ANIT increased almost all BAs in mice plasma and liver, all of which were restored by SEW2871. Our data demonstrated that the top performing BAs were taurine conjugated bile acids (T-), especially taurocholic acid (TCA). Molecular mechanism studies indicated that BA transporters, synthetase, and BAs nuclear receptors (NRs) might be the important factors that maintained BA homeostasis by SEW2871 in ANIT-induced cholestasis. In conclusion, these results demonstrated that S1PR1 selective agonists might be the novel and potential effective agents for the treatment of intrahepatic cholestasis by recovering dysregulated BA homeostasis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ziteng Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Qiongna Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Gulamhusein AF, Hirschfield GM, Milovanovic J, Arsenijevic D, Arsenijevic N, Milovanovic M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 2020; 17:93-110. [PMID: 31819247 DOI: 10.1038/s41575-019-0226-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis is a chronic, seropositive and female-predominant inflammatory and cholestatic liver disease, which has a variable rate of progression towards biliary cirrhosis. Substantial progress has been made in patient risk stratification with the goal of personalized care, including early adoption of next-generation therapy with licensed use of obeticholic acid or off-label fibrate derivatives for those with insufficient benefit from ursodeoxycholic acid, the current first-line drug. The disease biology spans genetic risk, epigenetic changes, dysregulated mucosal immunity and altered biliary epithelial cell function, all of which interact and arise in the context of ill-defined environmental triggers. A current focus of research on nuclear receptor pathway modulation that specifically and potently improves biliary excretion, reduces inflammation and attenuates fibrosis is redefining therapy. Patients are benefiting from pharmacological agonists of farnesoid X receptor and peroxisome proliferator-activated receptors. Immunotherapy remains a challenge, with a lack of target definition, pleiotropic immune pathways and an interplay between hepatic immune responses and cholestasis, wherein bile acid-induced inflammation and fibrosis are dominant clinically. The management of patient symptoms, particularly pruritus, is a notable goal reflected in the development of rational therapy with apical sodium-dependent bile acid transporter inhibitors.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia.,Department of Histology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
25
|
Deferm N, De Vocht T, Qi B, Van Brantegem P, Gijbels E, Vinken M, de Witte P, Bouillon T, Annaert P. Current insights in the complexities underlying drug-induced cholestasis. Crit Rev Toxicol 2019; 49:520-548. [PMID: 31589080 DOI: 10.1080/10408444.2019.1635081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cholestasis (DIC) poses a major challenge to the pharmaceutical industry and regulatory agencies. It causes both drug attrition and post-approval withdrawal of drugs. DIC represents itself as an impaired secretion and flow of bile, leading to the pathological hepatic and/or systemic accumulation of bile acids (BAs) and their conjugate bile salts. Due to the high number of mechanisms underlying DIC, predicting a compound's cholestatic potential during early stages of drug development remains elusive. A profound understanding of the different molecular mechanisms of DIC is, therefore, of utmost importance. Although many knowledge gaps and caveats still exist, it is generally accepted that alterations of certain hepatobiliary membrane transporters and changes in hepatocellular morphology may cause DIC. Consequently, liver models, which represent most of these mechanisms, are valuable tools to predict human DIC. Some of these models, such as membrane-based in vitro models, are exceptionally well-suited to investigate specific mechanisms (i.e. transporter inhibition) of DIC, while others, such as liver slices, encompass all relevant biological processes and, therefore, offer a better representation of the in vivo situation. In the current review, we highlight the principal molecular mechanisms associated with DIC and offer an overview and critical appraisal of the different liver models that are currently being used to predict the cholestatic potential of drugs.
Collapse
Affiliation(s)
- Neel Deferm
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Tom De Vocht
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Bing Qi
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Van Brantegem
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Eva Gijbels
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Bouillon
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem 2019; 26:1185-1223. [PMID: 29473496 DOI: 10.2174/0929867325666180221142315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacologicas (ININFA), Facultad de Farmacia y Bioquimica. CONICET. Universidad de Buenos Aires, Buenos Aires, Argentina.,Catedra de Fisiopatologia. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
27
|
Rigalli JP, Tocchetti GN, Weiss J. Modulation of ABC Transporters by Nuclear Receptors: Physiological, Pathological and Pharmacological Aspects. Curr Med Chem 2019; 26:1079-1112. [DOI: 10.2174/0929867324666170920141707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
ABC transporters are membrane proteins mediating the efflux of endo- and xenobiotics. Transporter expression is not static but instead is subject to a dynamic modulation aiming at responding to changes in the internal environment and thus at maintaining homeostatic conditions. Nuclear receptors are ligand modulated transcription factors that get activated upon changes in the intracellular concentrations of the respective agonists and bind to response elements within the promoter of ABC transporters, thus modulating their expression and, consequently, their activity. This review compiles information about transporter regulation by nuclear receptors classified according to the perpetrator compounds and the biological effects resulting from the regulation. Modulation by hormone receptors is involved in maintaining endocrine homeostasis and may also lead to an altered efflux of other substrates in cases of altered hormonal levels. Xenobiotic receptors play a key role in limiting the accumulation of potentially harmful compounds. In addition, their frequent activation by therapeutic agents makes them common molecular elements mediating drug-drug interactions and cancer multidrug resistance. Finally, lipid and retinoid receptors are usually activated by endogenous molecules, thus sensing metabolic changes and inducing ABC transporters to counteract potential alterations. Furthermore, the axis nuclear receptor-ABC transporter constitutes a promising therapeutic target for the treatment of several disease states like cancer, atherosclerosis and dyslipidemia. In the current work, we summarize the information available on the pharmacological potential of nuclear receptor modulators and discuss their applicability in the clinical practice.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Guillermo Nicolás Tocchetti
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Dempsey JL, Wang D, Siginir G, Fei Q, Raftery D, Gu H, Yue Cui J. Pharmacological Activation of PXR and CAR Downregulates Distinct Bile Acid-Metabolizing Intestinal Bacteria and Alters Bile Acid Homeostasis. Toxicol Sci 2019; 168:40-60. [PMID: 30407581 PMCID: PMC6821357 DOI: 10.1093/toxsci/kfy271] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome regulates important host metabolic pathways including xenobiotic metabolism and intermediary metabolism, such as the conversion of primary bile acids (BAs) into secondary BAs. The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are well-known regulators for xenobiotic biotransformation in liver. However, little is known regarding the potential effects of PXR and CAR on the composition and function of the gut microbiome. To test our hypothesis that activation of PXR and CAR regulates gut microbiota and secondary BA synthesis, 9-week-old male conventional and germ-free mice were orally gavaged with corn oil, PXR agonist PCN (75 mg/kg), or CAR agonist TCPOBOP (3 mg/kg) once daily for 4 days. PCN and TCPOBOP decreased two taxa in the Bifidobacterium genus, which corresponded with decreased gene abundance of the BA-deconjugating enzyme bile salt hydrolase. In liver and small intestinal content of germ-free mice, there was a TCPOBOP-mediated increase in total, primary, and conjugated BAs corresponding with increased Cyp7a1 mRNA. Bifidobacterium, Dorea, Peptociccaceae, Anaeroplasma, and Ruminococcus positively correlated with T-UDCA in LIC, but negatively correlated with T-CDCA in serum. In conclusion, PXR and CAR activation downregulates BA-metabolizing bacteria in the intestine and modulates BA homeostasis in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Dongfang Wang
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
- Chongqing Blood Center, Chongqing 400015, P.R. China
| | - Gunseli Siginir
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Qiang Fei
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
- Department of Chemistry, Jilin University, Changchun, Jilin Province 130061, P.R. China
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
29
|
Sissung TM, Rajan A, Blumenthal GM, Liewehr DJ, Steinberg SM, Berman A, Giaccone G, Figg WD. Reproducibility of pharmacogenetics findings for paclitaxel in a heterogeneous population of patients with lung cancer. PLoS One 2019; 14:e0212097. [PMID: 30817750 PMCID: PMC6394902 DOI: 10.1371/journal.pone.0212097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Pharmacogenetics studies have identified several allelic variants with the potential to reduce toxicity and improve treatment outcome. The present study was designed to determine if such findings are reproducible in a heterogenous population of patients with lung cancer undergoing therapy with paclitaxel. We designed a prospective multi-institutional study that recruited n = 103 patients receiving paclitaxel therapy with a 5-year follow up. All patients were genotyped using the Drug Metabolizing Enzymes and Transporters (DMET) platform, which ascertains 1931 genotypes in 235 genes. Progression-free survival (PFS) of paclitaxel therapy and clinically-significant paclitaxel toxicities were classified and compared according to genotype. Initial screening revealed eleven variants that are associated with PFS. Of these, seven variants in ABCB11 (rs4148768), ABCC3 (rs1051640), ABCG1 (rs1541290), CYP8B1 (rs735320), NR3C1 (rs6169), FMO6P (rs7889839), and GSTM3 (rs7483) were associated with paclitaxel PFS in a multivariate analysis accounting for clinical covariates. Multivariate analysis revealed four SNPs in VKORC1 (rs2884737), SLC22A14 (rs4679028), GSTA2 (rs6577), and DCK (rs4643786) were associated with paclitaxel toxicities. With the exception of a variant in VKORC1, the present study did not find the same genetic outcome associations of other published research on pharmacogenetics variants that affect paclitaxel outcomes. This finding suggests that prior pharmacogenomics research findings may not be reproduced in the most frequently-diagnosed malignancy, lung cancer.
Collapse
Affiliation(s)
- Tristan M. Sissung
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Arun Rajan
- Thoracic and Gastrointestinal Oncology Branch, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Gideon M. Blumenthal
- Thoracic and Gastrointestinal Oncology Branch, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David J. Liewehr
- Biostatistics and Data Management Section, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Arlene Berman
- Office of Research Nursing in the Office of the Clinical Director, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, United States of America
| | - Giuseppe Giaccone
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - William D. Figg
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
30
|
Yao HT, Lee PF, Lii CK, Liu YT, Chen SH. Freshwater clam extract reduces liver injury by lowering cholesterol accumulation, improving dysregulated cholesterol synthesis and alleviating inflammation in high-fat, high-cholesterol and cholic acid diet-induced steatohepatitis in mice. Food Funct 2019; 9:4876-4887. [PMID: 30160281 DOI: 10.1039/c8fo00851e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Freshwater clam (Corbicula fluminea) is a traditional liver-protective food in Asia. Recent studies have renewed attention on high cholesterol accumulation and dysregulated cholesterol synthesis in the liver as a critical factor in the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH). In this study, we investigated the protective effects of freshwater clam extract (FCE) and its fat fraction (FCE oil) on high-fat, high-cholesterol and cholic acid (HFHC) diet-induced lean steatohepatitis in mice. Mice were fed a HFHC diet containing FCE or FCE oil for 6 weeks. FCE, but not FCE oil, feeding reduced liver injury as indicated by decreased plasma alanine aminotransferase activity. Liver total cholesterol accumulation was reduced after FCE and FCE oil treatment. Accumulation of squalene and desmosterol, the precursors of cholesterol, in the liver was reduced by FCE but not by FCE oil. The caspase-1 (p10) and interleukin (IL)-1β (p17) protein expressions in the liver were suppressed by both FCE and FCE oil. Therefore, FCE may act as functional food that can reduce steatohepatitis and liver injury by reducing cholesterol accumulation, improving dysregulated cholesterol synthesis and attenuating inflammation.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, 91 Hsueh-shih Road, Taichung 404, Taiwan.
| | | | | | | | | |
Collapse
|
31
|
Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD. Overview of Bile Acids Signaling and Perspective on the Signal of Ursodeoxycholic Acid, the Most Hydrophilic Bile Acid, in the Heart. Biomolecules 2018; 8:E159. [PMID: 30486474 PMCID: PMC6316857 DOI: 10.3390/biom8040159] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) are classically known as an important agent in lipid absorption and cholesterol metabolism. Nowadays, their role in glucose regulation and energy homeostasis are widely reported. BAs are involved in various cellular signaling pathways, such as protein kinase cascades, cyclic AMP (cAMP) synthesis, and calcium mobilization. They are ligands for several nuclear hormone receptors, including farnesoid X-receptor (FXR). Recently, BAs have been shown to bind to muscarinic receptor and Takeda G-protein-coupled receptor 5 (TGR5), both G-protein-coupled receptor (GPCR), independent of the nuclear hormone receptors. Moreover, BA signals have also been elucidated in other nonclassical BA pathways, such as sphingosine-1-posphate and BK (large conductance calcium- and voltage activated potassium) channels. Hydrophobic BAs have been proven to affect heart rate and its contraction. Elevated BAs are associated with arrhythmias in adults and fetal heart, and altered ratios of primary and secondary bile acid are reported in chronic heart failure patients. Meanwhile, in patients with liver cirrhosis, cardiac dysfunction has been strongly linked to the increase in serum bile acid concentrations. In contrast, the most hydrophilic BA, known as ursodeoxycholic acid (UDCA), has been found to be beneficial in improving peripheral blood flow in chronic heart failure patients and in protecting the heart against reperfusion injury. This review provides an overview of BA signaling, with the main emphasis on past and present perspectives on UDCA signals in the heart.
Collapse
Affiliation(s)
- Noorul Izzati Hanafi
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Anis Syamimi Mohamed
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia.
| |
Collapse
|
32
|
Nuclear Receptor Metabolism of Bile Acids and Xenobiotics: A Coordinated Detoxification System with Impact on Health and Diseases. Int J Mol Sci 2018; 19:ijms19113630. [PMID: 30453651 PMCID: PMC6274770 DOI: 10.3390/ijms19113630] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Structural and functional studies have provided numerous insights over the past years on how members of the nuclear hormone receptor superfamily tightly regulate the expression of drug-metabolizing enzymes and transporters. Besides the role of the farnesoid X receptor (FXR) in the transcriptional control of bile acid transport and metabolism, this review provides an overview on how this metabolic sensor prevents the accumulation of toxic byproducts derived from endogenous metabolites, as well as of exogenous chemicals, in coordination with the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Decrypting this network should provide cues to better understand how these metabolic nuclear receptors participate in physiologic and pathologic processes with potential validation as therapeutic targets in human disabilities and cancers.
Collapse
|
33
|
Wang X, Wang F, Lu Z, Jin X, Zhang Y. Semi-quantitative profiling of bile acids in serum and liver reveals the dosage-related effects of dexamethasone on bile acid metabolism in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1095:65-74. [DOI: 10.1016/j.jchromb.2018.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 07/06/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
|
34
|
Wang L, Ma L, Lin Y, Liu X, Xiao L, Zhang Y, Xu Y, Zhou H, Pan G. Leflunomide Increases Hepatic Exposure to Methotrexate and Its Metabolite by Differentially Regulating Multidrug Resistance-Associated Protein Mrp2/3/4 Transporters via Peroxisome Proliferator-Activated Receptor α Activation. Mol Pharmacol 2018; 93:563-574. [PMID: 29618584 DOI: 10.1124/mol.117.110593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/26/2018] [Indexed: 02/14/2025] Open
Abstract
Methotrexate (MTX) is the gold standard drug for the treatment of rheumatoid arthritis (RA), and it is frequently combined with leflunomide (LEF) to enhance its clinical efficacy. However, this combination can exacerbate liver toxicity, and the underlying mechanism has not yet been clarified. We investigated whether LEF affects the pharmacokinetics of MTX and its primary toxic metabolite, 7-hydroxyl methotrexate (7OH MTX), in mice. LEF significantly increased the plasma concentration (area under the plasma concentration-time curve) of MTX and 7OH MTX (2.4 and 4.5 times, respectively), decreased their bile excretion, and increased their accumulation in the liver and kidneys. When we investigated the effect of LEF on the MTX absorption, distribution, metabolism, and excretion process, we found that LEF had little effect on liver aldehyde oxidase and 7OH MTX formation. However, LEF significantly decreased the expression of the apical efflux transporter multidrug resistance-associated protein 2 (Mrp2) and increased that of the basolateral efflux transporters Mrp3/4, except there was no significant change in Mrp4 protein expression. Mrp2/3/4 alteration changed the distribution of MTX and 7OH MTX in plasma and tissues. Further studies suggested that LEF indirectly activated peroxisome proliferator-activated receptor α (PPARα), which was likely responsible for the Mrp2/3/4 alteration in the liver. The MTX plasma concentration change induced by LEF was reversed by the PPARα-specific antagonist GW6471. These results may partially explain the exacerbated liver toxicity caused by combination treatment with MTX and LEF and may raise concerns regarding the risk of potential drug-drug interactions between PPARα agonists and Mrp substrates in the clinic.
Collapse
Affiliation(s)
- Le Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Leilei Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Yunfei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Xing Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Ling Xiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Ye Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Hu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Choi S, Neequaye P, French SW, Gonzalez FJ, Gyamfi MA. Pregnane X receptor promotes ethanol-induced hepatosteatosis in mice. J Biol Chem 2017; 293:1-17. [PMID: 29123032 DOI: 10.1074/jbc.m117.815217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-sensing nuclear receptor that modulates the metabolic response to drugs and toxic agents. Both PXR activation and deficiency promote hepatic triglyceride accumulation, a hallmark feature of alcoholic liver disease. However, the molecular mechanism of PXR-mediated activation of ethanol (EtOH)-induced steatosis is unclear. Here, using male wildtype (WT) and Pxr-null mice, we examined PXR-mediated regulation of chronic EtOH-induced hepatic lipid accumulation and hepatotoxicity. EtOH ingestion for 8 weeks significantly (1.8-fold) up-regulated Pxr mRNA levels in WT mice. The EtOH exposure also increased mRNAs encoding hepatic constitutive androstane receptor (3-fold) and its target, Cyp2b10 (220-fold), in a PXR-dependent manner. Furthermore, WT mice had higher serum EtOH levels and developed hepatic steatosis characterized by micro- and macrovesicular lipid accumulation. Consistent with the development of steatosis, lipogenic gene induction was significantly increased in WT mice, including sterol regulatory element-binding protein 1c target gene fatty-acid synthase (3.0-fold), early growth response-1 (3.2-fold), and TNFα (3.0-fold), whereas the expression of peroxisome proliferator-activated receptor α target genes was suppressed. Of note, PXR deficiency suppressed these changes and steatosis. Protein levels, but not mRNAs levels, of EtOH-metabolizing enzymes, including alcohol dehydrogenase 1, aldehyde dehydrogenase 1A1, and catalase, as well as the microsomal triglyceride transfer protein, involved in regulating lipid output were higher in Pxr-null than in WT mice. These findings establish that PXR signaling contributes to ALD development and suggest that PXR antagonists may provide a new approach for ALD therapy.
Collapse
Affiliation(s)
- Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Prince Neequaye
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California 90509
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707.
| |
Collapse
|
36
|
Chen P, Li D, Chen Y, Sun J, Fu K, Guan L, Zhang H, Jiang Y, Li X, Zeng X, Chen X, Huang M, Bi H. p53-mediated regulation of bile acid disposition attenuates cholic acid-induced cholestasis in mice. Br J Pharmacol 2017; 174:4345-4361. [PMID: 28910492 DOI: 10.1111/bph.14035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/26/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The tumour suppressor p53 is traditionally recognized as a surveillance molecule to preserve genome integrity. Recent studies have demonstrated that it contributes to metabolic diseases. Here, we investigated the role of p53 in the regulation of bile acid disposition and cholestasis. EXPERIMENTAL APPROACH The bile acid disposition-related gene expression profile affected by p53 activation was assessed in mouse primary hepatocytes with p53 depletion and in Trp53-null mice. Dual luciferase reporter assay was used to detect the transcriptional activities of target genes. Anticholestatic effects of p53 activator doxorubicin were investigated in a 0.5% cholic acid-fed mouse model of cholestasis. Changes in bile acids were evaluated using metabolomics analysis. KEY RESULTS Doxorubicin-mediated p53 activation induced Cyp2b10, Sult2a1 and Abcc2/3/4 expression in mice in vitro and in vivo. ABCC3 and CYP2B6 (human orthologue of Cyp2b10) were identified as direct p53 target genes. Doxorubicin attenuated cholic acid-induced cholestasis in mice, as demonstrated by shrunken gall bladder, decreased serum total bile acid and total bilirubin levels and alkaline phosphatase activity. Targeted metabolomics analysis revealed that doxorubicin enhanced the excretion of bile acid metabolites from serum and liver to intestine and faeces. Up-regulation of Cyp2b10, Sult2a1 and Abcc2/3/4 expression was further confirmed in cholestatic mice. Cholic acid-induced cholestatic injury was aggravated in p53-deficient mice and levels of bile acid in intestine and faeces were decreased. CONCLUSIONS AND IMPLICATIONS Our findings suggest a novel role of p53 in promoting bile acid disposition and alleviating cholestatic syndrome, which provides a potential therapeutic target for cholestasis.
Collapse
Affiliation(s)
- Pan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongshun Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahong Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kaili Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihuan Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huizhen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xi Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuezhen Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Yang T, Mei H, Xu D, Zhou W, Zhu X, Sun L, Huang X, Wang X, Shu T, Liu J, Ding J, Hassan HM, Zhang L, Jiang Z. Early indications of ANIT-induced cholestatic liver injury: Alteration of hepatocyte polarization and bile acid homeostasis. Food Chem Toxicol 2017; 110:1-12. [PMID: 28986171 DOI: 10.1016/j.fct.2017.09.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/04/2017] [Accepted: 09/29/2017] [Indexed: 02/08/2023]
Abstract
Hepatocyte polarization is essential for biliary secretion, and loss of polarity causes bile secretory failure and hepatotoxicity. Here, we showed that alpha-naphthyl isothiocyanate (ANIT)-induced liver injury was accompanied by the dynamic interruption of bile acid homeostasis in rat plasma, liver and bile, which was characterized by the redistribution of bile acids in plasma and bile and a small range of fluctuations in the liver. Molecular mechanism studies indicated that these factors are dynamically mediated by the disruption of bile acid transporters and hepatic tight junctions. Dynamic changes in tight junction (TJ) permeability were observed by hepatobiliary barrier function assessment. Hepatocyte polarization was disrupted by ANIT before the development of cholestatic hepatotoxicity and alteration of bile acid metabolic profiles, which were assayed by high-performance liquid chromatography-tandem mass spectrometry, further verifying TJ deficiency. S1PR1 activation with SEW2871 reduced ANIT-induced liver injury by reducing the total serum bile acid concentration, liver functional enzyme activity and inflammation. Our data suggest that hepatocyte polarization plays an important role in maintaining bile acid homeostasis before the development of cholestatic hepatotoxicity and that TJs were more prominent in the early stage of cholestasis. S1PR1 may be a potential target for the prevention of drug-induced cholestatic liver injury.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Huifang Mei
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Dengqiu Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Wang Zhou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoyu Zhu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Shu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaxin Ding
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - H M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
38
|
miR-148a-mediated estrogen-induced cholestasis in intrahepatic cholestasis of pregnancy: Role of PXR/MRP3. PLoS One 2017; 12:e0178702. [PMID: 28575098 PMCID: PMC5457162 DOI: 10.1371/journal.pone.0178702] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/17/2017] [Indexed: 01/09/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is an idiopathic liver disease while the biochemical characteristic is the elevated level of total bile acid (TBA). The present study investigated whether miR-148a mediates the induced effect of estrogen on the development of ICP and the proper mechanism: PXR/MRP3 signal pathway. mRNA expression was detected by qPCR, protein expression was detected by western blotting, the concentration of estrogen and TBA were detected by reagent kit respectively. In the cinical research, it was found that miR-148a expression was positive related with the concentration of TBA in the serum of ICP patients. In in vitro research, estradiol (500 nmol/L, 12 h) significantly upregulated miR-148a expression and LV-148a-siRNA inhibited the function of estradiol (500 nmol/L, 48 h) on TBA secretion. In addition, gene silence of miR-148a upregulated PXR expression which was inhibited by estradiol in LO2 cells. Pretreatment of rifampin (10 μmol/L), the agonist of PXR alleviated the TBA secretion induced by estradiol (500 nmol/L, 48 h). miR-148a-siRNA and PXR had a synergistic action on TBA secretion of LO2. Both of miR-148a-siRNA and rifampin (10 μmol/L) inhibited the upregulated effect of estradiol on MRP3 expression. This research has demonstrated that miR-148a may be involved in the induction of estrogen on ICP via PXR signal pathway, and MRP3 may be involved.
Collapse
|
39
|
Pan X, Kent R, Won KJ, Jeong H. Cholic Acid Feeding Leads to Increased CYP2D6 Expression in CYP2D6-Humanized Mice. Drug Metab Dispos 2017; 45:346-352. [PMID: 28153841 PMCID: PMC5363697 DOI: 10.1124/dmd.116.074013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme, but the factors governing transcriptional regulation of its expression remain poorly understood. Based on previous reports of small heterodimer partner (SHP) playing an important role as a transcriptional repressor of CYP2D6 expression, here we investigated how a known upstream regulator of SHP expression, namely cholestasis triggered by cholic acid (CA) feeding in mice, can lead to altered CYP2D6 expression. To this end, CYP2D6-humanized (Tg-CYP2D6) mice were fed with a CA-supplemented or control diet for 14 days, and hepatic expression of multiple genes was examined. Unexpectedly, CA feeding led to insignificant changes in SHP mRNA but also to significant (2.8-fold) decreases in SHP protein levels. In silico analysis of the SHP gene regulatory region revealed a putative binding site for a microRNA, miR-142-3p. Results from luciferase reporter assays suggest that miR-142-3p targets the SHP gene. Hepatic expression of miR-142-3p was significantly increased in CA-fed mice (∼5-fold), suggesting a potential role of miR-142-3p in the regulation of SHP expression in cholestasis. The decreased SHP protein levels were accompanied by increased expression and activity of CYP2D6 in the liver of CA-fed mice. These results suggest potential roles of differential hepatic levels of bile acids in the transcriptional regulation of CYP2D6 expression.
Collapse
Affiliation(s)
- Xian Pan
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Rebecca Kent
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Kyoung-Jae Won
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunyoung Jeong
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Zeng H, Jiang Y, Chen P, Fan X, Li D, Liu A, Ma X, Xie W, Liu P, Gonzalez FJ, Huang M, Bi H. Schisandrol B protects against cholestatic liver injury through pregnane X receptors. Br J Pharmacol 2017; 174:672-688. [PMID: 28128437 DOI: 10.1111/bph.13729] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Currently, ursodeoxycholic acid and obeticholic acid are the only two FDA-approved drugs for cholestatic liver diseases. Thus, new therapeutic approaches need to be developed. Here we have evaluated the anti-cholestasis effects of Schisandrol B (SolB), a bioactive compound isolated from Schisandra sphenanthera. EXPERIMENTAL APPROACH Hepatoprotective effect of SolB against intrahepatic cholestasis, induced by lithocholic acid (LCA), was evaluated in mice. Metabolomic analysis and gene analysis were used to assess involvement of pregnane X receptor (PXR). Molecular docking, cell-based reporter gene analysis and knockout mice were used to demonstrate the critical role of the PXR pathway in the anti-cholestasis effects of SolB. KEY RESULTS SolB protected against LCA-induced intrahepatic cholestasis. Furthermore, therapeutic treatment with SolB decreased mortality in cholestatic mice. Metabolomics and gene analysis showed that SolB accelerated metabolism of bile acids, promoted bile acid efflux into the intestine, and induced hepatic expression of the PXR-target genes Cyp3a11, Ugt1a1, and Oatp2, which are involved in bile acid homeostasis. Mechanistic studies showed that SolB activated human PXR and up-regulated PXR target genes in human cell lines. Additionally, SolB did not protect Pxr-null mice from liver injury induced by intrahepatic cholestasis, thus providing genetic evidence that the effect of SolB was PXR-dependent. CONCLUSION AND IMPLICATIONS These findings provide direct evidence for the hepatoprotective effects of SolB against cholestasis by activating PXR. Therefore, SolB may provide a new and effective approach to the prevention and treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Hang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaomei Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongshun Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo, China
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Bile acid homeostasis controls CAR signaling pathways in mouse testis through FXRalpha. Sci Rep 2017; 7:42182. [PMID: 28181583 PMCID: PMC5299845 DOI: 10.1038/srep42182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/06/2017] [Indexed: 12/11/2022] Open
Abstract
Bile acids (BAs) are molecules with endocrine activities controlling several physiological functions such as immunity, glucose homeostasis, testicular physiology and male fertility. The role of the nuclear BA receptor FXRα in the control of BA homeostasis has been well characterized. The present study shows that testis synthetize BAs. We demonstrate that mice invalidated for the gene encoding FXRα have altered BA homeostasis in both liver and testis. In the absence of FXRα, BA exposure differently alters hepatic and testicular expression of genes involved in BA synthesis. Interestingly, Fxrα-/- males fed a diet supplemented with BAs show alterations of testicular physiology and sperm production. This phenotype was correlated with the altered testicular BA homeostasis and the production of intermediate metabolites of BAs which led to the modulation of CAR signaling pathways within the testis. The role of the CAR signaling pathways within testis was validated using specific CAR agonist (TCPOBOP) and inverse agonist (androstanol) that respectively inhibited or reproduced the phenotype observed in Fxrα-/- males fed BA-diet. These data open interesting perspectives to better define how BA homeostasis contributes to physiological or pathophysiological conditions via the modulation of CAR activity.
Collapse
|
42
|
Ontogeny, aging, and gender-related changes in hepatic multidrug resistant protein genes in rats. Life Sci 2017; 170:108-114. [DOI: 10.1016/j.lfs.2016.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 12/26/2022]
|
43
|
Wang L, Wu G, Wu F, Jiang N, Lin Y. Geniposide attenuates ANIT-induced cholestasis through regulation of transporters and enzymes involved in bile acids homeostasis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:178-185. [PMID: 27988401 DOI: 10.1016/j.jep.2016.12.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/29/2016] [Accepted: 12/14/2016] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GE) is one of the major iridoid glycosides isolated from the fruit of Gardenia jasminoides Ellis that has been used to treat hepatic disorders including cholestasis. However, the underlying mechanisms for GE ameliorating the reduction in bile acids accumulation by α-naphthylisothiocyanate (ANIT) remain unclear. AIM OF THE STUDY The purpose of this study is to characterize the efficacy of GE in regulation of bile acids uptake, synthesis, metabolism, and transport in ANIT-induced rats. MATERIALS AND METHODS Sprague-Dawley rats were orally administrated with vehicle, GE (25, 50, and 100mg/kg), and ursodeoxycholic acid (UDCA) (60mg/kg) once daily for seven days. On the fifth day, a single dose of ANIT (75mg/kg) was administrated via oral gavage. Blood biochemical determination, bile flow rate and liver histopathology were measured to evaluate the protective effect of GE. The mRNA expressions and protein levels of transporters and enzymes involved in bile acids homeostasis were determined by quantitative real-time polymerase chain reaction (PCR) and western blot to study the underlying mechanism of GE against ANIT-induced rats. RESULTS GE (25, 50, and 100mg/kg, po) dose-dependently prevented ANIT-induced changes in serum markers for liver injury. GE treatment reduced basolateral bile acids uptake via repression of OATP2 (P<0.05). Bile acids biosynthesis was decreased through down-regulation of CYP7A1, CYP8B1, and CYP27A1 (P<0.05). GE significantly increased canalicular bile acids secretion via BSEP (P<0.05), subsequently stimulating bile flow during cholestasis. GE also markedly enhanced mRNA level of basolateral transporter OSTβ (P<0.01). Bile acids transported to the plasma were cleared into the urine, resulting in down-regulation of plasma bile acids. However, GE did not alter the mRNA levels of CYP3A2, UGT1A1 and SULT2A1. Furthermore, the gene and protein expression analysis demonstrated activation of FXR, PXR, and SHP after GE administration. CONCLUSION GE attenuates ANIT-induced hepatotoxicity and cholestasis in rats, due to regulation enzymes and transporters responsible for bile acids homeostasis.
Collapse
Affiliation(s)
- Lingling Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Guixin Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Nan Jiang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Yining Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
44
|
Sasaki T, Inami K, Numata Y, Funakoshi K, Yoshida M, Kumagai T, Kanno S, Matsui S, Toriyabe T, Yamazoe Y, Yoshinari K, Nagata K. Activation of p38 Mitogen-Activated Protein Kinase by Clotrimazole Induces Multidrug Resistance-Associated Protein 3 Activation through a Novel Transcriptional Element. J Pharmacol Exp Ther 2016; 359:102-9. [PMID: 27507784 DOI: 10.1124/jpet.115.231589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/02/2016] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance-associated protein 3 (MRP3) is a basolaterally localized transporter in the liver and contributes to the transport of various metabolites such as conjugates of endogenous compounds and drugs from hepatocytes. MRP3 expression in the human liver is low under normal physiologic conditions but is induced by drug treatment. Although several studies have identified a region necessary for the basal transcription of MRP3, no region that responds to drugs has been reported. To identify the xenobiotic-responsive elements of MRP3, we constructed a luciferase reporter plasmid containing the MRP3 5'-flanking region up to -10 kb upstream from the transcription start site. Among typical nuclear receptor ligands, clotrimazole dramatically enhanced MRP3 reporter activity in HepG2 cells, whereas rifampicin had no effect. We then conducted MRP3 reporter assays with deletion or mutation constructs to identify a clotrimazole-responsive element. The element was located approximately -6.8 kb upstream from the MRP3 transcription start site. Overexpression of the pregnane X receptor did not enhance clotrimazole-mediated transcription. We found that clotrimazole was toxic to HepG2 cells and we therefore investigated whether mitogen-activated protein kinase (MAPK) activation is involved in the transactivation of MRP3 by clotrimazole. p38 MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole] suppressed MRP3 mRNA expression induced by clotrimazole, whereas c-Jun N-terminal kinase inhibitor SP600125 (1,9-pyrazoloanthrone) and extracellular signal-regulated kinase inhibitor PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] did not. Phosphorylated p38 MAPK was detected in HepG2 cells treated with clotrimazole. These results suggest that activation of the p38 MAPK pathway induces the transcriptional activation of MRP3.
Collapse
Affiliation(s)
- Takamitsu Sasaki
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Keita Inami
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Yoshihiro Numata
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Kodai Funakoshi
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Midori Yoshida
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Takeshi Kumagai
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Shuichi Kanno
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Satomi Matsui
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Takayoshi Toriyabe
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Yasushi Yamazoe
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Kouichi Yoshinari
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Kiyoshi Nagata
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| |
Collapse
|
45
|
Woodhead JL, Brock WJ, Roth SE, Shoaf SE, Brouwer KLR, Church R, Grammatopoulos TN, Stiles L, Siler SQ, Howell BA, Mosedale M, Watkins PB, Shoda LKM. Application of a Mechanistic Model to Evaluate Putative Mechanisms of Tolvaptan Drug-Induced Liver Injury and Identify Patient Susceptibility Factors. Toxicol Sci 2016; 155:61-74. [PMID: 27655350 PMCID: PMC5216653 DOI: 10.1093/toxsci/kfw193] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tolvaptan is a selective vasopressin V2 receptor antagonist, approved in several countries for the treatment of hyponatremia and autosomal dominant polycystic kidney disease (ADPKD). No liver injury has been observed with tolvaptan treatment in healthy subjects and in non-ADPKD indications, but ADPKD clinical trials showed evidence of drug-induced liver injury (DILI). Although all DILI events resolved, additional monitoring in tolvaptan-treated ADPKD patients is required. In vitro assays identified alterations in bile acid disposition and inhibition of mitochondrial respiration as potential mechanisms underlying tolvaptan hepatotoxicity. This report details the application of DILIsym software to determine whether these mechanisms could account for the liver safety profile of tolvaptan observed in ADPKD clinical trials. DILIsym simulations included physiologically based pharmacokinetic estimates of hepatic exposure for tolvaptan and2 metabolites, and their effects on hepatocyte bile acid transporters and mitochondrial respiration. The frequency of predicted alanine aminotransferase (ALT) elevations, following simulated 90/30 mg split daily dosing, was 7.9% compared with clinical observations of 4.4% in ADPKD trials. Toxicity was multifactorial as inhibition of bile acid transporters and mitochondrial respiration contributed to the simulated DILI. Furthermore, simulation analysis identified both pre-treatment risk factors and on-treatment biomarkers predictive of simulated DILI. The simulations demonstrated that in vivo hepatic exposure to tolvaptan and the DM-4103 metabolite, combined with these 2 mechanisms of toxicity, were sufficient to account for the initiation of tolvaptan-mediated DILI. Identification of putative risk-factors and potential novel biomarkers provided insight for the development of mechanism-based tolvaptan risk-mitigation strategies.
Collapse
Affiliation(s)
| | - William J Brock
- Otsuka Pharmaceutical Development & Commercialization, Brock Scientific Consulting, Montgomery Village, Rockville, Maryland
| | - Sharin E Roth
- Otsuka Pharmaceutical Development & Commercialization, Rockville, Maryland
| | - Susan E Shoaf
- Otsuka Pharmaceutical Development & Commercialization, Rockville, Maryland
| | - Kim L R Brouwer
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel Church
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina
| | | | | | - Scott Q Siler
- DILIsym Services, Inc, Research Triangle Park, North Carolina
| | - Brett A Howell
- DILIsym Services, Inc, Research Triangle Park, North Carolina
| | - Merrie Mosedale
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina
| | - Paul B Watkins
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina
| | - Lisl K M Shoda
- DILIsym Services, Inc, Research Triangle Park, North Carolina;
| |
Collapse
|
46
|
Moscovitz JE, Kong B, Buckley K, Buckley B, Guo GL, Aleksunes LM. Restoration of enterohepatic bile acid pathways in pregnant mice following short term activation of Fxr by GW4064. Toxicol Appl Pharmacol 2016; 310:60-67. [PMID: 27609522 DOI: 10.1016/j.taap.2016.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022]
Abstract
The farnesoid X receptor (Fxr) controls bile acid homeostasis by coordinately regulating the expression of synthesizing enzymes (Cyp7a1, Cyp8b1), conjugating enzymes (Bal, Baat) and transporters in the ileum (Asbt, Ostα/β) and liver (Ntcp, Bsep, Ostβ). Transcriptional regulation by Fxr can be direct, or through the ileal Fgf15/FGF19 and hepatic Shp pathways. Circulating bile acids are increased during pregnancy due to hormone-mediated disruption of Fxr signaling. While this adaptation enhances lipid absorption, elevated bile acids may predispose women to develop maternal cholestasis. The objective of this study was to determine whether short-term treatment of pregnant mice with GW4064 (a potent FXR agonist) restores Fxr signaling to the level observed in virgin mice. Plasma, liver and ilea were collected from virgin and pregnant mice administered vehicle or GW4064 by oral gavage. Treatment of pregnant mice with GW4064 induced ileal Fgf15, Shp and Ostα/β mRNAs, and restored hepatic Shp, Bal, Ntcp, and Bsep back to vehicle-treated virgin levels. Pregnant mice exhibited 2.5-fold increase in Cyp7a1 mRNA compared to virgin controls, which was reduced by GW4064. Similarly treatment of mouse primary hepatocytes with plasma isolated from pregnant mice induced Cyp7a1 mRNA by nearly 3-fold as compared to virgin plasma, which could be attenuated by co-treatment with either GW4064 or recombinant FGF19 protein. Collectively, these data reveal that repressed activity of intestinal and hepatic Fxr in pregnancy, as previously demonstrated, may be restored by pharmacological activation. This study provides the basis for a novel approach to restore bile acid homeostasis in patients with maternal cholestasis.
Collapse
Affiliation(s)
- Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Kyle Buckley
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
47
|
Han B, Kim BK, Kim K, Fang S. Essential roles of bile acids and their nuclear receptors, FXR and PXR, in the cholestatic liver disease. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1211175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
48
|
Establishment of a Drug-Induced, Bile Acid–Dependent Hepatotoxicity Model Using HepaRG Cells. J Pharm Sci 2016; 105:1550-60. [DOI: 10.1016/j.xphs.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 01/29/2023]
|
49
|
Malik MY, Jaiswal S, Sharma A, Shukla M, Lal J. Role of enterohepatic recirculation in drug disposition: cooperation and complications. Drug Metab Rev 2016; 48:281-327. [PMID: 26987379 DOI: 10.3109/03602532.2016.1157600] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enterohepatic recirculation (EHC) concerns many physiological processes and notably affects pharmacokinetic parameters such as plasma half-life and AUC as well as estimates of bioavailability of drugs. Also, EHC plays a detrimental role as the compounds/drugs are allowed to recycle. An in-depth comprehension of this phenomenon and its consequences on the pharmacological effects of affected drugs is important and decisive in the design and development of new candidate drugs. EHC of a compound/drug occurs by biliary excretion and intestinal reabsorption, sometimes with hepatic conjugation and intestinal deconjugation. EHC leads to prolonged elimination half-life of the drugs, altered pharmacokinetics and pharmacodynamics. Study of the EHC of any drug is complicated due to unavailability of the apposite model, sophisticated procedures and ethical concerns. Different in vitro and in vivo methods for studies in experimental animals and humans have been devised, each having its own merits and demerits. Involvement of the different transporters in biliary excretion, intra- and inter-species, pathological and biochemical variabilities obscure the study of the phenomenon. Modeling of drugs undergoing EHC has always been intricate and exigent models have been exploited to interpret the pharmacokinetic profiles of drugs witnessing multiple peaks due to EHC. Here, we critically appraise the mechanisms of bile formation, factors affecting biliary drug elimination, methods to estimate biliary excretion of drugs, EHC, multiple peak phenomenon and its modeling.
Collapse
Affiliation(s)
- Mohd Yaseen Malik
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Raebareli , India ;,b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Swati Jaiswal
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| | - Abhisheak Sharma
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India ;,d Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , USA
| | - Mahendra Shukla
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| | - Jawahar Lal
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| |
Collapse
|
50
|
Slizgi JR, Lu Y, Brouwer KR, St Claire RL, Freeman KM, Pan M, Brock WJ, Brouwer KLR. Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury? Toxicol Sci 2015; 149:237-50. [PMID: 26507107 DOI: 10.1093/toxsci/kfv231] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tolvaptan is a vasopressin V(2)-receptor antagonist that has shown promise in treating Autosomal Dominant Polycystic Kidney Disease (ADPKD). Tolvaptan was, however, associated with liver injury in some ADPKD patients. Inhibition of bile acid transporters may be contributing factors to drug-induced liver injury. In this study, the ability of tolvaptan and two metabolites, DM-4103 and DM-4107, to inhibit human hepatic transporters (NTCP, BSEP, MRP2, MRP3, and MRP4) and bile acid transport in sandwich-cultured human hepatocytes (SCHH) was explored. IC(50) values were determined for tolvaptan, DM-4103 and DM-4107 inhibition of NTCP (∼41.5, 16.3, and 95.6 μM, respectively), BSEP (31.6, 4.15, and 119 μM, respectively), MRP2 (>50, ∼51.0, and >200 μM, respectively), MRP3 (>50, ∼44.6, and 61.2 μM, respectively), and MRP4 (>50, 4.26, and 37.9 μM, respectively). At the therapeutic dose of tolvaptan (90 mg), DM-4103 exhibited a C(max)/IC(50) value >0.1 for NTCP, BSEP, MRP2, MRP3, and MRP4. Tolvaptan accumulation in SCHH was extensive and not sodium-dependent; intracellular concentrations were ∼500 μM after a 10-min incubation duration with tolvaptan (15 μM). The biliary clearance of taurocholic acid (TCA) decreased by 43% when SCHH were co-incubated with tolvaptan (15 μM) and TCA (2.5 μM). When tolvaptan (15 μM) was co-incubated with 2.5 μM of chenodeoxycholic acid, taurochenodeoxycholic acid, or glycochenodeoxycholic acid in separate studies, the cellular accumulation of these bile acids increased by 1.30-, 1.68-, and 2.16-fold, respectively. Based on these data, inhibition of hepatic bile acid transport may be one of the biological mechanisms underlying tolvaptan-associated liver injury in patients with ADPKD.
Collapse
Affiliation(s)
- Jason R Slizgi
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| | - Yang Lu
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | | | | | - Maxwell Pan
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - William J Brock
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - Kim L R Brouwer
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| |
Collapse
|