1
|
Barker H, Ferraro MJ. Exploring the versatile roles of the endocannabinoid system and phytocannabinoids in modulating bacterial infections. Infect Immun 2024; 92:e0002024. [PMID: 38775488 PMCID: PMC11237442 DOI: 10.1128/iai.00020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.
Collapse
Affiliation(s)
- Hailey Barker
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Ferraro
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Zhang J, Zhu Y, Chen S, Xu Z, Zhang B, Liu A, He Q, Zhan J. Activation of cannabinoid receptors 2 alleviates myocardial damage in cecal ligation and puncture-induced sepsis by inhibiting pyroptosis. Immunol Lett 2023; 264:17-24. [PMID: 37918639 DOI: 10.1016/j.imlet.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND It has been reported that cannabinoid receptors 2 (CB2 receptors) play an important role in the pathophysiological process of sepsis, which may also be associated with the regulation of pyroptosis, an inflammatory programmed cell death. The present study aimed to investigate the protective effect of CB2 receptors on myocardial damage in a model of septic mice by inhibiting pyroptosis. METHODS The C57BL/6 mice underwent cecal ligation and puncture (CLP) to induce sepsis. All mice were randomly divided into the sham, CLP, or CLP+HU308 group. Blood and heart tissue samples were collected 12 h after surgery. Hematoxylin and eosin staining was used for analyzing histopathological results. Creatine kinase isoenzymes (CK-MB) and IL-1β were measured using ELISA, while lactate dehydrogenase (LDH) level was determined using photoelectric colorimetry. The expression levels of CB2 receptors and pyroptosis-associated proteins (NLRP3, caspase-1, and GSDMD) were measured using western blotting. The location and distribution of CB2 receptors and caspase-1 in myocardial tissues were assessed by immunofluorescence. TUNEL staining was used to quantify the number of dead cells in myocardial tissues. RESULTS The CLP procedure increased CB2 receptor expression in mice. CB2 receptors were located in myocardial macrophages. Activating CB2 receptors decreased the levels of myocardial damage mediator LDH, CK-MB, and inflammatory cytokine IL-1β. The results also showed that CLP increased the pyroptosis in myocardial tissues, while CB2 agonist HU308 inhibited pyroptosis by decreasing the level of NLRP3 and activating caspase-1 and GSDMD. CONCLUSIONS CB2 receptor activation has a protective effect on the myocardium of mice with sepsis by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Yali Zhu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Shuxian Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Zujin Xu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Bin Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Anpeng Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Qianwen He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China.
| | - Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
3
|
Lindner T, Schmidl D, Peschorn L, Pai V, Popa-Cherecheanu A, Chua J, Schmetterer L, Garhöfer G. Therapeutic Potential of Cannabinoids in Glaucoma. Pharmaceuticals (Basel) 2023; 16:1149. [PMID: 37631064 PMCID: PMC10460067 DOI: 10.3390/ph16081149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. To date, intraocular pressure (IOP) is the only modifiable risk factor in glaucoma treatment, but even in treated patients, the disease can progress. Cannabinoids, which have been known to lower IOP since the 1970s, have been shown to have beneficial effects in glaucoma patients beyond their IOP-lowering properties. In addition to the classical cannabinoid receptors CB1 and CB2, knowledge of non-classical cannabinoid receptors and the endocannabinoid system has increased in recent years. In particular, the CB2 receptor has been shown to mediate anti-inflammatory, anti-apoptotic, and neuroprotective properties, which may represent a promising therapeutic target for neuroprotection in glaucoma patients. Due to their vasodilatory effects, cannabinoids improve blood flow to the optic nerve head, which may suggest a vasoprotective potential and counteract the altered blood flow observed in glaucoma patients. The aim of this review was to assess the available evidence on the effects and therapeutic potential of cannabinoids in glaucoma patients. The pharmacological mechanisms underlying the effects of cannabinoids on IOP, neuroprotection, and ocular hemodynamics have been discussed.
Collapse
Affiliation(s)
- Theresa Lindner
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Laura Peschorn
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Viktoria Pai
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Alina Popa-Cherecheanu
- Department of Ophthalmology, Emergency University Hospital, 050098 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Nanyang Technological University, Singapore 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, 1090 Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| |
Collapse
|
4
|
Greco R, Demartini C, Zanaboni AM, Francavilla M, De Icco R, Ahmad L, Tassorelli C. The endocannabinoid system and related lipids as potential targets for the treatment of migraine-related pain. Headache 2022; 62:227-240. [PMID: 35179780 DOI: 10.1111/head.14267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Migraine is a complex and highly disabling neurological disease whose treatment remains challenging in many patients, even after the recent advent of the first specific-preventive drugs, namely monoclonal antibodies that target calcitonin gene-related peptide. For this reason, headache researchers are actively searching for new therapeutic targets. Cannabis has been proposed for migraine treatment, but controlled clinical studies are lacking. A major advance in cannabinoid research has been the discovery of the endocannabinoid system (ECS), which consists of receptors CB1 and CB2; their endogenous ligands, such as N-arachidonoylethanolamine; and the enzymes that catalyze endocannabinoid biosynthesis or degradation. Preclinical and clinical findings suggest a possible role for endocannabinoids and related lipids, such as palmitoylethanolamide (PEA), in migraine-related pain treatment. In animal models of migraine-related pain, endocannabinoid tone modulation via inhibition of endocannabinoid-catabolizing enzymes has been a particular focus of research. METHODS To conduct a narrative review of available data on the possible effects of cannabis, endocannabinoids, and other lipids in migraine-related pain, relevant key words were used to search the PubMed/MEDLINE database for basic and clinical studies. RESULTS Endocannabinoids and PEA seem to reduce trigeminal nociception by interacting with many pathways associated with migraine, suggesting a potential synergistic or similar effect. CONCLUSIONS Modulation of the metabolic pathways of the ECS may be a basis for new migraine treatments. The multiplicity of options and the wealth of data already obtained in animal models underscore the importance of further advancing research in this area. Multiple molecules related to the ECS or to allosteric modulation of CB1 receptors have emerged as potential therapeutic targets in migraine-related pain. The complexity of the ECS calls for accurate biochemical and pharmacological characterization of any new compounds undergoing testing and development.
Collapse
Affiliation(s)
- Rosaria Greco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Miriam Francavilla
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lara Ahmad
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Wiley MB, Perez PA, Argueta DA, Avalos B, Wood CP, DiPatrizio NV. UPLC-MS/MS Method for Analysis of Endocannabinoid and Related Lipid Metabolism in Mouse Mucosal Tissue. Front Physiol 2021; 12:699712. [PMID: 34335305 PMCID: PMC8317065 DOI: 10.3389/fphys.2021.699712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid system is expressed in cells throughout the body and controls a variety of physiological and pathophysiological functions. We describe robust and reproducible UPLC-MS/MS-based methods for analyzing metabolism of the endocannabinoids, 2-arachidonoyl-sn-glycerol and arachidonoyl ethanolamide, and related monoacylglycerols (MAGs) and fatty acid ethanolamides (FAEs), respectively, in mouse mucosal tissues (i.e., intestine and lung). These methods are optimized for analysis of activity of the MAG biosynthetic enzyme, diacylglycerol lipase (DGL), and MAG degradative enzymes, monoacylglycerol lipase (MGL) and alpha/beta hydrolase domain containing-6 (ABHD6). Moreover, we describe a novel UPLC-MS/MS-based method for analyzing activity of the FAE degradative enzyme, fatty acid amide hydrolase (FAAH), that does not require use of radioactive substrates. In addition, we describe in vivo pharmacological methods to inhibit MAG biosynthesis selectively in the mouse small-intestinal epithelium. These methods will be useful for profiling endocannabinoid metabolism in rodent mucosal tissues in health and disease.
Collapse
Affiliation(s)
- Mark B Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Donovan A Argueta
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Courtney P Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Finn DP, Haroutounian S, Hohmann AG, Krane E, Soliman N, Rice ASC. Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain 2021; 162:S5-S25. [PMID: 33729211 PMCID: PMC8819673 DOI: 10.1097/j.pain.0000000000002268] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT This narrative review represents an output from the International Association for the Study of Pain's global task force on the use of cannabis, cannabinoids, and cannabis-based medicines for pain management, informed by our companion systematic review and meta-analysis of preclinical studies in this area. Our aims in this review are (1) to describe the value of studying cannabinoids and endogenous cannabinoid (endocannabinoid) system modulators in preclinical/animal models of pain; (2) to discuss both pain-related efficacy and additional pain-relevant effects (adverse and beneficial) of cannabinoids and endocannabinoid system modulators as they pertain to animal models of pathological or injury-related persistent pain; and (3) to identify important directions for future research. In service of these goals, this review (1) provides an overview of the endocannabinoid system and the pharmacology of cannabinoids and endocannabinoid system modulators, with specific relevance to animal models of pathological or injury-related persistent pain; (2) describes pharmacokinetics of cannabinoids in rodents and humans; and (3) highlights differences and discrepancies between preclinical and clinical studies in this area. Preclinical (rodent) models have advanced our understanding of the underlying sites and mechanisms of action of cannabinoids and the endocannabinoid system in suppressing nociceptive signaling and behaviors. We conclude that substantial evidence from animal models supports the contention that cannabinoids and endocannabinoid system modulators hold considerable promise for analgesic drug development, although the challenge of translating this knowledge into clinically useful medicines is not to be underestimated.
Collapse
Affiliation(s)
- David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, Human Biology Building, National University of Ireland Galway, University Road, Galway, Ireland
| | - Simon Haroutounian
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience, and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Elliot Krane
- Departments of Anesthesiology, Perioperative, and Pain Medicine, & Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Nadia Soliman
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| | - Andrew SC Rice
- Pain Research, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
7
|
Sempio C, Klawitter J, Jackson M, Freni F, Shillingburg R, Hutchison K, Bidwell LC, Christians U, Klawitter J. Analysis of 14 endocannabinoids and endocannabinoid congeners in human plasma using column switching high-performance atmospheric pressure chemical ionization liquid chromatography-mass spectrometry. Anal Bioanal Chem 2021; 413:3381-3392. [PMID: 33817753 DOI: 10.1007/s00216-021-03280-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
The endocannabinoid system (ECS) is a complex cell-signaling system. To address the growing need of analytics capturing endocannabinoid levels to investigate the ECS, we developed and validated an assay for the quantitative analysis of 14 endocannabinoids and congeners. A simple extraction using protein precipitation with acetonitrile followed by online-trapping high-performance liquid chromatography-tandem mass spectrometry (LC/LC-MS/MS) was used to monitor the levels of 14 endocannabinoids in plasma. The assay was validated and intra-run and inter-run accuracies and imprecisions as well as matrix effects, recoveries, and sample stabilities were determined. As a proof of concept, a subset of study samples after naturalistic administration of Cannabis flower and concentrate was analyzed. With the exception of N-oleoyl dopamine and oleamide, all endocannabinoids fulfilled the predefined acceptance criteria. Reproducible recoveries and no significant matrix effects were observed. Sample stability was an issue. Analysis of the proof-of-concept study samples revealed a significantly (p = 0.006) higher concentration of docosatetraenoyl ethanolamide in concentrate users (300 ± 13 pg/mL) compared to flower users (252 ± 11 pg/mL). A robust, sensitive high-throughput assay for the quantitation of 14 endocannabinoids and congeners was successfully validated. Our study showed that it is mandatory to (A) appropriately stabilize samples and (B) separate and separately quantify 1-AG and 2-AG; otherwise, study results are unreliable. The analysis of study samples from Cannabis flower users versus Cannabis concentrate users revealed higher levels of docosatetraenoyl ethanolamide and anandamide (n.s.) in high THC concentrate users in accordance with the existing literature, supporting the validity of the assay measurements. Graphical abstract.
Collapse
Affiliation(s)
- Cristina Sempio
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jelena Klawitter
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew Jackson
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Francesca Freni
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100, Pavia, Italy
| | - Ryan Shillingburg
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kent Hutchison
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - L Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int J Mol Sci 2021; 22:ijms22073661. [PMID: 33915889 PMCID: PMC8036872 DOI: 10.3390/ijms22073661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
Collapse
|
9
|
Gupta MN, Alam A, Hasnain SE. Protein promiscuity in drug discovery, drug-repurposing and antibiotic resistance. Biochimie 2020; 175:50-57. [PMID: 32416199 DOI: 10.1016/j.biochi.2020.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/01/2022]
Abstract
Proteins are supposed to bind to their substrates/ligands in a specific manner via their pre-formed binding sites, according to classical biochemistry. In recent years, several types of deviations from this norm have been observed and called promiscuous behavior. Enzymatic promiscuities allow several biochemical functions to be carried out by the same enzyme. The promiscuous activity can also be the origin of "new proteins" via gene duplication. In more recent years, proteins from prokaryotes, eukaryotes and viruses have been found to have intrinsic disorder and lack a preformed binding site. Intrinsic disorder is exploited in regulatory proteins such as those that are involved in transcription and signal transduction. Such proteins function by folding locally while binding to their ligands or interacting with other proteins. These phenomena have also been classified as examples of protein promiscuity and encompass diverse kinds of ligands that can bind to a protein. Given the significant extent of structural homology in many protein families, it is not surprising that ligands also have been found to display promiscuity. Promiscuous behavior of proteins offers both challenges and opportunities to the drug discovery programs such as drug repurposing. Pathogens when exposed to antibiotics exploit protein promiscuity in several ways to develop resistance to the drug. There is increasing evidence now to support that the disorder in proteins is a major tool used by pathogens for virulence and evade drug action by exploiting protein promiscuity. This review provides a holistic view of this multi-faceted phenomenon called protein promiscuity.
Collapse
Affiliation(s)
- Munishwar N Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Anwar Alam
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Seyed E Hasnain
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Professor CR Rao Road, Hyderabad, 500046, India.
| |
Collapse
|
10
|
n-3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer. Int J Mol Sci 2020; 21:ijms21072279. [PMID: 32224850 PMCID: PMC7178041 DOI: 10.3390/ijms21072279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Over the last decades a renewed interest in n−3 very long polyunsaturated fatty acids (PUFAs), derived mainly from fish oils in the human diet, has been observed because of their potential effects against cancer diseases, including breast carcinoma. These n−3 PUFAs mainly consist of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that, alone or in combination with anticancer agents, induce cell cycle arrest, autophagy, apoptosis, and tumor growth inhibition. A large number of molecular targets of n−3 PUFAs have been identified and multiple mechanisms appear to underlie their antineoplastic activities. Evidence exists that EPA and DHA also elicit anticancer effects by the conversion to their corresponding ethanolamide derivatives in cancer cells, by binding and activation of different receptors and distinct signaling pathways. Other conjugates with serotonin or dopamine have been found to exert anti-inflammatory activities in breast tumor microenvironment, indicating the importance of these compounds as modulators of tumor epithelial/stroma interplay. The objective of this review is to provide a general overview and an update of the current n−3 PUFA derivative research and to highlight intriguing aspects of the potential therapeutic benefits of these low-toxicity compounds in breast cancer treatment and care.
Collapse
|
11
|
Mun CJ, Letzen JE, Peters EN, Campbell CM, Vandrey R, Gajewski-Nemes J, DiRenzo D, Caufield-Noll C, Finan PH. Cannabinoid effects on responses to quantitative sensory testing among individuals with and without clinical pain: a systematic review. Pain 2020; 161:244-260. [PMID: 31613869 PMCID: PMC7162682 DOI: 10.1097/j.pain.0000000000001720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There has been an explosion of interest in the utility of cannabinoids as potential analgesics. This systematic review critically synthesizes the evidence for cannabinoid analgesic effects on quantitative sensory testing outcomes in both healthy adults and patients with chronic noncancer pain. Our systematic review protocol is preregistered on PROSPERO (CRD42018117367). An electronic search was made in PsycINFO, Cochrane, Google Scholar, Embase, and Pubmed of all literature published until August 2018. Of the 1217 studies found from the search, a total 39 placebo-controlled studies that met the eligibility criteria were synthesized for this study. Because of substantial heterogeneity of study designs, populations, cannabinoid compounds, and quantitative sensory testing outcomes, meta-analysis was not conducted. More consistent evidence of cannabinoid analgesia was observed for inhaled cannabis than synthetic cannabinoids. Analgesic effects were most commonly observed in tests of cold pain sensitivity, and hyperalgesic effects were most commonly observed in tests of electrical stimulation. Patterns of findings from studies with healthy subjects did not substantively differ from those with chronic noncancer pain. However, these observations are qualified by the high degree of inconsistency across studies and methodological heterogeneity. We offer recommendations for future studies to improve study rigor and reproducibility.
Collapse
|
12
|
Páez JA, Campillo NE. Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases. Curr Med Chem 2019; 26:3300-3340. [DOI: 10.2174/0929867325666180226095132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
:
The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 cloned
in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics
could only be justified by the existence of endogenous ligands that are capable of binding to
them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the
isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA),
two years later and the subsequent identification of a family of lipid transmitters known as the
fatty acid ester 2-arachidonoylglycerol (2-AG).
:
The endogenous cannabinoid system is a complex signalling system that comprises transmembrane
endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the
specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation.
:
The endocannabinoid system has been implicated in a wide diversity of biological processes,
in both the central and peripheral nervous systems, including memory, learning, neuronal development,
stress and emotions, food intake, energy regulation, peripheral metabolism, and
the regulation of hormonal balance through the endocrine system.
:
In this context, this article will review the current knowledge of the therapeutic potential of
cannabinoid receptor as a target in Alzheimer’s disease and other less well-known diseases
that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome.
:
The therapeutic applications will be addressed through the study of cannabinoid agonists acting
as single drugs and multi-target drugs highlighting the CB2 receptor agonist.
Collapse
Affiliation(s)
- Juan A. Páez
- Instituto de Quimica Medica (IQM-CSIC). C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologicas (CIB-CSIC). C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
13
|
Lafreniere J, Kelly M. Potential for endocannabinoid system modulation in ocular pain and inflammation: filling the gaps in current pharmacological options. Neuronal Signal 2018; 2:NS20170144. [PMID: 32714590 PMCID: PMC7373237 DOI: 10.1042/ns20170144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
Challenges in the management of ocular pain are an underappreciated topic. Currently available therapeutics lack both efficacy and clear guidelines for their use, with many also possessing unacceptable side effects. Promising novel agents would offer analgesic, anti-inflammatory, and possibly neuroprotective actions; have favorable ocular safety profiles; and show potential in managing neuropathic pain. Growing evidence supports a link between the endocannabinoid system (ECS) and a range of physiological and disease processes, notably those involving inflammation and pain. Both preclinical and clinical data suggest analgesic and anti-inflammatory actions of cannabinoids and ECS-modifying drugs in chronic pain conditions, including those of neuropathic origin. This review will examine existing evidence for the anatomical and physiological basis of ocular pain, specifically, ocular surface disease and the development of chronic ocular pain. The mechanism of action, efficacy, and limitations of currently available treatments will be discussed, and current knowledge related to ECS-modulation of ocular pain and inflammatory disease will be summarized. A perspective will be provided on the future directions of ECS research in terms of developing cannabinoid therapeutics for ocular pain.
Collapse
Affiliation(s)
| | - Melanie E.M. Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
14
|
Häuser W, Finn DP, Kalso E, Krcevski-Skvarc N, Kress HG, Morlion B, Perrot S, Schäfer M, Wells C, Brill S. European Pain Federation (EFIC) position paper on appropriate use of cannabis-based medicines and medical cannabis for chronic pain management. Eur J Pain 2018; 22:1547-1564. [PMID: 30074291 DOI: 10.1002/ejp.1297] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/24/2018] [Indexed: 01/30/2023]
Abstract
Cannabis-based medicines are being approved for pain management in an increasing number of European countries. There are uncertainties and controversies on the role and appropriate use of cannabis-based medicines for the management of chronic pain. EFIC convened a European group of experts, drawn from a diverse range of basic science and relevant clinical disciplines, to prepare a position paper to empower and inform specialist and nonspecialist prescribers on appropriate use of cannabis-based medicines for chronic pain. The expert panel reviewed the available literature and harnessed the clinical experience to produce these series of recommendations. Therapy with cannabis-based medicines should only be considered by experienced clinicians as part of a multidisciplinary treatment and preferably as adjunctive medication if guideline-recommended first- and second-line therapies have not provided sufficient efficacy or tolerability. The quantity and quality of evidence are such that cannabis-based medicines may be reasonably considered for chronic neuropathic pain. For all other chronic pain conditions (cancer, non-neuropathic noncancer pain), the use of cannabis-based medicines should be regarded as an individual therapeutic trial. Realistic goals of therapy have to be defined. All patients must be kept under close clinical surveillance. As with any other medical therapy, if the treatment fails to reach the predefined goals and/or the patient is additionally burdened by an unacceptable level of adverse effects and/or there are signs of abuse and misuse of the drug by the patient, therapy with cannabis-based medicines should be terminated. SIGNIFICANCE This position paper provides expert recommendations for nonspecialist and specialist healthcare professionals in Europe, on the importance and the appropriate use of cannabis-based medicines as part of a multidisciplinary approach to pain management, in properly selected and supervised patients.
Collapse
Affiliation(s)
- Winfried Häuser
- Department Internal Medicine 1, Klinikum Saarbrücken gGmbH, Saarbrücken, Germany.,Department Psychosomatic Medicine and Psychotherapy, Technische Universität München, Munich, Germany
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Eija Kalso
- Department of Perioperative Medicine, Intensive Care and Pain Medicine, Pain Clinic, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nevenka Krcevski-Skvarc
- Department of Anesthesiology, Intensive Care and Pain Treatment, Faculty of Medicine of University Maribor, University Medical Center Maribor and Institute for Palliative Medicine and Care, Maribor, Slovenia
| | - Hans-Georg Kress
- Department of Special Anaesthesia and Pain Therapy, Medical University of Vienne/AKH, Vienna, Austria
| | - Bart Morlion
- Leuven Centre for Algology and Pain Management, University Hospital Leuven, Leuven, Belgium
| | - Serge Perrot
- Department of Pain Center and INSERM U987, Cochin Hospital, AP-HP, Paris Descartes University, Paris, France
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité University Berlin, Berlin, Germany
| | | | - Silviu Brill
- Pain Center, Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
15
|
Camilleri M. Cannabinoids and gastrointestinal motility: Pharmacology, clinical effects, and potential therapeutics in humans. Neurogastroenterol Motil 2018; 30:e13370. [PMID: 29745439 PMCID: PMC6150799 DOI: 10.1111/nmo.13370] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cannabinoid agents and cannabis are frequently used for relief of diverse gastrointestinal symptoms. PURPOSE The objective of this article is to increase the awareness of gastroenterologists to the effects of cannabinoids on gastrointestinal motility, as gastroenterologists are likely to encounter patients who are taking cannabinoids, or those with dysmotility that may be associated with cannabinoid mechanisms. The non-selective cannabinoid agonist, dronabinol, retards gastric emptying and inhibits colonic tone and phasic pressure activity. In addition to the well-recognized manifestations of cannabinoid hyperemesis, cannabinoid mechanisms result in human and animal models of gastrointestinal and colonic dysmotility. Decreased enteric FAAH activity is associated with colonic inertia in slow transit constipation and, conversely, the orphan G protein-coupled receptor, GPR55, is overexpressed in streptozotocin-induced gastroparesis, suggesting it is involved in inhibition of antral motility. Experimental therapies in gastrointestinal motility and functional disorders are focused predominantly on pain relief mediated through cannabinoid 2 receptors or inhibition of DAGLα to normalize colonic transit. In summary, cannabinoid mechanisms and pharmacology are relevant to the current and future practice of clinical gastroenterology.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, MN
| |
Collapse
|
16
|
Wang Y, Lin W, Wu N, He X, Wang J, Feng Z, Xie XQ. An insight into paracetamol and its metabolites using molecular docking and molecular dynamics simulation. J Mol Model 2018; 24:243. [PMID: 30121710 PMCID: PMC6733030 DOI: 10.1007/s00894-018-3790-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Paracetamol is a relatively safe analgesia/antipyretic drug without the risks of addiction, dependence, tolerance, and withdrawal when used alone. However, when administrated in an opioid/paracetamol combination product, which often contains a large quantity of paracetamol, it can be potentially dangerous due to the risk of hepatotoxicity. Paracetamol is known to be metabolized into N-(4-hydroxyphenyl)-arachidonamide (AM404) via fatty acid amide hydrolase (FAAH) and into N-acetyl-p-benzoquinone imine (NAPQI) via cytochrome P450 (CYP) enzymes. However, the underlying mechanism of paracetamol is still unclear. In addition, paracetamol has the potential to interact with other drugs that are also involved with CYP family enzymes (inducer/inhibitor/substrate), an example being illicit drugs. In our present work, we looked into the relationship between paracetamol and its metabolites (AM404 and NAPQI) using molecular docking and molecular dynamics (MD) simulations. We first carried out a series of molecular docking studies between paracetamol/AM404/NAQPI and their reported targets, including CYP 2E1, FAAH, TRPA1, CB1, and TRPV1. Subsequently, we performed MD simulations and energy decomposition for CB1-AM404, TRPV1-AM404, and TRPV1-NAPQI for further investigation of the dynamics interactions. Finally, we summarized and discussed the reported drug-drug interactions between paracetamol and central nervous system drugs, especially illicit drugs. Overall, we are able to provide new insights into the structural and functional roles of paracetamol and its metabolites that can inform the potential prevention and treatment of paracetamol overdose. Graphical abstract Paracetamol and its metabolites.
Collapse
Affiliation(s)
- Yuanqiang Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing, 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Effect Evaluation, Chongqing, 400054, China
| | - Weiwei Lin
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nan Wu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
17
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Zoltan V. Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - George Hasko
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
18
|
Hourani W, Alexander SPH. Cannabinoid ligands, receptors and enzymes: Pharmacological tools and therapeutic potential. Brain Neurosci Adv 2018; 2:2398212818783908. [PMID: 32166144 PMCID: PMC7058259 DOI: 10.1177/2398212818783908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/15/2022] Open
Abstract
Endocannabinoids have been identified to have roles in numerous physiological and pathological processes. Largely due to the association of the effects of Cannabis administration on mental states, the CNS impact of the endocannabinoid system has been the most intensively studied. Here, we provide a brief summary of the endocannabinoid system, comprising the receptors and the multiple endogenous lipid derivatives which activate them, as well as the enzymes which control the levels of these lipid derivatives. We identify pharmacological tools which may be used to interrogate the endocannabinoid system, as well as current and future options to exploit the system in the clinic.
Collapse
Affiliation(s)
- Wafa Hourani
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
19
|
Korf HW. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol 2018; 258:236-243. [PMID: 28511899 DOI: 10.1016/j.ygcen.2017.05.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 11/28/2022]
Abstract
Seasonal (circannual) rhythms play an important role for the control of body functions (reproduction, metabolism, immune responses) in nearly all living organisms. Also humans are affected by the seasons with regard to immune responses and mental functions, the seasonal affective disorder being one of the most prominent examples. The hypophysial pars tuberalis (PT), an important interface between the hypophysial pars distalis and neuroendocrine centers in the brain, plays an essential role in the regulation of seasonal functions and may even be the seat of the circannual clock. Photoperiodic signals provide a major input to the PT. While the perception of these signals involves extraocular photoreceptors in non-mammalian species (birds, fish), mammals perceive photoperiodic signals exclusively in the retina. A multisynaptic pathway connects the retina with the pineal organ where photoperiodic signals are translated into the neurohormone melatonin that is rhythmically produced night by night and encodes the length of the night. Melatonin controls the functional activity of the mammalian PT by acting upon MT1 melatonin receptors. The PT sends its output signals via retrograde and anterograde pathways. The retrograde pathway targetting the hypothalamus employs TSH as messenger and controls a local hypothalamic T3 system. As discovered in Japanese quail, TSH triggers molecular cascades mediating thyroid hormone conversion in the ependymal cell layer of the infundibular recess of the third ventricle. The local accumulation of T3 in the mediobasal hypothalamus (MBH) appears to activate the gonadal axis by affecting the neuro-glial interaction between GnRH terminals and tanycytes in the median eminence. This retrograde pathway is conserved in photoperiodic mammals (sheep and hamsters), and even in non-photoperiodic laboratory mice provided that they are capable to synthesize melatonin. The anterograde pathway is implicated in the control of prolactin secretion, targets cells in the PD and supposedly employs small molecules as signal substances collectively denominated as "tuberalins". Several "tuberalin" candidates have been proposed, such as tachykinins, the secretory protein TAFA and endocannabinoids (EC). The PT-intrinsic EC system was first demonstrated in Syrian hamsters and shown to respond to photoperiodic changes. Subsequently, the EC system was also demonstrated in the PT of mice, rats and humans. To date, 2-arachidonoylglycerol (2-AG) appears as the most important endocannabinoid from the PT. Likely targets for the EC are folliculo-stellate cells that contain the CB1 receptor and appear to contact lactotroph cells. The CB1 receptor was also found on corticotroph cells which appear as a further target of the EC. Recently, the CB1 receptor was also localized to CRF-containing nerve fibers running in the outer zone of the median eminence. This finding suggests that the EC system of the PT contributes not only to the anterograde, but also to the retrograde pathway. Taken together, the results support the concept that the PT transmits its signals via a "cocktail" of messenger molecules which operate also in other brain areas and systems rather than through PT-specific "tuberalins". Furthermore, they may attribute a novel function to the PT, namely the modulation of the stress response and immune functions.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Krug RG, Lee HB, El Khoury LY, Sigafoos AN, Petersen MO, Clark KJ. The endocannabinoid gene faah2a modulates stress-associated behavior in zebrafish. PLoS One 2018; 13:e0190897. [PMID: 29304078 PMCID: PMC5756047 DOI: 10.1371/journal.pone.0190897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/21/2017] [Indexed: 11/18/2022] Open
Abstract
The ability to orchestrate appropriate physiological and behavioral responses to stress is important for survival, and is often dysfunctional in neuropsychiatric disorders that account for leading causes of global disability burden. Numerous studies have shown that the endocannabinoid neurotransmitter system is able to regulate stress responses and could serve as a therapeutic target for the management of these disorders. We used quantitative reverse transcriptase-polymerase chain reactions to show that genes encoding enzymes that synthesize (abhd4, gde1, napepld), enzymes that degrade (faah, faah2a, faah2b), and receptors that bind (cnr1, cnr2, gpr55-like) endocannabinoids are expressed in zebrafish (Danio rerio). These genes are conserved in many other vertebrates, including humans, but fatty acid amide hydrolase 2 has been lost in mice and rats. We engineered transcription activator-like effector nucleases to create zebrafish with mutations in cnr1 and faah2a to test the role of these genes in modulating stress-associated behavior. We showed that disruption of cnr1 potentiated locomotor responses to hyperosmotic stress. The increased response to stress was consistent with rodent literature and served to validate the use of zebrafish in this field. Moreover, we showed for the first time that disruption of faah2a attenuated the locomotor responses to hyperosmotic stress. This later finding suggests that FAAH2 may be an important mediator of stress responses in non-rodent vertebrates. Accordingly, FAAH and FAAH2 modulators could provide distinct therapeutic options for stress-aggravated disorders.
Collapse
Affiliation(s)
- Randall G. Krug
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences (Neurobiology of Disease Track), Mayo Clinic, Rochester, MN, United States of America
- Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Han B. Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences (Neurobiology of Disease Track), Mayo Clinic, Rochester, MN, United States of America
| | - Louis Y. El Khoury
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Ashley N. Sigafoos
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Morgan O. Petersen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
21
|
Lykhmus O, Uspenska K, Koval L, Lytovchenko D, Voytenko L, Horid'ko T, Kosiakova H, Gula N, Komisarenko S, Skok M. N-Stearoylethanolamine protects the brain and improves memory of mice treated with lipopolysaccharide or immunized with the extracellular domain of α7 nicotinic acetylcholine receptor. Int Immunopharmacol 2017; 52:290-296. [PMID: 28963942 DOI: 10.1016/j.intimp.2017.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Neuroinflammation is an important risk factor for neurodegenerative disorders like Alzheimer's disease. Nicotinic acetylcholine receptors of α7 subtype (α7 nAChRs) regulate inflammatory processes in various tissues, including the brain. N-stearoylethanolamine (NSE) is a biologically active cell membrane component with anti-inflammatory and membrane-protective properties. Previously we found that mice injected with bacterial lipopolysaccharide (LPS) or immunized with recombinant extracellular domain (1-208) of α7 nAChR subunit possessed decreased α7 nAChR levels, accumulated pathogenic amyloid-beta peptide Aβ(1-42) in the brain and demonstrated impaired episodic memory compared to non-treated mice. Here we studied the effect of NSE on behavior and brain components of LPS- treated or α7(1-208)-immunized mice. NSE, given per os, non-significantly decreased LPS-stimulated interleukin-6 elevation in the brain, slowed down the α7(1-208)-specific IgG antibody production and prevented the antibody penetration into the brain of mice. NSE prevented the loss of α7 nAChRs and accumulation of α7-bound Aβ(1-42) in the brain and brain mitochondria of LPS-treated or α7(1-208)-immunized mice and supported mitochondria resistance to apoptosis by attenuating Ca2+-stimulated cytochrome c release. Finally, NSE significantly improved episodic memory of mice impaired by either LPS treatment or immunization with α7(1-208). The results of our study demonstrate a therapeutic potential of NSE for prevention of cognitive disfunction caused by neuroinflammation or autoimmune reaction that allows suggesting this drug as a candidate for the treatment or prophylaxis of Alzheimer's pathology.
Collapse
Affiliation(s)
- Olena Lykhmus
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Kateryna Uspenska
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Lyudmyla Koval
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Daria Lytovchenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Larysa Voytenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Tetyana Horid'ko
- Department of Lipid Biochemistry, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Halyna Kosiakova
- Department of Lipid Biochemistry, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Nadiya Gula
- Department of Lipid Biochemistry, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Serhiy Komisarenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine
| | - Maryna Skok
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry, 9, Leontovycha str, 01030 Kyiv, Ukraine.
| |
Collapse
|
22
|
Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V. The cannabinoid system and pain. Neuropharmacology 2017; 124:105-120. [PMID: 28625720 PMCID: PMC5785108 DOI: 10.1016/j.neuropharm.2017.06.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 01/20/2023]
Abstract
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Stephen G Woodhams
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - David P Finn
- Pharmacology & Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Interdisciplinary Biochemistry Graduate Program, Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
23
|
Starowicz K, Finn DP. Cannabinoids and Pain: Sites and Mechanisms of Action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:437-475. [PMID: 28826543 DOI: 10.1016/bs.apha.2017.05.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The endocannabinoid system, consisting of the cannabinoid1 receptor (CB1R) and cannabinoid2 receptor (CB2R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB1R and CB2R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB1R agonists, CB2R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB1R/non-CB2R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pain Pathophysiology, Krakow, Poland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|
24
|
Pharmacological inhibition of FAAH modulates TLR-induced neuroinflammation, but not sickness behaviour: An effect partially mediated by central TRPV1. Brain Behav Immun 2017; 62:318-331. [PMID: 28237711 DOI: 10.1016/j.bbi.2017.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 01/08/2023] Open
Abstract
Aberrant activation of toll-like receptors (TLRs), key components of the innate immune system, has been proposed to underlie and exacerbate a range of central nervous system disorders. Increasing evidence supports a role for the endocannabinoid system in modulating inflammatory responses including those mediated by TLRs, and thus this system may provide an important treatment target for neuroinflammatory disorders. However, the effect of modulating endocannabinoid tone on TLR-induced neuroinflammation in vivo and associated behavioural changes is largely unknown. The present study examined the effect of inhibiting fatty acid amide hydrolyase (FAAH), the primary enzyme responsible for the metabolism of anandamide (AEA), in vivo on TLR4-induced neuroimmune and behavioural responses, and evaluated sites and mechanisms of action. Systemic administration of the FAAH inhibitor PF3845 increased levels of AEA, and related FAAH substrates N-oleoylethanolamide (OEA) and N-palmitoylethanolamide (PEA), in the frontal cortex and hippocampus of rats, an effect associated with an attenuation in the expression of pro- and anti-inflammatory cytokines and mediators measured 2hrs following systemic administration of the TLR4 agonist, lipopolysaccharide (LPS). These effects were mimicked by central i.c.v. administration of PF3845, but not systemic administration of the peripherally-restricted FAAH inhibitor URB937. Central antagonism of TRPV1 significantly attenuated the PF3845-induced decrease in IL-6 expression, effects not observed following antagonism of CB1, CB2, PPARα, PPARγ or GPR55. LPS-induced a robust sickness-like behavioural response and increased the expression of markers of glial activity and pro-inflammatory cytokines over 24hrs. Systemic administration of PF3845 modulated the TLR4-induced expression of neuroimmune mediators and anhedonia without altering acute sickness behaviour. Overall, these findings support an important role for FAAH substrates directly within the brain in the regulation of TLR4-associated neuroinflammation and highlight a role for TRPV1 in partially mediating these effects.
Collapse
|
25
|
Cairns EA, Toguri JT, Porter RF, Szczesniak AM, Kelly MEM. Seeing over the horizon - targeting the endocannabinoid system for the treatment of ocular disease. J Basic Clin Physiol Pharmacol 2017; 27:253-65. [PMID: 26565550 DOI: 10.1515/jbcpp-2015-0065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
The observation that marijuana reduces intraocular pressure was made by Hepler and Frank in the 1970s. Since then, there has been a significant body of work investigating cannabinoids for their potential use as therapeutics. To date, no endocannabinoid system (ECS)-modulating drug has been approved for clinical use in the eye; however, recent advances in our understanding of the ECS, as well as new pharmacological tools, has renewed interest in the development of ocular ECS-based therapeutics. This review summarizes the current state-of-affairs for the use of ECS-modulating drugs for the treatment of glaucoma and ocular inflammatory and ischemic disease.
Collapse
|
26
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Priestley R, Glass M, Kendall D. Functional Selectivity at Cannabinoid Receptors. CANNABINOID PHARMACOLOGY 2017; 80:207-221. [DOI: 10.1016/bs.apha.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Identification of an endocannabinoid system in the rat pars tuberalis—a possible interface in the hypothalamic-pituitary-adrenal system? Cell Tissue Res 2016; 368:115-123. [DOI: 10.1007/s00441-016-2544-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/23/2016] [Indexed: 01/23/2023]
|
29
|
Scarpelli R, Sasso O, Piomelli D. A Double Whammy: Targeting Both Fatty Acid Amide Hydrolase (FAAH) and Cyclooxygenase (COX) To Treat Pain and Inflammation. ChemMedChem 2016; 11:1242-51. [PMID: 26486424 PMCID: PMC4840092 DOI: 10.1002/cmdc.201500395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/10/2022]
Abstract
Pain states that arise from non-resolving inflammation, such as inflammatory bowel disease or arthritis, pose an unusually difficult challenge for therapy because of the complexity and heterogeneity of their underlying mechanisms. It has been suggested that key nodes linking interactive pathogenic pathways of non-resolving inflammation might offer novel targets for the treatment of inflammatory pain. Nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit the cyclooxygenase (COX)-mediated production of pain- and inflammation-inducing prostanoids, are a common first-line treatment for this condition, but their use is limited by mechanism-based side effects. The endogenous levels of anandamide, an endocannabinoid mediator with analgesic and tissue-protective functions, are regulated by fatty acid amide hydrolase (FAAH). This review outlines the pharmacological and chemical rationale for the simultaneous inhibition of COX and FAAH activities with designed multitarget agents. Preclinical studies indicate that such agents may combine superior anti-inflammatory efficacy with reduced toxicity.
Collapse
Affiliation(s)
- Rita Scarpelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Oscar Sasso
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Daniele Piomelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA, 92697-4625, USA.
| |
Collapse
|
30
|
Boorman E, Zajkowska Z, Ahmed R, Pariante CM, Zunszain PA. Crosstalk between endocannabinoid and immune systems: a potential dysregulation in depression? Psychopharmacology (Berl) 2016; 233:1591-604. [PMID: 26483037 PMCID: PMC4828487 DOI: 10.1007/s00213-015-4105-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND The endocannabinoid (eCB) system, an endogenous lipid signaling system, appears to be dysregulated in depression. The role of endocannabinoids (eCBs) as potent immunomodulators, together with the accumulating support for a chronic low-grade inflammatory profile in depression, suggests a compelling hypothesis for a fundamental impairment in their intercommunication, in depression. OBJECTIVE We aim to review previous literature on individual associations between the immune and eCB systems and depression. It will focus on peripheral and central mechanisms of crosstalk between the eCB and immune systems. A potential dysregulation in this crosstalk will be discussed in the context of depression. RESULTS Investigations largely report a hypoactivity of the eCB system and increased inflammatory markers in individuals with depression. Findings depict a multifaceted communication whereby immunocompetent and eCB-related cells can both influence the suppression and enhancement of the other's activity in both the periphery and central nervous system. A dysregulation of the eCB system, as seen in depression, appears to be associated with central and peripheral concentrations of inflammatory agents implicated in the pathophysiology of this illness. CONCLUSION The eCB and immune systems have been individually associated with and implicated in pathogenic mechanisms of depression. Both systems tightly regulate the other's activity. As such, a dysregulation in this crosstalk has potential to influence the onset and maintenance of this neuropsychiatric illness. However, few studies have investigated both systems and depression conjointly. This review highlights the demand to consider joint eCB-immune interactions in the pathoetiology of depression.
Collapse
Affiliation(s)
- Emily Boorman
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Zuzanna Zajkowska
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rumsha Ahmed
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
31
|
Quantitative analysis of arachidonic acid, endocannabinoids, N- acylethanolamines and steroids in biological samples by LCMS/MS: Fit to purpose. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1012-1013:215-21. [DOI: 10.1016/j.jchromb.2015.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 02/03/2023]
|
32
|
Abstract
In this review, I will consider the dual nature of Cannabis and cannabinoids. The duality arises from the potential and actuality of cannabinoids in the laboratory and clinic and the 'abuse' of Cannabis outside the clinic. The therapeutic areas currently best associated with exploitation of Cannabis-related medicines include pain, epilepsy, feeding disorders, multiple sclerosis and glaucoma. As with every other medicinal drug of course, the 'trick' will be to maximise the benefit and minimise the cost. After millennia of proximity and exploitation of the Cannabis plant, we are still playing catch up with an understanding of its potential influence for medicinal benefit.
Collapse
Affiliation(s)
- Stephen P H Alexander
- Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom.
| |
Collapse
|
33
|
Brindisi M, Brogi S, Maramai S, Grillo A, Borrelli G, Butini S, Novellino E, Allarà M, Ligresti A, Campiani G, Di Marzo V, Gemma S. Harnessing the pyrroloquinoxaline scaffold for FAAH and MAGL interaction: definition of the structural determinants for enzyme inhibition. RSC Adv 2016. [DOI: 10.1039/c6ra12524g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pharmacogenic pyrroloquinoxaline scaffold has been exploited for developing piperazine and 4-aminopiperidine carboxamides/carbamates as inhibitors of the endocannabinoids’ catabolic enzymes fatty acid amide hydrolase and monoacylglycerol lipase.
Collapse
|
34
|
Redmond WJ, Cawston EE, Grimsey NL, Stuart J, Edington AR, Glass M, Connor M. Identification of N-arachidonoyl dopamine as a highly biased ligand at cannabinoid CB1 receptors. Br J Pharmacol 2016; 173:115-27. [PMID: 26398720 PMCID: PMC4813372 DOI: 10.1111/bph.13341] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE N-arachidonyl dopamine (NADA) has been identified as a putative endocannabinoid, but there is little information about which signalling pathways it activates. The purpose of this study was to identify the signalling pathways activated by NADA in vitro. EXPERIMENTAL APPROACH Human or rat cannabinoid CB1 receptors were expressed in AtT20, CHO or HEK 293 cells. NADA displacement of radiolabelled cannabinoids, and CB1 receptor mediated activation of K channels or ERK phosphorylation, release of intracellular calcium ([Ca]i ) and modulation of adenylyl cyclase were measured in addition to NADA effects on CB1 receptor trafficking. KEY RESULTS At concentrations up to 30 μM, NADA failed to activate any signalling pathways via CB1 receptors, with the exception of mobilization of [Ca]i . The elevations of [Ca]i were insensitive to pertussis toxin, and reduced or abolished by blockers of Gq /11 -dependent processes including U73122, thapsigargin and a peptide antagonist of Gq /11 activation. Prolonged NADA incubation produced modest loss of cell surface CB1 receptors. The prototypical cannabinoid agonist CP55940 signalled as expected in all assays. CONCLUSIONS AND IMPLICATIONS NADA is an ineffective agonist at most canonical cannabinoid receptor signalling pathways, but did promote mobilization of [Ca]i via Gq -dependent processes and some CB1 receptor trafficking. This signalling profile is distinct from that of any known cannabinoid, and suggests that NADA may have a unique spectrum of effects in vivo. Our results also indicate that it may be possible to identify highly biased CB1 receptor ligands displaying a subset of the pharmacological or therapeutic effects usually attributed to CB1 ligands.
Collapse
Affiliation(s)
- William J. Redmond
- Department of Biomedical Sciences, Faculty of Medicine and Health SciencesMacquarie UniversityNSW2109Australia
| | - Erin E. Cawston
- Department of Pharmacology and Clinical Pharmacology, and Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Natasha L. Grimsey
- Department of Pharmacology and Clinical Pharmacology, and Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Jordyn Stuart
- Department of Biomedical Sciences, Faculty of Medicine and Health SciencesMacquarie UniversityNSW2109Australia
| | - Amelia R. Edington
- Department of Biomedical Sciences, Faculty of Medicine and Health SciencesMacquarie UniversityNSW2109Australia
| | - Michelle Glass
- Department of Pharmacology and Clinical Pharmacology, and Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine and Health SciencesMacquarie UniversityNSW2109Australia
| |
Collapse
|
35
|
Fatty acids, endocannabinoids and inflammation. Eur J Pharmacol 2015; 785:96-107. [PMID: 26325095 DOI: 10.1016/j.ejphar.2015.08.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/01/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
Abstract
From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system. However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems. Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides. With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation. A key feature of this 'expanded' endocannabinoid system, or 'endocannabinoidome', is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities. Following an update on the role of the 'endocannabinoidome' in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners. Although its pleiotropic character poses scientific challenges, the 'expanded' endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases. In this respect, successes are more likely to come from 'multiple-target' than from 'single-target' strategies.
Collapse
|
36
|
Krug RG, Clark KJ. Elucidating cannabinoid biology in zebrafish (Danio rerio). Gene 2015; 570:168-79. [PMID: 26192460 DOI: 10.1016/j.gene.2015.07.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/11/2015] [Indexed: 02/01/2023]
Abstract
The number of annual cannabinoid users exceeds 100,000,000 globally and an estimated 9% of these individuals will suffer from dependency. Although exogenous cannabinoids, like those contained in marijuana, are known to exert their effects by disrupting the endocannabinoid system, a dearth of knowledge exists about the potential toxicological consequences on public health. Conversely, the endocannabinoid system represents a promising therapeutic target for a plethora of disorders because it functions to endogenously regulate a vast repertoire of physiological functions. Accordingly, the rapidly expanding field of cannabinoid biology has sought to leverage model organisms in order to provide both toxicological and therapeutic insights about altered endocannabinoid signaling. The primary goal of this manuscript is to review the existing field of cannabinoid research in the genetically tractable zebrafish model-focusing on the cannabinoid receptor genes, cnr1 and cnr2, and the genes that produce enzymes for synthesis and degradation of the cognate ligands anandamide and 2-arachidonylglycerol. Consideration is also given to research that has studied the effects of exposure to exogenous phytocannabinoids and synthetic cannabinoids that are known to interact with cannabinoid receptors. These results are considered in the context of either endocannabinoid gene expression or endocannabinoid gene function, and are integrated with findings from rodent studies. This provides the framework for a discussion of how zebrafish may be leveraged in the future to provide novel toxicological and therapeutic insights in the field of cannabinoid biology, which has become increasingly significant given recent trends in cannabis legislation.
Collapse
Affiliation(s)
- Randall G Krug
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Mayo Graduate School, Neurobiology of Disease Track, Mayo Clinic, Rochester, MN, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
37
|
Jean-Gilles L, Braitch M, Latif ML, Aram J, Fahey AJ, Edwards LJ, Robins RA, Tanasescu R, Tighe PJ, Gran B, Showe LC, Alexander SP, Chapman V, Kendall DA, Constantinescu CS. Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells. Acta Physiol (Oxf) 2015; 214:63-74. [PMID: 25704169 PMCID: PMC4669958 DOI: 10.1111/apha.12474] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/17/2014] [Accepted: 02/16/2015] [Indexed: 12/30/2022]
Abstract
Aims To investigate the regulation of cannabinoid receptors CB1 and CB2 on immune cells by pro‐inflammatory cytokines and its potential relevance to the inflammatory neurological disease, multiple sclerosis (MS). CB1 and CB2 signalling may be anti‐inflammatory and neuroprotective in neuroinflammatory diseases. Cannabinoids can suppress inflammatory cytokines but the effects of these cytokines on CB1 and CB2 expression and function are unknown. Methods Immune cells from peripheral blood were obtained from healthy volunteers and patients with MS. Expression of CB1 and CB2mRNA in whole blood cells, peripheral blood mononuclear cells (PBMC) and T cells was determined by quantitative real‐time polymerase chain reaction (qRT‐PCR). Expression of CB1 and CB2 protein was determined by flow cytometry. CB1 and CB2 signalling in PBMC was determined by Western blotting for Erk1/2. Results Pro‐inflammatory cytokines IL‐1β, IL‐6 and TNF‐α (the latter likely NF‐κB dependently) can upregulate CB1 and CB2 on human whole blood and peripheral blood mononuclear cells (PBMC). We also demonstrate upregulation of CB1 and CB2 and increased IL‐1β, IL‐6 and TNF‐α mRNA in blood of patients with MS compared with controls. Conclusion The levels of CB1 and CB2 can be upregulated by inflammatory cytokines, which can explain their increase in inflammatory conditions including MS.
Collapse
Affiliation(s)
- L. Jean-Gilles
- Division of Clinical Neuroscience; School of Medicine; University of Nottingham; Nottingham UK
| | - M. Braitch
- Division of Clinical Neuroscience; School of Medicine; University of Nottingham; Nottingham UK
| | - M. L. Latif
- Division of Neuroscience; School of Life Sciences; University of Nottingham; Nottingham UK
| | - J. Aram
- Division of Clinical Neuroscience; School of Medicine; University of Nottingham; Nottingham UK
| | - A. J. Fahey
- Division of Clinical Neuroscience; School of Medicine; University of Nottingham; Nottingham UK
| | - L. J. Edwards
- Division of Clinical Neuroscience; School of Medicine; University of Nottingham; Nottingham UK
| | - R. A. Robins
- Division of Immunity; School of Life Sciences; University of Nottingham; Nottingham UK
| | - R. Tanasescu
- Division of Clinical Neuroscience; School of Medicine; University of Nottingham; Nottingham UK
- Department of Neurology; Colentina Hospital; University of Medicine and Pharmacy Carol Davila; Bucharest Romania
| | - P. J. Tighe
- Division of Immunity; School of Life Sciences; University of Nottingham; Nottingham UK
| | - B. Gran
- Division of Clinical Neuroscience; School of Medicine; University of Nottingham; Nottingham UK
| | | | - S. P. Alexander
- Division of Neuroscience; School of Life Sciences; University of Nottingham; Nottingham UK
| | - V. Chapman
- Division of Neuroscience; School of Life Sciences; University of Nottingham; Nottingham UK
| | - D. A. Kendall
- Division of Neuroscience; School of Life Sciences; University of Nottingham; Nottingham UK
| | - C. S. Constantinescu
- Division of Clinical Neuroscience; School of Medicine; University of Nottingham; Nottingham UK
| |
Collapse
|
38
|
Hind WH, Tufarelli C, Neophytou M, Anderson SI, England TJ, O'Sullivan SE. Endocannabinoids modulate human blood-brain barrier permeability in vitro. Br J Pharmacol 2015; 172:3015-27. [PMID: 25651941 PMCID: PMC4459020 DOI: 10.1111/bph.13106] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 01/20/2015] [Accepted: 02/01/2015] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood–brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. Experimental Approach Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was modelled by oxygen-glucose deprivation (OGD) and permeability was measured by transepithelial electrical resistance. Endocannabinoids or endocannabinoid-like compounds were assessed for their ability to modulate baseline permeability or OGD-induced hyperpermeability. Target sites of action were investigated using receptor antagonists and subsequently identified with real-time PCR. Key Results Anandamide (10 μM) and oleoylethanolamide (OEA, 10 μM) decreased BBB permeability (i.e. increased resistance). This was mediated by cannabinoid CB2 receptors, transient receptor potential vanilloid 1 (TRPV1) channels, calcitonin gene-regulated peptide (CGRP) receptor (anandamide only) and PPARα (OEA only). Application of OEA, palmitoylethanolamide (both PPARα mediated) or virodhamine (all 10 μM) decreased the OGD-induced increase in permeability during reperfusion. 2-Arachidonoyl glycerol, noladin ether and oleamide did not affect BBB permeability in normal or OGD conditions. N-arachidonoyl-dopamine increased permeability through a cytotoxic mechanism. PPARα and γ, CB1 receptors, TRPV1 channels and CGRP receptors were expressed in both cell types, but mRNA for CB2 receptors was only present in astrocytes. Conclusion and Implication The endocannabinoids may play an important modulatory role in normal BBB physiology, and also afford protection to the BBB during ischaemic stroke, through a number of target sites.
Collapse
Affiliation(s)
- William H Hind
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Cristina Tufarelli
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Maria Neophytou
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Susan I Anderson
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Timothy J England
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, UK
| | | |
Collapse
|
39
|
Corcoran L, Roche M, Finn DP. The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:203-55. [DOI: 10.1016/bs.irn.2015.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Bondarenko AI. Endothelial atypical cannabinoid receptor: do we have enough evidence? Br J Pharmacol 2014; 171:5573-88. [PMID: 25073723 PMCID: PMC4290703 DOI: 10.1111/bph.12866] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1 , non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, O.O.Bogomoletz Institute of PhysiologyKiev, Ukraine
- Institute of Molecular Biology and Biochemistry, Medical University of GrazGraz, Austria
| |
Collapse
|
41
|
Stanley C, O'Sullivan SE. Vascular targets for cannabinoids: animal and human studies. Br J Pharmacol 2014; 171:1361-78. [PMID: 24329566 DOI: 10.1111/bph.12560] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/18/2013] [Accepted: 11/18/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Application of cannabinoids and endocannabinoids to perfused vascular beds or individual isolated arteries results in changes in vascular resistance. In most cases, the result is vasorelaxation, although vasoconstrictor responses are also observed. Cannabinoids also modulate the actions of vasoactive compounds including acetylcholine, methoxamine, angiotensin II and U46619 (thromboxane mimetic). Numerous mechanisms of action have been proposed including receptor activation, potassium channel activation, calcium channel inhibition and the production of vasoactive mediators such as calcitonin gene-related peptide, prostanoids, NO, endothelial-derived hyperpolarizing factor and hydrogen peroxide. The purpose of this review is to examine the evidence for the range of receptors now known to be activated by cannabinoids. Direct activation by cannabinoids of CB1 , CBe , TRPV1 (and potentially other TRP channels) and PPARs in the vasculature has been observed. A potential role for CB2, GPR55 and 5-HT1 A has also been identified in some studies. Indirectly, activation of prostanoid receptors (TP, IP, EP1 and EP4 ) and the CGRP receptor is involved in the vascular responses to cannabinoids. The majority of this evidence has been obtained through animal research, but recent work has confirmed some of these targets in human arteries. Vascular responses to cannabinoids are enhanced in hypertension and cirrhosis, but are reduced in obesity and diabetes, both due to changes in the target sites of action. Much further work is required to establish the extent of vascular actions of cannabinoids and the application of this research in physiological and pathophysiological situations. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- Christopher Stanley
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, UK
| | | |
Collapse
|
42
|
Meijerink J, Balvers M, Witkamp R. N-Acyl amines of docosahexaenoic acid and other n-3 polyunsatured fatty acids - from fishy endocannabinoids to potential leads. Br J Pharmacol 2014; 169:772-83. [PMID: 23088259 DOI: 10.1111/bph.12030] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/15/2012] [Accepted: 10/15/2012] [Indexed: 02/06/2023] Open
Abstract
N-3 Long-chain polyunsaturated fatty acids (n-3 LC-PUFAs), in particular α-linolenic acid (18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) are receiving much attention because of their presumed beneficial health effects. To explain these, a variety of mechanisms have been proposed, but their interactions with the endocannabinoid system have received relatively little attention so far. However, it has already been shown some time ago that consumption of n-3 LC-PUFAs not only affects the synthesis of prototypic endocannabinoids like anandamide but also stimulates the formation of specific n-3 LC-PUFA-derived conjugates with ethanolamine, dopamine, serotonin or other amines. Some of these fatty amides show overlapping biological activities with those of typical endocannabinoids, whereas others possess distinct and sometimes largely unknown receptor affinities and other properties. The ethanolamine and dopamine conjugates of DHA have been the most investigated thus far. These mediators may provide promising new leads to the field of inflammatory and neurological disorders and for other pharmacological applications, including their use as carrier molecules for neurotransmitters to target the brain. Furthermore, combinations of n-3 LC-PUFA-derived fatty acid amides, their precursors and FAAH inhibitors offer possibilities to optimise their effects in health and disease.
Collapse
Affiliation(s)
- Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | | | | |
Collapse
|
43
|
Meijerink J, Poland M, Balvers MGJ, Plastina P, Lute C, Dwarkasing J, van Norren K, Witkamp RF. Inhibition of COX-2-mediated eicosanoid production plays a major role in the anti-inflammatory effects of the endocannabinoid N-docosahexaenoylethanolamine (DHEA) in macrophages. Br J Pharmacol 2014; 172:24-37. [PMID: 24780080 DOI: 10.1111/bph.12747] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE N-docosahexaenoylethanolamine (DHEA) is the ethanolamine conjugate of the long-chain polyunsaturated n-3 fatty acid docosahexaenoic (DHA; 22: 6n-3). Its concentration in animal tissues and human plasma increases when diets rich in fish or krill oil are consumed. DHEA displays anti-inflammatory properties in vitro and was found to be released during an inflammatory response in mice. Here, we further examine possible targets involved in the immune-modulating effects of DHEA. EXPERIMENTAL APPROACH Antagonists for cannabinoid (CB)1 and CB2 receptors and PPARγ were used to explore effects of DHEA on NO release by LPS-stimulated RAW264.7 cells. The possible involvement of CB2 receptors was studied by comparing effects in LPS-stimulated peritoneal macrophages obtained from CB2 (-/-) and CB2 (+/+) mice. Effects on NF-κB activation were determined using a reporter cell line. To study DHEA effects on COX-2 and lipoxygenase activity, 21 different eicosanoids produced by LPS-stimulated RAW264.7 cells were quantified by LC-MS/MS. Finally, effects on mRNA expression profiles were analysed using gene arrays followed by Ingenuity(®) Pathways Analysis. KEY RESULTS CB1 and CB2 receptors or PPARs were not involved in the effects of DHEA on NO release. NF-κB and IFN-β, key elements of the myeloid differentiation primary response protein D88 (MyD88)-dependent and MyD88-independent pathways were not decreased. By contrast, DHEA significantly reduced levels of several COX-2-derived eicosanoids. Gene expression analysis provided support for an effect on COX-2-mediated pathways. CONCLUSIONS AND IMPLICATIONS Our findings suggest that the anti-inflammatory effects of DHEA in macrophages predominantly take place via inhibition of eicosanoids produced through COX-2. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013 published in volume 171 issue 6. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2014.171.issue-6/issuetoc.
Collapse
Affiliation(s)
- Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bujalska-Zadrożny M, de Cordé A, Pawlik K. Influence of nitric oxide synthase or cyclooxygenase inhibitors on cannabinoids activity in streptozotocin-induced neuropathy. Pharmacol Rep 2014; 67:209-16. [PMID: 25712641 DOI: 10.1016/j.pharep.2014.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/24/2014] [Accepted: 08/28/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Influence of a relatively specific inhibitor cyclooxygenase (COX)-2, celecoxib, a relatively specific inhibitor of neuronal nitric oxide synthase (NOS), 7-Ni, and a relatively selective inhibitor of inducible NOS, L-NIL, on the action of a preferentially selective CB1 cannabinoid receptor agonist, Met-F-AEA and a selective CB2 cannabinoid receptor agonist, AM 1241 was investigated, in a streptozotocin (STZ)-induced neuropathy. METHODS Studies were performed on male Wistar rats. Changes in nociceptive thresholds were determined using mechanical stimuli - the modification of the classic paw withdrawal test described by Randall-Selitto. Diabetes was induced by a single administration of STZ. RESULTS In a diabetic neuropathic pain model, pretreatment with celecoxib, L-NIL and 7-Ni, significantly increased the antihyperalgesic activity of both Met-F-AEA and AM 1241. CONCLUSIONS The results of this study seemed to indicate that the interaction between cannabinoid, COX-2 and NOS(s) systems might exist. Concomitant administration of small doses of CB1 and/or CB2 receptor agonists and COX-2 or NOS inhibitors can be effective in the alleviation of diabetic neuropathic pain.
Collapse
Affiliation(s)
| | - Anna de Cordé
- Department of Pharmacodynamics, Medical University of Warsaw, Warszawa, Poland
| | - Karolina Pawlik
- Department of Pharmacodynamics, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
45
|
Abstract
The ECs (endocannabinoids) AEA (anandamide) and 2-AG (2-arachidonoylglycerol) and their lipid congeners OEA (N-oleoylethanolamide) and PEA (N-palmitoylethanolamide) are multifunctional lipophilic signalling molecules. The ECs, OEA and PEA have multiple physiological roles including involvement in learning and memory, neuroinflammation, oxidative stress, neuroprotection and neurogenesis. They have also been implicated in the pathology of, or perhaps protective responses to, neurodegenerative diseases. This is particularly the case with Alzheimer's disease, the most common age-related dementia associated with impairments in learning and memory accompanied by neuroinflammation, oxidative stress and neurodegeneration. The present mini-review examines the evidence supporting the roles that ECs appear to play in Alzheimer's disease and the potential for beneficial therapeutic manipulation of the EC signalling system.
Collapse
|
46
|
Abstract
Mounting evidence substantiates the central role of the endocannabinoid system (ECS) in the modulation of both homeostatic and hedonic elements of appetite and food intake. Conversely, feeding status and dietary patterns directly influence activity of the ECS. Following a general introduction on the functioning of the ECS, the present review specifically addresses its role in the modulation of hedonic eating. Humans possess strong motivational systems triggered by rewarding aspects of food. Food reward is comprised of two components: one appetitive (orienting towards food); the other consummatory (hedonic evaluation), also referred to as 'wanting' and 'liking', respectively. Endocannabinoid tone seems to influence both the motivation to feed and the hedonic value of foods, probably by modifying palatability. Human physiology underlying hedonic eating is still not fully understood. A better understanding of the role of the ECS in the rewarding value of specific foods or diets could offer new possibilities to optimise the balance between energy and nutrient intake for different target groups. These groups include the obese and overweight, and potentially individuals suffering from malnutrition. Examples for the latter group are patients with disease-related anorexia, as well as the growing population of frail elderly suffering from persistent loss of food enjoyment and appetite resulting in malnutrition and involuntary weight loss. It has become clear that the psychobiology of food hedonics is extremely complex and the clinical failure of CB1 inverse agonists including rimonabant (Accomplia®) has shown that 'quick wins' in this field are unlikely.
Collapse
|
47
|
Keppel Hesselink JM, Kopsky DJ, Witkamp RF. Palmitoylethanolamide (PEA)—‘Promiscuous’ anti-inflammatory and analgesic molecule at the interface between nutrition and pharma. PHARMANUTRITION 2014. [DOI: 10.1016/j.phanu.2013.11.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: enzymes. Br J Pharmacol 2013; 170:1797-867. [PMID: 24528243 PMCID: PMC3892293 DOI: 10.1111/bph.12451] [Citation(s) in RCA: 415] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Enzymes are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
49
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
50
|
Abstract
The endocannabinoid (EC) system consists of two main receptors: cannabinoid type 1 receptor cannabinoid receptors are found in both the central nervous system (CNS) and periphery, whereas the cannabinoid type 2 receptor cannabinoid receptor is found principally in the immune system and to a lesser extent in the CNS. The EC family consists of two classes of well characterised ligands; the N-acyl ethanolamines, such as N-arachidonoyl ethanolamide or anandamide (AEA), and the monoacylglycerols, such as 2-arachidonoyl glycerol. The various synthetic and catabolic pathways for these enzymes have been (with the exception of AEA synthesis) elucidated. To date, much work has examined the role of EC in nociceptive processing and the potential of targeting the EC system to produce analgesia. Cannabinoid receptors and ligands are found at almost every level of the pain pathway from peripheral sites, such as peripheral nerves and immune cells, to central integration sites such as the spinal cord, and higher brain regions such as the periaqueductal grey and the rostral ventrolateral medulla associated with descending control of pain. EC have been shown to induce analgesia in preclinical models of acute nociception and chronic pain states. The purpose of this review is to critically evaluate the evidence for the role of EC in the pain pathway and the therapeutic potential of EC to produce analgesia. We also review the present clinical work conducted with EC, and examine whether targeting the EC system might offer a novel target for analgesics, and also potentially disease-modifying interventions for pathophysiological pain states.
Collapse
|