1
|
Feehan J, Nurgali K, Apostolopoulos V, Duque G. Development and validation of a new method to isolate, expand, and differentiate circulating osteogenic precursor (COP) cells. Bone Rep 2021; 15:101109. [PMID: 34368409 PMCID: PMC8326352 DOI: 10.1016/j.bonr.2021.101109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Circulating osteogenic precursor (COP) cells are a population of progenitor cells in the peripheral blood with the capacity to form bone in vitro and in vivo. They have characteristics of the mesenchymal stem and progenitor pool found in the bone marrow; however, more recently, a population of COP cells has been identified with markers of the hematopoietic lineage such as CD45 and CD34. While this population has been associated with several bone pathologies, a lack of cell culture models and inconsistent characterization has limited mechanistic research into their behavior and physiology. In this study, we describe a method for the isolation of CD45+/CD34+/alkaline phosphatase (ALP) + COP cells via fluorescence-activated cell sorting, as well as their expansion and differentiation in culture. Hematopoietic COP cells are a discreet population within the monocyte fraction of the peripheral blood mononuclear cells, which form proliferative, fibroblastoid colonies in culture. Their expression of hematopoietic markers decreases with time in culture, but they express markers of osteogenesis and deposit calcium with differentiation. It is hoped that this will provide a standard for their isolation, for consistency in future research efforts, to allow for the translation of COP cells into clinical settings.
Collapse
Affiliation(s)
- Jack Feehan
- Department of Medicine – Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- Department of Medicine – Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Gustavo Duque
- Department of Medicine – Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Corresponding author at: Level 3, Western Centre for Health Research and Education, Sunshine Hospital, Furlong Road, St Albans, 3021 Melbourne, Australia.
| |
Collapse
|
2
|
Does Mesenchymal Stromal Cell Count in Pre-autologous Hematopoietic Stem Cell Transplant Peripheral Blood and Apheresis Product Predict for Infectious Complications in the Post-transplant Period? Indian J Hematol Blood Transfus 2021; 37:484-488. [PMID: 34267471 DOI: 10.1007/s12288-020-01379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have gained attention in the recent past considering their multipotentiality and organ-healing properties. Exogenous administration of MSC in the pre-hematopoietic stem cell transplant (HSCT) setting has been reported to enhance engraftment, heal graft-vs-host disease and increase infections in the post-HSCT period. In this study, we aimed to determine the effect of endogenous pre-HSCT MSC on the post-HSCT infectious complications in patients undergoing autologous-HSCT. The study included patients undergoing autologous-HSCT (n = 25; multiple myeloma-20, lymphoma-5). MSC were analyzed and quantified by flow cytometry in the peripheral blood (PB) at baseline, and in both PB and apheresis product (AP) following mobilization with growth factors. Pre-HSCT MSC (PB/AP) were correlated with the post-HSCT duration of febrile neutropenia and duration of antimicrobial drugs using Pearson's correlation co-efficient, and with the mucositis grade using Spearman's rank correlation. Pre-HSCT MSC (baseline and post-mobilization) correlated positively with the longer duration of febrile neutropenia and duration of antimicrobials used in the post-HSCT period (p < 0.05). Pre-HSCT MSC failed to correlate with post-HSCT engraftment and onset/severity/duration of oral and gastrointestinal mucositis. Endogenous pre-HSCT MSC counts might predict for increased infectious complications in the post autologous-HSCT setting.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW One aim in bone tissue engineering is to develop human cell-based, 3D in vitro bone models to study bone physiology and pathology. Due to the heterogeneity of cells among patients, patient's own cells are needed to be obtained, ideally, from one single cell source. This review attempts to identify the appropriate cell sources for development of such models. RECENT FINDINGS Bone marrow and peripheral blood are considered as suitable sources for extraction of osteoblast/osteocyte and osteoclast progenitor cells. Recent studies on these cell sources have shown no significant differences between isolated progenitor cells. However, various parameters such as medium composition affect the cell's proliferation and differentiation potential which could make the peripheral blood-derived stem cells superior to the ones from bone marrow. Peripheral blood can be considered a suitable source for osteoblast/osteocyte and osteoclast progenitor cells, being less invasive for the patient. However, more investigations are needed focusing on extraction and differentiation of both cell types from the same donor sample of peripheral blood.
Collapse
Affiliation(s)
- Sana Ansari
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
4
|
Girousse A, Mathieu M, Sastourné-Arrey Q, Monferran S, Casteilla L, Sengenès C. Endogenous Mobilization of Mesenchymal Stromal Cells: A Pathway for Interorgan Communication? Front Cell Dev Biol 2021; 8:598520. [PMID: 33490065 PMCID: PMC7820193 DOI: 10.3389/fcell.2020.598520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
To coordinate specialized organs, inter-tissue communication appeared during evolution. Consequently, individual organs communicate their states via a vast interorgan communication network (ICN) made up of peptides, proteins, and metabolites that act between organs to coordinate cellular processes under homeostasis and stress. However, the nature of the interorgan signaling could be even more complex and involve mobilization mechanisms of unconventional cells that are still poorly described. Mesenchymal stem/stromal cells (MSCs) virtually reside in all tissues, though the biggest reservoir discovered so far is adipose tissue where they are named adipose stromal cells (ASCs). MSCs are thought to participate in tissue maintenance and repair since the administration of exogenous MSCs is well known to exert beneficial effects under several pathological conditions. However, the role of endogenous MSCs is barely understood. Though largely debated, the presence of circulating endogenous MSCs has been reported in multiple pathophysiological conditions, but the significance of such cell circulation is not known and therapeutically untapped. In this review, we discuss current knowledge on the circulation of native MSCs, and we highlight recent findings describing MSCs as putative key components of the ICN.
Collapse
Affiliation(s)
- Amandine Girousse
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Maxime Mathieu
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Quentin Sastourné-Arrey
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sylvie Monferran
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Coralie Sengenès
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
5
|
Feehan J, Kassem M, Pignolo RJ, Duque G. Bone From Blood: Characteristics and Clinical Implications of Circulating Osteogenic Progenitor (COP) Cells. J Bone Miner Res 2021; 36:12-23. [PMID: 33118647 DOI: 10.1002/jbmr.4204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Circulating osteogenic progenitor (COP) cells are a population of cells in the peripheral blood with the capacity for bone formation, as well as broader differentiation into mesoderm-like cells in vitro. Although some of their biological characteristics are documented in vitro, their role in diseases of the musculoskeletal system remains yet to be fully evaluated. In this review, we provide an overview of the role of COP cells in a number of physiological and pathological conditions, as well as identify areas for future research. In addition, we suggest possible areas for clinical utilization in the management of musculoskeletal diseases. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jack Feehan
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia.,Department of Medicine, University of Melbourne-Western Health, Melbourne, VIC, Australia
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia.,Department of Medicine, University of Melbourne-Western Health, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Nam D, Park A, Dubon MJ, Yu J, Kim W, Son Y, Park KS. Coordinated Regulation of Mesenchymal Stem Cell Migration by Various Chemotactic Stimuli. Int J Mol Sci 2020; 21:ijms21228561. [PMID: 33202862 PMCID: PMC7696304 DOI: 10.3390/ijms21228561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 01/14/2023] Open
Abstract
Endogenous bone marrow-derived mesenchymal stem cells are mobilized to peripheral blood and injured tissues in response to changes in the expression of various growth factors and cytokines in the injured tissues, including substance P (SP), transforming growth factor-beta (TGF-β), and stromal cell-derived factor-1 (SDF-1). SP, TGF-β, and SDF-1 are all known to induce the migration of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it is not yet clear how these stimuli influence or interact with each other during BM-MSC mobilization. This study used mouse bone marrow-derived mesenchymal stem cell-like ST2 cells and human BM-MSCs to evaluate whether SP, TGF-β, and SDF-1 mutually regulate their respective effects on the mobilization of BM-MSCs. SP pretreatment of ST2 and BM-MSCs impaired their response to TGF-β while the introduction of SP receptor antagonist restored the mobilization of ST2 and BM-MSCs in response to TGF-β. TGF-β pretreatment did not affect the migration of ST2 and BM-MSCs in response to SP, but downregulated their migration in response to SDF-1. SP pretreatment modulated the activation of TGF-β noncanonical pathways in ST2 cells and BM-MSCs, but not canonical pathways. These results suggest that the migration of mesenchymal stem cells is regulated by complex functional interactions between SP, TGF-β, and SDF-1. Thus, understanding the complex functional interactions of these chemotactic stimuli would contribute to ensuring the development of safe and effective combination treatments for the mobilization of BM-MSCs.
Collapse
Affiliation(s)
- Donghyun Nam
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (D.N.); (W.K.)
| | - Aran Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.P.); (M.J.D.); (J.Y.); (Y.S.)
| | - Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.P.); (M.J.D.); (J.Y.); (Y.S.)
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.P.); (M.J.D.); (J.Y.); (Y.S.)
| | - Wootak Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (D.N.); (W.K.)
| | - Youngsook Son
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.P.); (M.J.D.); (J.Y.); (Y.S.)
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (D.N.); (W.K.)
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-(2)-958-9368
| |
Collapse
|
7
|
Chen YR, Yan X, Yuan FZ, Ye J, Xu BB, Zhou ZX, Mao ZM, Guan J, Song YF, Sun ZW, Wang XJ, Chen ZY, Wang DY, Fan BS, Yang M, Song ST, Jiang D, Yu JK. The Use of Peripheral Blood-Derived Stem Cells for Cartilage Repair and Regeneration In Vivo: A Review. Front Pharmacol 2020; 11:404. [PMID: 32308625 PMCID: PMC7145972 DOI: 10.3389/fphar.2020.00404] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background Peripheral blood (PB) is a potential source of chondrogenic progenitor cells that can be used for cartilage repair and regeneration. However, the cell types, isolation and implantation methods, seeding dosage, ultimate therapeutic effect, and in vivo safety remain unclear. Methods PubMed, Embase, and the Web of Science databases were systematically searched for relevant reports published from January 1990 to December 2019. Original articles that used PB as a source of stem cells to repair cartilage in vivo were selected for analysis. Results A total of 18 studies were included. Eight human studies used autologous nonculture-expanded PB-derived stem cells (PBSCs) as seed cells with the blood cell separation isolation method, and 10 animal studies used autologous, allogenic or xenogeneic culture-expanded PB-derived mesenchymal stem cells (PB-MSCs), or nonculture-expanded PBSCs as seed cells. Four human and three animal studies surgically implanted cells, while the remaining studies implanted cells by single or repeated intra-articular injections. 121 of 130 patients (in 8 human clinical studies), and 230 of 278 animals (in 6 veterinary clinical studies) using PBSCs for cartilage repair achieved significant clinical improvement. All reviewed articles indicated that using PB as a source of seed cells enhances cartilage repair in vivo without serious adverse events. Conclusion Autologous nonculture-expanded PBSCs are currently the most commonly used cells among all stem cell types derived from PB. Allogeneic, autologous, and xenogeneic PB-MSCs are more widely used in animal studies and are potential seed cell types for future applications. Improving the mobilization and purification technology, and shortening the culture cycle of culture-expanded PB-MSCs will obviously promote the researchers' interest. The use of PBSCs for cartilage repair and regeneration in vivo are safe. PBSCs considerably warrant further investigations due to their superiority and safety in clinical settings and positive effects despite limited evidence in humans.
Collapse
Affiliation(s)
- You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Xin Yan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fu-Zhen Yuan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bing-Bing Xu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Zhu-Xing Zhou
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Zi-Mu Mao
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jian Guan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Fan Song
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ze-Wen Sun
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xin-Jie Wang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ze-Yi Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ding-Yu Wang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bao-Shi Fan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Meng Yang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Shi-Tang Song
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Schreier S, Triampo W. The Blood Circulating Rare Cell Population. What is it and What is it Good For? Cells 2020; 9:cells9040790. [PMID: 32218149 PMCID: PMC7226460 DOI: 10.3390/cells9040790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Blood contains a diverse cell population of low concentration hematopoietic as well as non-hematopoietic cells. The majority of such rare cells may be bone marrow-derived progenitor and stem cells. This paucity of circulating rare cells, in particular in the peripheral circulation, has led many to believe that bone marrow as well as other organ-related cell egress into the circulation is a response to pathological conditions. Little is known about this, though an increasing body of literature can be found suggesting commonness of certain rare cell types in the peripheral blood under physiological conditions. Thus, the isolation and detection of circulating rare cells appears to be merely a technological problem. Knowledge about rare cell types that may circulate the blood stream will help to advance the field of cell-based liquid biopsy by supporting inter-platform comparability, making use of biological correct cutoffs and “mining” new biomarkers and combinations thereof in clinical diagnosis and therapy. Therefore, this review intends to lay ground for a comprehensive analysis of the peripheral blood rare cell population given the necessity to target a broader range of cell types for improved biomarker performance in cell-based liquid biopsy.
Collapse
Affiliation(s)
- Stefan Schreier
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand;
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Wannapong Triampo
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
9
|
Jain A, Khadwal A, Sachdeva MUS, Bose P, Lad D, Bhattacharya S, Prakash G, Malhotra P, Varma N, Varma S. Variables affecting the presence of mesenchymal stromal cells in peripheral blood and their relationship with apheresis products. Br J Haematol 2020; 189:772-776. [PMID: 32011732 DOI: 10.1111/bjh.16412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) demonstrate the properties of self-renewal, multipotentiality, and immunosuppression, which are responsible for their widespread clinical applications in tissue repair and regeneration. MSCs have been isolated from bone marrow, adipose tissue, and cord blood using culture in specialised media. Their presence in peripheral blood (PB) is debatable. We studied the presence of MSCs at baseline (PB) and following mobilisation with growth factors [PB and apheresis product (AP)] in patients undergoing autologous stem cell transplantation and healthy donors using flow cytometry. We conclude that both mobilised PB and AP are potential sources of MSCs. Given their small numbers in PB/AP, clinical use is feasible following ex-vivo expansion. Variables affecting the presence of MSCs in PB and AP are also discussed.
Collapse
Affiliation(s)
- Ankur Jain
- Department of Internal Medicine, PGIMER, Chandigarh, India
| | - Alka Khadwal
- Department of Internal Medicine, PGIMER, Chandigarh, India
| | | | - Praveen Bose
- Department of Haematology, PGIMER, Chandigarh, India
| | - Deepesh Lad
- Department of Internal Medicine, PGIMER, Chandigarh, India
| | | | - Gaurav Prakash
- Department of Internal Medicine, PGIMER, Chandigarh, India
| | | | - Neelam Varma
- Department of Haematology, PGIMER, Chandigarh, India
| | - Subhash Varma
- Department of Internal Medicine, PGIMER, Chandigarh, India
| |
Collapse
|
10
|
Circulating osteogenic precursor cells: Building bone from blood. EBioMedicine 2018; 39:603-611. [PMID: 30522933 PMCID: PMC6354620 DOI: 10.1016/j.ebiom.2018.11.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Circulating osteogenic precursor (COP) cells constitute a recently discovered population of circulating progenitor cells with the capacity to form not only bone but other mesenchymal tissues. There is a small, but growing body of literature exploring these cells, but with a great deal of disagreement and contradiction within it. This review explores the origins and biological characterization of these cells, including the identification strategies used to isolate these cells from the peripheral blood. It also examines the available knowledge on the in vitro and in vivo behaviour of these cells, in the areas of plastic adherence, differentiation capacity, proliferation, and cellular homing. We also review the implications for future use of COP cells in clinical practice, particularly in the area of regenerative medicine and the treatment and assessment of musculoskeletal disease. Circulating Osteogenic Precursors are circulating cells with characteristics of bone marrow mesenchymal stem cells. They are able to differentiate into bone, fat, cartilage and muscle, but many other characteristics remain unknown. They are heterogenous, with at least two specific populations present, with displaying different markers and behaviors.
Collapse
|
11
|
Kim J, Kim NK, Park SR, Choi BH. GM-CSF Enhances Mobilization of Bone Marrow Mesenchymal Stem Cells via a CXCR4-Medicated Mechanism. Tissue Eng Regen Med 2018; 16:59-68. [PMID: 30815351 DOI: 10.1007/s13770-018-0163-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/05/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Background This study was conducted to investigate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the mobilization of mesenchymal stem cells (MSCs) from the bone marrow (BM) into the peripheral blood (PB) in rats. Methods GM-CSF was administered subcutaneously to rats at 50 μg/kg body weight for 5 consecutive days. The BM and PB of rats were collected at 1, 3, and 5 days during the administration for analysis. Results Upon GM-CSF administration, the number of mononuclear cells increased rapidly at day 1 both in the BM and PB. This number decreased gradually over time in the BM to below the initial amount by day 5, but was maintained at a high level in the PB until day 5. The colony-forming unit-fibroblasts were increased in the PB by 10.3-fold at day 5 of GM-CSF administration, but decreased in the BM. Compared to GM-CSF, granulocyte-colony stimulating factor (G-CSF) stimulated lower levels of MSC mobilization from the BM to the PB. Immunohistochemical analysis revealed that GM-CSF induced a hypoxic and proteolytic microenvironment and increased C-X-C chemokine receptor type 4 (CXCR4) expression in the BM. GM-CSF added to BM MSCs in vitro dose-dependently increased CXCR4 expression and cell migration. G-CSF and stromal cell derived factor-1 (SDF-1) showed similar results in these in vitro assays. Know-down of CXCR4 expression with siRNA significantly abolished GM-CSF- and G-CSF-induced MSC migration in vitro, indicating the involvement of the SDF-1-CXCR4 interaction in the mechanism. Conclusion These results suggest that GM-CSF is a useful tool for mobilizing BM MSCs into the PB.
Collapse
Affiliation(s)
- Jiyoung Kim
- 1Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro Nam-gu, Incheon, 22212 Korea
| | - Na Kyeong Kim
- 1Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro Nam-gu, Incheon, 22212 Korea
| | - So Ra Park
- 1Department of Physiology and Biophysics, Inha University College of Medicine, 100 Inha-ro Nam-gu, Incheon, 22212 Korea
| | - Byung Hyune Choi
- 2Department of Biomedical Sciences, Inha University College of Medicine, 100 Inha-ro Nam-gu, Incheon, 22212 Korea
| |
Collapse
|
12
|
Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0036-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
A New Chapter for Mesenchymal Stem Cells: Decellularized Extracellular Matrices. Stem Cell Rev Rep 2017; 13:587-597. [DOI: 10.1007/s12015-017-9757-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Abstract
White adipose tissue is a remarkably expandable organ with results in the last decade showing that human white adipocytes are continuously turned over during the entire life-span. Data primarily in murine models have demonstrated that adipocytes are derived from precursors present mainly in the perivascular areas of adipose tissue but their precise origin remains unclear. Subsets of cells present in bone marrow display a multipotent differentiation capacity which has prompted the hypothesis that bone marrow-derived cells (BMDCs) may also contribute to the adipocyte pool present in peripheral fat depots. This notion was initially demonstrated in a murine transplantation model, however, subsequent animal studies have been conflicting resulting in a debate of whether BMDCs actually differentiate into adipocytes or just fuse with resident fat cells. This controversy was recently resolved in 2 studies of human subjects undergoing bone marrow transplantation. Using a combination of different assays these data suggest that bone marrow contributes to at least 10% of the adipocyte pool. This proportion is doubled in obesity, suggesting that BMDCs may constitute a reserve pool for adipogenesis, particularly upon weight gain. This review discusses the possible mechanisms and relevance of these findings for human pathophysiology.
Collapse
Affiliation(s)
- Peter Arner
- Karolinska Institutet, Department of Medicine (H7), Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Mikael Rydén
- Karolinska Institutet, Department of Medicine (H7), Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
15
|
Pieper IL, Smith R, Bishop JC, Aldalati O, Chase AJ, Morgan G, Thornton CA. Isolation of Mesenchymal Stromal Cells From Peripheral Blood of ST Elevation Myocardial Infarction Patients. Artif Organs 2017; 41:654-666. [DOI: 10.1111/aor.12829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022]
Affiliation(s)
| | - Rachel Smith
- Swansea University Medical School, Institute of Life Science
| | | | - Omar Aldalati
- Regional Cardiac Centre, Morriston Hospital; Swansea Wales UK
| | - Alex J. Chase
- Regional Cardiac Centre, Morriston Hospital; Swansea Wales UK
| | - Gareth Morgan
- Swansea University Medical School, Institute of Life Science
| | | |
Collapse
|
16
|
Abstract
The ischemia-induced death of cardiomyocytes results in scar formation and reduced contractility of the ventricle. Several preclinical and clinical studies have supported the notion that cell therapy may be used for cardiac regeneration. Most attempts for cardiomyoplasty have considered the bone marrow as the source of the “repair stem cell(s),” assuming that the hematopoietic stem cell can do the work. However, bone marrow is also the residence of other progenitor cells, including mesenchymal stem cells (MSCs). Since 1995 it has been known that under in vitro conditions, MSCs differentiate into cells exhibiting features of cardiomyocytes. This pioneer work was followed by many preclinical studies that revealed that ex vivo expanded, bone marrow–derived MSCs may represent another option for cardiac regeneration. In this work, we review evidence and new prospects that support the use of MSCs in cardiomyoplasty.
Collapse
Affiliation(s)
- José J Minguell
- Laboratorio de Trasplante de Médula Osea, Clínica Las Condes, Lo Fontecilla 441, Las Condes, Santiago, Chile.
| | | |
Collapse
|
17
|
Wang SJ, Yin MH, Jiang D, Zhang ZZ, Qi YS, Wang HJ, Yu JK. The Chondrogenic Potential of Progenitor Cells Derived from Peripheral Blood: A Systematic Review. Stem Cells Dev 2016; 25:1195-207. [PMID: 27353075 DOI: 10.1089/scd.2016.0055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Shao-Jie Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Department of Joint Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Meng-Hong Yin
- Department of Sports Medicine, Dalian Medical University, Liaoning, China
| | - Dong Jiang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Zheng-Zheng Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yan-Song Qi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Hai-Jun Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Jia-Kuo Yu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Rydén M. On the origin of human adipocytes and the contribution of bone marrow-derived cells. Adipocyte 2016; 5:312-7. [PMID: 27617752 DOI: 10.1080/21623945.2015.1134403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022] Open
Abstract
In the last decade, results in both animal models and humans have demonstrated that white adipocytes are generated over the entire life-span. This adds to the plasticity of adipose tissue and alterations in adipocyte turnover are linked to metabolic dysfunction. Adipocytes are derived from precursors present primarily in the perivascular areas of adipose tissue but their precise origin remains unclear. The multipotent differentiation capacity of bone marrow-derived cells (BMDC) has prompted the suggestion that BMDC may contribute to different cell tissue pools, including adipocytes. However, data in murine transplantation models have been conflicting and it has been a matter of debate whether BMDC actually differentiate into adipocytes or just fuse with resident fat cells. To resolve this controversy in humans, we recently performed a study in 65 subjects that had undergone bone marrow transplantation. Using a set of newly developed assays including single cell genome-wide analyses of mature adipocytes, we demonstrated that bone marrow contributes with approximately 10 % to the adipocyte pool. This proportion was more than doubled in obesity, suggesting that BMDC may constitute a reserve pool for adipogenesis, particularly upon weight gain. This commentary discusses the possible relevance of these and other recent findings for human pathophysiology.
Collapse
|
19
|
Yang Y, Pang D, Hu C, Lv Y, He T, An Y, Tang Z, Deng Z. Nestin Positive Bone Marrow Derived Cells Responded to Injury Mobilize into Peripheral Circulation and Participate in Skin Defect Healing. PLoS One 2015; 10:e0143368. [PMID: 26633897 PMCID: PMC4669078 DOI: 10.1371/journal.pone.0143368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022] Open
Abstract
Exogenously infused mesenchymal stem cells (MSCs) are thought to migrate to injury site through peripheral blood stream and participate in tissue repair. However, whether and how endogenous bone marrow MSCs mobilized to circulating and targeted to tissue injury has raised some controversy, and related studies were restricted by the difficulty of MSCs identifying in vivo. Nestin, a kind of intermediate filament protein initially identified in neuroepithelial stem cells, was recently reported as a credible criteria for MSCs in bone marrow. In this study, we used a green fluorescent protein (GFP) labeled bone marrow replacement model to trace the nestin positive bone marrow derived cells (BMDCs) of skin defected-mice. We found that after skin injured, numbers of nestin+ cells in peripheral blood and bone marrow both increased. A remarkable concentration of nestin+ BMDCs around skin wound was detected, while few of these cells could be observed in uninjured skin or other organs. This recruitment effect could not be promoted by granulocyte colony-stimulating factor (G-CSF), suggests a different mobilization mechanism from ones G-CSF takes effect on hematopoietic cells. Our results proposed nestin+ BMDCs as mobilized candidates in skin injury repair, which provide a new insight of endogenous MSCs therapy.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Danlin Pang
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Xiangya Stomatology Hospital, Central South University, Changsha, Hunan, China
| | - Chenghu Hu
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Xi’an Institute of Tissue Engineering & Regenerative Medicine, Shaanxi, China
| | - Yajie Lv
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shannxi, China
| | - Tao He
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yulin An
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhangui Tang
- Xiangya Stomatology Hospital, Central South University, Changsha, Hunan, China
- * E-mail: (ZD)’ (ZT)
| | - Zhihong Deng
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (ZD)’ (ZT)
| |
Collapse
|
20
|
Okolicsanyi RK, Camilleri ET, Oikari LE, Yu C, Cool SM, van Wijnen AJ, Griffiths LR, Haupt LM. Human Mesenchymal Stem Cells Retain Multilineage Differentiation Capacity Including Neural Marker Expression after Extended In Vitro Expansion. PLoS One 2015; 10:e0137255. [PMID: 26356539 PMCID: PMC4565666 DOI: 10.1371/journal.pone.0137255] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022] Open
Abstract
The suitability of human mesenchymal stem cells (hMSCs) in regenerative medicine relies on retention of their proliferative expansion potential in conjunction with the ability to differentiate toward multiple lineages. Successful utilisation of these cells in clinical applications linked to tissue regeneration requires consideration of biomarker expression, time in culture and donor age, as well as their ability to differentiate towards mesenchymal (bone, cartilage, fat) or non-mesenchymal (e.g., neural) lineages. To identify potential therapeutic suitability we examined hMSCs after extended expansion including morphological changes, potency (stemness) and multilineage potential. Commercially available hMSC populations were expanded in vitro for > 20 passages, equating to > 60 days and > 50 population doublings. Distinct growth phases (A-C) were observed during serial passaging and cells were characterised for stemness and lineage markers at representative stages (Phase A: P+5, approximately 13 days in culture; Phase B: P+7, approximately 20 days in culture; and Phase C: P+13, approximately 43 days in culture). Cell surface markers, stem cell markers and lineage-specific markers were characterised by FACS, ICC and Q-PCR revealing MSCs maintained their multilineage potential, including neural lineages throughout expansion. Co-expression of multiple lineage markers along with continued CD45 expression in MSCs did not affect completion of osteogenic and adipogenic specification or the formation of neurospheres. Improved standardised isolation and characterisation of MSCs may facilitate the identification of biomarkers to improve therapeutic efficacy to ensure increased reproducibility and routine production of MSCs for therapeutic applications including neural repair.
Collapse
Affiliation(s)
- Rachel K. Okolicsanyi
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emily T. Camilleri
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Lotta E Oikari
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chieh Yu
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Simon M. Cool
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, Singapore, Singapore
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Lyn R. Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Larisa M. Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- * E-mail:
| |
Collapse
|
21
|
Rydén M, Uzunel M, Hård JL, Borgström E, Mold JE, Arner E, Mejhert N, Andersson DP, Widlund Y, Hassan M, Jones CV, Spalding KL, Svahn BM, Ahmadian A, Frisén J, Bernard S, Mattsson J, Arner P. Transplanted Bone Marrow-Derived Cells Contribute to Human Adipogenesis. Cell Metab 2015; 22:408-17. [PMID: 26190649 DOI: 10.1016/j.cmet.2015.06.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/30/2015] [Accepted: 06/14/2015] [Indexed: 11/25/2022]
Abstract
Because human white adipocytes display a high turnover throughout adulthood, a continuous supply of precursor cells is required to maintain adipogenesis. Bone marrow (BM)-derived progenitor cells may contribute to mammalian adipogenesis; however, results in animal models are conflicting. Here we demonstrate in 65 subjects who underwent allogeneic BM or peripheral blood stem cell (PBSC) transplantation that, over the entire lifespan, BM/PBSC-derived progenitor cells contribute ∼10% to the subcutaneous adipocyte population. While this is independent of gender, age, and different transplantation-related parameters, body fat mass exerts a strong influence, with up to 2.5-fold increased donor cell contribution in obese individuals. Exome and whole-genome sequencing of single adipocytes suggests that BM/PBSC-derived progenitors contribute to adipose tissue via both differentiation and cell fusion. Thus, at least in the setting of transplantation, BM serves as a reservoir for adipocyte progenitors, particularly in obese subjects.
Collapse
Affiliation(s)
- Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden.
| | - Mehmet Uzunel
- Department of Clinical Immunology, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Joanna L Hård
- Department of Cell and Molecular Biology (C5), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Erik Borgström
- Science for Life Laboratory, Division of Gene Technology, Royal Institute of Technology (KTH), School of Biotechnology, 171 65 Stockholm, Sweden
| | - Jeff E Mold
- Department of Cell and Molecular Biology (C5), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Erik Arner
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Daniel P Andersson
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Yvonne Widlund
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Moustapha Hassan
- Department of Laboratory Medicine (H5), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Christina V Jones
- Department of Cell and Molecular Biology (C5), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology (C5), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Britt-Marie Svahn
- Department of Clinical Immunology, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Afshin Ahmadian
- Science for Life Laboratory, Division of Gene Technology, Royal Institute of Technology (KTH), School of Biotechnology, 171 65 Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology (C5), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Samuel Bernard
- Institut Camille Jordan, CNRS UMR 5208, University of Lyon, 69622 Villeurbanne, France
| | - Jonas Mattsson
- Department of Clinical Immunology, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| |
Collapse
|
22
|
De Becker A, Van Riet I. Mesenchymal Stromal Cell Therapy in Hematology: From Laboratory to Clinic and Back Again. Stem Cells Dev 2015; 24:1713-1729. [PMID: 25923433 DOI: 10.1089/scd.2014.0564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is currently major interest to use mesenchymal stromal cells (MSCs) for a very diverse range of therapeutic applications. This stems mainly from the immunosuppressive qualities and differentiation capacity of these cells. In this review, we focus on cell therapy applications for MSCs in hematology. In this domain, MSCs are used for the treatment or prevention of graft-versus-host disease, support of hematopoiesis, or repair of tissue toxicities after hematopoietic cell transplantation. We critically review the accumulating clinical data and elaborate on complications that might arise from treatment with MSCs. In addition, we assume that the real clinical benefit of using MSCs for these purposes can only be estimated by a better understanding of the influence of in vitro expansion on the biological properties of these cells as well as by more harmonization of the currently used expansion protocols.
Collapse
Affiliation(s)
- Ann De Becker
- Stem Cell Laboratory, Department Clinical Hematology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB) , Brussel, Belgium
| | - Ivan Van Riet
- Stem Cell Laboratory, Department Clinical Hematology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB) , Brussel, Belgium
| |
Collapse
|
23
|
Chen YE, Xie C, Yang B. Stem cells for vascular engineering. BIOMATERIALS AND REGENERATIVE MEDICINE 2014:621-639. [DOI: 10.1017/cbo9780511997839.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
24
|
Paebst F, Piehler D, Brehm W, Heller S, Schroeck C, Tárnok A, Burk J. Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: an approach toward a standardized definition. Cytometry A 2014; 85:678-87. [PMID: 24894974 DOI: 10.1002/cyto.a.22491] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/01/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
Horses are an approved large animal model for therapies of the musculoskeletal system. Especially for tendon disease where cell-based therapy is commonly used in equine patients, the translation of achieved results to human medicine would be a great accomplishment. Immunophenotyping of equine mesenchymal stromal cells (MSCs) remains the last obstacle to meet the criteria of the International Society for Cellular Therapy (ISCT) definition of human MSCs. Therefore, the surface antigen expression of CD 29, CD 44, CD 73, CD 90, CD 105, CD 14, CD 34, CD 45, CD 79α, and MHC II in equine MSCs from adipose tissue, bone marrow, umbilical cord blood, umbilical cord tissue, and tendon tissue was analyzed using flow cytometry. Isolated cells from the different sources and donors varied in their expression pattern of MSC-defining antigens. In particular, CD 90 and 105 showed most heterogeneity. However, cells from all samples were robustly positive for CD 29 and CD 44, while being mostly negative for CD 73 and the exclusion markers CD 14, CD 34, CD 45, CD 79α and MHC II. Furthermore, it was evident that enzymes used for cell detachment after in vitro-culture affected the detection of antigen expression. These results emphasize the need of standardization of MSC isolation, culturing, and harvesting techniques. As the equine MSCs did not meet all criteria the ISCT defined for human MSCs, further investigations for a better characterization of the cell type should be conducted.
Collapse
Affiliation(s)
- Felicitas Paebst
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany; Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Li F, Xu Y, Xu X, Xu B, Zhao J, Zhang X. Fms-related tyrosine kinase 3 ligand promotes proliferation of placenta amnion and chorion mesenchymal stem cells in vitro. Mol Med Rep 2014; 10:322-8. [PMID: 24820950 DOI: 10.3892/mmr.2014.2220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 03/26/2014] [Indexed: 11/05/2022] Open
Abstract
Placental mesenchymal stem cells (PMSCs) have important biological properties and the potential for application in numerous clinical fields, including hematopoietic stem cell transplantation and myocardial repair. There are two types of MSCs in the placenta, amniotic mesenchymal stem cells (AMSCs) and chorion mesenchymal stem cells (CMSCs). By comparing the biological characteristics of human placental AMSCs with CMSCs, the present study identified that CD90‑ and CD166‑positive cells were located in the amniotic stroma and chorion stroma surrounding the vessels. In addition, the cultured AMSCs and CMSCs expressed high levels of CD73, CD90, CD105, CD29 and CD44; however they did not express CD14, CD34, CD45 and HLA-DR. Furthermore, the amplification of the fms-related tyrosine kinase 3 ligand (FL) in AMSCs and CMSCs was investigated in vitro. The results demonstrated that FL is able to promote the proliferation of AMSCs and CMSCs effectively in vitro, particularly that of CMSCs. In the FL group, the phenotype and the ability of AMSCs and CMSCs to differentiate into mesenchymal lineages did not change. Flt3, the receptor of FL, is expressed in AMSCs and CMSCs. In conclusion, mesenchymal stem cells with low immunogenicity were identified in the placental amniotic membrane and around the chorion axis. Furthermore, FL has a positive effect on the proliferation of AMSCs and CMSCs in vitro; however, does not affect their differentiation potential. It is particularly promising that FL is able to stimulate CMSCs to proliferate in vitro.
Collapse
Affiliation(s)
- Fang Li
- Institute of Medical Biotechnology, Soochow University, Jiangsu Key Laboratory of Stem Cells, Suzhou, Jiangsu 215007, P.R. China
| | - Yunyun Xu
- Institute of Medical Biotechnology, Soochow University, Jiangsu Key Laboratory of Stem Cells, Suzhou, Jiangsu 215007, P.R. China
| | - Xiaoxia Xu
- Institute of Medical Biotechnology, Soochow University, Jiangsu Key Laboratory of Stem Cells, Suzhou, Jiangsu 215007, P.R. China
| | - Biao Xu
- Institute of Medical Biotechnology, Soochow University, Jiangsu Key Laboratory of Stem Cells, Suzhou, Jiangsu 215007, P.R. China
| | - Juan Zhao
- Institute of Medical Biotechnology, Soochow University, Jiangsu Key Laboratory of Stem Cells, Suzhou, Jiangsu 215007, P.R. China
| | - Xueguang Zhang
- Institute of Medical Biotechnology, Soochow University, Jiangsu Key Laboratory of Stem Cells, Suzhou, Jiangsu 215007, P.R. China
| |
Collapse
|
26
|
Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix. Dev Biol 2014; 388:1-10. [DOI: 10.1016/j.ydbio.2014.01.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/08/2014] [Accepted: 01/30/2014] [Indexed: 12/23/2022]
|
27
|
Wang W, Li C, Pang L, Shi C, Guo F, Chen A, Cao X, Wan M. Mesenchymal stem cells recruited by active TGFβ contribute to osteogenic vascular calcification. Stem Cells Dev 2014; 23:1392-404. [PMID: 24512598 DOI: 10.1089/scd.2013.0528] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular calcification is an actively regulated process that culminates in organized extracellular matrix mineral deposition by osteoblast-like cells. The origins of the osteoblastic cells involved in this process and the underlying mechanisms remain to be defined. We previously revealed that active transforming growth factor (TGFβ) released from the injured arteries mobilizes mesenchymal stem cells (MSCs) to the blood stream and recruits the cells to the injured vessels for neointima formation. In this study, we used a low-density lipoprotein receptor (LDLR)-deficient mouse model (ldlr(-/-)), which develop progressive arterial calcification after having fed high-fat western diets (HFD), to examine whether TGFβ is involved in the mobilization of MSCs during vascular calcification. Nestin(+)/Sca1(+) cells were recruited to the diseased aorta at earlier time points, and osteocalcin(+) osteoblasts and the aortic calcification were seen at later time point in these mice. Importantly, we generated parabiotic pairs with shared blood circulation by crossing ldlr(-/-)mice fed HFD with transgenic mice, in which all the MSC-derived cells were fluorescently labeled. The labeled cells were detected not only in the peripheral blood but also in the arterial lesions in ldlr(-/-) mouse partners, and these blood circulation-originated cells gave rise to Ocn(+) osteoblastic cells at the arterial lesions. Both active TGFβ1 levels and MSCs in circulating blood were upregulated at the same time points when these cells appeared at the aortic tissue. Further, conditioned medium prepared by incubating the aortae from ldlr(-/-)mice fed HFD stimulated the migration of MSCs in the ex vivo transwell assays, and either TGFβ neutralizing antibody or the inhibitor of TGFβ Receptor I kinase (TβRI) antagonized this effect. Importantly, treatment of the mice with TβRI inhibitor blocked elevated blood MSC numbers and their recruitment to the arterial lesions. These findings suggest that TGFβ-recruited MSCs to the diseased vasculature contribute to the development of osteogenic vascular calcification.
Collapse
Affiliation(s)
- Weishan Wang
- 1 Shihezi Medical Collage, Shihezi Univeristy , Xinjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gil-Ortega M, Fernández-Alfonso MS, Somoza B, Casteilla L, Sengenès C. Ex vivo microperfusion system of the adipose organ: a new approach to studying the mobilization of adipose cell populations. Int J Obes (Lond) 2013; 38:1255-62. [PMID: 24357852 DOI: 10.1038/ijo.2013.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/28/2013] [Accepted: 12/16/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND/OBJECTIVES Adipose tissue (AT) is a dynamic organ that expands and contracts rapidly. It is composed of adipocytes and of cell populations among which immune cells and mesenchymal progenitors known as adipose stromal cells (ASCs). The AT cell turnover has been extensively studied. Surprisingly it has only been viewed as the result of both cell proliferation/death and cell infiltration. Nevertheless, both immune cells and ASCs exhibit migration abilities; therefore their egress from AT in response to physiological/pathophysiological stimuli has to be considered. To do so, the aim of the present work was to develop a model allowing the study of cell release from the adipose organ. SUBJECTS/METHODS Mesenteric (Mes) ATs were isolated from 9-week-old C57BL/6 male mice and were catheterized via the superior mesenteric artery and were perfused with a saline solution. After an equilibration period, the mesenteric fat pad was perfused with CXCL12 (stromal-derived factor-1, SDF-1) or sphingosine 1-phosphate (S1P) to trigger cell mobilization and perfusates were collected every 30 min for subsequent flow cytometry analyses. RESULTS We report here that CXCL12 induces the specific release of ASCs from MesAT thus demonstrating that ASCs are specifically mobilized from fat depots by a CXCL12-dependent pathway. Moreover, we showed that leukocyte mobilization can be triggered via a S1P-dependent pathway. CONCLUSIONS We have developed a microperfusion model of an intact fat depot allowing the study of AT cell release in response to various molecules. The perfusion system described here demonstrates that ASCs and leukocytes can be pharmacologically mobilized from AT. Therefore, AT microperfusion might constitute an appropriate and reliable approach for evaluating the mobilization of different cell populations from AT in various physiological and pathophysiological contexts. Such a model might help in identifying factors and drugs controlling AT cell release, impacting the medical fields of regenerative medicine and of obesity or its associated comorbidities.
Collapse
Affiliation(s)
- M Gil-Ortega
- 1] Inserm U1031 STROMAlab BP 84 225-F-31 432, Toulouse, France [2] CNRS, Université Toulouse III, UPS UMR5273 STROMAlab, BP 84 225-F-31 432, Toulouse, France [3] EFS (Etablissement Français du Sang), STROMAlab BP 84 225-F-31 432, Toulouse, France [4] Université Toulouse III, UPS UMR5273 STROMAlab BP 84 225-F-31 432, Toulouse, France
| | - M S Fernández-Alfonso
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Juan XXIII 1, 28040 Madrid, Spain
| | - B Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - L Casteilla
- 1] Inserm U1031 STROMAlab BP 84 225-F-31 432, Toulouse, France [2] CNRS, Université Toulouse III, UPS UMR5273 STROMAlab, BP 84 225-F-31 432, Toulouse, France [3] EFS (Etablissement Français du Sang), STROMAlab BP 84 225-F-31 432, Toulouse, France [4] Université Toulouse III, UPS UMR5273 STROMAlab BP 84 225-F-31 432, Toulouse, France
| | - C Sengenès
- 1] Inserm U1031 STROMAlab BP 84 225-F-31 432, Toulouse, France [2] CNRS, Université Toulouse III, UPS UMR5273 STROMAlab, BP 84 225-F-31 432, Toulouse, France [3] EFS (Etablissement Français du Sang), STROMAlab BP 84 225-F-31 432, Toulouse, France [4] Université Toulouse III, UPS UMR5273 STROMAlab BP 84 225-F-31 432, Toulouse, France
| |
Collapse
|
29
|
Ahrari I, Attar A, Zarandi NP, Zakerinia M, Maharlooei MK, Monabati A. CD271 enrichment does not help isolating mesenchymal stromal cells from G-CSF-mobilized peripheral blood. Mol Biol 2013. [DOI: 10.1134/s0026893313050051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence? Stem Cell Res 2013; 11:1348-64. [PMID: 24090934 DOI: 10.1016/j.scr.2013.08.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/18/2013] [Accepted: 08/21/2013] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been extensively investigated in small animal models to treat both acute and chronic liver injuries. Mechanisms of action are not clearly elucidated but may include their ability to differentiate into hepatocyte-like cells, to reduce inflammation, and to enhance tissue repair at the site of injury. This approach is controversial and evidence in large animals is missing. Side effects of MSC infusion such as the contribution to a fibrotic process have been reported in experimental settings. Nevertheless, MSCs moved quickly from bench to bedside and over 280 clinical trials are registered, of which 28 focus on the treatment of liver diseases. If no severe side-effects were observed so far, long-term benefits remain uncertain. More preclinical data regarding mechanisms of action, long term safety and efficacy are warranted before initiating large scale clinical application. The proposal of this review is to visit the current state of knowledge regarding mechanisms behind the therapeutic effects of MSCs in the treatment of experimental liver diseases, to address questions about efficacy and risk, and to discuss recent clinical advances involving MSC-based therapies.
Collapse
|
31
|
Miura Y, Yoshioka S, Yao H, Takaori-Kondo A, Maekawa T, Ichinohe T. Chimerism of bone marrow mesenchymal stem/stromal cells in allogeneic hematopoietic cell transplantation: is it clinically relevant? CHIMERISM 2013; 4:78-83. [PMID: 23880502 DOI: 10.4161/chim.25609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multipotent mesenchymal stem/stromal cells (MSCs) have been extensively used as a transplantable cell source for regenerative medicine and immunomodulatory therapy. Specifically in allogeneic hematopoietic stem cell transplantation (HSCT), co-transplantation or post-transplant infusion of MSCs derived from bone marrow (BM) of non-self donors has been implicated in accelerating hematopoietic recovery, ameliorating graft-vs.-host disease, and promoting tissue regeneration. However, irrespective of the use of MSC co-administration, post-transplant chimerism of BM-derived MSCs after allogeneic HSCT has been reported to remain of host origin, suggesting that the infused donor MSCs are immunologically rejected or not capable of long-term engraftment in the host microenvironment. Also, hematopoietic cell allografts currently used for HSCT do not seem to contain sufficient amount of MSCs or their precursors to reconstitute host BM microenvironment. Since the toxic conditioning employed in allo-HSCT may impair the function of host MSCs to maintain hematopoietic/regenerative stem cell niches and to provide a local immunomodulatory milieu, we propose that new directions for enhancing immunohematopoietic reconstitution and tissue repair after allogeneic HSCT include the development of strategies to support functional replenishment of residual host MSCs or to support more efficient engraftment of infused donor MSCs. Future areas of research should include in vivo tracking of infused MSCs and detection of their microchimeric presence in extra-marrow sites as well as in BM.
Collapse
Affiliation(s)
- Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy; Kyoto University Hospital; Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Peripheral blood stem cells: phenotypic diversity and potential clinical applications. Stem Cell Rev Rep 2012; 8:917-25. [PMID: 22451417 DOI: 10.1007/s12015-012-9361-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A small proportion of cells in peripheral blood are actually pluripotent stem cells. These peripheral blood stem cells (PBSCs) are thought to be heterogeneous and could be exploited for a variety of clinical applications. The exact number of distinct populations is unknown. It is likely that individual PBSC populations detected by different experimental strategies are similar or overlapping but have been assigned different names. In this mini review, we divide PBSCs into seven groups: hematopoietic stem cells (HSCs), CD34- stem cells, CD14+ stem cells, mesenchymal stem cells (MSCs), very small embryonic-like (VSEL) stem cells, endothelial progenitor cells (EPCs), and other pluripotent stem cells. We review the major characteristics of these stem/progenitor cell populations and their potential applications in ophthalmology.
Collapse
|
33
|
Liu H, Zhang J, Liu CY, Hayashi Y, Kao WWY. Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. J Cell Mol Med 2012; 16:1114-24. [PMID: 21883890 PMCID: PMC4365890 DOI: 10.1111/j.1582-4934.2011.01418.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It remains elusive as to what bone marrow (BM) cell types infiltrate into injured and/or diseased tissues and subsequently differentiate to assume the phenotype of residential cells, for example, neurons, cardiac myocytes, keratocytes, etc., to repair damaged tissue. Here, we examined the possibility of whether BM cell invasion via circulation into uninjured and injured corneas could assume a keratocyte phenotype, using chimeric mice generated by transplantation of enhanced green fluorescent protein (EGFP)+ BM cells into keratocan null (Kera−/−) and lumican null (Lum−/−) mice. EGFP+ BM cells assumed dendritic cell morphology, but failed to synthesize corneal-specific keratan sulfate proteoglycans, that is KS-lumican and KS-keratocan. In contrast, some EGFP+ BM cells introduced by intrastromal transplantation assumed keratocyte phenotypes. Furthermore, BM cells were isolated from Kera-Cre/ZEG mice, a double transgenic mouse line in which cells expressing keratocan become EGFP+ due to the synthesis of Cre driven by keratocan promoter. Three days after corneal and conjunctival transplantations of such BM cells into Kera−/− mice, green keratocan positive cells were found in the cornea, but not in conjunctiva. It is worthy to note that transplanted BM cells were rejected in 4 weeks. MSC isolated from BM were used to examine if BM mesenchymal stem cells (BM-MSC) could assume keratocyte phenotype. When BM-MSC were intrastromal-transplanted into Kera−/− mice, they survived in the cornea without any immune and inflammatory responses and expressed keratocan in Kera−/− mice. These observations suggest that corneal intrastromal transplantation of BM-MSC may be an effective treatment regimen for corneal diseases involving dysfunction of keratocytes.
Collapse
Affiliation(s)
- Hongshan Liu
- Department of Ophthalmology, Edith Crawley Vision Research Center, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
34
|
Fadini GP, Rattazzi M, Matsumoto T, Asahara T, Khosla S. Emerging role of circulating calcifying cells in the bone-vascular axis. Circulation 2012; 125:2772-81. [PMID: 22665885 DOI: 10.1161/circulationaha.112.090860] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
McNulty MA, Virdi AS, Christopherson KW, Sena K, Frank RR, Sumner DR. Adult stem cell mobilization enhances intramembranous bone regeneration: a pilot study. Clin Orthop Relat Res 2012; 470:2503-12. [PMID: 22528386 PMCID: PMC3830081 DOI: 10.1007/s11999-012-2357-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Stem cell mobilization, which is defined as the forced egress of stem cells from the bone marrow to the peripheral blood (PB) using chemokine receptor agonists, is an emerging concept for enhancing tissue regeneration. However, the effect of stem cell mobilization by a single injection of the C-X-C chemokine receptor type 4 (CXCR4) antagonist AMD3100 on intramembranous bone regeneration is unclear. QUESTIONS/PURPOSES We therefore asked: Does AMD3100 mobilize adult stem cells in C57BL/6 mice? Are stem cells mobilized to the PB after marrow ablation? And does AMD3100 enhance bone regeneration? METHODS Female C57BL/6 mice underwent femoral marrow ablation surgery alone (n = 25), systemic injection of AMD3100 alone (n = 15), or surgery plus AMD3100 (n = 57). We used colony-forming unit assays, flow cytometry, and micro-CT to investigate mobilization of mesenchymal stem cells, endothelial progenitor cells, and hematopoietic stem cells to the PB and bone regeneration. RESULTS AMD3100 induced mobilization of stem cells to the PB, resulting in a 40-fold increase in mesenchymal stem cells. The marrow ablation injury mobilized all three cell types to the PB over time. Administration of AMD3100 led to a 60% increase in bone regeneration at Day 21. CONCLUSIONS A single injection of a CXCR4 antagonist lead to stem cell mobilization and enhanced bone volume in the mouse marrow ablation model of intramembranous bone regeneration.
Collapse
Affiliation(s)
- Margaret A. McNulty
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| | - Amarjit S. Virdi
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| | | | - Kotaro Sena
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| | - Robin R. Frank
- Division of Hematology & Oncology, Rush University Medical Center, Chicago, IL USA
| | - Dale R. Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| |
Collapse
|
36
|
Chong PP, Selvaratnam L, Abbas AA, Kamarul T. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. J Orthop Res 2012; 30:634-42. [PMID: 21922534 DOI: 10.1002/jor.21556] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/24/2011] [Indexed: 02/04/2023]
Abstract
The use of mesenchymal stem cells (MSCs) for cartilage repair has generated much interest owing to their multipotentiality. However, their significant presence in peripheral blood (PB) has been a matter of much debate. The objectives of this study are to isolate and characterize MSCs derived from PB and, compare their chondrogenic potential to MSC derived from bone marrow (BM). PB and BM derived MSCs from 20 patients were isolated and characterized. From 2 ml of PB and BM, 5.4 ± 0.6 million and 10.5 ± 0.8 million adherent cells, respectively, were obtained by cell cultures at passage 2. Both PB and BM derived MSCs were able to undergo tri-lineage differentiation and showed negative expression of CD34 and CD45, but positively expressed CD105, CD166, and CD29. Qualitative and quantitative examinations on the chondrogenic potential of PB and BM derived MSCs expressed similar cartilage specific gene (COMP) and proteoglycan levels, respectively. Furthermore, the s-GAG levels expressed by chondrogenic MSCs in cultures were similar to that of native chondrocytes. In conclusion, this study demonstrates that MSCs from PB maintain similar characteristics and have similar chondrogenic differentiation potential to those derived from BM, while producing comparable s-GAG expressions to chondrocytes.
Collapse
Affiliation(s)
- Pan-Pan Chong
- Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
37
|
Bellows CF, Zhang Y, Chen J, Frazier ML, Kolonin MG. Circulation of progenitor cells in obese and lean colorectal cancer patients. Cancer Epidemiol Biomarkers Prev 2011; 20:2461-8. [PMID: 21930958 PMCID: PMC5470315 DOI: 10.1158/1055-9965.epi-11-0556] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common life-threatening malignancy; risk and progression are elevated in obesity. The purpose of this study was to measure the frequency of circulating CD34-positive endothelial and progenitor cells in the circulation and evaluate their potential values as CRC biomarkers. METHODS Blood was collected from 45 patients with CRC and compared with cancer-free control donors. Detection and enumeration of cells was carried out by flow cytometry on the basis of immunophenotypes established for the cell populations of interest: hematopoietic and endothelial circulating progenitor cells, endothelial cells, mesenchymal stromal cells (MSC), and CD34bright leukocytes (CD34b LC). Groups were compared using multivariate regression analysis. Receiver-operating characteristic (ROC) curve analysis was used to evaluate the diagnostic values. RESULTS After adjusting for age and body mass index (BMI), the mean frequencies of MSCs and CD34b LCs were significantly higher in the circulation of patients with CRC than in controls. The areas under the ROC curve were 0.77 and 0.82 for MSCs and CD34b LCs, respectively. The frequency of circulating MSCs, but not of the other cell populations, was also found to be significantly higher in the circulation of obese patients with CRC (BMI ≥ 30 kg/m(2)) than in lean patients with CRC and obese controls. CONCLUSIONS Increased frequency of MSCs and CD34b LCs in the peripheral blood may represent a new diagnostic marker for CRC. IMPACT BMI-dependent changes in circulating MSCs, potentially mobilized from white adipose tissue may reveal their trafficking to tumors, which could be one of the mechanistic links between obesity and cancer progression.
Collapse
Affiliation(s)
- Charles F Bellows
- Department of Surgery, Tulane University, New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
38
|
P M, S H, R M, M G, W S K. Adult mesenchymal stem cells and cell surface characterization - a systematic review of the literature. Open Orthop J 2011; 5:253-60. [PMID: 21966340 PMCID: PMC3178966 DOI: 10.2174/1874325001105010253] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/24/2011] [Accepted: 04/21/2011] [Indexed: 12/15/2022] Open
Abstract
Human adult mesenchymal stem cells (MSCs) were first identified by Friedenstein et al. when observing a group of cells that developed into fibroblastic colony forming cells (CFU-F). Ever since, the therapeutic uses and clinical applications of these cells have increased research and interest in this field. MSCs have the potential to be used in tissue engineering, gene therapy, transplants and tissue injuries. However, identifying these cells can be a challenge. Moreover, there are no articles bringing together and summarizing the cell surface markers of MSCs in adults. The purpose of this study is to summarize all the available information about the cell surface characterization of adult human MSCs by identifying and evaluating all the published literature in this field. We have found that the most commonly reported positive markers are CD105, CD90, CD44, CD73, CD29, CD13, CD34, CD146, CD106, CD54 and CD166. The most frequently reported negative markers are CD34, CD14, CD45, CD11b, CD49d, CD106, CD10 and CD31. A number of other cell surface markers including STRO-1, SH2, SH3, SH4, HLA-A, HLA-B, HLA-C, HLA-DR, HLA-I, DP, EMA, DQ (MHC Class II), CDIO5, Oct 4, Oct 4A, Nanog, Sox-2, TERT, Stat-3, fibroblast surface antigen, smooth muscle alpha-actin, vimentin, integrin subunits alpha4, alpha5, beta1, integrins alphavbeta3 and alphavbeta5 and ICAM-1 have also been reported. Nevertheless, there is great discrepancy and inconsistency concerning the information available on the cell surface profile of adult MSCs and we suggest that further research is needed in this field to overcome the problem.
Collapse
Affiliation(s)
- Mafi P
- The Hull York Medical School, Heslington, York YO10 5DD, UK
| | | | | | | | | |
Collapse
|
39
|
El Haddad N, Moore R, Heathcote D, Mounayar M, Azzi J, Mfarrej B, Batal I, Ting C, Atkinson M, Sayegh MH, Ashton-Rickardt PG, Abdi R. The novel role of SERPINB9 in cytotoxic protection of human mesenchymal stem cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2252-60. [PMID: 21795594 DOI: 10.4049/jimmunol.1003981] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical trials using allogeneic mesenchymal stem cells (MSCs) are ongoing for the purpose of providing therapeutic benefit for a variety of human disorders. Pertinent to their clinical use are the accessibility to sufficient quantities of these cells allowing for repetitive administration, as well as a better understanding of the specific mechanisms by which allogeneic MSCs evade host immune responses that in turn influence their life span following administration. In this report, we sought to characterize and compare human peripheral blood MSCs (hPB-MSCs) with bone marrow-derived MSCs. hPB-MSCs met the established criteria to characterize this cellular lineage, including capacity for self-renewal, differentiation into tissues of mesodermal origin, and expression of phenotypic surface markers. In addition, hPB-MSCs suppressed alloreactive proliferation as well as the production of proinflammatory cytokines. Examination of the mechanisms by which allogeneic MSCs evade the host immune response, which is crucial for their therapeutic use, demonstrated that constitutive expression of serine protease inhibitor 9 (PI-9) on hPB-MSCs and bone marrow-derived MSCs is a major defense mechanism against granzyme B-mediated destruction by NK cells. Similarly, MSCs treated with small interfering RNA for PI-9 increased MSC cellular death, whereas expression of transgenic PI-9 following retroviral transduction protected MSCs. These data significantly advance our understanding of the immunomodulatory role for hPB-MSCs as well as the mechanisms by which they evade host immune responses. These findings contribute to the development of MSC-based therapies for diseases.
Collapse
Affiliation(s)
- Najib El Haddad
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hu G, Xu JJ, Deng ZH, Feng J, Jin Y. Supernatant of bone marrow mesenchymal stromal cells induces peripheral blood mononuclear cells possessing mesenchymal features. Int J Biol Sci 2011; 7:364-75. [PMID: 21494428 PMCID: PMC3076501 DOI: 10.7150/ijbs.7.364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 03/25/2011] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence shows that some cells from peripheral blood fibroblast-like mononuclear cells have the capacity to differentiate into mesenchymal lineages. However, the insufficiency of these cells in the circulation challenges the cell isolation and subsequently limits the clinical application of these cells. In the present study, the peripheral blood mononuclear cells (pbMNCs) were isolated from wound animals and treated with the supernatant of bone marrow mesenchymal stromal cells (bmMSCs). Results showed these pbMNCs were fibroblast-like, had stromal morphology, were negative for CD34 and CD45, but positive for Vimentin and Collagen I, and had the multipotency to differentiate into adipocytes and osteoblasts. We named these induced peripheral blood-derived mesenchymal stromal cells (ipbMSCs). Skin grafts in combination with ipbMSCs and collagen I were applied for wound healing, and results revealed ipbMSC exhibited similar potency and effectiveness in the promotion of wound healing to the bmMSCs. Hereafter, we speculate that the mixture of growth factors and chemokines secreted by bmMSCs may play an important roles in the induction of the proliferation and mesenchymal differentiation of mononuclear cells. Our results are clinically relevant because it provide a new method for the acquisition of MSCs which can be used as a candidate for the wound repair.
Collapse
Affiliation(s)
- Gang Hu
- Department of Dermatology, Second Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | | | | | | | | |
Collapse
|
41
|
Iwasaki M, Koyanagi M, Kossmann H, Monsefi N, Rupp S, Trauth J, Paulus P, Goetz R, Momma S, Tjwa M, Ohtani K, Henschler R, Schranz D, Cossu G, Zacharowski K, Martens S, Zeiher AM, Dimmeler S. Hepatocyte growth factor mobilizes non-bone marrow-derived circulating mesoangioblasts. Eur Heart J 2010; 32:627-36. [PMID: 21193434 DOI: 10.1093/eurheartj/ehq442] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AIMS The identification of factors that mobilize subsets of endogenous progenitor cells may provide new therapeutic tools to enhance the repair of ischaemic tissue. We previously identified circulating mesenchymal cells that co-express endothelial markers (so-called circulating mesoangioblasts, cMABs) in children undergoing heart surgery with cardiopulmonary bypass (CPB). However, the mechanisms by which these cells are mobilized and their origin is unclear. METHODS AND RESULTS Circulating CD73(+)CD45(-)KDR(+) cMABs were analysed in adults undergoing heart surgery with (n = 21) or without CPB (n = 8). During surgery with CPB, cMABs are mobilized with a maximal response at the end of the operation. In contrast, off-pump heart surgery does not stimulate cMAB mobilization, indicating that the stress mediated by CPB induces the mobilization of cMAB. Circulating mesoangioblasts were enriched in blood obtained from the coronary sinus. Histologically, CD73(+) cells were detected around vessels in the heart, indicating that the heart is one of the niches of cMABs. Consistently, studies in gender mismatched bone marrow transplanted patients demonstrated that cMABs did not originate from the bone marrow. Cytokine profiling of serum samples revealed that hepatocyte growth factor (HGF) was profoundly increased at the time point of maximal mobilization of cMABs. Hepatocyte growth factor stimulated the migration of cMABs. Importantly, injection of recombinant HGF increased cMABs in rats. CONCLUSIONS Hepatocyte growth factor induces mobilization of non-haematopoietic progenitor cells with a cardiac repair capacity. This newly identified function together with the known pleiotrophic effects of HGF makes HGF an attractive therapeutic option for the treatment of ischaemic heart disease.
Collapse
Affiliation(s)
- Masayoshi Iwasaki
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, J.W. Goethe University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hu G, Liu P, Feng J, Jin Y. A novel population of mesenchymal progenitors with hematopoietic potential originated from CD14 peripheral blood mononuclear cells. Int J Med Sci 2010; 8:16-29. [PMID: 21209798 PMCID: PMC3014589 DOI: 10.7150/ijms.8.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/07/2010] [Indexed: 01/22/2023] Open
Abstract
Hemopoietic system derived progenitor cells with mesenchymal features have been identified including CD14(+) monocyte-derived progenitors. However, it is unclear whether there are mesenchyme derived progenitors with hematopoietic potential. Herein, we identified a novel CD14(-) cell-derived population with both mesenchymal and hematopoietic features in rat peripheral blood, and this cell population is different from the CD14(+) monocyte-derived progenitors but designated peripheral blood multipotential mesenchymal progenitors (PBMMPs). Phenotype analysis demonstrated expression of mesenchymal markers in PBMMPs including BMPRs, Endoglin/CD105, Fibronectin (Fn), Vimentin (Vim), Collagen (Col) I/II/III along with hematopoietic marker CD34. CD14(+) cell-derived population shared the same characteristics with CFs. In mixed culture of CD14(+) and CD14(-) cells, PBMMPs were a predominant component and expressed CD29(high), CD73(high), CD34(high), CD45(low) and CD90. Except for the value of mixed T lymphocytes and CD14(+) cell-derived population, hematopoietic characters of cultured PBMMPs were indicated by CD14(-)/CD34(+)/CD45(-)/CD90(+). The mesenchymal origin was further confirmed by comparing PBMMPs with bone marrow stromal cells. Finally, we transplanted PBMMPs into a skin wound model, and results showed the specific potential of PBMMPs in not only extracellular matrix secretion but epidermal regeneration. This study provides evidence that peripheral blood contains common hematopoietic-mesenchymal progenitors from both hematopoietic and mesenchymal lineages, and CD34(+) mesenchymal progenitors are a possible alternative source of epidermal cells in wound healing.
Collapse
Affiliation(s)
- Gang Hu
- Department of Dermatology, Second Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | | | | | | |
Collapse
|
43
|
Wu Y, Zhao RCH, Tredget EE. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells 2010; 28:905-15. [PMID: 20474078 PMCID: PMC2964514 DOI: 10.1002/stem.420] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our understanding of the role of bone marrow (BM)-derived cells in cutaneous homeostasis and wound healing had long been limited to the contribution of inflammatory cells. Recent studies, however, suggest that the BM contributes a significant proportion of noninflammatory cells to the skin, which are present primarily in the dermis in fibroblast-like morphology and in the epidermis in a keratinocyte phenotype; and the number of these BM-derived cells increases markedly after wounding. More recently, several studies indicate that mesenchymal stem cells derived from the BM could significantly impact wound healing in diabetic and nondiabetic animals, through cell differentiation and the release of paracrine factors, implying a profound therapeutic potential. This review discusses the most recent understanding of the contribution of BM-derived noninflammatory cells to cutaneous homeostasis and wound healing.
Collapse
Affiliation(s)
- Yaojiong Wu
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Beijing, People's Republic of China
| | | | | |
Collapse
|
44
|
Zhang Y, Bellows CF, Kolonin MG. Adipose tissue-derived progenitor cells and cancer. World J Stem Cells 2010; 2:103-13. [PMID: 21607127 PMCID: PMC3097931 DOI: 10.4252/wjsc.v2.i5.103] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 09/22/2010] [Accepted: 09/29/2010] [Indexed: 02/07/2023] Open
Abstract
Recruitment of stem cells and partially differentiated progenitor cells is a process which accompanies and facilitates the progression of cancer. One of the factors complicating the clinical course of cancer is obesity, a progressively widespread medical condition resulting from overgrowth of white adipose tissue (WAT), commonly known as white fat. The mechanisms by which obesity influences cancer risk and progression are not completely understood. Cells of WAT secret soluble molecules (adipokines) that could stimulate tumor growth, although there is no consensus on which cell populations and which adipokines are important. Recent reports suggest that WAT-derived mesenchymal stem (stromal) cells, termed adipose stem cells (ASC), may represent a cell population linking obesity and cancer. Studies in animal models demonstrate that adipokines secreted by ASC can promote tumor growth by assisting in formation of new blood vessels, a process necessary for expansion of tumor mass. Importantly, migration of ASC from WAT to tumors has been demonstrated, indicating that the tumor microenvironment in cancer may be modulated by ASC-derived trophic factors in a paracrine rather than in an endocrine manner. Here, we review possible positive and adverse implications of progenitor cell recruitment into the diseased sites with a particular emphasis on the role in cancer progression of progenitors that are expanded in obesity.
Collapse
Affiliation(s)
- Yan Zhang
- Yan Zhang, Mikhail G Kolonin, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | | | | |
Collapse
|
45
|
Boban I, Barisic-Dujmovic T, Clark SH. Parabiosis model does not show presence of circulating osteoprogenitor cells. Genesis 2010; 48:171-82. [PMID: 20127800 DOI: 10.1002/dvg.20602] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The goal of this study was to determine the presence of osteoprogenitor cells in the peripheral blood. Experiments were conducted with a parabiosis model in which osteoblast specific transgenic mice (Col2.3GFP or hOC-GFP) were surgically joined with a transgenic mouse where herpes virus thymidine kinase gene is under the control of the collagen alpha1 promoter (Col2.3DeltaTK). This method permits conditional ablation of osteoblasts by ganciclovir (GCV) treatment. In parabionts treated with GCV for 15 days or 1.5-2 months, GFP (hOC-GFP or Col2.3GFP) expression was not detected in histological preparations or in marrow stromal cell cultures from the Col2.3DeltaTK parabiont. Finally, Col2.3GFP/Col2.3DeltaTK pairs were treated with GCV for 15 days and allowed to recover from GCV for 3 months. Again there was a failure to detect Col2.3GFP expressing cells in the Col2.3DeltaTK parabiont. These observations, at least within the limits of this model system, allow the conclusion that osteoprogenitor cells do not readily circulate.
Collapse
Affiliation(s)
- Ivana Boban
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
46
|
Chen Y, Xiang LX, Shao JZ, Pan RL, Wang YX, Dong XJ, Zhang GR. Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med 2010; 14:1494-508. [PMID: 19780871 PMCID: PMC3829016 DOI: 10.1111/j.1582-4934.2009.00912.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 08/11/2009] [Indexed: 01/16/2023] Open
Abstract
Recent studies suggest that mesenchymal stem cells (MSCs) possess a greater differentiation potential than once thought and that they have the capacity to regenerate damaged tissues/organs. However, the evidence is insufficient, and the mechanism governing the recruitment and homing of MSCs to these injured sites is not well understood. We first examined the MSCs circulating in peripheral blood and then performed chemotaxis, wound healing and tubule-formation assays to investigate the migration capability of mouse bone marrow MSCs (mBM-MSCs) in response to liver-injury signals. In addition, BM-MSCs from donor enhanced green fluorescent protein transgenic male mice were transplanted into liver-injured co-isogenic female recipients, either by intra-bone marrow injection or through the caudal vein, to allow in vivo tracking analysis of the cell fate after transplantation. Donor-derived cells were analysed by in vivo imaging analysis, PCR, flow cytometry and frozen sections. Microarray and real-time PCR were used for chemokine/cytokine and receptor analyses. We successfully isolated circulating MSCs in peripheral blood of liver-injured mice and provided direct evidence that mBM-MSCs could be mobilized into the circulation and recruited into the liver after stimulation of liver injury. CCR9, CXCR4 and c-MET were essential for directing cellular migration towards the injured liver. The recruited mBM-MSCs may play different roles, including hepatic fate specification and down-regulation of the activity of hepatic stellate cells which inhibits over-accumulation of collagen and development of liver fibrosis. Our results provide new insights into liver repair involving endogenous BM-MSCs and add new information for consideration when developing clinical protocols involving the MSCs.
Collapse
Affiliation(s)
- Ye Chen
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Ruo-Lang Pan
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Yu-Xi Wang
- College of Life Sciences, Zhejiang University, Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhou, P. R. China
| | - Xue-Jun Dong
- The Molecular Medicine Center of Shaoxing People’s Hospital, The First Affiliate Hospital of Shaoxing UniversityShaoxing, P. R. China
| | - Guo-Rong Zhang
- The Molecular Medicine Center of Shaoxing People’s Hospital, The First Affiliate Hospital of Shaoxing UniversityShaoxing, P. R. China
| |
Collapse
|
47
|
Raghunath J, Sutherland J, Salih V, Mordan N, Butler PE, Seifalian AM. Chondrogenic potential of blood-acquired mesenchymal progenitor cells. J Plast Reconstr Aesthet Surg 2010; 63:841-7. [DOI: 10.1016/j.bjps.2009.01.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 01/22/2009] [Accepted: 01/30/2009] [Indexed: 12/01/2022]
|
48
|
G-CSF increases mesenchymal precursor cell numbers in the bone marrow via an indirect mechanism involving osteoclast-mediated bone resorption. Stem Cell Res 2010; 5:65-75. [PMID: 20537607 DOI: 10.1016/j.scr.2010.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 01/07/2023] Open
Abstract
During the course of studies to investigate whether MPC circulate in response to G-CSF, the agent most frequently used to induce mobilization of hematopoietic progenitors, we observed that while G-CSF failed to increase the number of MPC in circulation (assayed in vitro as fibroblast colony-forming cells, CFU-F), G-CSF administration nevertheless resulted in a time-dependent increase in the absolute number of CFU-F within the BM, peaking at Day 7. Treatment of BM cells from G-CSF-treated mice with hydroxyurea did not alter CFU-F numbers, suggesting that the increase in their numbers in response to G-CSF administration is not due to proliferation of existing CFU-F. Given previous studies demonstrating that G-CSF potently induces bone turnover in mice, we hypothesized that the increase in CFU-F may be triggered by the bone resorption that occurs following G-CSF administration. In accord with this hypothesis, administration of an inhibitor of osteoclast differentiation, osteoprotegerin (OPG), prevented the increase of CFU-F numbers induced by G-CSF. In conclusion, these data indicate that the cytokine treatment routinely used to mobilize hematopoietic stem cells could provide a readily applicable method to induce in vivo expansion of MPC for clinical applications.
Collapse
|
49
|
Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Ther 2010; 17:692-708. [PMID: 20220785 DOI: 10.1038/gt.2010.10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem (stromal) cells (MSCs) are a source of circulating progenitors that are able to generate cells of all mesenchymal lineages and to cover cellular demands of injured tissues. The extent of their transdifferentiation plasticity remains controversial. Cells with MSC properties have been obtained from diverse tissues after purification and expansion in vitro. These cellular populations are heterogeneous and under certain conditions show pluripotent-like properties. MSCs present immunosuppressive and anti-inflammatory features and high migratory capacity toward inflamed or remodeling tissues. In this study we review available data regarding factors and signaling axes involved in the chemoattraction and engraftment of MSCs to an injured tissue or to a tissue undergoing active remodeling. Moreover, experimental evidence in support of uses of MSCs as vehicles of therapeutic genes is discussed. Because of its regenerative capacity and its particular immune properties, the liver is a good model to analyze the potential of MSC-based therapies. Finally, the potential application of MSCs and genetically modified MSCs in liver fibrosis and hepatocellular carcinoma (HCC) is proposed in view of available evidence.
Collapse
|
50
|
Lankester AC, Ball LM, Lang P, Handgretinger R. Immunotherapy in the context of hematopoietic stem cell transplantation: the emerging role of natural killer cells and mesenchymal stromal cells. Pediatr Clin North Am 2010; 57:97-121. [PMID: 20307714 DOI: 10.1016/j.pcl.2009.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunotherapy in the context of hematopoietic stem cell transplantation has been dominated for many years by T-cell- and dendritic-cell-based treatment modalities. During the last decade, insight into the biology of natural killer (NK) cells and mesenchymal stromal cells (MSC) has rapidly increased and resulted in NK- and MSC-based therapeutic strategies in clinical practice. This article reviews current knowledge of the biology and clinical aspects of NK cells and MSC.
Collapse
Affiliation(s)
- Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Centre, Albinusdreef 2, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|