1
|
Maurer K, Antin JH. The graft versus leukemia effect: donor lymphocyte infusions and cellular therapy. Front Immunol 2024; 15:1328858. [PMID: 38558819 PMCID: PMC10978651 DOI: 10.3389/fimmu.2024.1328858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many hematologic malignancies as well as non-malignant conditions. Part of the curative basis underlying HSCT for hematologic malignancies relies upon induction of the graft versus leukemia (GVL) effect in which donor immune cells recognize and eliminate residual malignant cells within the recipient, thereby maintaining remission. GVL is a clinically evident phenomenon; however, specific cell types responsible for inducing this effect and molecular mechanisms involved remain largely undefined. One of the best examples of GVL is observed after donor lymphocyte infusions (DLI), an established therapy for relapsed disease or incipient/anticipated relapse. DLI involves infusion of peripheral blood lymphocytes from the original HSCT donor into the recipient. Sustained remission can be observed in 20-80% of patients treated with DLI depending upon the underlying disease and the intrinsic burden of targeted cells. In this review, we will discuss current knowledge about mechanisms of GVL after DLI, experimental strategies for augmenting GVL by manipulation of DLI (e.g. neoantigen vaccination, specific cell type selection/depletion) and research outlook for improving DLI and cellular immunotherapies for hematologic malignancies through better molecular definition of the GVL effect.
Collapse
Affiliation(s)
| | - Joseph H. Antin
- Division of Hematologic Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Schönefeldt S, Wais T, Herling M, Mustjoki S, Bekiaris V, Moriggl R, Neubauer HA. The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers (Basel) 2021; 13:6212. [PMID: 34944832 PMCID: PMC8699114 DOI: 10.3390/cancers13246212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
γδ T cells are unique players in shaping immune responses, lying at the intersection between innate and adaptive immunity. Unlike conventional αβ T cells, γδ T cells largely populate non-lymphoid peripheral tissues, demonstrating tissue specificity, and they respond to ligands in an MHC-independent manner. γδ T cells display rapid activation and effector functions, with a capacity for cytotoxic anti-tumour responses and production of inflammatory cytokines such as IFN-γ or IL-17. Their rapid cytotoxic nature makes them attractive cells for use in anti-cancer immunotherapies. However, upon transformation, γδ T cells can give rise to highly aggressive lymphomas. These rare malignancies often display poor patient survival, and no curative therapies exist. In this review, we discuss the diverse roles of γδ T cells in immune surveillance and response, with a particular focus on cancer immunity. We summarise the intriguing dichotomy between pro- and anti-tumour functions of γδ T cells in solid and haematological cancers, highlighting the key subsets involved. Finally, we discuss potential drivers of γδ T-cell transformation, summarising the main γδ T-cell lymphoma/leukaemia entities, their clinical features, recent advances in mapping their molecular and genomic landscapes, current treatment strategies and potential future targeting options.
Collapse
Affiliation(s)
- Susann Schönefeldt
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Tamara Wais
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Marco Herling
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany;
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland;
- iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| |
Collapse
|
3
|
Activated naïve γδ T cells accelerate deep molecular response to BCR-ABL inhibitors in patients with chronic myeloid leukemia. Blood Cancer J 2021; 11:182. [PMID: 34785653 PMCID: PMC8595379 DOI: 10.1038/s41408-021-00572-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) that target BCR-ABL are the frontline treatments in chronic myeloid leukemia (CML). Growing evidence has shown that TKIs also enhance immunity. Since gamma-delta T (γδT) cells possess the potent anticancer capability, here we investigated the potential involvement of γδT cells in TKI treatments for CML. We characterized γδT cells isolated from chronic-phase CML patients before and during TKI treatments. γδT expression increased significantly in CML patients who achieved major molecular response (MMR) and deep molecular response (DMR). Their Vδ2 subset of γδT also expanded, and increased expression of activating molecules, namely IFN-γ, perforin, and CD107a, as well as γδT cytotoxicity. Mechanistically, TKIs augmented the efflux of isopentenyl pyrophosphate (IPP) from CML cells, which stimulated IFN-γ production and γδT expansion. Notably, the size of the IFN-γ+ naïve γδT population in TKI-treated CML patients was strongly correlated with their rates to reach DMR and with the duration on DMR. Statistical analysis suggests that a cutoff of 7.5% IFN-γ+ naïve subpopulation of γδT in CML patients could serve as a determinant for MR4.0 sustainability. Our results highlight γδT cells as a positive regulator for TKI responses in CML patients.
Collapse
|
4
|
Barros MDS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021; 12:729085. [PMID: 34630403 PMCID: PMC8493128 DOI: 10.3389/fimmu.2021.729085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, many discoveries have elucidated the cellular and molecular diversity in the leukemic microenvironment and improved our knowledge regarding their complex nature. This has allowed the development of new therapeutic strategies against leukemia. Advances in biotechnology and the current understanding of T cell-engineering have led to new approaches in this fight, thus improving cell-mediated immune response against cancer. However, most of the investigations focus only on conventional cytotoxic cells, while ignoring the potential of unconventional T cells that until now have been little studied. γδ T cells are a unique lymphocyte subpopulation that has an extensive repertoire of tumor sensing and may have new immunotherapeutic applications in a wide range of tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression, the secretion of antitumor mediators and high functional plasticity are hallmarks of γδ T cells, and are ones that make them a promising alternative in the field of cell therapy. Despite this situation, in particular cases, the leukemic microenvironment can adopt strategies to circumvent the antitumor response of these lymphocytes, causing their exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk can improve their capabilities and clinical applications and can make them key components in new therapeutic antileukemic approaches. In this review, we highlight several characteristics of γδ T cells and their interactions in leukemia. Furthermore, we explore strategies for maximizing their antitumor functions, aiming to illustrate the findings destined for a better mobilization of γδ T cells against the tumor. Finally, we outline our perspectives on their therapeutic applicability and indicate outstanding issues for future basic and clinical leukemia research, in the hope of contributing to the advancement of studies on γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Mateus de Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nilberto Dias de Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabíola Silva Alves Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, UEA, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
5
|
Klyuchnikov E, Badbaran A, Massoud R, Fritsche-Friedland U, Janson D, Ayuk F, Wolschke C, Bacher U, Kröger N. Enhanced Immune Reconstitution of γδ T Cells after Allogeneic Stem Cell Transplantation Overcomes the Negative Impact of Pretransplantation Minimal Residual Disease-Positive Status in Patients with Acute Myelogenous Leukemia. Transplant Cell Ther 2021; 27:841-850. [PMID: 34118468 DOI: 10.1016/j.jtct.2021.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023]
Abstract
Minimal/measurable residual disease (MRD) before allogeneic stem cell transplantation (allo-SCT) in patients with acute myelogenous leukemia (AML) is a poor risk factor for outcome. γδ T cells represent a unique minority lymphocyte population that is preferentially located in peripheral tissues, can recognize antigens in a non-MHC-restricted manner, and plays a "bridging" role between the innate and adaptive immune systems. In this study, we investigated a potential graft-versus-leukemia effect of γδ T cell reconstitution post-transplantation in AML patients with pretransplantation positive MRD status (MRD+). MRD assessment was performed in 202 patients using multicolored flow cytometry ("different from normal" strategy); 100 patients were deemed MRD+. Analysis for absolute concentrations of CD3+, CD4+, CD8+, natural killer, and γδ T cells were performed by flow cytometry according to an internal protocol at day +30 and +100 post-transplantation. Differences between categorical and continuous variables were determined using the chi-square and Student t test, respectively. The Mann-Whitney U test was used to compare medians of continuous variables. Spearman's correlation was used for nonparametric assessment of correlation between different cell subsets during immune reconstitution. Kaplan-Meier survival analysis and Cox regression analysis were used to investigate the associations between immune reconstitution and survival outcomes. Gray's analysis was used to compute incidences of relapse, nonrelapse mortality, and graft-versus-host disease (GVHD). The median follow-up of survivors was 28 months (range 3 to 59 months). Younger age (≤58 years) of recipient and donor (<30 years), sex mismatch, use of a matched donor, cytomegalovirus reactivation, and administration of antithymocyte globulin were associated with a faster γδ T cell reconstitution. In multivariable analysis for MRD+ patients, a higher than median level of γδ T cells on days +30 and +100 resulted in significantly improved leukemia-free survival (hazard ratio [HR], 0.42 [P = .007] and 0.42 [P = .011], respectively) and overall survival (HR, 0.44 [P = .038] and 0.33 [P = .009], respectively). Furthermore, a higher γδ T cell level on day +30 was associated with a significantly reduced risk of relapse (HR, 0.36; P = .019). No impact of γδ T cell level on relapse at days +30 and +100 could be seen in MRD-negative patients, and no correlation with occurrence of GVHD was observed. Our data indicate that enhanced immune reconstitution of γδ T cells post-transplantation may overcome the higher relapse risk of pretransplantation MRD+ status in patients with AML.
Collapse
Affiliation(s)
- Evgeny Klyuchnikov
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Badbaran
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Radwan Massoud
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Fritsche-Friedland
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dietlinde Janson
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Switzerland
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
6
|
Gaballa A, Alagrafi F, Uhlin M, Stikvoort A. Revisiting the Role of γδ T Cells in Anti-CMV Immune Response after Transplantation. Viruses 2021; 13:v13061031. [PMID: 34072610 PMCID: PMC8228273 DOI: 10.3390/v13061031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 01/15/2023] Open
Abstract
Gamma delta (γδ) T cells form an unconventional subset of T lymphocytes that express a T cell receptor (TCR) consisting of γ and δ chains. Unlike conventional αβ T cells, γδ T cells share the immune signature of both the innate and the adaptive immunity. These features allow γδ T cells to act in front-line defense against infections and tumors, rendering them an attractive target for immunotherapy. The role of γδ T cells in the immune response to cytomegalovirus (CMV) has been the focus of intense research for several years, particularly in the context of transplantation, as CMV reactivation remains a major cause of transplant-related morbidity and mortality. Therefore, a better understanding of the mechanisms that underlie CMV immune responses could enable the design of novel γδ T cell-based therapeutic approaches. In this regard, the advent of next-generation sequencing (NGS) and single-cell TCR sequencing have allowed in-depth characterization of CMV-induced TCR repertoire changes. In this review, we try to shed light on recent findings addressing the adaptive role of γδ T cells in CMV immunosurveillance and revisit CMV-induced TCR reshaping in the era of NGS. Finally, we will demonstrate the favorable and unfavorable effects of CMV reactive γδ T cells post-transplantation.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- Department of Biochemistry and Molecular Biology, National Liver Institute, Menoufia University, Shebin Elkom 51132, Egypt
- Correspondence: ; Tel.: +46-858-580-000
| | - Faisal Alagrafi
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- National Center for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, 141 52 Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Arwen Stikvoort
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
| |
Collapse
|
7
|
Huang C, Xiang Z, Zhang Y, Li Y, Xu J, Zhang H, Zeng Y, Tu W. NKG2D as a Cell Surface Marker on γδ-T Cells for Predicting Pregnancy Outcomes in Patients With Unexplained Repeated Implantation Failure. Front Immunol 2021; 12:631077. [PMID: 33777016 PMCID: PMC7988228 DOI: 10.3389/fimmu.2021.631077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/16/2021] [Indexed: 02/04/2023] Open
Abstract
Maternal immune tolerance to semi-allogeneic fetus is essential for a successful implantation and pregnancy. Growing evidence indicated that low cytotoxic activity of γδ-T cells, which is mediated by activation and inhibitory receptors, is important for establishment of maternal immune tolerant microenvironment. However, the correlation between receptors on peripheral blood γδ-T cells, such as NKG2D, CD158a, and CD158b, and pregnancy outcome in patients with unexplained repeated implantation failure (uRIF) remains unclear. In this study, the association between the expression level of these receptors and pregnancy outcome in patients with uRIF was investigated. Thirty-eight women with uRIF were enrolled and divided into two groups: successful group and failed group, according to the pregnancy outcome on different gestational periods. The percentage of NKG2D+ γδ-T cells in lymphocytes was significantly higher in uRIF patients who had failed clinical pregnancy in subsequent cycle, compared with those who had successful clinical pregnancy. However, there were no differences about the frequencies of CD158a+ and CD158b+ γδ-T cells between the successful and failed groups. The receiver operating characteristic curve exhibited that the optimal cut-off value of NKG2D+ γδ-T cells was 3.24%, with 92.3% sensitivity and 66.7% specificity in predicting clinical pregnancy failure in uRIF patients. The patients with uRIF were further divided into two groups, group 1 (NKG2D+ γδ-T cells <3.24%) and group 2 (NKG2D+ γδ-T cells ≥3.24%), based on the cut-off value. The live birth rate of patients in the group 1 and group 2 were 61.5 and 28.0%, respectively. Kaplan-Meier survival curve further suggested that the frequency of NKG2D+ γδ-T cells in lymphocytes negatively correlated with live birth rate in patients with uRIF. In conclusion, our study demonstrated that the frequency of peripheral blood NKG2D+ γδ-T cells among lymphocytes is a potential predictor for pregnancy outcome in uRIF patients.
Collapse
Affiliation(s)
- Chunyu Huang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yongnu Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jian Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Hongzhan Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Andrlová H, van den Brink MRM, Markey KA. An Unconventional View of T Cell Reconstitution After Allogeneic Hematopoietic Cell Transplantation. Front Oncol 2021; 10:608923. [PMID: 33680931 PMCID: PMC7930482 DOI: 10.3389/fonc.2020.608923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 01/02/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is performed as curative-intent therapy for hematologic malignancies and non-malignant hematologic, immunological and metabolic disorders, however, its broader implementation is limited by high rates of transplantation-related complications and a 2-year mortality that approaches 50%. Robust reconstitution of a functioning innate and adaptive immune system is a critical contributor to good long-term patient outcomes, primarily to prevent and overcome post-transplantation infectious complications and ensure adequate graft-versus-leukemia effects. There is increasing evidence that unconventional T cells may have an important immunomodulatory role after allo-HCT, which may be at least partially dependent on the post-transplantation intestinal microbiome. Here we discuss the role of immune reconstitution in allo-HCT outcome, focusing on unconventional T cells, specifically mucosal-associated invariant T (MAIT) cells, γδ (gd) T cells, and invariant NK T (iNKT) cells. We provide an overview of the mechanistic preclinical and associative clinical studies that have been performed. We also discuss the emerging role of the intestinal microbiome with regard to hematopoietic function and overall immune reconstitution.
Collapse
Affiliation(s)
- Hana Andrlová
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marcel R. M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
9
|
Castro CD, Boughter CT, Broughton AE, Ramesh A, Adams EJ. Diversity in recognition and function of human γδ T cells. Immunol Rev 2020; 298:134-152. [PMID: 33136294 DOI: 10.1111/imr.12930] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
As interest increases in harnessing the potential power of tissue-resident cells for human health and disease, γδ T cells have been thrust into the limelight due to their prevalence in peripheral tissues, their sentinel-like phenotypes, and their unique antigen recognition capabilities. This review focuses primarily on human γδ T cells, highlighting their distinctive characteristics including antigen recognition, function, and development, with an emphasis on where they differ from their αβ T cell comparators, as well as from γδ T cell populations in the mouse. We review the antigens that have been identified thus far to regulate members of the human Vδ1 population and discuss what players are involved in transducing phosphoantigen-mediated signals to human Vγ9Vδ2 T cells. We also briefly review distinguishing features of these cells in terms of TCR signaling, use of coreceptor and costimulatory molecules and their development. These cells have great potential to be harnessed in a clinical setting, but caution must be taken to understand their unique capabilities and how they differ from the populations to which they are commonly compared.
Collapse
Affiliation(s)
- Caitlin D Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Christopher T Boughter
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Augusta E Broughton
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Amrita Ramesh
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Pean P, Nouhin J, Ratana M, Madec Y, Borand L, Marcy O, Laureillard D, Fernandez M, Barré-Sinoussi F, Weiss L, Scott-Algara D. High Activation of γδ T Cells and the γδ2 pos T-Cell Subset Is Associated With the Onset of Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome, ANRS 12153 CAPRI NK. Front Immunol 2019; 10:2018. [PMID: 31507608 PMCID: PMC6718564 DOI: 10.3389/fimmu.2019.02018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Human Immunodeficiency Virus 1 (HIV-1) and Mycobacterium Tuberculosis (Mtb) co-infected patients are commonly at risk of immune reconstitution inflammatory syndrome (IRIS) when initiating antiretroviral treatment (ART). Evidence indicates that innate immunity plays a role in TB-IRIS. Here, we evaluate the phenotype of Gamma-delta (γδ) T cells and invariant Natural Killer (iNK) T cells in tuberculosis-associated IRIS. Methods: Forty-eight HIV+/TB+ patients (21 IRIS) and three control groups: HIV–/TB– (HD, n = 11), HIV+/TB– (n = 26), and HIV–/TB+ (n = 22) were studied. Samples were taken at ART initiation (week 2 of anti-tuberculosis treatment) and at the diagnosis of IRIS for HIV+/TB+; before ART for HIV+/TB-, and at week 2 of anti-tuberculosis treatment for HIV–/TB+ patients. γδ T cells and Invariant natural killer T (iNKT) cells were analyzed by flow cytometry. Results: Before ART, IRIS, and non-IRIS patients showed a similar proportion of γδpos T and iNKT cells. HLA-DR on γδpos T cells and δ2posγδpos T cells was significantly higher in TB-IRIS vs. non-IRIS patients and controls (p < 0.0001). NKG2D expression on γδpos T cells and the δ2posγδpos T cell subset was lower in HIV+/TB+ patients than controls. CD158a expression on γδpos T cells was higher in TB-IRIS than non-IRIS (p = 0.02), HIV+/TB–, and HIV–/TB- patients. Conclusion: The higher activation of γδposT cells and the γδ2posγδpos T cell subset suggests that γδ T cells may play a role in the pathogenesis of TB-IRIS.
Collapse
Affiliation(s)
- Polidy Pean
- Immunology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Janin Nouhin
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Meng Ratana
- Immunology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Yoann Madec
- Unité d'Épidémiologie des Maladies Émergentes, Institut Pasteur, Paris, France
| | - Laurence Borand
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Olivier Marcy
- Bordeaux Population Health, Centre Inserm U1219, Université de Bordeaux, Bordeaux, France
| | - Didier Laureillard
- Department of Infectious and Tropical Diseases, University hospital, Nîmes, France
| | | | | | - Laurence Weiss
- Hôpital Européen Georges Pompidou, Service d'Immunologie Clinique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
11
|
Bertaina A, Roncarolo MG. Graft Engineering and Adoptive Immunotherapy: New Approaches to Promote Immune Tolerance After Hematopoietic Stem Cell Transplantation. Front Immunol 2019; 10:1342. [PMID: 31354695 PMCID: PMC6635579 DOI: 10.3389/fimmu.2019.01342] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative therapeutic option for a wide range of immune and hematologic malignant and non-malignant disorders. Once transplanted, allogeneic cells have to support myeloid repopulation and immunological reconstitution, but also need to become tolerant to the host via central or peripheral mechanisms to achieve the desired therapeutic effect. Peripheral tolerance after allogeneic HSCT may be achieved by several mechanisms, though blocking alloreactivity to the host human leukocyte antigens while preserving immune responses to pathogens and tumor antigens remains a challenge. Recently uncovered evidence on the mechanisms of post-HSCT immune reconstitution and tolerance in transplanted patients has allowed for the development of novel cell-based therapeutic approaches. These therapies are aimed at inducing long-term peripheral tolerance and reducing the risk of graft-vs-host disease (GvHD), while sparing the graft-vs-leukemia (GvL) effect. Thus, ensuring effective long term remission in hematologic malignancies. Today, haploidentical stem cell transplants have become a widely used treatment for patients with hematological malignancies. A myriad of ex vivo and in vivo T-cell depletion strategies have been adopted, with the goal of preventing GvHD while preserving GvL in the context of immunogenetic disparity. αβ T-cell/CD19 B-cell depletion techniques, in particular, has gained significant momentum, because of the high rate of leukemia-free survival and the low risk of severe GvHD. Despite progress, better treatments are still needed in a portion of patients to further reduce the incidence of relapse and achieve long-term tolerance. Current post-HSCT cell therapy approaches designed to induce tolerance and minimizing GvHD occurrence include the use of (i) γδ T cells, (ii) regulatory Type 1 T (Tr1) cells, and (iii) engineered FOXP3+ regulatory T cells. Future protocols may include post-HSCT infusion of allogeneic effector or regulatory T cells engineered with a chimeric antigen receptor (CAR). In the present review, we describe the most recent advances in graft engineering and post-HSCT adoptive immunotherapy.
Collapse
Affiliation(s)
- Alice Bertaina
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Maria Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Arruda LCM, Gaballa A, Uhlin M. Graft γδ TCR Sequencing Identifies Public Clonotypes Associated with Hematopoietic Stem Cell Transplantation Efficacy in Acute Myeloid Leukemia Patients and Unravels Cytomegalovirus Impact on Repertoire Distribution. THE JOURNAL OF IMMUNOLOGY 2019; 202:1859-1870. [DOI: 10.4049/jimmunol.1801448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
|
13
|
Yao J, Ly D, Dervovic D, Fang L, Lee JB, Kang H, Wang YH, Pham NA, Pan H, Tsao MS, Zhang L. Human double negative T cells target lung cancer via ligand-dependent mechanisms that can be enhanced by IL-15. J Immunother Cancer 2019; 7:17. [PMID: 30670085 PMCID: PMC6343266 DOI: 10.1186/s40425-019-0507-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/13/2019] [Indexed: 12/25/2022] Open
Abstract
Background The advents of novel immunotherapies have revolutionized the treatment of cancer. Adoptive cellular therapies using chimeric antigen receptor T (CAR-T) cells have achieved remarkable clinical responses in B cell leukemia and lymphoma but the effect on solid tumors including lung cancer is limited. Here we present data on the therapeutic potential of allogeneic CD3+CD4−CD8− double negative T (DNT) cells as a new cellular therapy for the treatment of lung cancer and underlying mechanisms. Methods DNTs were enriched and expanded ex vivo from healthy donors and phenotyped by flow cytometry. Functionally, their cytotoxicity was determined against primary and established non-small-cell lung cancer (NSCLC) cell lines in vitro or through in vivo adoptive transfer into xenograft models. Mechanistic analysis was performed using blocking antibodies against various cell surface and soluble markers. Furthermore, the role of IL-15 on DNT function was determined. Results We demonstrated that ex vivo expanded DNTs can effectively lyse various human NSCLC cells in vitro and inhibit tumor growth in xenograft models. Expanded DNTs have a cytotoxic phenotype, as they express NKp30, NKG2D, DNAM-1, membrane TRAIL (mTRAIL), perforin and granzyme B, and secrete IFNγ and soluble TRAIL (sTRAIL). DNT-mediated cytotoxicity was dependent on a combination of tumor-expressed ligands for NKG2D, DNAM-1, NKp30 and/or receptors for TRAIL, which differ among different NSCLC cell lines. Furthermore, stimulation of DNTs with IL-15 increased expression of effector molecules on DNTs, their TRAIL production and cytotoxicity against NSCLC in vitro and in vivo. Conclusion Healthy donor-derived DNTs can target NSCLC in vitro and in vivo. DNTs recognize tumors via innate receptors which can be up-regulated by IL-15. DNTs have the potential to be used as a novel adoptive cell therapy for lung cancer either alone or in combination with IL-15. Electronic supplementary material The online version of this article (10.1186/s40425-019-0507-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junlin Yao
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Present address: Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dalam Ly
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Dzana Dervovic
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Present address: Department of Systems Biology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Linan Fang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Hyeonjeong Kang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Hui Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hongming Pan
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,University Health Network, Princess Margaret Cancer Research Tower, 101 College St. Rm 2-807, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
14
|
Unrelated donor vs HLA-haploidentical α/β T-cell- and B-cell-depleted HSCT in children with acute leukemia. Blood 2018; 132:2594-2607. [PMID: 30348653 DOI: 10.1182/blood-2018-07-861575] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Traditionally, hematopoietic stem cell transplantation (HSCT) from both HLA-matched related and unrelated donors (UD) has been used for treating children with acute leukemia (AL) in need of an allograft. Recently, HLA-haploidentical HSCT after αβ T-cell/B-cell depletion (αβhaplo-HSCT) was shown to be effective in single-center studies. Here, we report the first multicenter retrospective analysis of 127 matched UD (MUD), 118 mismatched UD (MMUD), and 98 αβhaplo-HSCT recipients, transplanted between 2010 and 2015, in 13 Italian centers. All these AL children were transplanted in morphological remission after a myeloablative conditioning regimen. Graft failure occurred in 2% each of UD-HSCT and αβhaplo-HSCT groups. In MUD vs MMUD-HSCT recipients, the cumulative incidence of grade II to IV and grade III to IV acute graft-versus-host disease (GVHD) was 35% vs 44% and 6% vs 18%, respectively, compared with 16% and 0% in αβhaplo-HSCT recipients (P < .001). Children treated with αβhaplo-HSCT also had a significantly lower incidence of overall and extensive chronic GVHD (P < .01). Eight (6%) MUD, 32 (28%) MMUD, and 9 (9%) αβhaplo-HSCT patients died of transplant-related complications. With a median follow-up of 3.3 years, the 5-year probability of leukemia-free survival in the 3 groups was 67%, 55%, and 62%, respectively. In the 3 groups, chronic GVHD-free/relapse-free (GRFS) probability of survival was 61%, 34%, and 58%, respectively (P < .001). When compared with patients given MMUD-HSCT, αβhaplo-HSCT recipients had a lower cumulative incidence of nonrelapse mortality and a better GRFS (P < .001). These data indicate that αβhaplo-HSCT is a suitable therapeutic option for children with AL in need of transplantation, especially when an allele-matched UD is not available.
Collapse
|
15
|
The potential role of γδ T cells after allogeneic HCT for leukemia. Blood 2018; 131:1063-1072. [PMID: 29358176 DOI: 10.1182/blood-2017-08-752162] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoetic stem cell transplantation (HCT) offers an option for patients with hematologic malignancies, in whom conventional standard therapies failed or are not effective enough to cure the disease. Successful HCT can restore functional hematopoiesis and immune function, and the new donor-derived immune system can exert a graft-versus-leukemia (GVL) effect. However, allogenic HCT can also be associated with serious risks for transplantation-related morbidities or mortalities such as graft-versus-host disease (GVHD) or life-threatening infectious complications. GVHD is caused by alloreactive T lymphocytes, which express the αβ T-cell receptor, whereas lymphocytes expressing the γδ T-cell receptor are not alloreactive and do not induce GVHD but can exhibit potent antileukemia and anti-infectious activities. Therefore, γδ T cells are becoming increasingly interesting in allogeneic HCT, and clinical strategies to exploit the full function of these lymphocytes have been and are being developed. Such strategies comprise the in vivo activation of γδ T cells or subsets after HCT by certain drugs or antibodies or the ex vivo expansion and manipulation of either patient-derived or donor-derived γδ T cells and their subsets and the adoptive transfer of the ex vivo-activated lymphocytes. On the basis of the absence of dysregulated alloreactivity, such approaches could induce potent GVL effects in the absence of GVHD. The introduction of large-scale clinical methods to enrich, isolate, expand, and manipulate γδ T cells will facilitate future clinical studies that aim to exploit the full function of these beneficial nonalloreactive lymphocytes.
Collapse
|
16
|
Outcome of children with acute leukemia given HLA-haploidentical HSCT after αβ T-cell and B-cell depletion. Blood 2017; 130:677-685. [DOI: 10.1182/blood-2017-04-779769] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022] Open
Abstract
Key Points
Children with AL given haplo-HSCT after αβ T- and B-cell depletion are exposed to a low risk of acute and chronic GVHD and NRM. The leukemia-free, GVHD-free survival of patients given this type of allograft is comparable to that of HLA-matched donor HSCT recipients.
Collapse
|
17
|
Lawand M, Déchanet-Merville J, Dieu-Nosjean MC. Key Features of Gamma-Delta T-Cell Subsets in Human Diseases and Their Immunotherapeutic Implications. Front Immunol 2017; 8:761. [PMID: 28713381 PMCID: PMC5491929 DOI: 10.3389/fimmu.2017.00761] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/16/2017] [Indexed: 02/01/2023] Open
Abstract
The unique features of gamma-delta (γδ) T cells, related to their antigen recognition capacity, their tissue tropism, and their cytotoxic function, make these cells ideal candidates that could be targeted to induce durable immunity in the context of different pathologies. In this review, we focus on the main characteristics of human γδ T-cell subsets in diseases and the key mechanisms that could be explored to target these cells.
Collapse
Affiliation(s)
- Myriam Lawand
- Cordeliers Research Center, UMRS 1138, Team "Cancer, Immune Control and Escape", INSERM, Paris, France.,Cordeliers Research Center, UMRS 1138, University Sorbonne-Paris Cité, University Paris Descartes, Paris, France.,Cordeliers Research Center, UMRS 1138, University Pierre and Marie Curie (UPMC), Paris 06, University Paris-Sorbonne, Paris, France
| | | | - Marie-Caroline Dieu-Nosjean
- Cordeliers Research Center, UMRS 1138, Team "Cancer, Immune Control and Escape", INSERM, Paris, France.,Cordeliers Research Center, UMRS 1138, University Sorbonne-Paris Cité, University Paris Descartes, Paris, France.,Cordeliers Research Center, UMRS 1138, University Pierre and Marie Curie (UPMC), Paris 06, University Paris-Sorbonne, Paris, France
| |
Collapse
|
18
|
Selective Depletion of αβ T Cells and B Cells for Human Leukocyte Antigen–Haploidentical Hematopoietic Stem Cell Transplantation. A Three-Year Follow-Up of Procedure Efficiency. Biol Blood Marrow Transplant 2016; 22:2056-2064. [DOI: 10.1016/j.bbmt.2016.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
|
19
|
Davis ZB, Cooley SA, Cichocki F, Felices M, Wangen R, Luo X, DeFor TE, Bryceson YT, Diamond DJ, Brunstein C, Blazar BR, Wagner JE, Weisdorf DJ, Horowitz A, Guethlein LA, Parham P, Verneris MR, Miller JS. Adaptive Natural Killer Cell and Killer Cell Immunoglobulin-Like Receptor-Expressing T Cell Responses are Induced by Cytomegalovirus and Are Associated with Protection against Cytomegalovirus Reactivation after Allogeneic Donor Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2015; 21:1653-62. [PMID: 26055301 PMCID: PMC4557961 DOI: 10.1016/j.bbmt.2015.05.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/27/2015] [Indexed: 11/26/2022]
Abstract
Cytomegalovirus (CMV) reactivates in >30% of CMV-seropositive patients after allogeneic hematopoietic cell transplantation (HCT). Previously, we reported an increase of natural killer (NK) cells expressing NKG2C, CD57, and inhibitory killer cell immunoglobulin-like receptors (KIRs) in response to CMV reactivation after HCT. These NK cells persist after the resolution of infection and display "adaptive" or memory properties. Despite these findings, the differential impact of persistent/inactive versus reactivated CMV on NK versus T cell maturation after HCT from different graft sources has not been defined. We compared the phenotype of NK and T cells from 292 recipients of allogeneic sibling (n = 118) or umbilical cord blood (UCB; n = 174) grafts based on recipient pretransplantation CMV serostatus and post-HCT CMV reactivation. This cohort was utilized to evaluate CMV-dependent increases in KIR-expressing NK cells exhibiting an adaptive phenotype (NKG2C(+)CD57(+)). Compared with CMV-seronegative recipients, those who reactivated CMV had the highest adaptive cell frequencies, whereas intermediate frequencies were observed in CMV-seropositive recipients harboring persistent/nonreplicating CMV. The same effect was observed in T cells and CD56(+) T cells. These adaptive lymphocyte subsets were increased in CMV-seropositive recipients of sibling but not UCB grafts and were correlated with lower rates of CMV reactivation (sibling 33% versus UCB 51%; P < .01). These data suggest that persistent/nonreplicating recipient CMV induces rapid production of adaptive NK and T cells from mature cells from sibling but not UCB grafts. These adaptive lymphocytes are associated with protection from CMV reactivation.
Collapse
Affiliation(s)
- Zachary B Davis
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sarah A Cooley
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Frank Cichocki
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Martin Felices
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Rose Wangen
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Xianghua Luo
- Division of Biostatistics, School of Public Health and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Todd E DeFor
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Yenan T Bryceson
- Centre for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Don J Diamond
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Claudio Brunstein
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Bruce R Blazar
- Blood and Marrow Transplant Program, Department of Pediatric, University of Minnesota, Minneapolis, Minnesota
| | - John E Wagner
- Blood and Marrow Transplant Program, Department of Pediatric, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J Weisdorf
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Amir Horowitz
- Structural Biology and Microbiology and Immunology, Stanford University, Stanford, California
| | - Lisbeth A Guethlein
- Structural Biology and Microbiology and Immunology, Stanford University, Stanford, California
| | - Peter Parham
- Structural Biology and Microbiology and Immunology, Stanford University, Stanford, California
| | - Michael R Verneris
- Blood and Marrow Transplant Program, Department of Pediatric, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Centre for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
20
|
Siegers GM, Lamb LS. Cytotoxic and regulatory properties of circulating Vδ1+ γδ T cells: a new player on the cell therapy field? Mol Ther 2014; 22:1416-1422. [PMID: 24895997 DOI: 10.1038/mt.2014.104] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/26/2014] [Indexed: 12/20/2022] Open
Abstract
Exploration of cancer immunotherapy strategies that incorporate γδ T cells as primary mediators of antitumor immunity are just beginning to be explored and with a primary focus on the use of manufactured phosphoantigen-stimulated Vγ9Vδ2 T cells. Increasing evidence, however, supports a critical role for Vδ1+ γδ T cells, a minor subset in peripheral blood with distinct innate recognition properties that possess powerful tumoricidal activity. They are activated by a host of ligands including stress-induced self-antigens, glycolipids presented by CD1c/d, and potentially many others that currently remain unidentified. In contrast to Vγ9Vδ2 T cells, tumor-reactive Vδ1+ T cells are not as susceptible to activation-induced cell death and can persist in the circulation for many years, potentially offering durable immunity to some cancers. In addition, specific populations of Vδ1+ T cells can also exhibit immunosuppressive and regulatory properties, a function that can also be exploited for therapeutic purposes. This review explores the biology, function, manufacturing strategies, and potential therapeutic role of Vδ1+ T cells. We also discuss clinical experience with Vδ1+ T cells in the setting of cancer, as well as the potential of and barriers to the development of Vδ1+ T cell-based adoptive cell therapy strategies.
Collapse
Affiliation(s)
- Gabrielle M Siegers
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Lawrence S Lamb
- Division of Hematology & Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
21
|
Depletion of T-cell receptor alpha/beta and CD19 positive cells from apheresis products with the CliniMACS device. Cytotherapy 2013; 15:1253-8. [DOI: 10.1016/j.jcyt.2013.05.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 11/23/2022]
|
22
|
Zhang X, Chen S, Yang L, Li B, Zhu K, Li Y. The feature of TRGV and TRDV repertoire distribution and clonality in patients with immune thrombocytopenic purpura. Hematology 2013; 14:237-44. [PMID: 19635188 DOI: 10.1179/102453309x439755] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xueli Zhang
- Department of HematologyFirst Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Shaohua Chen
- Institute of HematologyMedical College, Jinan University, Guangzhou, 510632, China
| | - Lijian Yang
- Institute of HematologyMedical College, Jinan University, Guangzhou, 510632, China
| | - Bo Li
- Institute of HematologyMedical College, Jinan University, Guangzhou, 510632, China
| | - Kanger Zhu
- Department of HematologyFirst Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- Department of HematologyFirst Affiliated Hospital, Jinan University, Guangzhou, 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
23
|
Knight A, Mackinnon S, Lowdell MW. Human Vdelta1 gamma-delta T cells exert potent specific cytotoxicity against primary multiple myeloma cells. Cytotherapy 2012; 14:1110-8. [PMID: 22800570 DOI: 10.3109/14653249.2012.700766] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND AIMS Human gamma-delta (γδ) T cells are potent effector lymphocytes of innate immunity involved in anti-tumor immune surveillance. However, the Vδ1 γδ T-cell subset targeting multiple myeloma (MM) has not previously been investigated. METHODS Vδ1 T cells were purified from peripheral blood mononuclear cells of healthy donors and patients with MM by immunomagnetic sorting and expanded with phytohemagglutinin (PHA) together with interleukin (IL)-2 in the presence of allogeneic feeders. Vδ1 T cells were phenotyped by flow cytometry and used in a 4-h flow cytometric cytotoxicity assay. Cytokine release and blocking studies were performed. Primary myeloma cells were purified from MM patients' bone marrow aspirates. RESULTS Vδ1 T cells expanded from healthy donors displayed prominent cytotoxicity by specific lysis against patients' CD38 (+) CD138 (+) bone marrow-derived plasma cells. Vδ1 T cells isolated from MM patients showed equally significant killing of myeloma cells as Vδ1 T cells from normal donors. Vδ1 T cells showed similarly potent cytotoxicity against myeloma cell lines U266 and RPMI8226 and plasma cell leukemia ARH77 in a dose-dependent manner. The interferon (IFN)-γ secretion and Vδ1 T-cell cytotoxicity against myeloma cells was mediated in part through the T-cell receptor (TCR) in addition to involvement of Natural killer-G2D molecule (NKG2D), DNAX accessory molecule-1 (DNAM-1), intracellular cell adhesion molecule (ICAM)-1, CD3 and CD2 receptors. In addition, Vδ1 T cells were shown to exert anti-myeloma activity equal to that of Vδ2 T cells. CONCLUSIONS We have shown for the first time that Vδ1 T cells are highly myeloma-reactive and have therefore established Vδ1 γδ T cells as a potential candidate for a novel tumor immunotherapy.
Collapse
Affiliation(s)
- Andrea Knight
- Department of Haematology, Royal Free Hospital, University College Medical School London, UK.
| | | | | |
Collapse
|
24
|
Lai D, Wang F, Chen Y, Wang C, Liu S, Lu B, Ge X, Guo L. Human ovarian cancer stem-like cells can be efficiently killed by γδ T lymphocytes. Cancer Immunol Immunother 2012; 61:979-89. [PMID: 22120758 PMCID: PMC11029003 DOI: 10.1007/s00262-011-1166-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/15/2011] [Indexed: 01/21/2023]
Abstract
Ovarian cancer comprises a small population of cancer stem cells (CSCs) that are responsible for tumor maintenance and resistant to cancer therapies, it would be desirable to develop a therapy that could selectively target ovarian CSCs. Recently, cellular immune-based therapies have improved the prognosis of cancer patients clinically. In this study, we isolated a subset of ovarian cancer sphere cells that possess CSC properties and explored the cell cytotoxicity of γδ T cells to ovarian cancer sphere cells using a transwell cocultured cell system. The proliferation rate of the cancer sphere cells decreased to 40% after cocultured with γδ T cells. The γδ T cells increased the sensitivity of SK-OV-3 sphere cells to chemotherapeutic drugs. After the treatment of γδ T cells, the expression of stem cell marker genes decreased in sphere cells, while the expression of HLA-DR antigen on tumor cells was increased in a time-dependent manner. Further, γδ T cells induced G2/M phase cell cycle arrest and subsequent apoptosis in SK-OV-3 sphere cells. Xenograft mouse models demonstrated that γδ T cells dramatically reduced the tumor burden. Notably, the level of IL-17 production significantly increased after cocultured with γδ T cells. We conclude that γδ T cells may efficiently kill ovarian CSCs through IL-17 production and represent a promising immunotherapy for ovarian cancer.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Coculture Techniques
- Female
- G2 Phase Cell Cycle Checkpoints/immunology
- HLA-DR Antigens/biosynthesis
- HLA-DR Antigens/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Interleukin-17/biosynthesis
- Interleukin-17/immunology
- M Phase Cell Cycle Checkpoints/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/immunology
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Glandular and Epithelial/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/pathology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Siegers GM, Dhamko H, Wang XH, Mathieson AM, Kosaka Y, Felizardo TC, Medin JA, Tohda S, Schueler J, Fisch P, Keating A. Human Vδ1 γδ T cells expanded from peripheral blood exhibit specific cytotoxicity against B-cell chronic lymphocytic leukemia-derived cells. Cytotherapy 2011; 13:753-64. [PMID: 21314241 DOI: 10.3109/14653249.2011.553595] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AIMS There is increasing interest in using γδ T cells (GDTC) for cancer immunotherapy. Most studies have been concerned with the Vδ2 subset in blood, for which several expansion protocols exist. We have developed a protocol to expand Vδ1 and Vδ2 preferentially from human blood. We have characterized these subsets and their specificities for leukemic targets. METHODS GDTC were isolated from the peripheral blood mononuclear cells (PBMC) of healthy donors via positive magnetic cell sorting; their proliferation in vitro was induced by exposure to the mitogen concanavalin A (Con A). CD107 and cytotoxicity (Cr(51)-release and flow cytometric) assays were performed. GDTC clones and target cells were immunophenotyped via flow cytometry. RESULTS Longer initial exposure to Con A typically resulted in higher Vδ1 prevalence. Vδ1 were activated by and cytotoxic to B-cell chronic lymphocytic leukemia (B-CLL)-derived MEC1 cells, whereas Vδ2 also responded to MEC1 but more so to the Philadelphia chromosome-positive [Ph+] leukemia cell line EM-enhanced green fluorescent protein (2eGFPluc). Vδ2 clone cytotoxicity against EM-2eGFPluc correlated with Vδ2 T-cell antigen receptor (TCR) and receptor found on Natural Killer cells and many T-cells (NKG2D), whereas Vδ1 clone cytotoxicity versus MEC1 correlated with Vδ1 TCR, CD56 and CD95 expression. Vδ1 also killed Epstein-Barr Virus (EBV)-negative B-CLL-derived TMD2 cells. Immunophenotyping revealed reduced HLA-ABC expression on EM-2eGFPluc, whereas MEC1 and TMD2 exhibited higher Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAILR1). CONCLUSIONS Our ability to expand peripheral Vδ1 cells and show their cytotoxicity to B-CLL-derived cell lines suggests that this novel approach to the cellular treatment of B-CLL may be feasible.
Collapse
Affiliation(s)
- Gabrielle M Siegers
- Cell Therapy Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Almost all individuals diagnosed with glioblastoma multiforme (GBM) will die of their disease as no effective therapies exist. Clearly, novel approaches to this problem are needed. Unlike the adaptive alphabeta T cell-mediated immune response, which requires antigen processing and MHC-restricted peptide display by antigen-presenting cells, gammadelta T cells can broadly recognize and immediately respond to a variety of MHC-like stress-induced self antigens, many of which are expressed on human GBM cells. Until now, there has been little progress toward clinical application, although several investigators have recently published clinically approvable methods for large-scale ex vivo expansion of functional gammadelta T cells for therapeutic purposes. This review discusses the biology of gammadelta T cells with respect to innate immunotherapy of cancer with a focus on GBM, and explores graft engineering techniques in development for the therapeutic use of gammadelta T cells.
Collapse
|
27
|
Li Y, Chen S, Yang L, Li B, Chan JYH, Cai D. TRGV and TRDV repertoire distribution and clonality of T cells from umbilical cord blood. Transpl Immunol 2008; 20:155-62. [PMID: 19013241 DOI: 10.1016/j.trim.2008.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 10/13/2008] [Accepted: 10/20/2008] [Indexed: 01/18/2023]
Abstract
Umbilical cord blood (CB) has been used as a valuable source of hematopoietic stem cells for allogeneic transplantation, specific CTL response and immunotherapy for decades. We previously analyzed the distribution and clonality of T-cell receptor alpha and beta variable region (TRAV) and (TRBV) of the subfamily T cell receptors in T cells from umbilical cord blood. Recent data indicated that gammadelta(+) T cells may play an important role in mediating the graft versus leukemia effect after stem cells transplantation and in anti-cancer response. In order to further characterize the repertoire of CB T-cells, the frequency of alphabeta(+) and gammadelta(+) T cells were examined in CB by FACS. The CDR3 size of 4 TRGV and 8 TRDV subfamily genes were analyzed in mononuclear cells (MCs) from 16 CB samples, using RT-PCR and genescan technique. To determine the expression level of TRGV subfamily genes, we performed quantitative analysis of TRGVI-III subfamilies by real-time PCR. Low percentage of CD3(+)TCRgammadelta(+) cells was observed in CB. The frequency of expression in TRGVI, TRGVII and TRGVIII in CBMCs was 93.75%, 81.25% and 56.25%, respectively. The mean value of the number of expressed TRDV subfamilies in CBMCs is higher than that from adult peripheral blood (PB) group. The frequently expressed members in CB were TRDV1 (100%), TRDV2 (93.75%), TRDV8 (93.75%) and TRDV3 (81.25%), respectively. The frequencies of TRDV5 and TRDV8 in CBMCs were significantly higher than those from PBMCs. Most of the PCR products of TRGV and TRDV subfamilies from 10 CB samples displayed polyclonal rearrangement pattern, whereas one or two PCR products from 6 CB samples showed oligoclonality or biclonality. In contrast, PCR products from 9 of 10 adult healthy controls contained at least an oligoclonal peak in different TRGV or TRDV subfamilies respectively. The pattern of TRGV subfamily expression level in CBMCs was TRGVI>TRGVIII>TRGVII, and in contrast, TRGVII>TRGVI>TRGVIII was found in PBMCs. In conclusion, our results indicate polyclonal and more diverse TRDV segment usage in CB gammadelta(+) T-cells. The pattern of TRGV expression levels in CB T cells was found to be quite different from the one in PB T cells. These findings are apparently the first report regarding the repression pattern of TRGV repertoire in CB. It also provides a detailed profile of the global TRGV and TRDV repertoire and TRGVI-III expression levels in cord blood T cells in Chinese subjects. The biological significance of the differences observed between CB and PB is at present obscure. However, this study will definitively contribute to understand the cellular immune features better and to exploit more efficiently the therapeutic potentials of CB.
Collapse
Affiliation(s)
- Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | |
Collapse
|
28
|
Lamb LS, Sande J. B-cell enrichment and infusion in CD4+/CD8+ T-cell depleted products for donor innate immune lymphocyte infusion: is risk of EBV-associated lymphocyte post transplantation lymphoproliferative disease a concern? Bone Marrow Transplant 2008; 41:995-6. [PMID: 18278072 DOI: 10.1038/bmt.2008.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Beetz S, Marischen L, Kabelitz D, Wesch D. Human gamma delta T cells: candidates for the development of immunotherapeutic strategies. Immunol Res 2007; 37:97-111. [PMID: 17695246 DOI: 10.1007/bf02685893] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A numerically small subset of human T lymphocytes expresses a gamma delta T cell receptor (TCR). These gamma delta T cells share certain effector functions with alpha beta T cells as well as with NK cells and NKT cells. The major peripheral blood gamma delta T cell subset in healthy adults expresses a Vgamma9Vdelta2 TCR, which recognizes small phosphorylated metabolites referred to as phosphoantigens. Vdelta1 gamma delta T cells mainly occur in the intestine. They recognize the stress-induced MICA/B and CD1c. Furthermore, gamma delta T cells express a variety of NK cell and pattern-recognition receptors which are responsible for the "fine-tuning" of effector functions. In recent years, gamma delta T cells start to emerge as a rewarding target for immunotherapeutic strategies against viral infections and cancer. A better understanding of factors that modulate gamma gamma delta T cell function will further eluminate the potential of these cells.
Collapse
Affiliation(s)
- Susann Beetz
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| | | | | | | |
Collapse
|
30
|
Godder KT, Henslee-Downey PJ, Mehta J, Park BS, Chiang KY, Abhyankar S, Lamb LS. Long term disease-free survival in acute leukemia patients recovering with increased γδ T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant 2007; 39:751-7. [PMID: 17450185 DOI: 10.1038/sj.bmt.1705650] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Allogeneic stem cell transplantation (ASCT) has improved leukemia-free survival (LFS) in many but not all patients with acute leukemia. This is an eight-year follow-up to our previous study showing a survival advantage to patients with an increased gammadelta T cells following ASCT. gammadelta T cell levels were collected prospectively in 153 patients (acute lymphoblastic leukemia (ALL) n = 77; acute myelogenous leukemia (AML) n = 76) undergoing partially mismatched related donor ASCT. Median age was 22 years (1-59), and 62% of the patients were in relapse at transplant. Patient-donor human leukocyte antigen (HLA) disparity of three antigens was 37% in the graft-versus-host disease (GvHD) and 29% in the rejection directions. All patients received a partially T cell-depleted graft using T10B9 (n = 46) or OKT3 (n = 107). Five years LFS and overall survival (OS) of patients with increased gammadelta compared to those with normal/decreased numbers were 54.4 vs 19.1%; P < 0.0003, and 70.8 vs 19.6% P < 0.0001, respectively, with no difference in GvHD (P = 0.96). In a Cox multivariate analysis, normal/decreased gammadelta (hazard ratio (HR) 4.26, P = 0.0002) and sex mismatch (HR 1.45 P=0.049) were associated with inferior LFS. In conclusion, gammadelta T cells may facilitate a graft-versus-leukemia (GvL) effect, without causing GvHD. Further evaluations of this effect may lead to specific immunotherapy for patients with refractory leukemia.
Collapse
Affiliation(s)
- K T Godder
- South Carolina Cancer Center, Columbia, SC, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hsu KC, Gooley T, Malkki M, Pinto-Agnello C, Dupont B, Bignon JD, Bornhäuser M, Christiansen F, Gratwohl A, Morishima Y, Oudshoorn M, Ringden O, van Rood JJ, Petersdorf E. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant 2006; 12:828-36. [PMID: 16864053 DOI: 10.1016/j.bbmt.2006.04.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 04/27/2006] [Indexed: 01/09/2023]
Abstract
Recurrent malignancy remains a significant complication after allogeneic hematopoietic cell transplantation (HCT). Efforts to decrease relapse have included donor lymphocyte infusion to stimulate donor anti-recipient T-cell allorecognition of major and minor histocompatibility differences. Recently, alloreactive effects of donor natural killer cell-mediated inhibitory killer immunoglobulin-like receptor (KIR) recognition of recipient HLA-C and -B ligands have been described. We examined KIR ligand effects on risk of relapse in 1770 patients undergoing myeloablative T-replete HCT from HLA-matched or -mismatched unrelated donors for the treatment of myeloid and lymphoid leukemias. KIR ligands defined by HLA-B and -C genotypes were used to determine donor-recipient ligand incompatibility or recipient lack of KIR ligand. Among HLA-mismatched transplantations, recipient homozygosity for HLA-B or -C KIR epitopes predicted lack of KIR ligand and was associated with a decreased hazard of relapse (hazard ratio, 0.61; 95% confidence interval, .043-0.85; P = .004). Absence of HLA-C group 2 or HLA-Bw4 KIR ligands was associated with lower hazards of relapse (hazard ratio, 0.47; 95% confidence interval, 0.28-0.79, P = .004; hazard ratio, 0.56; 95% confidence interval, 0.33-0.97; P = .04, respectively). The decrease in hazard of relapse in patients with acute myelogenous leukemia was similar to that in patients with chronic myelogenous leukemia and acute lymphoblastic leukemia (P = .95). Recipient homozygosity for HLA-B or -C epitopes that define KIR ligands is likely to be a predictive factor for leukemia relapse after myeloablative HCT from HLA-mismatched unrelated donors. This effect was not observed in HLA-identical unrelated transplants.
Collapse
Affiliation(s)
- Katharine C Hsu
- Adult Allogeneic Bone Marrow Transplantation Service, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Aswald JM, Wang XH, Aswald S, Lutynski A, Minden MD, Messner HA, Keating A. Flow cytometric assessment of autologous gammadelta T cells in patients with acute myeloid leukemia: potential effector cells for immunotherapy? CYTOMETRY PART B-CLINICAL CYTOMETRY 2006; 70:379-90. [PMID: 16977635 DOI: 10.1002/cyto.b.20115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Gammadelta T cells are a rare component of the circulating innate immune system capable of exerting anti-neoplastic activity. This population may be suitable for the adoptive immunotherapy of acute myeloid leukemia (AML). Little is known however, about the frequency and function of circulating gammadelta T cells in AML. The aim of the study was to enumerate peripheral blood gammadelta T cells in patients with AML and explore the feasibility of their use clinically. METHODS We compared the absolute circulating gammadelta T cell levels in 33 AML patients before and after treatment versus 20 healthy volunteers using flow cytometry. The function of gammadelta T cells was assessed by detection of intracelluar interferon-gamma (IFN-gamma) and cytotoxicity against leukemic blasts. RESULTS AML patients with high blast counts prior to induction chemotherapy had marginally decreased gammadelta T cell levels compared with healthy controls: median 38/microL versus 83/microL; P = 0.051. Sequential gammadelta T cell enumeration after induction showed significantly decreased counts in patients with a persistently high blast burden compared to patients with reduced but detectable residual disease (molecular maker or borderline bone marrow infiltration): median 7/microL versus 105/microL; P = 0.008. Patients with residual disease had significantly higher gammadelta T cell counts compared to those retested after they had achieved complete remission (CR); P = 0.0025. In CR, gammadelta T cell counts remained lower than those of healthy individuals: median 33/microL versus 83/microL, P = 0.030. We detected a sharp increase (on average, four-fold higher than values in CR) of gammadelta T cells in patients in very early morphologic or molecular relapse. We also tested the functional properties of gammadelta T cells from patients with AML in CR. Flow cytometric assessment of IFN-gamma revealed similar numbers of gammadelta T cells expressing the T1 cytokine compared with healthy controls. We also showed that gammadelta T cells were able to kill leukemic target cells in vitro. CONCLUSION Flow cytometric assessment of gammadelta T cells in patients with AML revealed quantitative shifts with respect to disease status. Our data suggest that gammadelta T cells warrant further investigation as potential therapeutic agents.
Collapse
Affiliation(s)
- Jorg M Aswald
- Department of Medical Oncology and Hematology, Princess Margaret Hospital/Ontario Cancer Institute, Toronto, Ontario, Canada M5G 2M9
| | | | | | | | | | | | | |
Collapse
|
33
|
Meeh PF, King M, O’Brien RL, Muga S, Buckhalts P, Neuberg R, Lamb LS. Characterization of the gammadelta T cell response to acute leukemia. Cancer Immunol Immunother 2006; 55:1072-80. [PMID: 16328383 PMCID: PMC11031079 DOI: 10.1007/s00262-005-0094-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 10/21/2005] [Indexed: 11/28/2022]
Abstract
BACKGROUND Previous work from our center has suggested a correlation between increased donor-derived Vdelta1+ gammadelta T cells and long-term relapse-free survival following bone marrow transplantation for leukemia. Questions remain, however, as to whether this observation can be explained by a gammadelta T cell-based immune response against primary leukemia. METHODS We examined gammadelta T cell receptor (TCR) phenotype, cell proliferation, and cytolytic activity following culture with irradiated primary leukemia blasts from a haploidentical first-degree relative. Subsequently, we also studied the gammadelta TCR phenotype and complimentarity determining region 3 (CDR3) cDNA sequences from 17 newly diagnosed leukemia patients. RESULTS In 17/28 (61%) of in vitro cultures, gammadelta T cells proliferated in culture with primary blasts. Vdelta1+ T cells were proportionally increased in all cultures and were the predominant cell population in 6/17. In the 7 cultures where cytotoxicity could be assessed, 6 (86%) showed some degree of cytotoxicity to the primary leukemia. Vdelta1+ T cells were also the predominant gammadelta T cell subtype in pre-treatment leukemia patients principally due to loss of Vdelta2+ T cells rather than expansion of Vdelta1+ cells. The Vdelta1 CDR3-region cDNA sequence from these patients revealed exclusive use of the Jdelta1 constant region and sequence conservation in 4/11 patients. CONCLUSIONS gammadelta T cells exhibit an in vitro response to primary leukemia blasts that is manifested by proliferation, an increased proportion of Vdelta1+ T cells, and cytotoxicity to the primary leukemia blasts. The Vdelta1+ T cell population is also predominant in newly diagnosed leukemia patients likely due to a loss of circulating Vdelta2+ T cells. A small proportion of newly diagnosed patients showed Vdelta1 CDR3 region similarity. These findings suggest a role for gammadelta T cells in the immune response to leukemia.
Collapse
MESH Headings
- Base Sequence
- Cell Proliferation
- Cells, Cultured
- Complementarity Determining Regions/genetics
- Cytotoxicity Tests, Immunologic
- Female
- Humans
- Immunophenotyping
- Leukemia, Myeloid, Acute/immunology
- Lymphocyte Culture Test, Mixed
- Male
- Molecular Sequence Data
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Sequence Analysis, DNA
- Survival Rate
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Paul F. Meeh
- Department of Pediatrics, University of South Carolina School of Medicine, Columbia, SC 29203 USA
| | - Michelle King
- Department of Pediatrics, University of South Carolina School of Medicine, Columbia, SC 29203 USA
| | | | | | | | - Ronnie Neuberg
- Department of Pediatrics, University of South Carolina School of Medicine, Columbia, SC 29203 USA
- South Carolina Cancer Center, Columbia, SC 29203 USA
| | - Lawrence S. Lamb
- Department of Pediatrics, University of South Carolina School of Medicine, Columbia, SC 29203 USA
- South Carolina Cancer Center, Columbia, SC 29203 USA
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Department of Medicine and Pediatrics, Division of Hematology and Oncology, Bone Marrow Transplantation Program, University of Alabama at Birmingham School of Medicine, 1530 3rd Avenue South, Birmingham, AL 35294 USA
| |
Collapse
|
34
|
Talano JAM, Margolis DA. Recent molecular and cellular advances in pediatric bone marrow transplantation. Pediatr Clin North Am 2006; 53:685-98. [PMID: 16872999 DOI: 10.1016/j.pcl.2006.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The field of allogeneic transplantation has made vast improvements since its inception in 1968. Improvements in supportive care have greatly improved survival. Delayed immune reconstitution, graft versus host disease, and relapse of disease still pose great obstacles. This article has highlighted novel strategies for using cellular therapy in conjunction with hematopoietic cell transplantation (HCT) that potentially may lead to improved clinical outcomes for patients undergoing HCT in the future.
Collapse
Affiliation(s)
- Julie-An M Talano
- Division of Pediatric Hematology and Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
35
|
van der Veken LT, Hagedoorn RS, van Loenen MM, Willemze R, Falkenburg JHF, Heemskerk MHM. Alphabeta T-cell receptor engineered gammadelta T cells mediate effective antileukemic reactivity. Cancer Res 2006; 66:3331-7. [PMID: 16540688 DOI: 10.1158/0008-5472.can-05-4190] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retroviral transfer of T-cell receptors (TCR) to peripheral blood-derived T cells generates large numbers of T cells with the same antigen specificity, potentially useful for adoptive immunotherapy. One drawback of this procedure is the formation of mixed TCR dimers with unknown specificities due to pairing of endogenous and introduced TCR chains. We investigated whether gammadelta T cells can be an alternative effector population for TCR gene transfer because the gammadeltaTCR is not able to form dimers with the alphabetaTCR. Peripheral blood-derived gammadelta T cells were transduced with human leukocyte antigen (HLA) class I- or HLA class II-restricted minor histocompatibility antigen (mHag) or virus-specific TCRs. Because most gammadelta T cells do not express CD4 and CD8, we subsequently transferred these coreceptors. The TCR-transduced gammadelta T cells exerted high levels of antigen-specific cytotoxicity and produced IFN-gamma and IL-4, particularly in the presence of the relevant coreceptor. gammadelta T cells transferred with a TCR specific for the hematopoiesis-specific mHag HA-2 in combination with CD8 displayed high antileukemic reactivity against HA-2-expressing leukemic cells. These data show that transfer of alphabetaTCRs to gammadelta T cells generated potent effector cells for immunotherapy of leukemia, without the expression of potentially hazardous mixed TCR dimers.
Collapse
MESH Headings
- CD3 Complex/biosynthesis
- CD3 Complex/genetics
- CD3 Complex/immunology
- Gene Transfer Techniques
- Genetic Engineering
- HLA-A2 Antigen/immunology
- HLA-B7 Antigen/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia/immunology
- Leukemia/therapy
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Retroviridae/genetics
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Lars T van der Veken
- Laboratory of Experimental Hematology, Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The use of cytolytic effector cells as therapy for malignant disease has been a central focus of basic and clinical research for nearly 2 decades. Since the original descriptions of in vitro lymphocyte-mediated cytotoxicity against human tumor cells, there have been numerous attempts to exploit such observations for therapeutic use, with decidedly mixed results. Most studies have focused on the role of either natural killer cells or cytotoxic CD8 + alphabeta T cells as the primary mediators of antitumor cytotoxicity, and until recently little attention has been paid to the role of gammadelta T cells in this capacity. This is partially due to a lack of understanding of the mechanisms of gammadelta T-cell immune responses to tumors, as well as the practical problem of obtaining a sufficient number of gammadelta T cells for clinical-scale administration. In this article, we discuss the biological and clinical rationale for developing gammadelta T cell-based immunotherapies for the treatment of a variety of malignant conditions. It is our view that infusing supraphysiological numbers of tumor-reactive gammadelta T cells-either in the autologous or allogeneic setting-might be used to restore or augment innate immune responses against malignancies. Accordingly, we will also discuss how we and others are working to overcome some of the practical limitations that have so far limited the direct clinical delivery of highly purified human gammadelta T cells for the treatment of both hematologic and solid tumors.
Collapse
Affiliation(s)
- Lawrence S Lamb
- Department of Medicine, Division of Hematology and Oncology, Bone Marrow Transplantation Program, University of Alabama at Birmingham School of Medicine, 32594-0006, USA.
| | | |
Collapse
|
37
|
Kabelitz D, Wesch D, Pitters E, Zöller M. Characterization of tumor reactivity of human V gamma 9V delta 2 gamma delta T cells in vitro and in SCID mice in vivo. THE JOURNAL OF IMMUNOLOGY 2005; 173:6767-76. [PMID: 15557170 DOI: 10.4049/jimmunol.173.11.6767] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human Vgamma9Vdelta2 gammadelta T cells are selectively activated by bacterial phosphoantigens and aminobisphosphonates and exert potent cytotoxicity toward various tumor cells. In this study we have characterized the cytotoxic reactivity of gammadelta T cell lines established from healthy donors by stimulation with aminobisphosphonate alendronate toward melanoma MeWo and pancreatic adenocarcinomas Colo357 and PancTu1 lines in vitro and in vivo upon adoptive transfer into SCID mice. Lysis of all tumor cells was enhanced when gammadelta effector cells were preactivated with phosphoantigens. Recognition of MeWo was TCR dependent, as shown by anti-TCR Ab blockade, whereas only the phosphoantigen-mediated increased, but not the basal, lysis of Colo357 and PancTu1 was inhibited by anti-TCR Ab. Furthermore, lysis of Colo357, but not that of MeWo or PancTu1, was completely inhibited by the pan-caspase inhibitor zVAD, indicating different recognition and effector mechanisms involved in the gammadelta T cell/tumor cell interactions. Upon transfer into SCID mice, alendronate-activated gammadelta T cells given together with IL-2 and alendronate significantly prolonged the survival of SCID mice inoculated with human tumor cells. The best results were thus obtained when gammadelta T cells were repetitively given five times over a period of 30 days. With this protocol, human gammadelta T cells prolonged the mean survival of mice inoculated with MeWo melanoma from 28.5 to 87.3 days (p < 0.0001) and in the case of PancTu1 adenocarcinoma from 23.0 to 48.4 days (p < 0.0001). We conclude that an effective gammadelta T cell-based immunotherapy might require activation of endogenous gammadelta T cells with aminobisphosphonate (or phosphoantigen) and IL-2, followed by adoptive transfer of in vitro expanded gammadelta T cells.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Universitätsklinikum Schleswig-Holstein Campus Kiel, Germany.
| | | | | | | |
Collapse
|
38
|
Beelen DW, Ottinger HD, Ferencik S, Elmaagacli AH, Peceny R, Trenschel R, Grosse-Wilde H. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood 2004; 105:2594-600. [PMID: 15536148 DOI: 10.1182/blood-2004-04-1441] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It remains controversial whether alloreactive donor-derived natural killer (NK) cells display graft-versus-leukemia reactions after unmodified allogeneic hematopoietic stem cell transplantation (HSCT). The present study evaluated the role of inhibitory killer immunoglobulin-like receptor (KIR) ligand incompatibility using a well-defined and uniform setting of unmodified allogeneic HSCT in 374 patients with myeloid leukemias. The most striking finding was a significant heterogeneity in the 5-year estimates of hematologic leukemic relapse after human leukocyte antigen (HLA)-identical (n = 237; 22%), HLA class I-disparate (n = 89; 18%), and KIR ligand-incompatible transplantations (n = 48; 5%) (P < .04). Multivariate analysis confirmed that the relative relapse risk (RR) was influenced by HLA class I disparity alone (RR 0.49), but was lowest after HLA class I-disparate, KIR ligand-incompatible transplantations (RR 0.24) (P < .008). The primary graft failure rates, however, increased from 0.4% after HLA class I-identical to 2.3% after HLA class I-disparate, and to 6.3% after KIR ligand-incompatible transplantations, respectively (P < .02). Unlike some other reports, no beneficial effect of KIR ligand incompatibility on other major endpoints of allogeneic HSCT (transplantation-related mortality, and overall and event-free survival) was detectable in the present study. In conclusion, unmodified allogeneic HSCT from KIR ligand-incompatible donors provides a superior long-term antileukemic efficacy in patients with myeloid malignancies.
Collapse
Affiliation(s)
- Dietrich W Beelen
- Department of Bone Marrow Transplantation, Institute of Immunology, University Hospital of Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Zöller M. Immunotherapy of cancer by active vaccination: does allogeneic bone marrow transplantation after non-myeloablative conditioning provide a new option? Technol Cancer Res Treat 2003; 2:237-60. [PMID: 12779354 DOI: 10.1177/153303460300200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The critical role of antigen-specific T cells in cancer immunotherapy has been amply demonstrated in many model systems. Though success of clinical trials still remains far behind expectation, the continuous improvement in our understanding of the biology of the immune response will provide the basis of optimized cancer vaccines and allow for new modalities of cancer treatment. This review focuses on the current status of active therapeutic vaccination and future prospects. The latter will mainly be concerned with allogeneic bone marrow cell transplantation after non-myeloablative conditioning, because it is my belief that this approach could provide a major breakthrough in cancer immunotherapy. Concerning active vaccination protocols the following aspects will be addressed: i) the targets of immunotherapeutic approaches; ii) the response elements needed for raising a therapeutically successful immune reaction; iii) ways to achieve an optimal confrontation of the immune system with the tumor and iv) supportive regimen of immunomodulation. Hazards which one is most frequently confronted with in trials to attack tumors with the inherent weapon of immune defense will only be briefly mentioned. Many question remain to be answered in the field of allogeneic bone marrow transplantation after non-myeloablative conditioning to optimize the therapeutic setting for this likely very powerful tool of cancer therapy. Current considerations to improve engraftment and to reduce graft versus host disease while strengthening graft versus tumor reactivity will be briefly reviewed. Finally, I will discuss whether tumor-reactive T cells can be "naturally" maintained during the process of T cell maturation in the allogeneic host. Provided this hypothesis can be substantiated, a T cell vaccine will meet a pool of virgin T cells in the allogeneically reconstituted host, which are tolerant towards the host, but not anergised towards tumor antigens presented by MHC molecules of the host.
Collapse
Affiliation(s)
- Margot Zöller
- Dept. of Tumor Progression & Immune Defense, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
40
|
Schwartz JE, Yeager AM. Reduced-intensity allogeneic hematopoietic cell transplantation: Graft versus tumor effects with decreased toxicity. Pediatr Transplant 2003; 7:168-78. [PMID: 12756040 DOI: 10.1034/j.1399-3046.2003.00016.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The potentially curative role of allogeneic hematopoietic cell transplantation (HCT) in neoplastic and non-neoplastic diseases is offset by the substantial risks of morbidity and mortality from complications of the intensive myeloablative and immunosuppressive preparative regimen. These regimen-related toxicities have restricted allogeneic HCT to young, otherwise healthy individuals without comorbid diseases. Pediatric patients undergoing conventional allogeneic HCT have lower procedure-related mortality but are at risk for non-fatal late effects of the high-dose pretransplant chemoradiotherapy, such as growth retardation, sterility and other endocrine dysfunction. Evaluation of reduced-intensity preparative regimens is the major focus of current clinical research in allogeneic HCT. Reduced-intensity HCT (RI-HCT) relies on the use of immunosuppressive but non-myeloablative agents that allow engraftment of donor cells, which provide adoptive allogeneic cellular immunotherapy and graft versus tumor (GVT) effects, with decreased regimen-related toxicities. Although the experience with RI-HCT in pediatric patients is very limited at this time, results in adults indicate that attenuated-dose preparative regimens allow older patients and those with organ dysfunction to undergo successful allogeneic HCT with acceptable morbidity and mortality. In adults, the potency of the allogeneic GVT effect varies among neoplastic diseases, with better results observed in patients with indolent hematological malignancies or renal cell carcinoma. The effectiveness of RI-HCT as treatment for children with hemoglobinopathies, chronic granulomatous disease and cellular immunodeficiencies is encouraging, and the role of reduced-intensity preparative regimens for allogeneic HCT in pediatric malignancies is under investigation.
Collapse
Affiliation(s)
- Jennifer E Schwartz
- University of Pittsburgh Cancer Institute, Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | | |
Collapse
|
41
|
Gustafsson Jernberg A, Remberger M, Ringdén O, Winiarski J. Graft-versus-leukaemia effect in children: chronic GVHD has a significant impact on relapse and survival. Bone Marrow Transplant 2003; 31:175-81. [PMID: 12621478 DOI: 10.1038/sj.bmt.1703808] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To examine whether graft-versus-host-disease (GVHD) is associated with a graft-versus-leukaemia (GVL) effect that also influences the outcome of allogeneic stem cell transplantation (SCT) in childhood acute leukaemia, we evaluated all consecutive (n=169) children who had undergone SCT for ALL and AML at our centre. Median follow-up was 7 years. The 5-year probability of chronic GVHD was 34%. Median time to relapse was 24 months in children with chronic GVHD and 6 months in those without. The corresponding 5-year probabilities of relapse were 30 and 45% (P=0.01). The 5-year probability of survival was 54%. Patients with chronic GVHD had a significantly better survival, 77 vs 51% (P=0.01). In a Cox regression model, chronic GVHD independently decreased the risk of relapse (RR 0.44) and further predicted an increased chance of relapse-free survival (RR 1.7) and survival (RR 2.6). The impact of chronic GVHD on survival was most apparent in late-stage disease and in ALL. Acute GVHD was not an independent predictor for relapse or death in this study. This study is in support of a GVL effect in childhood leukaemia related to chronic GVHD, reducing the risk of relapse and improving survival.
Collapse
Affiliation(s)
- A Gustafsson Jernberg
- Department of Paediatrics, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden
| | | | | | | |
Collapse
|
42
|
Hummel S, Wilms D, Vitacolonna M, Zöller M. Donor T cell and host NK depletion improve the therapeutic efficacy of allogeneic bone marrow cell reconstitution in the nonmyeloablatively conditioned tumor‐bearing host. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.5.898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Susanne Hummel
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg; and
| | - Daniela Wilms
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg; and
| | - Mario Vitacolonna
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg; and
| | - Margot Zöller
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg; and
- Department of Applied Genetics, University of Karlsruhe, Germany
| |
Collapse
|