1
|
Chen Y, Chen S, Liu Z, Wang Y, An N, Chen Y, Peng Y, Liu Z, Liu Q, Hu X. Red blood cells undergo lytic programmed cell death involving NLRP3. Cell 2025; 188:3013-3029.e19. [PMID: 40252640 DOI: 10.1016/j.cell.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/27/2024] [Accepted: 03/24/2025] [Indexed: 04/21/2025]
Abstract
The canonical complement-mediated lysis of mature red blood cells (RBCs) leads to severe pathogenesis. However, inhibition strategies targeting complement are not always as efficient as expected, indicating that unknown mechanisms are awaiting elucidation. In this study, we investigate the intracellular events in mature RBCs following complement activation. The collected evidence demonstrates that complement-induced hemolysis is a caspase-8-dependent programmed RBC death. Furthermore, short NLRP3 (miniNLRP3) fragments in RBCs are identified to engage in the assembly of NLRP3-apoptosis-associated speck-like protein containing a CARD (ASC)-caspase-8 complex. Activated caspase-8 directly induces the proteolysis of β-spectrin, thereby disrupting the skeletal network of the RBC membrane, a process we refer to as spectosis. Spectosis signaling is also activated in autoimmune hemolytic anemia or paroxysmal nocturnal hemoglobinuria, and the inhibition of spectosis significantly reduced complement-induced hemolysis. These findings reveal a programmed death cascade in mature RBCs, which may have important implications for the treatment of hemolytic disorders.
Collapse
Affiliation(s)
- Yaozhen Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhixin Liu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yafen Wang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ning An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yutong Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yihao Peng
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen 518115, Guangdong, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen 518115, Guangdong, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China.
| | - Xingbin Hu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
2
|
Tkachenko A, Havranek O. Cell death signaling in human erythron: erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis 2025; 30:652-673. [PMID: 39924584 PMCID: PMC11947060 DOI: 10.1007/s10495-025-02081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Over the recent years, our understanding of the cell death machinery of mature erythrocytes has been greatly expanded. It resulted in the discovery of several regulated cell death (RCD) pathways in red blood cells. Apoptosis (eryptosis) and necroptosis of erythrocytes share certain features with their counterparts in nucleated cells, but they are also critically different in particular details. In this review article, we summarize the cell death subroutines in the erythroid precursors (apoptosis, necroptosis, and ferroptosis) in comparison to mature erythrocytes (eryptosis and erythronecroptosis) to highlight the consequences of organelle clearance and associated loss of multiple components of the cell death machinery upon erythrocyte maturation. Recent advances in understanding the role of erythrocyte RCDs in health and disease have expanded potential clinical applications of these lethal subroutines, emphasizing their contribution to the development of anemia, microthrombosis, and endothelial dysfunction, as well as their role as diagnostic biomarkers and markers of erythrocyte storage-induced lesions. Fas signaling and the functional caspase-8/caspase-3 system are not indispensable for eryptosis, but might be retained in mature erythrocytes to mediate the crosstalk between both erythrocyte-associated RCDs. The ability of erythrocytes to switch between eryptosis and necroptosis suggests that their cell death is not a simple unregulated mechanical disintegration, but a tightly controlled process. This allows investigation of eventual pharmacological interventions aimed at individual cell death subroutines of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic
- First Department of Medicine - Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Kot Y, Prokopiuk V, Klochkov V, Tryfonyuk L, Maksimchuk P, Aslanov A, Kot K, Avrunin O, Demchenko L, Kurmangaliyeva S, Onishchenko A, Yefimova S, Havranek O, Tkachenko A. Mn 3O 4 Nanocrystal-Induced Eryptosis Features Ca 2+ Overload, ROS and RNS Accumulation, Calpain Activation, Recruitment of Caspases, and Changes in the Lipid Order of Cell Membranes. Int J Mol Sci 2025; 26:3284. [PMID: 40244142 PMCID: PMC11989249 DOI: 10.3390/ijms26073284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Accumulating evidence suggests that manganese oxide nanoparticles (NPs) show multiple enzyme-mimicking antioxidant activities, which supports their potential in redox-targeting therapeutic strategies for diseases with impaired redox signaling. However, the systemic administration of any NP requires thorough hemocompatibility testing. In this study, we assessed the hemocompatibility of synthesized Mn3O4 NPs, identifying their ability to induce spontaneous hemolysis and eryptosis or impair osmotic fragility. Concentrations of up to 20 mg/L were found to be safe for erythrocytes. Eryptosis assays were shown to be more sensitive than hemolysis and osmotic fragility as markers of hemocompatibility for Mn3O4 NP testing. Flow cytometry- and confocal microscopy-based studies revealed that eryptosis induced by Mn3O4 NPs was accompanied by Ca2+ overload, altered redox homeostasis verified by enhanced intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS), and a decrease in the lipid order of cell membranes. Furthermore, Mn3O4 NP-induced eryptosis was calpain- and caspase-dependent.
Collapse
Affiliation(s)
- Yuriy Kot
- Department of Biochemistry, V.N. Karazin Kharkiv National, 4 Svobody sq, 61022 Kharkiv, Ukraine; (Y.K.); (K.K.)
| | - Volodymyr Prokopiuk
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine; (V.P.); (A.O.)
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Vladimir Klochkov
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine; (V.K.); (P.M.); (A.A.); (S.Y.)
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna st, 33028 Rivne, Ukraine;
| | - Pavel Maksimchuk
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine; (V.K.); (P.M.); (A.A.); (S.Y.)
| | - Andrey Aslanov
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine; (V.K.); (P.M.); (A.A.); (S.Y.)
| | - Kateryna Kot
- Department of Biochemistry, V.N. Karazin Kharkiv National, 4 Svobody sq, 61022 Kharkiv, Ukraine; (Y.K.); (K.K.)
| | - Oleg Avrunin
- Department of Biomedical Engineering, Kharkiv National University of Radio Electronics, 14 Nauky ave, 61116 Kharkiv, Ukraine;
| | - Lesya Demchenko
- Department of Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden;
- Ye.O.Paton Institute of Materials Science and Welding, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Beresteiskyi ave, 03056 Kyiv, Ukraine
| | - Saulesh Kurmangaliyeva
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev st, Aktobe 030012, Kazakhstan;
| | - Anatolii Onishchenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine; (V.P.); (A.O.)
| | - Svetlana Yefimova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine; (V.K.); (P.M.); (A.A.); (S.Y.)
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic;
- First Department of Internal Medicine-Hematology, First Faculty of Medicine, Charles University, 12808 Prague, Czech Republic
| | - Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic;
- Universal Scientific Education and Research Network (USERN), 61022 Kharkiv, Ukraine
| |
Collapse
|
4
|
Yan W, Wu R, Lee Y, Xu L, Li X, Li J, Deng R, Fan X, Wu Y, Zhu H, Mao A, Shen J, Wei CJ. Perturbation of calcium homeostasis invokes eryptosis-like cell death in enucleated bone marrow stem cells. Biochem Cell Biol 2025; 103:1-11. [PMID: 39555650 DOI: 10.1139/bcb-2024-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Enucleated cells, also known as cytoplasts, are valuable tools with a wide range of applications. However, their potential for bio-engineering is greatly restricted by the short lifespan. We postulated that the enucleation process damages the integrity of the plasma membrane and thus activates a cell death program(s). The results showed that a tiny hole was generated transiently on the plasma membrane when the nucleus was spun off, while force-gated ion channels were activated in response to the pulling by the nucleus. Influx of extracellular calcium stimulated the opening of calcium channels and the release of calcium from endoplasmic reticulum and mitochondria. Long lasting calcium transient increased protein phosphorylation and activated caspase 9 and calpain proteinase activities. Subsequently, mitochondria membrane permeability and Reactive Oxygen Species (ROS) levels were significantly elevated, which eventually led to eryptosis-like cell death. When extracellular calcium was maintained at optimal concentration, the lifespan of enucleated cells was extended; however, huge amounts of vacuoles appeared in the cytoplasm, possibly derived from enlarged autophagosomes. Inhibition of vacuolation by inhibitors of autophagy or in co-culture with primary muscle cells did not rescue cells dying from the paraptosis-like pathway. These results offer valuable insights for further investigation into the intricate mechanisms underlying enucleated cell death.
Collapse
Affiliation(s)
- Wei Yan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Ruolan Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Yingying Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Liqun Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Xiao Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Junwei Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Ronghao Deng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Xing Fan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Yilang Wu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Haibao Zhu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Aihua Mao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| | - Jianxin Shen
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chi-Ju Wei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, Guangdong, China
| |
Collapse
|
5
|
Alajeyan IA, Alsughayyir J, Alfhili MA. Zeatin Elicits Premature Erythrocyte Senescence Through Calcium and Oxidative Stress Mediated by the NOS/PKC/CK1α Signaling Axis. Dose Response 2025; 23:15593258251314825. [PMID: 39823073 PMCID: PMC11733885 DOI: 10.1177/15593258251314825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/11/2024] [Accepted: 12/15/2024] [Indexed: 01/19/2025] Open
Abstract
Objectives: Cytokinins are plant hormones that regulate cell growth and differentiation. In particular, zeatin (ZTN) delays cellular senescence of human fibroblasts and keratinocytes and exhibits anticancer activity. Chemotherapy-induced anemia is a major side effect of anticancer therapy secondary to premature senescence of red blood cells (RBCs). Herein, we investigated the biochemical and molecular mechanisms underlying ZTN action in human RBCs. Methods: Colorimetric assays were used to quantify hemolysis and related markers and flow cytometric analysis was applied to examine eryptosis through phosphatidylserine (PS) exposure by annexin-V-FITC, intracellular Ca2+ by Fluo4/AM, reactive oxygen species (ROS) by H2DCFDA, and cell size from forward scatter (FSC). Results: ZTN at 200 μM induced significant hemolysis and K+, Na+, AST, and LDH leakage. ZTN also caused a significant increase in annexin-V-positive cells along with increased Fluo4 and DCF fluorescence and reduced FSC. Importantly, L-NAME, staurosporin, D4476, urea, sucrose, and polyethylene glycol 8000 (PEG) significantly ameliorated ZTN cytotoxicity. Conclusion: ZTN stimulates PS exposure, intracellular Ca2+ elevation, oxidative stress, and cell shrinkage. The hemolytic potential of ZTN, mediated through nitric oxide synthase/protein kinase C/casein kinase 1α signaling axis, is sensitive to isosmotic urea, sucrose, and PEG availability. Altogether, the anticancer potential of ZTN must be reconsidered with prudence.
Collapse
Affiliation(s)
- Iman A. Alajeyan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Prokopiuk V, Onishchenko A, Pazura Y, Bespalova I, Kökbaş U, Tryfonyuk L, Mateychenko P, Kot K, Kurmangaliyeva S, Kot Y, Yefimova S, Tkachenko A. Nanostructured zinc carbonate hydroxide microflakes: assessing the toxicity against erythrocytes and L929 cells in vitro. NANOTECHNOLOGY 2024; 36:085102. [PMID: 39637441 DOI: 10.1088/1361-6528/ad9aac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Nanostructured materials have been suggested to be used as a source of dietary zinc for livestock animals. In this study, we assessed the cytotoxicity of newly synthesized nanostructured zinc carbonate hydroxide (ZnCH) Zn5(CO3)(OH)6microflakes. Cytotoxicity of the microflakes was assessed against murine L929 cell line and rat mature erythrocytes. Viability, motility, cell death pathways, implication of Ca2+, reactive oxygen species and reactive nitrogen species (RNS) signaling, caspases, and alterations of cell membranes following exposure of L929 cells to the microflakes were assessed. To assess hemocompatibility of the Zn-containing microflakes, osmotic fragility and hemolysis assays were performed, as well as multiple eryptosis parameters were evaluated. Our findings indicate a dose-response cytotoxicity of ZnCH microflakes against L929 cells with no toxicity observed for low concentrations (10 mg l-1and below). At high concentrations (25 mg l-1and above), ZnCH microflakes promoted nitrosyl stress, Ca2+- and caspase-dependent apoptosis, and altered lipid order of cell membranes in a dose-dependent manner, evidenced by up to 7-fold elevation of RNS-dependent fluorescence, 2.9-fold enhancement of Fura 2-dependent fluorescence, over 20-fold elevation of caspases-dependent fluorescence (caspase-3, caspase-8, and caspase-9), and up to 4.4-fold increase in the ratiometric index of the NR12S probe. Surprisingly, toxicity to enucleated mature erythrocytes was found to be lower compared to L929 cells. ZnCH microflakes induced eryptosis associated with oxidative stress, nitrosyl stress, Ca2+signaling and recruitment of caspases at 25-50-100 mg l-1. Eryptosis assays were found to be more sensitive than evaluation of hemolysis. Zn5(CO3)(OH)6microflakes show no cytotoxicity at low concentrations indicating their potential as a source of zinc for livestock animals.
Collapse
Affiliation(s)
- Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine
| | - Yuliia Pazura
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Iryna Bespalova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Umut Kökbaş
- Medical Biochemistry Department, Nevsehir Haci Bektas Veli University, 2000 Evler Mah. Zübeyde Hanım Cad, 50300 Nevşehir, Turkey
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna st, 33028 Rivne, Ukraine
| | - Pavlo Mateychenko
- Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Kateryna Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq, 61022 Kharkiv, Ukraine
| | - Saulesh Kurmangaliyeva
- Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev st, 030012 Aktobe, Kazakhstan
| | - Yurii Kot
- Department of Biochemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq, 61022 Kharkiv, Ukraine
| | - Svetlana Yefimova
- Department of Nanostructured Materials, Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic
| |
Collapse
|
7
|
Wang Y, Ma Y, Sun L, Rao Q, Yuan X, Chen Y, Li X. Profiles of differential expression of miRNAs in the late stage of red blood cell preservation and their potential roles. Transfus Clin Biol 2024; 31:229-236. [PMID: 39341351 DOI: 10.1016/j.tracli.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE To detect the differentially expressed regulatory miRNAs in the late stage of red blood cell (RBC) preservation and predict their roles. METHODS Suspended RBCs with different storage periods of 35 day, 42 day, and 50 day were collected for routine blood tests, RNA extraction, and preparation of small RNA sequencing libraries. The constructed libraries were sequenced and the biological functions of differential miRNAs in RBCs in the late storage were analyzed by bioinformatics. RESULTS Routine indicators of RBCs in the late stage were not significantly affected by preservation time. The Pearson correlation analysis performing on RBC miRNAs with different storage days revealed that RBC miRNAs changed with the increase of storage days. RBC miRNAs from day 35 (D35), day 42 (D42) and day 50 (D50) showed significant differences (P < 0.05). Compared RBC miRNAs from D42 with these from D35, there were 690 up-regulated miRNAs and 82 down-regulated miRNAs; compared RBC miRNAs from D50 with these from D35, there were 638 up-regulated miRNAs and 123 down-regulated miRNAs; compared RBC miRNAs from D42 with these from D50, there were 271 up-regulated miRNAs and 515 down-regulated miRNAs. GO enrichment analysis of target genes of differential miRNAs were mainly involved in cell metabolism, biosynthesis, protein modification, gene expression and transcriptional regulation of biological processes. KEGG pathway enrichment analysis of miRNA target genes showed that differential miRNA target genes were closely related to pathways in cancer. CONCLUSION MiRNAs were differentially expressed in the late stage of RBC preservation, and may be involved in various biological processes, especially cancer.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yiming Ma
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Liping Sun
- Department of Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Quan Rao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaozhou Yuan
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yan Chen
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaofei Li
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
8
|
Alajeyan IA, Alsughayyir J, Alfhili MA. Stimulation of Calcium/NOS/CK1α Signaling by Cedrol Triggers Eryptosis and Hemolysis in Red Blood Cells. Yonago Acta Med 2024; 67:191-200. [PMID: 39176191 PMCID: PMC11335916 DOI: 10.33160/yam.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/23/2024] [Indexed: 08/24/2024]
Abstract
Background Cedrol (CRL) is a sesquiterpene alcohol present in the essential oils of coniferous trees including Cupressus and Juniperus genera. CRL has shown potent anticancer activity by virtue of apoptosis. Red blood cells (RBCs), although devoid of mitochondria and nucleus, can undergo hemolysis and eryptosis which contribute to chemotherapy-induced anemia (CIA). In this work, we explored the hemolytic and eryptotic potential of CRL in human RBCs as a safety assessment of the sesquiterpene as an anticancer agent. Methods RBCs from healthy donors were treated with anticancer concentrations of CRL for 24 h at 37°C with varying experimental manipulations. Hemolysis was photometrically assessed by measuring hemoglobin release whereas flow cytometry was employed to detect phosphatidylserine (PS) exposure by annexin-V-FITC, intracellular Ca2+ by Fluo4/AM, cell volume by forward scatter (FSC), and oxidative stress by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Results Significant, concentration-responsive hemolysis was noted upon CRL exposure with concomitant K+, LDH, and AST leakage. CRL also significantly increased annexin-V-positive cells and Fluo4 fluorescence and reduced FSC. Moreover, the cytotoxicity of CRL was significantly ameliorated in the presence of L-NAME, D4476, and PEG 8,000 but was aggravated by urea and sucrose. Conclusion CRL stimulates hemolysis and eryptosis characterized by PS exposure, Ca2+ overload, and cell shrinkage. The hemolytic activity of CRL was mediated through nitric oxide synthase and casein kinase 1α. Blocking either enzyme may attenuate the toxicity of CRL to RBCs and prevent undesirable side effects associated with its anticancer applications.
Collapse
Affiliation(s)
- Iman A Alajeyan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
9
|
Cheung HW, Wong KS, To NS, Wan TSM, Ho ENM. An enhanced label-free proteomics approach for deep-diving into equine plasma proteome, including the discovery of protein biomarkers for strenuous exercise. Drug Test Anal 2024; 16:841-854. [PMID: 37986675 DOI: 10.1002/dta.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Plasma proteins have been a valuable source of biomarkers for clinical uses and for monitoring of the illicit use of prohibited substances or practices in equine sports. We have previously reported the first use of label-free proteomics in profiling equine plasma proteome. This study aimed to refine the method by systematically evaluating various plasma fractionation methods and the use of narrower precursor mass ranges in data-independent acquisition (DIA) mass spectrometry (MS). Tandem fractionations of equine plasma with octanoic acid precipitation followed by solid-phase extraction (SPE) with C4 cartridges provided the largest increase in the number of new proteins identified. The use of two narrow precursor mass ranges of m/z 400-600 and 600-800 in DIA not only identified most proteins detectable by using a single mass range of m/z 350-1500 but also identified ~27% more proteins. The improved method was applied to analyse the plasma proteome of 'postrace' samples which, unlike other samples, had been collected from racehorses soon after racing. Multivariate data analysis has identified upregulation of 14 proteins and downregulation of six proteins in postrace plasma compared with the non-postrace plasma samples. Literature review of these proteins has provided evidence of exercise-induced haemolysis and changes in antioxidant enzyme activities, kinin system, insulin signalling and energy metabolism after strenuous exercise. The improved method has enabled a deeper profiling of the equine plasma proteome and identified the proteins associated with normal physiological changes after racing which are potential confounding factors in the development of a biomarker approach for doping control.
Collapse
Affiliation(s)
- Hiu Wing Cheung
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Kin-Sing Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Ning Sum To
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| |
Collapse
|
10
|
Shao Y, Jiang Y, Yang K, Zhu Y, Liu Y, Zhang P, Lv L, Zhang X, Zhou Y. Apoptotic vesicles derived from human red blood cells promote bone regeneration via carbonic anhydrase 1. Cell Prolif 2024; 57:e13547. [PMID: 37697490 PMCID: PMC10849785 DOI: 10.1111/cpr.13547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Apoptotic vesicles (apoVs) are nanoscale vesicles derived from billions of apoptotic cells involved in the maintenance of the human body's homeostasis. Previous researches have shown that some apoVs, such as those derived from mesenchymal stem cells, contribute to bone formation. However, those apoVs cannot be extracted from patients in large quantities, and cell expansion is needed before apoV isolation, which limits their clinical translation. Mature RBCs, which have no nuclei or genetic material, are easy to obtain, showing high biological safety as a source of extracellular vesicles (EVs). Previous studies have demonstrated that RBC-derived EVs have multiple biological functions, but it is unknown whether RBCs produce apoVs and what effect these apoVs have on bone regeneration. In this study, we isolated and characterized RBC-derived apoVs (RBC-apoVs) from human venous blood and investigated their role in the osteogenesis of human bone mesenchymal stem cells (hBMSCs). We showed that RBCs could produce RBC-apoVs that expressed both general apoVs markers and RBC markers. RBC-apoVs significantly promoted osteogenesis of hBMSCs and enhanced bone regeneration in rat calvarial defects. Mechanistically, RBC-apoVs regulated osteogenesis by transferring carbonic anhydrase 1 (CA1) into hBMSCs and activating the P38 MAPK pathway. Our results indicated that RBC-apoVs could deliver functional molecules from RBCs to hBMSCs and promote bone regeneration, pointing to possible therapeutic use in bone tissue engineering.
Collapse
Affiliation(s)
- Yuzi Shao
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Yuhe Jiang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Kunkun Yang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Yuan Zhu
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Yunsong Liu
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Ping Zhang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Longwei Lv
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Xiao Zhang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| | - Yongsheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental MaterialsBeijingChina
| |
Collapse
|
11
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Kondratov KA, Artamonov AA, Mikhailovskii VY, Velmiskina AA, Mosenko SV, Grigoryev EA, Anisenkova AY, Nikitin YV, Apalko SV, Sushentseva NN, Ivanov AM, Scherbak SG. SARS-CoV-2 Impact on Red Blood Cell Morphology. Biomedicines 2023; 11:2902. [PMID: 38001903 PMCID: PMC10669871 DOI: 10.3390/biomedicines11112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Severe COVID-19 alters the biochemical and morphological characteristics of blood cells in a wide variety of ways. To date, however, the vast majority of research has been devoted to the study of leukocytes, while erythrocyte morphological changes have received significantly less attention. The aim of this research was to identify erythrocyte morphology abnormalities that occur in COVID-19, compare the number of different poikilocyte types, and measure erythrocyte sizes to provide data on size dispersion. Red blood cells obtained from 6 control donors (800-2200 cells per donor) and 5 COVID-19 patients (800-1900 cells per patient) were examined using low-voltage scanning electron microscopy. We did not discover any forms of erythrocyte morphology abnormalities that would be specific to COVID-19. Among COVID-19 patients, we observed an increase in the number of acanthocytes (p = 0.01) and a decrease in the number of spherocytes (p = 0.03). In addition, our research demonstrates that COVID-19 causes an increase in the median (p = 0.004) and interquartile range (p = 0.009) when assessing erythrocyte size. The limitation of our study is a small number of participants.
Collapse
Affiliation(s)
- Kirill A. Kondratov
- City Hospital No. 40, St. Petersburg 197706, Russia
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | | | - Anastasiya A. Velmiskina
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Sergey V. Mosenko
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Anna Yu. Anisenkova
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Yuri V. Nikitin
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
| | - Svetlana V. Apalko
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Andrey M. Ivanov
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
| | - Sergey G. Scherbak
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
13
|
Banerjee A, Dey T, Majumder R, Bhattacharya T, Dey S, Bandyopadhyay D, Chattopadhyay A. Oleic acid prevents erythrocyte death by preserving haemoglobin and erythrocyte membrane proteins. Free Radic Biol Med 2023; 202:17-33. [PMID: 36965537 DOI: 10.1016/j.freeradbiomed.2023.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Haemolysis of erythrocytes upon exposure to haemato-toxic phenylhydrazine (PHZ), makes it an experimental model of anaemia and a partial model of β-thalassaemia, where oxidative stress (OS) was identified as principal causative factor. Oleic acid (OA) was evidenced to ameliorate such stress with antioxidative potential. Erythrocytes were incubated in vitro using 1 mM PHZ, 0.06 nM OA. Erythrocyte membrane protein densities and haemoglobin (Hb) status were examined. Any interaction of Hb with PHZ/OA was checked by calorimetric and spectroscopic analysis using pure molecules. Occurrence of erythrocyte apoptosis and involvement of free iron in all groups were evaluated. PHZ exposure to erythrocytes results in OS with subsequent apoptosis as evidenced from increased lipid peroxidation and translocation of phosphatidylserine in outer membrane. Preservations of erythrocyte cytoskeletal architecture and membrane bound enzyme activity were found in presence of OA. Moreover, both heme and globin of Hb was examined to be conserved by OA. Presence of OA, impeded apoptosis also, possibly by thwarting Hb breakdown followed by free iron release and consequent free radical generation. Additionally, direct sequential binding of OA with PHZ endorsed another protective mechanism of OA toward erythrocytes. OA affords protection to erythrocytes by conserving its major components and prevents haemolysis which projects OA as a haemato-protective agent. Apart from combating PHZ toxicity, anti-apoptotic action of OA strongly suggests its usage in anaemia and β-thalassaemia patients to curb irreversible erythrocyte breakdown. This research strongly recommends OA in pure form or from dietary sources as a therapeutic against haemolytic disorders.
Collapse
Affiliation(s)
- Adrita Banerjee
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Romit Majumder
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India; Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Tuhin Bhattacharya
- Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata, 700006, India.
| |
Collapse
|
14
|
Molecular Mechanisms and Pathophysiological Significance of Eryptosis. Int J Mol Sci 2023; 24:ijms24065079. [PMID: 36982153 PMCID: PMC10049269 DOI: 10.3390/ijms24065079] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Despite lacking the central apoptotic machinery, senescent or damaged RBCs can undergo an unusual apoptosis-like cell death, termed eryptosis. This premature death can be caused by, or a symptom of, a wide range of diseases. However, various adverse conditions, xenobiotics, and endogenous mediators have also been recognized as triggers and inhibitors of eryptosis. Eukaryotic RBCs are unique among their cell membrane distribution of phospholipids. The change in the RBC membrane composition of the outer leaflet occurs in a variety of diseases, including sickle cell disease, renal diseases, leukemia, Parkinson’s disease, and diabetes. Eryptotic erythrocytes exhibit various morphological alterations such as shrinkage, swelling, and increased granulation. Biochemical changes include cytosolic Ca2+ increase, oxidative stress, stimulation of caspases, metabolic exhaustion, and ceramide accumulation. Eryptosis is an effective mechanism for the elimination of dysfunctional erythrocytes due to senescence, infection, or injury to prevent hemolysis. Nevertheless, excessive eryptosis is associated with multiple pathologies, most notably anemia, abnormal microcirculation, and prothrombotic risk; all of which contribute to the pathogenesis of several diseases. In this review, we provide an overview of the molecular mechanisms, physiological and pathophysiological relevance of eryptosis, as well as the potential role of natural and synthetic compounds in modulating RBC survival and death.
Collapse
|
15
|
Ferdous Z, Elzaki O, Beegam S, Zaaba NE, Tariq S, Adeghate E, Nemmar A. Comparative Evaluation of the Effects of Amorphous Silica Nanoparticles on the Erythrocytes of Wistar Normotensive and Spontaneously Hypertensive Rats. Int J Mol Sci 2023; 24:ijms24043784. [PMID: 36835195 PMCID: PMC9967603 DOI: 10.3390/ijms24043784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Silica nanoparticles (SiNPs) are one of the most widely used nanomaterials. SiNPs can encounter erythrocytes and hypertension is strongly linked to abnormalities in the functional and structural characteristics of erythrocytes. As little is known about the combinatorial effect of SiNP-hypertension interactions on erythrocytes, the aim of this work was to study the effects triggered by hypertension on SiNPs induced hemolysis and the pathophysiological mechanism underlying it. We compared the interaction of amorphous 50 nm SiNPs at various concentrations (0.2, 1, 5 and 25 µg/mL) with erythrocytes of normotensive (NT) and hypertensive (HT) rats in vitro. Following incubation of the erythrocytes, SiNPs induced significant and dose-dependent increase in hemolysis. Transmission electron microscopy revealed erythrocyte deformity in addition to SiNPs taken up by erythrocytes. The erythrocyte susceptibility to lipid peroxidation was significantly increased. The concentration of reduced glutathione, and activities of superoxide dismutase, and catalase were significantly increased. SiNPs significantly increased intracellular Ca2+. Likewise, the concentration of the cellular protein annexin V and calpain activity was enhanced by SiNPs. Concerningly, all the tested parameters were significantly enhanced in erythrocytes from HT rats compared to NT rats. Our results collectively demonstrate that hypertension can potentially exacerbate the in vitro effect induced by SiNPs.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Correspondence: ; Tel.: +971-3-7137533
| |
Collapse
|
16
|
Song P, Cai YC, Chen MX, Chen SH, Chen JX. Enhanced phosphatidylserine exposure and erythropoiesis in Babesia microti-infected mice. Front Microbiol 2023; 13:1083467. [PMID: 36687590 PMCID: PMC9846230 DOI: 10.3389/fmicb.2022.1083467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 12/02/2023] Open
Abstract
INTRODUCTION Babesia microti (B. microti) is the dominant species responsible for human babesiosis, which is associated with severe hemolytic anemia and splenomegaly because it infects mammalian erythrocytes. The actual prevalence of B. microti is thought to have been substantially underestimated. METHODS In this study, Bagg's albino/c (BALB/c) mice were intraperitoneally injected with B. microti-infected erythrocytes, and parasitemia was subsequently measured by calculating the proportion of infected erythrocytes. The ultrastructure of infected erythrocytes was observed using scanning and transmission electron microscopes. Quantifying phosphatidylserine (PS) exposure, oxidative stress, intracellular Ca2+, and erythropoiesis of erythrocytes were done using flow cytometry. The physiological indicators were analyzed using a Mindray BC-5000 Vet automatic hematology analyzer. RESULTS Of note, 40.7 ± 5.9% of erythrocytes changed their structure and shrunk in the B. microti-infected group. The percentage of annexin V-positive erythrocytes and the levels of reactive oxygen species (ROS) in the erythrocytes were higher in the B. microti-infected group than in the control group at 10 dpi. Significant splenomegaly and severe anemia were also observed following B. microti infection. The parasitemia level in the B. microti-infected splenectomized group was higher than that of the B. microti-infected sham group. The population of early erythroblasts increased, and the late erythroblasts decreased in both the bone marrow and spleen tissues of the B. microti-infected group at 10 dpi. DISCUSSION PS exposure and elevated ROS activities were hallmarks of eryptosis in the B. microti-infected group. This study revealed for the first time that B. microti could also induce eryptosis. At the higher parasitemia phase, the occurrence of severe anemia and significant changes in the abundance of erythroblasts in B. microti-infected mice group were established. The spleen plays a critical protective role in controlling B. microti infection and preventing anemia. B. microti infection could cause a massive loss of late erythroblasts and induce erythropoiesis.
Collapse
Affiliation(s)
- Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Mu-Xin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| |
Collapse
|
17
|
Cigarette Smoke Extract Induces p38 MAPK-Initiated, Fas-Mediated Eryptosis. Int J Mol Sci 2022; 23:ijms232314730. [PMID: 36499060 PMCID: PMC9738679 DOI: 10.3390/ijms232314730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Eryptosis is a physiological mechanism for the clearance of senescent or damaged erythrocytes by phagocytes. Excessive eryptosis is stimulated under several pathologies and associated with endothelial injury and thrombosis. Cigarette smoke (CS) is an established risk factor for vascular diseases and cigarette smokers have high-levels of eryptotic erythrocytes. This study, for the first time, investigates the mechanism by which CS damages red blood cells (RBCs). CS extract (CSE) from commercial cigarettes was prepared and standardized for nicotine content. Cytofluorimetric analysis demonstrated that treatment of human RBCs with CSE caused dose-dependent, phosphatidylserine externalization and cell shrinkage, hallmarks of apoptotic death. CSE did not affect cellular levels of Ca2+, reactive oxygen species (ROS) or glutathione (GSH). Immununoprecipitation and immunoblotting revealed the assembly of the death-inducing signaling complex (DISC) and oligomerization of Fas receptor as well as cleaved caspase-8 and caspase-3 within 6 h from the treatment. At the same time-interval, CSE elicited neutral sphyngomielinase (nSMase) activity-dependent ceramide formation and phosphorylation of p38 MAPK. Through specific inhibitors' nSMase, caspase-8 or p38 MAPK activities, we demonstrated that p38 MAPK activation is required for caspase-8-mediated eryptosis and that ceramide generation is initiator caspase-dependent. Finally, ex vivo analysis detected phosphorylated p38 MAPK (p-p38) and Fas-associated signaling complex in erythrocytes from cigarette smokers. In conclusion, our study demonstrates that CSE exposure induces in erythrocytes an extrinsic apoptotic pathway involving p38 MAPK-initiated DISC formation followed by activation of caspase-8/caspase-3 via ceramide formation.
Collapse
|
18
|
Fang M, Xia F, Chen Y, Shen Y, Ma L, You C, Tao C, Hu X. Role of Eryptosis in Hemorrhagic Stroke. Front Mol Neurosci 2022; 15:932931. [PMID: 35966018 PMCID: PMC9371462 DOI: 10.3389/fnmol.2022.932931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Erythrocytes undergo certain morphological changes resembling apoptosis during senescence or in an abnormal state/site, which is termed eryptosis. This process is characterized by phosphatidylserine (PS) exposure, membrane blebbing, and cell shrinkage. Eryptotic erythrocytes are subsequently removed via macrophage-mediated efferocytosis. In hemorrhagic stroke (HS), blood within an artery rapidly bleeds into the brain tissue or the subarachnoid space, resulting in severe neurological deficits. A hypoxic, over-oxidative, and pro-inflammatory microenvironment in the hematoma leads to oxidative stress, hyperosmotic shock, energy depletion, and Cl– removal in erythrocytes, which eventually triggers eryptosis. In addition, eryptosis following intracerebral hemorrhage favors hematoma clearance, which sheds light on a common mechanism of intrinsic phagocytosis. In this review, we summarized the canonical mechanisms of eryptosis and discussed its pathological conditions associated with HS. Understanding the role of eryptosis in HS may uncover additional potential interventions for further translational clinical research.
Collapse
Affiliation(s)
- Mei Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqi Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuke Shen
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanyuan Tao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chuanyuan Tao,
| | - Xin Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Xin Hu,
| |
Collapse
|
19
|
Red Blood Cell BCL-x L Is Required for Plasmodium falciparum Survival: Insights into Host-Directed Malaria Therapies. Microorganisms 2022; 10:microorganisms10040824. [PMID: 35456874 PMCID: PMC9027239 DOI: 10.3390/microorganisms10040824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023] Open
Abstract
The development of antimalarial drug resistance is an ongoing problem threatening progress towards the elimination of malaria, and antimalarial treatments are urgently needed for drug-resistant malaria infections. Host-directed therapies (HDT) represent an attractive strategy for the development of new antimalarials with untapped targets and low propensity for resistance. In addition, drug repurposing in the context of HDT can lead to a substantial decrease in the time and resources required to develop novel antimalarials. Host BCL-xL is a target in anti-cancer therapy and is essential for the development of numerous intracellular pathogens. We hypothesised that red blood cell (RBC) BCL-xL is essential for Plasmodium development and tested this hypothesis using six BCL-xL inhibitors, including one FDA-approved compound. All BCL-xL inhibitors tested impaired proliferation of Plasmodium falciparum 3D7 parasites in vitro at low micromolar or sub-micromolar concentrations. Western blot analysis of infected cell fractions and immunofluorescence microscopy assays revealed that host BCL-xL is relocated from the RBC cytoplasm to the vicinity of the parasite upon infection. Further, immunoprecipitation of BCL-xL coupled with mass spectrometry analysis identified that BCL-xL forms unique molecular complexes with human μ-calpain in uninfected RBCs, and with human SHOC2 in infected RBCs. These results provide interesting perspectives for the development of host-directed antimalarial therapies and drug repurposing efforts.
Collapse
|
20
|
Sattar T, Jilani K, Parveen K, Mushataq Z, Nawaz H, Khan MAB. Induction of Erythrocyte Membrane Blebbing by Methotrexate-Induced Oxidative Stress. Dose Response 2022; 20:15593258221093853. [PMID: 35449724 PMCID: PMC9016546 DOI: 10.1177/15593258221093853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Methotrexate (MTX) is a common chemotherapeutical agent and folate antagonist with
reported apoptotic activity in nucleated cells. The presented research work was planned to
investigate the eryptotic effects of methotrexate after the exposure of erythrocytes to
therapeutical doses (10–15 μM) of methotrexate. Eryptosis and the role of calcium in the
stimulation of membrane blebbing were evaluated through the determination of mean cell
volume. Oxidative stress induced by methotrexate (10–15 μM) was determined by
antioxidative enzyme activities. Cytotoxic activity against human erythrocytes was
examined through hemolysis assay. Exposure of erythrocytes to methotrexate results in
significant reduction of superoxide dismutase, catalase, and superoxide dismutase
activities at 10 and 15 μM in comparison to the untreated cells. Erythrocytes mean cell
volume (MCV) was increased after 48 hours exposure of erythrocytes to methotrexate
(10 μM). Significantly increased hemolysis percentage was observed at 10 μM after 48 hours
incubation of erythrocytes with methotrexate. The results of the study suggested that the
therapeutical doses (10–15 μM) of methotrexate may lead to increase in eryptotic and
hemolytic activity of erythrocytes through free radical generation and subsequent calcium
entry.
Collapse
Affiliation(s)
- Tayyba Sattar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Jilani
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Khalida Parveen
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Zahid Mushataq
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
21
|
Popovici V, Bucur L, Gîrd CE, Rambu D, Calcan SI, Cucolea EI, Costache T, Ungureanu-Iuga M, Oroian M, Mironeasa S, Schröder V, Ozon EA, Lupuliasa D, Caraiane A, Badea V. Antioxidant, Cytotoxic, and Rheological Properties of Canola Oil Extract of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070854. [PMID: 35406834 PMCID: PMC9002375 DOI: 10.3390/plants11070854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 05/04/2023]
Abstract
Usnea genus (Parmeliaceae, lichenized Ascomycetes) is a potent phytomedicine, due to phenolic secondary metabolites, with various pharmacological effects. Therefore, our study aimed to explore the antioxidant, cytotoxic, and rheological properties of Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) extract in canola oil (UBO) compared to cold-pressed canola seed oil (CNO), as a green solvent used for lichen extraction, which has phytoconstituents. The antiradical activity (AA) of UBO and CNO was investigated using UV-Vis spectrophotometry. Their cytotoxicity was examined in vivo through a brine shrimp lethality (BSL) test after Artemia salina (A. salina) larvae exposure for 6 h to previously emulsified UBO and CNO. The rheological properties of both oil samples (flow behavior, thixotropy, and temperature-dependent viscosity variation) were comparatively analyzed. The obtained results showed that UBO (IC50 = 0.942 ± 0.004 mg/mL) had a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than CNO (IC50 = 1.361 ± 0.008 mg/mL). Both UBO and CNO emulsions induced different and progressive morphological changes to A. salina larvae, incompatible with their survival; UBO cytotoxicity was higher than that of CNO. Finally, in the temperature range of 32-37 °C, the UBO and CNO viscosity and viscoelastic behavior indicated a clear weakening of the intermolecular bond when temperature increases, leading to a more liquid state, appropriate for possible pharmaceutical formulations. All quantified parameters were highly intercorrelated. Moreover, their significant correlation with trace/heavy minerals and phenolic compounds can be observed. All data obtained also suggest a possible synergism between lichen secondary metabolites, minerals, and canola oil phytoconstituents.
Collapse
Affiliation(s)
- Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania; (V.P.); (V.B.)
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Dan Rambu
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Suzana Ioana Calcan
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Elena Iulia Cucolea
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Teodor Costache
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Mădălina Ungureanu-Iuga
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania;
- Integrated Center for Research, Development, and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania;
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania;
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Emma-Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Aureliana Caraiane
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania;
| | - Victoria Badea
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania; (V.P.); (V.B.)
| |
Collapse
|
22
|
Anti-Eryptotic Activity of Food-Derived Phytochemicals and Natural Compounds. Int J Mol Sci 2022; 23:ijms23063019. [PMID: 35328440 PMCID: PMC8951285 DOI: 10.3390/ijms23063019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/05/2023] Open
Abstract
Human red blood cells (RBCs), senescent or damaged due to particular stress, can be removed by programmed suicidal death, a process called eryptosis. There are various molecular mechanisms underlying eryptosis. The most frequent is the increase in the cytoplasmic concentration of Ca2+ ions, later exposure of erythrocytes to oxidative stress, hyperosmotic shock, ceramide formation, stimulation of caspases, and energy depletion. Phosphatidylserine (PS) exposed by eryptotic RBCs due to interaction with endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor, causes the RBCs to adhere to vascular wall with consequent damage to the microcirculation. Eryptosis can be triggered by various xenobiotics and endogenous molecules, such as high cholesterol levels. The possible diseases associated with eryptosis are various, including anemia, chronic kidney disease, liver failure, diabetes, hypertension, heart failure, thrombosis, obesity, metabolic syndrome, arthritis, and lupus. This review addresses and collates the existing ex vivo and animal studies on the inhibition of eryptosis by food-derived phytochemicals and natural compounds including phenolic compounds (PC), alkaloids, and other substances that could be a therapeutic and/or co-adjuvant option in eryptotic-driven disorders, especially if they are introduced through the diet.
Collapse
|
23
|
Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells. Cells 2022; 11:cells11030503. [PMID: 35159312 PMCID: PMC8834305 DOI: 10.3390/cells11030503] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Human erythrocytes are organelle-free cells packaged with iron-containing hemoglobin, specializing in the transport of oxygen. With a total number of approximately 25 trillion cells per individual, the erythrocyte is the most abundant cell type not only in blood but in the whole organism. Despite their low complexity and their inability to transcriptionally upregulate antioxidant defense mechanisms, they display a relatively long life time, of 120 days. This ensures the maintenance of tissue homeostasis where the clearance of old or damaged erythrocytes is kept in balance with erythropoiesis. Whereas the regulatory mechanisms of erythropoiesis have been elucidated over decades of intensive research, the understanding of the mechanisms of erythrocyte clearance still requires some refinement. Here, we present the main pathways leading to eryptosis, the programmed death of erythrocytes, with special emphasis on Ca2+ influx, the generation of ceramide, oxidative stress, kinase activation, and iron metabolism. We also compare stress-induced erythrocyte death with erythrocyte ageing and clearance, and discuss the similarities between eryptosis and ferroptosis, the iron-dependent regulated death of nucleated blood cells. Finally, we focus on the pathologic consequences of deranged eryptosis, and discuss eryptosis in the context of different infectious diseases, e.g., viral or parasitic infections, and hematologic disorders.
Collapse
|
24
|
Song P, Cai YC, Chen MX, Chen SH, Chen JX. Enhanced phosphatidylserine exposure and erythropoiesis in Babesia microti-infected mice. Front Microbiol 2022; 13:1083467. [PMID: 36687590 PMCID: PMC9846230 DOI: 10.3389/fmicb.2023.1083467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Babesia microti (B. microti) is the dominant species responsible for human babesiosis, which is associated with severe hemolytic anemia and splenomegaly because it infects mammalian erythrocytes. The actual prevalence of B. microti is thought to have been substantially underestimated. Methods In this study, Bagg's albino/c (BALB/c) mice were intraperitoneally injected with B. microti-infected erythrocytes, and parasitemia was subsequently measured by calculating the proportion of infected erythrocytes. The ultrastructure of infected erythrocytes was observed using scanning and transmission electron microscopes. Quantifying phosphatidylserine (PS) exposure, oxidative stress, intracellular Ca2+, and erythropoiesis of erythrocytes were done using flow cytometry. The physiological indicators were analyzed using a Mindray BC-5000 Vet automatic hematology analyzer. Results Of note, 40.7 ± 5.9% of erythrocytes changed their structure and shrunk in the B. microti-infected group. The percentage of annexin V-positive erythrocytes and the levels of reactive oxygen species (ROS) in the erythrocytes were higher in the B. microti-infected group than in the control group at 10 dpi. Significant splenomegaly and severe anemia were also observed following B. microti infection. The parasitemia level in the B. microti-infected splenectomized group was higher than that of the B. microti-infected sham group. The population of early erythroblasts increased, and the late erythroblasts decreased in both the bone marrow and spleen tissues of the B. microti-infected group at 10 dpi. Discussion PS exposure and elevated ROS activities were hallmarks of eryptosis in the B. microti-infected group. This study revealed for the first time that B. microti could also induce eryptosis. At the higher parasitemia phase, the occurrence of severe anemia and significant changes in the abundance of erythroblasts in B. microti-infected mice group were established. The spleen plays a critical protective role in controlling B. microti infection and preventing anemia. B. microti infection could cause a massive loss of late erythroblasts and induce erythropoiesis.
Collapse
Affiliation(s)
- Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Mu-Xin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| |
Collapse
|
25
|
Erythrocyte-enabled immunomodulation for vaccine delivery. J Control Release 2021; 341:314-328. [PMID: 34838929 DOI: 10.1016/j.jconrel.2021.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Erythrocytes capture pathogens in circulation and present them to antigen-presenting cells (APCs) in the spleen. Senescent or apoptotic erythrocytes are physiologically eliminated by splenic APCs in a non-inflammatory manner as to not induce an immune reaction, while damaged erythrocytes tend to induce immune activation. The distinct characteristics of erythrocytes in their lifespan or different states inspire the design of targeting splenic APCs for vaccine delivery. Specifically, normal or damaged erythrocyte-driven immune targeting can induce antigen-specific immune activation, whereas senescent or apoptotic erythrocytes can be tailored to achieve antigen-specific immune tolerance. Recent studies have revealed the potential of erythrocyte-based vaccine delivery; however, there is still no in-depth review to describe the latest progress. This review summarizes the characteristics, different immune functions, and diverse vaccine delivery behaviors and biomedical applications of erythrocytes in different states. This review aims to contribute to the rational design and development of erythrocyte-based vaccine delivery systems for treating various infections, tumors, inflammatory diseases, and autoimmune diseases.
Collapse
|
26
|
Usnic Acid and Usnea barbata (L.) F.H. Wigg. Dry Extracts Promote Apoptosis and DNA Damage in Human Blood Cells through Enhancing ROS Levels. Antioxidants (Basel) 2021; 10:antiox10081171. [PMID: 34439420 PMCID: PMC8388874 DOI: 10.3390/antiox10081171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Nowadays, numerous biomedical studies performed on natural compounds and plant extracts aim to obtain highly selective pharmacological activities without unwanted toxic effects. In the big world of medicinal plants, Usnea barbata (L) F.H. Wigg (U. barbata) and usnic acid (UA) are well-known for their therapeutical properties. One of the most studied properties is their cytotoxicity on various tumor cells. This work aims to evaluate their cytotoxic potential on normal blood cells. Three dry U. barbata extracts in various solvents: ethyl acetate (UBEA), acetone (UBA), and ethanol (UBE) were prepared. From UBEA we isolated usnic acid with high purity by semipreparative chromatography. Then, UA, UBA, and UBE dissolved in 1% dimethyl sulfoxide (DMSO) and diluted in four concentrations were tested for their toxicity on human blood cells. The blood samples were collected from a healthy non-smoker donor; the obtained blood cell cultures were treated with the tested samples. After 24 h, the cytotoxic effect was analyzed through the mechanisms that can cause cell death: early and late apoptosis, caspase 3/7 activity, nuclear apoptosis, autophagy, reactive oxygen species (ROS) level and DNA damage. Generally, the cytotoxic effect was directly proportional to the increase of concentrations, usnic acid inducing the most significant response. At high concentrations, usnic acid and U. barbata extracts induced apoptosis and DNA damage in human blood cells, increasing ROS levels. Our study reveals the importance of prior natural products toxicity evaluation on normal cells to anticipate their limits and benefits as potential anticancer drugs.
Collapse
|
27
|
The Gardos effect drives erythrocyte senescence and leads to Lu/BCAM and CD44 adhesion molecule activation. Blood Adv 2021; 4:6218-6229. [PMID: 33351118 DOI: 10.1182/bloodadvances.2020003077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Senescence of erythrocytes is characterized by a series of changes that precede their removal from the circulation, including loss of red cell hydration, membrane shedding, loss of deformability, phosphatidyl serine exposure, reduced membrane sialic acid content, and adhesion molecule activation. Little is known about the mechanisms that initiate these changes nor is it known whether they are interrelated. In this study, we show that Ca2+-dependent K+ efflux (the Gardos effect) drives erythrocyte senescence. We found that increased intracellular Ca2+ activates the Gardos channel, leading to shedding of glycophorin-C (GPC)-containing vesicles. This results in a loss of erythrocyte deformability but also in a marked loss of membrane sialic acid content. We found that GPC-derived sialic acid residues suppress activity of both Lutheran/basal cell adhesion molecule (Lu/BCAM) and CD44 by the formation of a complex on the erythrocyte membrane, and Gardos channel-mediated shedding of GPC results in Lu/BCAM and CD44 activation. This phenomenon was observed as erythrocytes aged and on erythrocytes that were otherwise prone to clearance from the circulation, such as sickle erythrocytes, erythrocytes stored for transfusion, or artificially dehydrated erythrocytes. These novel findings provide a unifying concept on erythrocyte senescence in health and disease through initiation of the Gardos effect.
Collapse
|
28
|
Tian Y, Tian Z, Dong Y, Wang X, Zhan L. Current advances in nanomaterials affecting morphology, structure, and function of erythrocytes. RSC Adv 2021; 11:6958-6971. [PMID: 35423203 PMCID: PMC8695043 DOI: 10.1039/d0ra10124a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
In recent decades, nanomaterials have been widely used in the field of biomedicine due to their unique physical and chemical properties, and have shown good prospects for in vitro diagnosis, drug delivery, and imaging. With regard to transporting nanoparticles (NPs) to target tissues or organs in the body intravenously or otherwise, blood is the first tissue that NPs come into contact with and is also considered an important gateway for targeted transport. Erythrocytes are the most numerous cells in the blood, but previous studies based on interactions between erythrocytes and NPs mostly focused on the use of erythrocytes as drug carriers for nanomedicine which were chemically bound or physically adsorbed by NPs, so little is known about the effects of nanoparticles on the morphology, structure, function, and circulation time of erythrocytes in the body. Herein, this review focuses on the mechanisms by which nanoparticles affect the structure and function of erythrocyte membranes, involving the hemocompatibility of NPs, the way that NPs interact with erythrocyte membranes, effects of NPs on erythrocyte surface membrane proteins and their structural morphology and the effect of NPs on erythrocyte lifespan and function. The detailed analysis in this review is expected to shed light on the more advanced biocompatibility of nanomaterials and pave the way for the development of new nanodrugs.
Collapse
Affiliation(s)
- Yaxian Tian
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences Taian Shandong 271016 China
| | - Zhaoju Tian
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences Taian Shandong 271016 China
| | - Yanrong Dong
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine Beijing 100850 People's Republic of China
| |
Collapse
|
29
|
Dias GF, Grobe N, Rogg S, Jörg DJ, Pecoits-Filho R, Moreno-Amaral AN, Kotanko P. The Role of Eryptosis in the Pathogenesis of Renal Anemia: Insights From Basic Research and Mathematical Modeling. Front Cell Dev Biol 2020; 8:598148. [PMID: 33363152 PMCID: PMC7755649 DOI: 10.3389/fcell.2020.598148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Red blood cells (RBC) are the most abundant cells in the blood. Despite powerful defense systems against chemical and mechanical stressors, their life span is limited to about 120 days in healthy humans and further shortened in patients with kidney failure. Changes in the cell membrane potential and cation permeability trigger a cascade of events that lead to exposure of phosphatidylserine on the outer leaflet of the RBC membrane. The translocation of phosphatidylserine is an important step in a process that eventually results in eryptosis, the programmed death of an RBC. The regulation of eryptosis is complex and involves several cellular pathways, such as the regulation of non-selective cation channels. Increased cytosolic calcium concentration results in scramblase and floppase activation, exposing phosphatidylserine on the cell surface, leading to early clearance of RBCs from the circulation by phagocytic cells. While eryptosis is physiologically meaningful to recycle iron and other RBC constituents in healthy subjects, it is augmented under pathological conditions, such as kidney failure. In chronic kidney disease (CKD) patients, the number of eryptotic RBC is significantly increased, resulting in a shortened RBC life span that further compounds renal anemia. In CKD patients, uremic toxins, oxidative stress, hypoxemia, and inflammation contribute to the increased eryptosis rate. Eryptosis may have an impact on renal anemia, and depending on the degree of shortened RBC life span, the administration of erythropoiesis-stimulating agents is often insufficient to attain desired hemoglobin target levels. The goal of this review is to indicate the importance of eryptosis as a process closely related to life span reduction, aggravating renal anemia.
Collapse
Affiliation(s)
- Gabriela Ferreira Dias
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Renal Research Institute, New York, NY, United States
| | - Nadja Grobe
- Renal Research Institute, New York, NY, United States
| | - Sabrina Rogg
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - David J. Jörg
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Roberto Pecoits-Filho
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Arbor Research Collaborative for Health, Ann Arbor, MI, United States
| | | | - Peter Kotanko
- Renal Research Institute, New York, NY, United States
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
30
|
Chakrabarty G, NaveenKumar SK, Kumar S, Mugesh G. Modulation of Redox Signaling and Thiol Homeostasis in Red Blood Cells by Peroxiredoxin Mimetics. ACS Chem Biol 2020; 15:2673-2682. [PMID: 32915529 DOI: 10.1021/acschembio.0c00309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Red blood cell death or erythrocyte apoptosis (eryptosis) is generally mediated by oxidative stress, energy depletion, heavy metals exposure, or xenobiotics. As erythrocytes are a major target for oxidative stress due to their primary function as O2-carrying cells, they possess an efficient antioxidant defense system consisting of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and peroxiredoxin 2 (Prx2). The oxidative stress-mediated activation of the Ca2+-permeable cation channel results in Ca2+ entry into the cells and subsequent cell death. Herein, we describe for the first time that selenium compounds having intramolecular diselenide or selenenyl sulfide moieties can prevent the oxidative stress-induced eryptosis by exhibiting an unusual Prx2-like redox activity under conditions when the cellular Prx2 and CAT enzymes are inhibited.
Collapse
Affiliation(s)
- Gaurango Chakrabarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012, India
| | | | - Sagar Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012, India
| |
Collapse
|
31
|
Allegra M, Restivo I, Fucarino A, Pitruzzella A, Vasto S, Livrea MA, Tesoriere L, Attanzio A. Proeryptotic Activity of 4-Hydroxynonenal: A New Potential Physiopathological Role for Lipid Peroxidation Products. Biomolecules 2020; 10:biom10050770. [PMID: 32429353 PMCID: PMC7277761 DOI: 10.3390/biom10050770] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Eryptosis is a physiological, apoptosis-like death of injured erythrocytes crucial to prevent premature haemolysis and the pathological sequalae generated by cell-free haemoglobin. When dysregulated, the process is associated to several inflammatory-based pathologies. 4-Hydroxy-trans-2-nonenal (HNE) is an endogenous signalling molecule at physiological levels and, at higher concentrations, is involved in the pathogenesis of several inflammatory-based diseases. This work evaluated whether HNE could induce eryptosis in human erythrocytes. Methods: Measurements of phosphatidylserine, cell volume, intracellular oxidants, Ca++, glutathione, ICAM-1, and ceramide were assessed by flow cytometry. Scanning electron microscopy evaluated morphological alterations of erythrocytes. Western blotting assessed caspases. PGE2 was measured by ELISA. Adhesion of erythrocytes on endothelial cells was evaluated by gravity adherence assay. Results: HNE in the concentration range between 10–100 µM induces eryptosis, morphological alterations correlated to caspase-3 activation, and increased Ca++ levels. The process is not mediated by redox-dependent mechanisms; rather, it strongly depends on PGE2 and ceramide. Interestingly, HNE induces significant increase of erythrocytes adhesion to endothelial cells (ECs) that are in turn dysfunctionated as evident by overexpression of ICAM-1. Conclusions: Our results unveil a new physiopathological role for HNE, provide mechanistic details of the HNE-induced eryptosis, and suggest a novel mechanism through which HNE could exert pro-inflammatory effects.
Collapse
Affiliation(s)
- Mario Allegra
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, 90123 Palermo, Italy; (M.A.); (I.R.); (S.V.); (M.A.L.); (A.A.)
| | - Ignazio Restivo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, 90123 Palermo, Italy; (M.A.); (I.R.); (S.V.); (M.A.L.); (A.A.)
| | - Alberto Fucarino
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90127 Palermo, Italy; (A.F.); (A.P.)
| | - Alessandro Pitruzzella
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90127 Palermo, Italy; (A.F.); (A.P.)
- Consorzio Universitario di Caltanissetta, Università di Palermo, 90127 Palermo, Italy
| | - Sonya Vasto
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, 90123 Palermo, Italy; (M.A.); (I.R.); (S.V.); (M.A.L.); (A.A.)
| | - Maria Antonia Livrea
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, 90123 Palermo, Italy; (M.A.); (I.R.); (S.V.); (M.A.L.); (A.A.)
| | - Luisa Tesoriere
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, 90123 Palermo, Italy; (M.A.); (I.R.); (S.V.); (M.A.L.); (A.A.)
- Correspondence: ; Tel.: +39-091-2389-6824
| | - Alessandro Attanzio
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, 90123 Palermo, Italy; (M.A.); (I.R.); (S.V.); (M.A.L.); (A.A.)
| |
Collapse
|
32
|
Role of Extrinsic Apoptotic Signaling Pathway during Definitive Erythropoiesis in Normal Patients and in Patients with β-Thalassemia. Int J Mol Sci 2020; 21:ijms21093325. [PMID: 32397135 PMCID: PMC7246929 DOI: 10.3390/ijms21093325] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Apoptosis is a process of programmed cell death which has an important role in tissue homeostasis and in the control of organism development. Here, we focus on information concerning the role of the extrinsic apoptotic pathway in the control of human erythropoiesis. We discuss the role of tumor necrosis factor α (TNFα), tumor necrosis factor ligand superfamily member 6 (FasL), tumor necrosis factor-related apoptosis-inducing (TRAIL) and caspases in normal erythroid maturation. We also attempt to initiate a discussion on the observations that mature erythrocytes contain most components of the receptor-dependent apoptotic pathway. Finally, we point to the role of the extrinsic apoptotic pathway in ineffective erythropoiesis of different types of β-thalassemia.
Collapse
|
33
|
Thiele I, Sahoo S, Heinken A, Hertel J, Heirendt L, Aurich MK, Fleming RMT. Personalized whole-body models integrate metabolism, physiology, and the gut microbiome. Mol Syst Biol 2020; 16:e8982. [PMID: 32463598 PMCID: PMC7285886 DOI: 10.15252/msb.20198982] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Comprehensive molecular-level models of human metabolism have been generated on a cellular level. However, models of whole-body metabolism have not been established as they require new methodological approaches to integrate molecular and physiological data. We developed a new metabolic network reconstruction approach that used organ-specific information from literature and omics data to generate two sex-specific whole-body metabolic (WBM) reconstructions. These reconstructions capture the metabolism of 26 organs and six blood cell types. Each WBM reconstruction represents whole-body organ-resolved metabolism with over 80,000 biochemical reactions in an anatomically and physiologically consistent manner. We parameterized the WBM reconstructions with physiological, dietary, and metabolomic data. The resulting WBM models could recapitulate known inter-organ metabolic cycles and energy use. We also illustrate that the WBM models can predict known biomarkers of inherited metabolic diseases in different biofluids. Predictions of basal metabolic rates, by WBM models personalized with physiological data, outperformed current phenomenological models. Finally, integrating microbiome data allowed the exploration of host-microbiome co-metabolism. Overall, the WBM reconstructions, and their derived computational models, represent an important step toward virtual physiological humans.
Collapse
Affiliation(s)
- Ines Thiele
- School of MedicineNational University of IrelandGalwayIreland
- Discipline of MicrobiologySchool of Natural SciencesNational University of IrelandGalwayIreland
- APC MicrobiomeCorkIreland
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Swagatika Sahoo
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
- Present address:
Department of Chemical Engineering, and Initiative for Biological Systems Engineering (IBSE)Indian Institute of TechnologyChennaiIndia
| | - Almut Heinken
- School of MedicineNational University of IrelandGalwayIreland
| | - Johannes Hertel
- School of MedicineNational University of IrelandGalwayIreland
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Laurent Heirendt
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Maike K Aurich
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Ronan MT Fleming
- School of MedicineNational University of IrelandGalwayIreland
- Division of Analytical BiosciencesLeiden Academic Centre for Drug ResearchFaculty of ScienceUniversity of LeidenLeidenThe Netherlands
| |
Collapse
|
34
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
35
|
Ilyas S, Jilani K, Sikandar M, Siddiq S, Riaz M, Naveed A, Bibi I, Nawaz H, Irfan M, Asghar A. Stimulation of Erythrocyte Membrane Blebbing by Naproxen Sodium. Dose Response 2020; 18:1559325819899259. [PMID: 31983907 PMCID: PMC6961146 DOI: 10.1177/1559325819899259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/24/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Naproxen sodium is a nonsteroidal anti-inflammatory drug (NSAID) having
antipyretic and analgesic properties, mainly used for the treatment of
rheumatoid arthritis and osteoarthritis. Eryptosis is an alternative term used
for suicidal erythrocyte death. In the current study, eryptotic effect of
naproxen sodium characterized by membrane blebbing was investigated in
erythrocytes after 48 hours of treatment with different concentrations (1-25
µM). The experimental work related to investigation of eryptosis was done by
cell size measurement and confirmation of calcium role in the induction of
membrane blebbing. As a possible mechanism of eryptosis, oxidative stress
induced by naproxen sodium was determined by catalase, glutathione peroxidase,
and superoxide dismutase activities. Similarly, hemolytic effect of naproxen
sodium was also determined by hemolysis measurement. Results of our study
illustrated that the therapeutic doses (10-25 µM) of naproxen sodium induce
oxidative stress, confirmed by significant decrease in superoxide dismutase,
catalase, and glutathione peroxidase activities that lead to the triggering of
cell death by eryptosis and hemolysis.
Collapse
Affiliation(s)
- Sajida Ilyas
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Jilani
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sikandar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Saba Siddiq
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Faculty of Medical and Health Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ayesha Naveed
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Ismat Bibi
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Asma Asghar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
36
|
Jacob SS, Prasad K, Rao P, Kamath A, Hegde RB, Baby PM, Rao RK. Computerized Morphometric Analysis of Eryptosis. Front Physiol 2019; 10:1230. [PMID: 31649550 PMCID: PMC6769039 DOI: 10.3389/fphys.2019.01230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Eryptosis is the suicidal destruction-process of erythrocytes, much like apoptosis of nucleated cells, in the course of which the stressed red cell undergoes cell-shrinkage, vesiculation and externalization of membrane phosphatidylserine. Currently, there exist numerous methods to detect eryptosis, both morphometrically and biochemically. This study aimed to design a simple but sensitive, automated computerized approach to instantaneously detect eryptotic red cells and quantify their hallmark morphological characteristics. Red cells from 17 healthy volunteers were exposed to normal Ringer and hyperosmotic stress with sodium chloride, following which morphometric comparisons were conducted from their photomicrographs. The proposed method was found to significantly detect and differentiate normal and eryptotic red cells, based on variations in their structural markers. The receiver operating characteristic curve analysis for each of the markers showed a significant discriminatory accuracy with high sensitivity, specificity and area under the curve values. The software-based technique was then validated with RBCs in malaria. This model, quantifies eryptosis morphometrically in real-time, with minimal manual intervention, providing a new window to explore eryptosis triggered by different stressors and diseases and can find wide application in laboratories of hematology, blood banks and medical research.
Collapse
Affiliation(s)
- Sanu Susan Jacob
- Department of Physiology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Keerthana Prasad
- School of Information Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Asha Kamath
- Department of Statistics, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Roopa B Hegde
- School of Information Sciences, Manipal Academy of Higher Education, Manipal, India.,Nitte Mahalinga Adyanthaya Memorial Institute of Technology, NITTE, Karkala, India
| | - Prathap M Baby
- Department of Physiology, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Karnataka, India
| | - Raghavendra K Rao
- Department of Physiology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
37
|
Rana RB, Jilani K, Shahid M, Riaz M, Ranjha MH, Bibi I, Asghar A, Irfan M. Atorvastatin Induced Erythrocytes Membrane Blebbing. Dose Response 2019; 17:1559325819869076. [PMID: 31447619 PMCID: PMC6691667 DOI: 10.1177/1559325819869076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 01/01/2023] Open
Abstract
Atorvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzymeA reductase, is usually used for the treatment of hypercholesterolemia. Besides its pharmacological and side actions, its toxic effects on human nucleus devoid of erythrocytes are still unknown. Eryptosis is an alternative term used for suicidal erythrocyte death. Membrane blebbing is among the common markers of eryptosis. In this study, eryptotic effect of atorvastatin was investigated by exposing the erythrocytes for 48 hours to different concentrations (1-10 µM) of atorvastatin. The experimental work related to investigation of eryptosis was done by cell size measurement and calcium channel inhibition. As a possible mechanism of eryptosis, atorvastatin-induced oxidative stress was evaluated by determining catalase, glutathione peroxidase, and superoxide dismutase activities. Similarly, necrotic effect of atorvastatin was also determined by hemolytic assay. Results of our study illustrated that the tested doses of atorvastatin may induce oxidative stress as observed by significant reduction in superoxide dismutase, glutathione peroxidase, and catalase activities as well as induce eryptosis, featured by erythrocytes membrane blebbing. The study concluded that induction of oxidative stress by atorvastatin may lead to eryptosis.
Collapse
Affiliation(s)
| | - Kashif Jilani
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Faculty of Medical and Health Sciences, University of Sargodha, Sargodha, Pakistan
| | | | - Ismat Bibi
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asma Asghar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
38
|
Agalakova NA, Petrova TI, Gusev GP. Activation of Fas Receptors, Caspase-8 and Caspase-3 by Fluoride Ions in Rat Erythrocytes in vitro. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019020029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Dinarelli S, Girasole M, Misiti F. Amyloid β peptide affects erythrocyte morphology: Role of intracellular signaling pathways. Clin Hemorheol Microcirc 2019; 71:437-449. [PMID: 31156152 DOI: 10.3233/ch-199007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Circulating red blood cells (RBCs) undergo aging, a fundamental physiological phenomenon that regulates their turnover. OBJECTIVE Understanding the role of Aβ in the cross talk between cell signalling pathways and modulation of the cell structural and biomechanical properties occurring in RBCs during aging. METHODS The morphological pattern has been monitored using Atomic Force Microscopy (AFM) imaging and measuring the RBCs' plasma membrane roughness employed as a morphological parameter capable to provide information on the structure and integrity of the membrane-skeleton. RESULTS We show that treatment with Aβ accelerates the occurrence of morphological and biochemical aging markers in human RBC and influences the cell metabolism. Biochemical data demonstrate that contemporaneously to morphological alterations, Aβ triggers: (i) metabolic alterations and (ii) a complex signaling pathway involving caspase 3, protein kinase C and nitric oxide derived metabolites. CONCLUSIONS our study provides a comprehensive picture in which Aβ treatment of RBC induces changes in specific cell signalling events and/or metabolic pathways, in turns affecting the membrane-cytoskeleton interaction and the membrane integrity.
Collapse
Affiliation(s)
- Simone Dinarelli
- Institute for the Structure of Matter (ISM), National Research Council (CNR), Rome, Italy
| | - Marco Girasole
- Institute for the Structure of Matter (ISM), National Research Council (CNR), Rome, Italy
| | - Francesco Misiti
- Human, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, Cassino (FR), Italy
| |
Collapse
|
40
|
Everts PA, Malanga GA, Paul RV, Rothenberg JB, Stephens N, Mautner KR. Assessing clinical implications and perspectives of the pathophysiological effects of erythrocytes and plasma free hemoglobin in autologous biologics for use in musculoskeletal regenerative medicine therapies. A review. Regen Ther 2019; 11:56-64. [PMID: 31193111 PMCID: PMC6517793 DOI: 10.1016/j.reth.2019.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Autologous biologics, defined as platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMC), are cell-based therapy treatment options in regenerative medicine practices, and have been increasingly used in orthopedics, sports medicine, and spinal disorders. These biological products are produced at point-of-care; thereby, avoiding expensive and cumbersome culturing and expansion techniques. Numerous commercial PRP and BMC systems are available but reports and knowledge of bio-cellular formulations produced by these systems are limited. This limited information hinders evaluating clinical and research outcomes and thus making conclusions about their biological effectiveness. Some of their important cellular and protein properties have not been characterized, which is critical for understanding the mechanisms of actions involved in tissue regenerative processes. The presence and role of red blood cells (RBCs) in any biologic has not been addressed extensively. Furthermore, some of the pathophysiological effects and phenomena related to RBCs have not been studied. A lack of a complete understanding of all of the biological components and their functional consequences hampers the development of clinical standards for any biological preparation. This paper aims to review the clinical implications and pathophysiological effects of RBCs in PRP and BMC; emphasizes hemolysis, eryptosis, and the release of macrophage inhibitory factor; and explains several effects on the microenvironment, such as inflammation, oxidative stress, vasoconstriction, and impaired cell metabolism. Different biological formulations optimize disease specific regenerative treatment protocols. Disintegrated RBC's release harmful components to regenerative therapy treatment vials. The effectiveness of MSC injection depends on the quality of the bone marrow aspiration procedure. PRP and BMC should contain minimal to no erythrocytes.
Collapse
Key Words
- BM-MSCs, bone marrow-mesenchymal cells
- BMA, bone marrow aspiration
- BMC, bone marrow concentrate
- Bone marrow mesenchymal cells
- Eryptosis
- HSCs, hematopoietic stem cells
- Hb, hemoglobin
- Hp, haptoglobin
- Hx, hemopexin
- Inflammation
- MIF, Macrophage migration inhibitory factor
- MNCs, mononucleated cells
- Macrophage migration inhibitor factor
- NO, nitric oxide
- OA, osteoarthritis
- Oxidative stress
- PAF, platelet activating factor
- PFH, plasma free hemoglobin
- PRP, platelet-rich plasma
- PS, phosphatidylserine
- Plasma free hemoglobin
- Platelet-rich plasma
- RBC, red blood cell
- ROS, reactive oxygen species
Collapse
Affiliation(s)
- Peter A. Everts
- Gulf Coast Biologics, Scientific and Research Department, Fort Myers, FL, USA
- Corresponding author. Gulf Coast Biologics, 6900 Daniels Pkwy, Suite #29-282, Fort Myers, FL 33912, USA.
| | - Gerard A. Malanga
- New Jersey Regenerative Institute LLC, Cedar Knolls, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Rowan V. Paul
- California Pacific Orthopedics, San Francisco, CA, USA
- California Pacific Medical Center, San Francisco, CA, USA
- Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Joshua B. Rothenberg
- Boca Raton Regional Hospital, Regenerative Medicine and Orthopedics Biologic Department, Boca Raton, FL, USA
- BocaCare Orthopedics, Boca Raton, FL, USA
| | | | - Kenneth R. Mautner
- Emory University, Department of Physical Medicine & Rehabilitation, Atlanta GA, USA
- Emory University, Department of Orthopedics, Atlanta GA, USA
| |
Collapse
|
41
|
Hai P, Imai T, Xu S, Zhang R, Aft RL, Zou J, Wang LV. High-throughput, label-free, single-cell photoacoustic microscopy of intratumoral metabolic heterogeneity. Nat Biomed Eng 2019; 3:381-391. [PMID: 30936431 PMCID: PMC6544054 DOI: 10.1038/s41551-019-0376-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
Intratumoral heterogeneity, which is manifested in almost all of the hallmarks of cancer, including the significantly altered metabolic profiles of cancer cells, represents a challenge to effective cancer therapy. High-throughput measurements of the metabolism of individual cancer cells would allow direct visualization and quantification of intratumoral metabolic heterogeneity, yet the throughputs of current measurement techniques are limited to about 120 cells per hour. Here, we show that single-cell photoacoustic microscopy can reach throughputs of approximately 12,000 cells per hour by trapping single cells with blood in an oxygen-diffusion-limited high-density microwell array and by using photoacoustic imaging to measure the haemoglobin oxygen change (that is, the oxygen consumption rate) in the microwells. We demonstrate the capability of this label-free technique by performing high-throughput single-cell oxygen-consumption-rate measurements of cultured cells and by imaging intratumoral metabolic heterogeneity in specimens from patients with breast cancer. High-throughput single-cell photoacoustic microscopy of oxygen consumption rates should enable the faster characterization of intratumoral metabolic heterogeneity.
Collapse
Affiliation(s)
- Pengfei Hai
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Toru Imai
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Song Xu
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Ruiying Zhang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca L Aft
- Department of Surgery, School of Medicine, Washington University, St. Louis, MO, USA
- John Cochran Veterans Hospital, St. Louis, MO, USA
| | - Jun Zou
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Caltech Optical Imaging Laboratory, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
42
|
Totino PRR, de Souza HADS, Correa EHC, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Eryptosis of non-parasitized erythrocytes is related to anemia in Plasmodium berghei low parasitema malaria of Wistar rats. Parasitol Res 2018; 118:377-382. [PMID: 30506514 DOI: 10.1007/s00436-018-6167-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023]
Abstract
It is known that premature elimination of non-parasitized RBCs (nRBCs) plays an important role in the pathogenesis of malarial anemia, in which suicidal death process (eryptosis) of nRBCs has been suggested to be involved. To check this possibility, we investigate eryptosis during infection of P. berghei ANKA in Wistar rats, a malaria experimental model that, similar to human malaria, the infection courses with low parasitemia and acute anemia. As expected, P. berghei ANKA infection was marked by low parasite burdens that reached a mean peak of 3% between days six and nine post-infection and solved spontaneously. A significant reduction of the hemoglobin levels (~ 30%) was also observed on days subsequent to the peak of parasitemia, persisting until day 16 post-infection. In eryptosis assays, it was observed a significant increase in the levels of PS-exposing nRBC, which coincided with the reduction of hemoglobin levels and was positively related to anemia. In addition to PS externalization, eryptosis of nRBC induced by P. berghei infection was characterized by cytoplasm calcium influx, but not caspases activity. These results confirm our previous studies evidencing a pro-eryptotic effect of malaria infection on nRBCs and show that a caspase-independent eryptotic process is implicated in anemia induced by P. berghei ANKA infection in Wistar rats.
Collapse
Affiliation(s)
- Paulo Renato Rivas Totino
- Laboratory for Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | |
Collapse
|
43
|
Ecker A, da Silva RS, Dos Santos MM, Ardisson-Araújo D, Rodrigues OED, da Rocha JBT, Barbosa NV. Safety profile of AZT derivatives: Organoselenium moieties confer different cytotoxic responses in fresh human erythrocytes during in vitro exposures. J Trace Elem Med Biol 2018; 50:240-248. [PMID: 30262286 DOI: 10.1016/j.jtemb.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The incorporation of selenium in the structure of nucleosides is a promising strategy to develop novel therapeutic molecules. OBJECTIVE To assess the toxic effects of three AZT derivatives containing organoselenium moieties on human erythrocytes. METHODOLOGY Freshly human erythrocytes were acutely treated with AZT and selenium derivatives SZ1 (chlorophenylseleno), SZ2 (phenylseleno) and SZ3 (methylphenylseleno) at concentrations ranging from 10 to 500 μM. Afterwards, parameters related to membrane damage, redox dyshomeostasis and eryptosis were determined in the cells. RESULTS The effects of AZT and derivatives toward erythrocytes differed considerably. Overall, the SZ3 exhibited similar effect profiles to the prototypal AZT, without causing cytotoxicity. Contrary, the derivative SZ1 induced hemolysis and increased the membrane fragility of cells. Reactive species generation, lipid peroxidation and thiol depletion were also substantially increased in cells after exposure to SZ1. δ-ALA-D and Na+/K+-ATPase activities were inhibited by derivatives SZ1 and SZ2. Additionally, both derivatives caused eryptosis, promoting cell shrinkage and translocation of phosphatidylserine at the membrane surface. The size and granularity of erythrocytes were not modified by any compound. CONCLUSION The insertion of either chlorophenylseleno or, in a certain way, phenylseleno moietes in the structure of AZT molecule was harmful to erythrocytes and this effect seems to involve a pro-oxidant activity. This was not true for the derivative encompassing methylphenylseleno portion, making it a promising candidate for pharmacological studies.
Collapse
Affiliation(s)
- Assis Ecker
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Rafael S da Silva
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Matheus Mulling Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Daniel Ardisson-Araújo
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Oscar E D Rodrigues
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
44
|
Boulet C, Doerig CD, Carvalho TG. Manipulating Eryptosis of Human Red Blood Cells: A Novel Antimalarial Strategy? Front Cell Infect Microbiol 2018; 8:419. [PMID: 30560094 PMCID: PMC6284368 DOI: 10.3389/fcimb.2018.00419] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria is a major global health burden, affecting over 200 million people worldwide. Resistance against all currently available antimalarial drugs is a growing threat, and represents a major and long-standing obstacle to malaria eradication. Like many intracellular pathogens, Plasmodium parasites manipulate host cell signaling pathways, in particular programmed cell death pathways. Interference with apoptotic pathways by malaria parasites is documented in the mosquito and human liver stages of infection, but little is known about this phenomenon in the erythrocytic stages. Although mature erythrocytes have lost all organelles, they display a form of programmed cell death termed eryptosis. Numerous features of eryptosis resemble those of nucleated cell apoptosis, including surface exposure of phosphatidylserine, cell shrinkage and membrane ruffling. Upon invasion, Plasmodium parasites induce significant stress to the host erythrocyte, while delaying the onset of eryptosis. Many eryptotic inducers appear to have a beneficial effect on the course of malaria infection in murine models, but major gaps remain in our understanding of the underlying molecular mechanisms. All currently available antimalarial drugs have parasite-encoded targets, which facilitates the emergence of resistance through selection of mutations that prevent drug-target binding. Identifying host cell factors that play a key role in parasite survival will provide new perspectives for host-directed anti-malarial chemotherapy. This review focuses on the interrelationship between Plasmodium falciparum and the eryptosis of its host erythrocyte. We summarize the current knowledge in this area, highlight the different schools of thoughts and existing gaps in knowledge, and discuss future perspectives for host-directed therapies in the context of antimalarial drug discovery.
Collapse
Affiliation(s)
- Coralie Boulet
- Molecular Parasitology Laboratory, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christian D Doerig
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Teresa G Carvalho
- Molecular Parasitology Laboratory, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
45
|
Chan WY, Lau PM, Yeung KW, Kong SK. The second generation tyrosine kinase inhibitor dasatinib induced eryptosis in human erythrocytes-An in vitro study. Toxicol Lett 2018; 295:10-21. [PMID: 29803841 DOI: 10.1016/j.toxlet.2018.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Dasatinib, a new tyrosine kinase inhibitor, is used clinically to kill chronic myelogenous leukemia and acute lymphoblastic leukemia through apoptosis. Obviously, anemia is developed in many patients receiving dasatinib for treatment. Until now, the mechanism for the cytotoxic effects of dasatinib in human erythrocytes is not fully understood. As many tyrosine kinases are found in human erythrocytes, it is therefore logical to hypothesize that dasatinib is able to induce apoptosis (or eryptosis) in human erythrocytes. True to our expectation, dasatinib inhibited tyrosine kinase and induced eryptosis in human erythrocytes with early denature of esterase, cell shrinkage, loss of membrane integrity with inside-out phosphatidylserine, increase in the cytosolic Ca2+ ion concentration ([Ca2+]i), caspase-3 activation and change in cellular redox state. Mechanistically, the rise of [Ca2+]i seems to be a key mediator in the dasatinib-mediated eryptosis because depletion of external Ca2+ could suppress the eryptotic effects. Also, dasatinib was able to reduce membrane fluidity in human RBCs. For the direct action on membrane, dasatinib permeabilized RBC ghosts in a way similar to digitonin. Taken together, we report here for the first time that dasatinib inhibited tyrosine kinase and induced eryptosis in human erythrocytes through Ca2+ loading and membrane permeabilization.
Collapse
Affiliation(s)
- Wai Yin Chan
- Programme of Biochemistry, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Pui Man Lau
- Programme of Biochemistry, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ka Wing Yeung
- Programme of Biochemistry, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Siu Kai Kong
- Programme of Biochemistry, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| |
Collapse
|
46
|
Carelli-Alinovi C, Dinarelli S, Sampaolese B, Misiti F, Girasole M. Morphological changes induced in erythrocyte by amyloid beta peptide and glucose depletion: A combined atomic force microscopy and biochemical study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:236-244. [PMID: 30040926 DOI: 10.1016/j.bbamem.2018.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/21/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Abstract
Circulating red blood cells (RBCs) undergo aging, a fundamental physiological phenomenon that regulates their turnover. We show that treatment with beta amyloid peptide 1-42 (Aβ) accelerates the occurrence of morphological and biochemical aging markers in human RBCs and influences the cell metabolism leading to intracellular ATP depletion. The morphological pattern has been monitored using Atomic Force Microscopy (AFM) imaging and measuring the RBCs' plasma membrane roughness employed as a morphological parameter capable to provide information on the structure and integrity of the membrane-skeleton. Results evidence that Aβ boosts the development of crenatures and proto-spicules simultaneously to acceleration in the weakening of the cell-cytoskeleton contacts and to the induction of peculiar nanoscale features on the cell membrane. Incubation in the presence of glucose can remove all but the latter Aβ-induced effects. Biochemical data demonstrate that contemporaneously to morphological and structural alterations, Aβ and glucose depletion trigger a complex signaling pathway involving caspase 3, protein kinase C (PKC) and nitric oxide derived metabolites. As a whole, the collected data revealed that, the damaging path induced by Aβ in RBC provide a sequence of morphological and functional intermediates following one another along RBC life span, including: (i) an acceleration in the development of shape alteration typically observed along the RBC's aging; (ii) the development of characteristic membrane features on the plasma membrane and (iii) triggering a complex signaling pathway involving caspase 3, PKC and nitric oxide derived metabolites.
Collapse
Affiliation(s)
- Cristiana Carelli-Alinovi
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L. go F. Vito n.1, 00168 Rome, Italy
| | - Simone Dinarelli
- Institute for the Structure of the Matter (ISM), National Research Council (CNR), via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Beatrice Sampaolese
- Institute of Chemistry of the Molecular Recognition (ICRM), National Research Council (CNR), L. go F. Vito n.1, 00168 Rome, Italy
| | - Francesco Misiti
- Human, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, 03043 Cassino, FR, Italy.
| | - Marco Girasole
- Institute for the Structure of the Matter (ISM), National Research Council (CNR), via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
47
|
Maheshwari N, Khan FH, Mahmood R. 3,4-Dihydroxybenzaldehyde lowers ROS generation and protects human red blood cells from arsenic(III) induced oxidative damage. ENVIRONMENTAL TOXICOLOGY 2018; 33:861-875. [PMID: 29732668 DOI: 10.1002/tox.22572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Arsenic (As) is a potent environmental toxicant and chronic exposure to it results in various malignancies in humans. Oxidative stress has been implicated in the etiopathogenesis of As-induced toxicity. This investigated the protective effect of plant antioxidant 3,4-dihydroxybenzaldehyde (DHB) on sodium meta-arsenite (SA), an As-(III) compound, induced oxidative damage in human red blood cells (RBC). The RBC were first incubated with different concentrations of DHB and then treated with SA at 37°C. Hemolysates were prepared and assayed for various biochemical parameters. Treatment of RBC with SA alone enhanced the generation of reactive oxygen species and increased lipid and protein oxidation. Reduced glutathione levels, total sulfhydryl content and cellular antioxidant power were significantly decreased in SA alone treated RBC, compared to the untreated control cells. This was accompanied by membrane damage, alterations in activities of antioxidant enzymes and deranged glucose metabolism. Incubation of RBC with DHB, prior to treatment with SA, significantly and dose-dependently attenuated the SA-induced changes in all these parameters. Scanning electron microscopy of RBC confirmed these biochemical results. Treatment of RBC with SA alone converted the biconcave discoids to echinocytes but the presence of DHB inhibited this conversion and the RBC retained their normal shape. These results show that DHB protects human RBC from SA-induced oxidative damage, most probably due to its antioxidant character.
Collapse
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|
48
|
Pu X, Storr SJ, Zhang Y, Rakha EA, Green AR, Ellis IO, Martin SG. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis 2018; 22:357-368. [PMID: 27798717 PMCID: PMC5306438 DOI: 10.1007/s10495-016-1323-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Impaired apoptosis is one of the hallmarks of cancer. Caspase-3 and -8 are key regulators of the apoptotic response and have been shown to interact with the calpain family, a group of cysteine proteases, during tumorigenesis. The current study sought to investigate the prognostic potential of caspase-3 and -8 in breast cancer, as well as the prognostic value of combinatorial caspase and calpain expression. A large cohort (n = 1902) of early stage invasive breast cancer patients was used to explore the expression of caspase-3 and -8. Protein expression was examined using standard immunohistochemistry on tissue microarrays. High caspase-3 expression, but not caspase-8, is significantly associated with adverse breast cancer-specific survival (P = 0.008 and P = 0.056, respectively). Multivariate analysis showed that caspase-3 remained an independent factor when confounding factors were included (hazard ratio (HR) 1.347, 95% confidence interval (CI) 1.086–1.670; P = 0.007). The analyses in individual subgroups demonstrated the significance of caspase-3 expression in clinical outcomes in receptor positive (ER, PR or HER2) subgroups (P = 0.001) and in non-basal like subgroup (P = 0.029). Calpain expression had been previously assessed. Significant association was also found between high caspase-3/high calpain-1 and breast cancer-specific survival in the total patient cohort (P = 0.005) and basal-like subgroup (P = 0.034), as indicated by Kaplan–Meier analysis. Caspase-3 expression is associated with adverse breast cancer-specific survival in breast cancer patients, and provides additional prognostic values in distinct phenotypes. Combinatorial caspase and calpain expression can predict worse prognosis, especially in basal-like phenotypes. The findings warrant further validation studies in independent multi-centre patient cohorts.
Collapse
Affiliation(s)
- Xuan Pu
- Division of Cancer and Stem Cells, Department of Clinical Oncology, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Sarah J Storr
- Division of Cancer and Stem Cells, Department of Clinical Oncology, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Yimin Zhang
- Division of Cancer and Stem Cells, Department of Clinical Oncology, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
- Department of Breast and Thyroid Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Emad A Rakha
- Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Stewart G Martin
- Division of Cancer and Stem Cells, Department of Clinical Oncology, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK.
| |
Collapse
|
49
|
Repsold L, Joubert AM. Eryptosis: An Erythrocyte's Suicidal Type of Cell Death. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9405617. [PMID: 29516014 PMCID: PMC5817309 DOI: 10.1155/2018/9405617] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 11/26/2022]
Abstract
Erythrocytes play an important role in oxygen and carbon dioxide transport. Although erythrocytes possess no nucleus or mitochondria, they fulfil several metabolic activities namely, the Embden-Meyerhof pathway, as well as the hexose monophosphate shunt. Metabolic processes within the erythrocyte contribute to the morphology/shape of the cell and important constituents are being kept in an active, reduced form. Erythrocytes undergo a form of suicidal cell death called eryptosis. Eryptosis results from a wide variety of contributors including hyperosmolarity, oxidative stress, and exposure to xenobiotics. Eryptosis occurs before the erythrocyte has had a chance to be naturally removed from the circulation after its 120-day lifespan and is characterised by the presence of membrane blebbing, cell shrinkage, and phosphatidylserine exposure that correspond to nucleated cell apoptotic characteristics. After eryptosis is triggered there is an increase in cytosolic calcium (Ca2+) ion levels. This increase causes activation of Ca2+-sensitive potassium (K+) channels which leads to a decrease in intracellular potassium chloride (KCl) and shrinkage of the erythrocyte. Ceramide, produced by sphingomyelinase from the cell membrane's sphingomyelin, contributes to the occurrence of eryptosis. Eryptosis ensures healthy erythrocyte quantity in circulation whereas excessive eryptosis may set an environment for the clinical presence of pathophysiological conditions including anaemia.
Collapse
Affiliation(s)
- Lisa Repsold
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
50
|
Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem Biol Interact 2017; 279:73-83. [PMID: 29128605 DOI: 10.1016/j.cbi.2017.11.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/24/2017] [Accepted: 11/07/2017] [Indexed: 01/15/2023]
Abstract
Erythrocytes are the main cells in circulation. They are devoid of internal membrane structures and easy to be isolated and handled providing a good model for different assays. Red blood cells (RBCs) plasma membrane is a multi-component structure that keeps the cell morphology, elasticity, flexibility and deformability. Alteration of membrane structure upon exposure to xenobiotics could induce various cellular abnormalities and releasing of intracellular components. Therefore the morphological changes and extracellular release of haemoglobin [hemolysis] and increased content of extracellular adenosine triphosphate (ATP) [as signs of membrane stability] could be used to evaluate the cytotoxic effects of various molecules. The nucleated RBCs from birds, fish and amphibians can be used to evaluate genotoxicity of different xenobiotics using comet, DNA fragmentation and micronucleus assays. The RBCs could undergo programmed cell death (eryptosis) in response to injury providing a useful model to analyze some mechanisms of toxicity that could be implicated in apoptosis of nucleated cells. Erythrocytes are vulnerable to peroxidation making it a good biological membrane model for analyzing the oxidative stress and lipid peroxidation of various xenobiotics. The RBCs contain a large number of enzymatic and non-enzymatic antioxidants. The changes of the RBCs antioxidant capacity could reflect the capability of xenobiotics to generate reactive oxygen species (ROS) resulting in oxidative damage of tissue. These criteria make RBCs a valuable in vitro model to evaluate the cytotoxicity of different natural or synthetic and organic or inorganic molecules by cellular damage measures.
Collapse
|