1
|
Ahsan N, Shariq M, Surolia A, Raj R, Khan MF, Kumar P. Multipronged regulation of autophagy and apoptosis: emerging role of TRIM proteins. Cell Mol Biol Lett 2024; 29:13. [PMID: 38225560 PMCID: PMC10790450 DOI: 10.1186/s11658-023-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
TRIM proteins are characterized by their conserved N-terminal RING, B-box, and coiled-coil domains. These proteins are efficient regulators of autophagy, apoptosis, and innate immune responses and confer immunity against viruses and bacteria. TRIMs function as receptors or scaffold proteins that target substrates for autophagy-mediated degradation. Most TRIMs interact with the BECN1-ULK1 complex to form TRIMosomes, thereby efficiently targeting substrates to autophagosomes. They regulate the functions of ATG proteins through physical interactions or ubiquitination. TRIMs affect the lipidation of MAP1LC3B1 to form MAP1LC3B2, which is a prerequisite for phagophore and autophagosome formation. In addition, they regulate MTOR kinase and TFEB, thereby regulating the expression of ATG genes. TRIM proteins are efficient regulators of apoptosis and are crucial for regulating cell proliferation and tumor formation. Many TRIM proteins regulate intrinsic and extrinsic apoptosis via the cell surface receptors TGFBR2, TNFRSF1A, and FAS. Mitochondria modulate the anti- and proapoptotic functions of BCL2, BAX, BAK1, and CYCS. These proteins use a multipronged approach to regulate the intrinsic and extrinsic apoptotic pathways, culminating in coordinated activation or inhibition of the initiator and executor CASPs. Furthermore, TRIMs can have a dual effect in determining cell fate and are therefore crucial for cellular homeostasis. In this review, we discuss mechanistic insights into the role of TRIM proteins in regulating autophagy and apoptosis, which can be used to better understand cellular physiology. These findings can be used to develop therapeutic interventions to prevent or treat multiple genetic and infectious diseases.
Collapse
Affiliation(s)
- Nuzhat Ahsan
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Mohd Shariq
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 460012, India.
| | - Reshmi Raj
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | | | - Pramod Kumar
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
2
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
3
|
Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J, Huérfano S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J 2023; 20:82. [PMID: 37127643 PMCID: PMC10152602 DOI: 10.1186/s12985-023-02049-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PM NBs), often referred to as membraneless organelles, are dynamic macromolecular protein complexes composed of a PML protein core and other transient or permanent components. PML NBs have been shown to play a role in a wide variety of cellular processes. This review describes in detail the diverse and complex interactions between small and medium size DNA viruses and PML NBs that have been described to date. The PML NB components that interact with small and medium size DNA viruses include PML protein isoforms, ATRX/Daxx, Sp100, Sp110, HP1, and p53, among others. Interaction between viruses and components of these NBs can result in different outcomes, such as influencing viral genome expression and/or replication or impacting IFN-mediated or apoptotic cell responses to viral infection. We discuss how PML NB components abrogate the ability of adenoviruses or Hepatitis B virus to transcribe and/or replicate their genomes and how papillomaviruses use PML NBs and their components to promote their propagation. Interactions between polyomaviruses and PML NBs that are poorly understood but nevertheless suggest that the NBs can serve as scaffolds for viral replication or assembly are also presented. Furthermore, complex interactions between the HBx protein of hepadnaviruses and several PML NBs-associated proteins are also described. Finally, current but scarce information regarding the interactions of VP3/apoptin of the avian anellovirus with PML NBs is provided. Despite the considerable number of studies that have investigated the functions of the PML NBs in the context of viral infection, gaps in our understanding of the fine interactions between viruses and the very dynamic PML NBs remain. The complexity of the bodies is undoubtedly a great challenge that needs to be further addressed.
Collapse
Affiliation(s)
- Boris Ryabchenko
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Vojtěch Šroller
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Alexey Lovtsov
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Sandra Huérfano
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic.
| |
Collapse
|
4
|
Sun H, Chen Y, Yan K, Shao Y, Zhang QC, Lin Y, Xi Q. Recruitment of TRIM33 to cell-context specific PML nuclear bodies regulates nodal signaling in mESCs. EMBO J 2023; 42:e112058. [PMID: 36524443 PMCID: PMC9890237 DOI: 10.15252/embj.2022112058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
TRIM33 is a chromatin reader required for mammalian mesendoderm differentiation after activation of Nodal signaling, while its role in mESCs is still elusive. Here, we report that TRIM33 co-localizes with promyelocytic leukemia nuclear bodies (PML-NBs) specifically in mESCs, to mediate Nodal signaling-directed transcription of Lefty1/2. We show that TRIM33 puncta formation in mESCs depends on PML and on specific assembly of PML-NBs. Moreover, TRIM33 and PML co-regulate Lefty1/2 expression in mESCs, with both PML protein and formation of mESCs-specific PML-NBs being required for TRIM33 recruitment to these loci, and PML-NBs directly associating with the Lefty1/2 loci. Finally, a TurboID proximity-labeling experiment confirmed that TRIM33 is highly enriched only in mESCs-specific PML-NBs. Thus, our study supports a model in which TRIM33 condensates regulate Nodal signaling-directed transcription in mESCs and shows that PML-NBs can recruit distinct sets of client proteins in a cell-context-dependent manner.
Collapse
Affiliation(s)
- Hongyao Sun
- MOE Key Laboratory of Protein Sciences, School of Life SciencesTsinghua UniversityBeijingChina
- Joint Graduate Program of Peking‐Tsinghua‐NIBSTsinghua UniversityBeijingChina
| | - Yutong Chen
- IDG/McGovern Institute for Brain Research, School of Life SciencesTsinghua UniversityBeijingChina
| | - Kun Yan
- Tsinghua‐Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| | - Yanqiu Shao
- Tsinghua‐Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| | - Qiangfeng C Zhang
- Joint Graduate Program of Peking‐Tsinghua‐NIBSTsinghua UniversityBeijingChina
- Tsinghua‐Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
| | - Yi Lin
- IDG/McGovern Institute for Brain ResearchTsinghua‐Peking Joint Centre for Life SciencesBeijingChina
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
5
|
Liebl MC, Hofmann TG. Regulating the p53 Tumor Suppressor Network at PML Biomolecular Condensates. Cancers (Basel) 2022; 14:4549. [PMID: 36230470 PMCID: PMC9558958 DOI: 10.3390/cancers14194549] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
By forming specific functional entities, nuclear biomolecular condensates play an important function in guiding biological processes. PML biomolecular condensates, also known as PML nuclear bodies (NBs), are macro-molecular sub-nuclear organelles involved in central biological processes, including anti-viral response and cell fate control upon genotoxic stress. PML condensate formation is stimulated upon cellular stress, and relies on protein-protein interactions establishing a PML protein meshwork capable of recruiting the tumor suppressor p53, along with numerous modifiers of p53, thus balancing p53 posttranslational modifications and activity. This stress-regulated process appears to be controlled by liquid-liquid phase separation (LLPS), which may facilitate regulated protein-unmixing of p53 and its regulators into PML nuclear condensates. In this review, we summarize and discuss the molecular mechanisms underlying PML nuclear condensate formation, and how these impact the biological function of p53 in driving the cell death and senescence responses. In addition, by using an in silico approach, we identify 299 proteins which share PML and p53 as binding partners, thus representing novel candidate proteins controlling p53 function and cell fate decision-making at the level of PML nuclear biocondensates.
Collapse
Affiliation(s)
| | - Thomas G. Hofmann
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
6
|
Alekseev O, Donegan WE, Donovan KR, Limonnik V, Azizkhan-Clifford J. HSV-1 Hijacks the Host DNA Damage Response in Corneal Epithelial Cells through ICP4-Mediated Activation of ATM. Invest Ophthalmol Vis Sci 2021; 61:39. [PMID: 32543665 PMCID: PMC7415316 DOI: 10.1167/iovs.61.6.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Herpes simplex virus type I (HSV-1) infection of corneal epithelial cells activates ataxia telangiectasia mutated (ATM), an apical kinase in the host DNA damage response pathway, whose activity is necessary for the progression of lytic HSV-1 infection. The purpose of this study is to investigate the mechanism of ATM activation by HSV-1 in the corneal epithelium, as well as its functional significance. Methods Mechanistic studies were performed in cultured human corneal epithelial cell lines (hTCEpi, HCE), as well as in esophageal (EPC2) and oral (OKF6) cell lines. Transfection-based experiments were performed in HEK293 cells. HSV-1 infection was carried out using the wild-type KOS strain, various mutant strains (tsB7, d120, 7134, i13, n208), and bacterial artificial chromosomes (fHSVΔpac, pM24). Inhibitors of ATM (KU-55933), protein synthesis (cycloheximide), and viral DNA replication (phosphonoacetic acid) were used. Outcomes of infection were assayed using Western blotting, qRT-PCR, immunofluorescence, and comet assay. Results This study demonstrates that HSV-1-mediated ATM activation in corneal epithelial cells relies on the viral immediate early gene product ICP4 and requires the presence of the viral genome in the host nucleus. We show that ATM activation is independent of viral genome replication, the ICP0 protein, and the presence of DNA lesions. Interestingly, ATM activity appears to be necessary at the onset of infection, but dispensable at the later stages. Conclusions This study expands our understanding of HSV-1 virus-host interactions in the corneal epithelium and identifies potential areas of future investigation and therapeutic intervention in herpes keratitis.
Collapse
|
7
|
Gillon A, Steel C, Cornwall J, Sheard P. Increased nuclear permeability is a driver for age-related motoneuron loss. GeroScience 2020; 42:833-847. [PMID: 32002784 PMCID: PMC7286994 DOI: 10.1007/s11357-020-00155-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is the loss of skeletal muscle mass with age, the precise cause of which remains unclear. Several studies have shown that sarcopenia is at least partly driven by denervation which, in turn, is related to loss of motor nerve cells. Recent data suggests degradation of the nucleocytoplasmic barrier and nuclear envelope transport process are contributors to nerve loss in a number of neurodegenerative diseases. Having recently shown that important components of the nuclear barrier are lost with advancing age, we now ask whether these emergent defects accompany increased nuclear permeability, chromatin disorganization and lower motoneuron loss in normal ageing, and if so, whether exercise attenuates these changes. Immunohistochemistry was used on young adult, old and exercised mouse tissues to examine nucleocytoplasmic transport regulatory proteins and chromatin organization. We used a nuclear permeability assay to investigate the patency of the nuclear barrier on extracts of the spinal cord from each group. We found increased permeability in nuclei isolated from spinal cords of old animals that correlated with both mislocalization of essential nuclear transport proteins and chromatin disorganization, and also found that in each case, exercise attenuated the age-associated changes. Findings suggest that the loss of nuclear barrier integrity in combination with previously described defects in nucleocytoplasmic transport may drive increased nuclear permeability and contribute to age-related motoneuron death. These events may be significant indirect drivers of skeletal muscle loss.
Collapse
Affiliation(s)
- Ashley Gillon
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Charlotte Steel
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Jon Cornwall
- Centre for Early Learning in Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip Sheard
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| |
Collapse
|
8
|
RanBP2 regulates the anti-retroviral activity of TRIM5α by SUMOylation at a predicted phosphorylated SUMOylation motif. Commun Biol 2018; 1:193. [PMID: 30456314 PMCID: PMC6237768 DOI: 10.1038/s42003-018-0198-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/19/2018] [Indexed: 01/30/2023] Open
Abstract
TRIM5α is a cytoplasmic restriction factor that blocks post-entry retroviral infection. Evidence suggests that its antiviral activity can be regulated by SUMO, but how this is achieved remains unknown. Here, we show that TRIM5α forms a complex with RanGAP1, Ubc9, and RanBP2 at the nuclear pore, and that RanBP2 E3 SUMO ligase promotes the SUMOylation of endogenous TRIM5α in the cytoplasm. Loss of RanBP2 blocked SUMOylation of TRIM5α, altered its localization in primary cells, and suppressed the antiviral activity of both rhesus and human orthologs. In cells, human TRIM5α is modified on K84 within a predicted phosphorylated SUMOylation motif (pSUM) and not on K10 as found in vitro. Non-modified TRIM5α lacked antiviral activity, indicating that only SUMOylated TRIM5α acts as a restriction factor. This work illustrates the importance of the nuclear pore in intrinsic antiviral immunity, acting as a hub where virus, SUMO machinery, and restriction factors can meet. Ghizlane Maarifi et al. demonstrate that a nuclear pore component, RanBP2, SUMOylates the retroviral restriction factor TRIM5α to promote its antiviral activity. This study suggests an unexpected role of the nuclear pore for regulating anti-viral innate immunity.
Collapse
|
9
|
Schmidt JA, Danielson KG, Duffner ER, Radecki SG, Walker GT, Shelton A, Wang T, Knepper JE. Regulation of the oncogenic phenotype by the nuclear body protein ZC3H8. BMC Cancer 2018; 18:759. [PMID: 30041613 PMCID: PMC6057032 DOI: 10.1186/s12885-018-4674-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The Zc3h8 gene encodes a protein with three zinc finger motifs in the C-terminal region. The protein has been identified as a component of the Little Elongation Complex, involved in transcription of small nuclear RNAs. ZC3H8 is overexpressed in a number of human and mouse breast cancer cell lines, and elevated mRNA levels are associated with a poorer prognosis for women with breast cancer. METHODS We used RNA silencing to decrease levels of expression in mouse mammary tumor cells and overexpression of ZC3H8 in cells derived from the normal mouse mammary gland. We measured characteristics of cell behavior in vitro, including proliferation, migration, invasion, growth in soft agar, and spheroid growth. We assessed the ability of these cells to form tumors in syngeneic BALB/c mice. ZC3H8 protein was visualized in cells using confocal microscopy. RESULTS Tumor cells with lower ZC3H8 expression exhibited decreased proliferation rates, slower migration, reduced ability to invade through a basement membrane, and decreased anchorage independent growth in vitro. Cells with lower ZC3H8 levels formed fewer and smaller tumors in animals. Overexpression of ZC3H8 in non-tumorigenic COMMA-D cells led to an opposite effect. ZC3H8 protein localized to both PML bodies and Cajal bodies within the nucleus. ZC3H8 has a casein kinase 2 (CK2) phosphorylation site near the N-terminus, and a CK2 inhibitor caused the numerous PML bodies and ZC3H8 to coalesce to a few larger bodies. Removal of the inhibitor restored PML bodies to their original state. A mutant ZC3H8 lacking the predicted CK2 phosphorylation site showed localization and numbers of ZC3H8/PML bodies similar to wild type. In contrast, a mutant constructed with a glutamic acid in place of the phosphorylatable threonine showed dramatically increased numbers of smaller nuclear foci. CONCLUSIONS These experiments demonstrate that Zc3h8 expression contributes to aggressive tumor cell behavior in vitro and in vivo. Our studies show that ZC3H8 integrity is key to maintenance of PML bodies. The work provides a link between the Little Elongation Complex, PML bodies, and the cancer cell phenotype.
Collapse
Affiliation(s)
- John A. Schmidt
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Keith G. Danielson
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Emily R. Duffner
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Sara G. Radecki
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Gerard T. Walker
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Amber Shelton
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Tianjiao Wang
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Janice E. Knepper
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| |
Collapse
|
10
|
Hoischen C, Monajembashi S, Weisshart K, Hemmerich P. Multimodal Light Microscopy Approaches to Reveal Structural and Functional Properties of Promyelocytic Leukemia Nuclear Bodies. Front Oncol 2018; 8:125. [PMID: 29888200 PMCID: PMC5980967 DOI: 10.3389/fonc.2018.00125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
The promyelocytic leukemia (pml) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology.
Collapse
|
11
|
Liu SB, Shen ZF, Guo YJ, Cao LX, Xu Y. PML silencing inhibits cell proliferation and induces DNA damage in cultured ovarian cancer cells. Biomed Rep 2017; 7:29-35. [PMID: 28685056 PMCID: PMC5492820 DOI: 10.3892/br.2017.919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023] Open
Abstract
The promyelocytic leukemia (PML) gene is a tumor suppressor gene. It was first identified in acute promyelocytic leukemia, in which it is fused to retinoic acid receptor α by the (15;17) chromosomal translocation. The function of the PML protein is frequently lost or aberrant in human solid tumors. In human ovarian carcinoma tissue, PML detected by immunohistochemistry was highly expressed. A PML-silencing vector, pSRG-shPml, was constructed and used to transfect human ovarian cancer cells. Cells were cultured and selected with puromycin for 10–15 days, and then the PML mRNA expression levels were detected by RT-qPCR and immunofluorescence. Proliferation and clone number of PML-depleted cells were detected using MTT assay and colony-forming assay. The protein expression associated with DNA damage and apoptosis was assessed in PML-depleted cells using western blot analysis and immunofluorescence. The results showed that PML was highly expressed in human ovarian tissue. The proliferation and colony formation of ovarian cancer cells were significantly inhibited after PML was depleted. Western blot analysis and immunofluorescence revealed that p-H2AX and cleaved caspase-3 expression significantly increased after PML silencing. PML was located in the nucleus, and it formed foci after X-ray irradiation. PML foci increased significantly with increasing irradiation doses.
Collapse
Affiliation(s)
- Sheng-Bing Liu
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Zhong-Fei Shen
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Yan-Jun Guo
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Li-Xian Cao
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Ying Xu
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| |
Collapse
|
12
|
Evidence for gene-gene epistatic interactions between susceptibility genes for Mycobacterium avium subsp. paratuberculosis infection in cattle. Livest Sci 2017. [DOI: 10.1016/j.livsci.2016.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Matt S, Hofmann TG. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci 2016; 73:2829-50. [PMID: 26791483 PMCID: PMC11108532 DOI: 10.1007/s00018-016-2130-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response.
Collapse
Affiliation(s)
- Sonja Matt
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thomas G Hofmann
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Miki T, Zhao Z, Lee CC. Interactive Organization of the Circadian Core Regulators PER2, BMAL1, CLOCK and PML. Sci Rep 2016; 6:29174. [PMID: 27383066 PMCID: PMC4935866 DOI: 10.1038/srep29174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
The BMAL1 and CLOCK heterodimer in the mammalian circadian transcriptional complex is thought to be repressed by PER2 and CRY1 via direct interactions. We recently reported that PER2 is largely cytosolic in Pml(-/-) cells and did not co-immunoprecipitate (co-IP) with BMAL1 or CLOCK. Here, using multi-color immunofluorescence (IF) staining and co-IP, we observed a nuclear distribution of BMAL1 and a predominately cytosolic distribution of CLOCK in Pml(-/-) MEF. In the presence of WT PML, PER2 co-localized with BMAL1 in the nucleus. In Pml(-/-) MEF transfected with mutant K487R PML, we observed that BMAL1 and PER2 co-localized with K487R PML in the cytosol. Furthermore, cytosolic CLOCK and PER2 displayed a significant non-overlapping IF staining pattern. In Bmal1(-/-) MEF, CLOCK was primarily cytosolic while PML and PER2 were nuclear. Together, our studies suggest that PML mediates the binding of PER2 to BMAL1 in the BMAL1/CLOCK heterodimer and is an important component in the organization of a functional clock complex in the nucleus. Our studies also support that BMAL1 is important for CLOCK nuclear localization.
Collapse
Affiliation(s)
- Takao Miki
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA.
| | - Zhaoyang Zhao
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA.
| | - Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA.
| |
Collapse
|
15
|
Kota V, Sommer G, Durette C, Thibault P, van Niekerk EA, Twiss JL, Heise T. SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells. PLoS One 2016; 11:e0156365. [PMID: 27224031 PMCID: PMC4880191 DOI: 10.1371/journal.pone.0156365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/12/2016] [Indexed: 02/05/2023] Open
Abstract
The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP) elements from the 5' untranslated regions (UTR) of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5' UTR of cyclin D1 (CCND1) mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality.
Collapse
Affiliation(s)
- Venkatesh Kota
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, Charleston, South Carolina, United States of America
| | - Gunhild Sommer
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, Charleston, South Carolina, United States of America
| | - Chantal Durette
- Institute of Research in Immunology and Cancer University de Montreal, Station Centre-ville, Montreal, Canada
| | - Pierre Thibault
- Institute of Research in Immunology and Cancer University de Montreal, Station Centre-ville, Montreal, Canada
| | - Erna A. van Niekerk
- Department of Neurosciences-0626, University of California, San Diego, La Jolla, California, United States of America
| | - Jeffery L. Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Tilman Heise
- Medical University of South Carolina, Department of Biochemistry & Molecular Biology, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism. Cell Death Differ 2015; 23:110-22. [PMID: 26113041 PMCID: PMC4815982 DOI: 10.1038/cdd.2015.75] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 01/23/2023] Open
Abstract
Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response.
Collapse
|
17
|
PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53. Oncogene 2015; 35:69-82. [PMID: 25772236 DOI: 10.1038/onc.2015.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 11/09/2022]
Abstract
Although modulation of the cellular tumor-suppressor p53 is considered to have the major role in E1A/E1B-55K-mediated tumorigenesis, other promyelocytic leukemia nuclear body (PML-NB)/PML oncogenic domain (POD)-associated factors including SUMO, Mre11, Daxx, as well as the integrity of these nuclear bodies contribute to the transformation process. However, the biochemical consequences and oncogenic alterations of PML-associated E1B-55K by SUMO-dependent PML-IV and PML-V interaction have so far remained elusive. We performed mutational analysis to define a PML interaction motif within the E1B-55K polypeptide. Our results showed that E1B-55K/PML binding is not required for p53, Mre11 and Daxx interaction. We also observed that E1B-55K lacking subnuclear PML localization because of either PML-IV or PML-V-binding deficiency was no longer capable of mediating E1B-55K-dependent SUMOylation of p53, inhibition of p53-mediated transactivation or efficiently transforming primary rodent cells. These results together with the observation that E1B-55K-dependent SUMOylation of p53 is required for efficient cell transformation, provides evidence for the idea that the SUMO ligase activity of the E1B-55K viral oncoprotein is intimately linked to its growth-promoting oncogenic activities.
Collapse
|
18
|
Herzer K, Gerken G, Hofmann TG. Hepatitis C-associated liver carcinogenesis: Role of PML nuclear bodies. World J Gastroenterol 2014; 20:12367-12371. [PMID: 25253937 PMCID: PMC4168070 DOI: 10.3748/wjg.v20.i35.12367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/31/2013] [Accepted: 07/25/2014] [Indexed: 02/06/2023] Open
Abstract
Successful escape from immune response characterises chronic hepatitis C virus (HCV) infection, which results in persistence of infection in about 80% of the patients. The deleterious consequences are cirrhosis and hepatocellular carcinoma. HCV accounts the most frequent cause for hepatocellular carcinoma (HCC) and liver transplantation (LT) in the western world. The underlying molecular mechanisms how HCV promotes tumor development are largely unknown. There is some in vitro and in vivo evidence that HCV interferes with the tumor suppressor PML and may thereby importantly contribute to the HCV-associated pathogenesis with respect to the development of HCC. The tumor suppressor protein “promyelocytic leukemia” (PML) has been implicated in the regulation of important cellular processes like differentiation and apoptosis. In cancer biology, PML and its associated nuclear bodies (NBs) have initially attracted intense interest due to its role in the pathogenesis of acute promyelocytic leukemia (APL). More recently, loss of PML has been implicated in human cancers of various histologic origins. Moreover, number and intensity of PML-NBs increase in response to interferons (IFNs) and there is evidence that PML-NBs may represent preferential targets in viral infections. Thus, PML could not only play a role in the mechanisms of the antiviral action of IFNs but may also be involved in a direct oncogenic effect of the HCV on hepatocytes. This review aims to summarise current knowledge about HCV-related liver carcinogenesis and to discuss a potential role of the nuclear body protein PML for this this hard-to-treat cancer.
Collapse
|
19
|
Sorrentino G, Comel A, Mantovani F, Del Sal G. Regulation of mitochondrial apoptosis by Pin1 in cancer and neurodegeneration. Mitochondrion 2014; 19 Pt A:88-96. [PMID: 25132079 DOI: 10.1016/j.mito.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
Mitochondria are sensitive and efficient organelles that regulate essential biological processes including: energy metabolism, decoding and transduction of intracellular signals, and balance between cell death and survival. Of note, dysfunctions in mitochondrial physiology are a general hallmark of cancer cells, leading to transformation-related features such as altered cellular metabolism, survival under stress conditions and reduced apoptotic response to chemotherapy. Mitochondrial apoptosis is a finely regulated process that derives from activation of multiple signaling networks. A crucial biochemical requirement for transducing pro-apoptotic stimuli is represented by kinase-dependent phosphorylation cascades. In this context a pivotal role is played by the prolyl-isomerase Pin1, which translates Ser/Thr-Pro phosphorylation into conformational changes able to modify the activities of its substrates. In this review we will discuss the impact of Pin1 in regulating various aspects of apoptosis in different biological contexts with particular emphasis on cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanni Sorrentino
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Anna Comel
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB Area Science Park, Trieste Italy; Dipartimento di Scienze della Vita Università degli Studi di Trieste- Trieste Italy.
| |
Collapse
|
20
|
Günther T, Schreiner S, Dobner T, Tessmer U, Grundhoff A. Influence of ND10 components on epigenetic determinants of early KSHV latency establishment. PLoS Pathog 2014; 10:e1004274. [PMID: 25033267 PMCID: PMC4102598 DOI: 10.1371/journal.ppat.1004274] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/05/2014] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that acquisition of intricate patterns of activating (H3K4me3, H3K9/K14ac) and repressive (H3K27me3) histone modifications is a hallmark of KSHV latency establishment. The precise molecular mechanisms that shape the latent histone modification landscape, however, remain unknown. Promyelocytic leukemia nuclear bodies (PML-NB), also called nuclear domain 10 (ND10), have emerged as mediators of innate immune responses that can limit viral gene expression via chromatin based mechanisms. Consequently, although ND10 functions thus far have been almost exclusively investigated in models of productive herpesvirus infection, it has been proposed that they also may contribute to the establishment of viral latency. Here, we report the first systematic study of the role of ND10 during KSHV latency establishment, and link alterations in the subcellular distribution of ND10 components to a temporal analysis of histone modification acquisition and host cell gene expression during the early infection phase. Our study demonstrates that KSHV infection results in a transient interferon response that leads to induction of the ND10 components PML and Sp100, but that repression by ND10 bodies is unlikely to contribute to KSHV latency establishment. Instead, we uncover an unexpected role for soluble Sp100 protein, which is efficiently and permanently relocalized from nucleoplasmic and chromatin-associated fractions into the insoluble matrix. We show that LANA expression is sufficient to induce Sp100 relocalization, likely via mediating SUMOylation of Sp100. Furthermore, we demonstrate that depletion of soluble Sp100 occurs precisely when repressive H3K27me3 marks first accumulate on viral genomes, and that knock-down of Sp100 (but not PML or Daxx) facilitates H3K27me3 acquisition. Collectively, our data support a model in which non-ND10 resident Sp100 acts as a negative regulator of polycomb repressive complex-2 (PRC2) recruitment, and suggest that KSHV may actively escape ND10 silencing mechanisms to promote establishment of latent chromatin.
Collapse
Affiliation(s)
- Thomas Günther
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Research Unit Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Research Unit Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Uwe Tessmer
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
21
|
Luo F, Zhuang Y, Sides MD, Sanchez CG, Shan B, White ES, Lasky JA. Arsenic trioxide inhibits transforming growth factor-β1-induced fibroblast to myofibroblast differentiation in vitro and bleomycin induced lung fibrosis in vivo. Respir Res 2014; 15:51. [PMID: 24762191 PMCID: PMC4113202 DOI: 10.1186/1465-9921-15-51] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/10/2014] [Indexed: 01/02/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive disease of insidious onset, and is responsible for up to 30,000 deaths per year in the U.S. Excessive production of extracellular matrix by myofibroblasts has been shown to be an important pathological feature in IPF. TGF-β1 is expressed in fibrotic lung and promotes fibroblast to myofibroblast differentiation (FMD) as well as matrix deposition. Methods To identify the mechanism of Arsenic trioxide’s (ATO)’s anti-fibrotic effect in vitro, normal human lung fibroblasts (NHLFs) were treated with ATO for 24 hours and were then exposed to TGF-β1 (1 ng/ml) before harvesting at multiple time points. To investigate whether ATO is able to alleviate lung fibrosis in vivo, C57BL/6 mice were administered bleomycin by oropharyngeal aspiration and ATO was injected intraperitoneally daily for 14 days. Quantitative real-time PCR, western blotting, and immunofluorescent staining were used to assess the expression of fibrotic markers such as α-smooth muscle actin (α-SMA) and α-1 type I collagen. Results Treatment of NHLFs with ATO at very low concentrations (10-20nM) inhibits TGF-β1-induced α-smooth muscle actin (α-SMA) and α-1 type I collagen mRNA and protein expression. ATO also diminishes the TGF-β1-mediated contractile response in NHLFs. ATO’s down-regulation of profibrotic molecules is associated with inhibition of Akt, as well as Smad2/Smad3 phosphorylation. TGF-β1-induced H2O2 and NOX-4 mRNA expression are also blocked by ATO. ATO-mediated reduction in Smad3 phosphorylation correlated with a reduction of promyelocytic leukemia (PML) nuclear bodies and PML protein expression. PML-/- mouse embryonic fibroblasts (MEFs) showed decreased fibronectin and PAI-1 expression in response to TGF-β1. Daily intraperitoneal injection of ATO (1 mg/kg) in C57BL/6 mice inhibits bleomycin induced lung α-1 type I collagen mRNA and protein expression. Conclusions In summary, these data indicate that low concentrations of ATO inhibit TGF-β1-induced fibroblast to myofibroblast differentiation and decreases bleomycin induced pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph A Lasky
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University Health Science Center, New Orleans, LA 70112, USA.
| |
Collapse
|
22
|
Li J, Zou WX, Chang KS. Inhibition of Sp1 functions by its sequestration into PML nuclear bodies. PLoS One 2014; 9:e94450. [PMID: 24728382 PMCID: PMC3984170 DOI: 10.1371/journal.pone.0094450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/16/2014] [Indexed: 01/17/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are comprised of PML and a striking variety of its associated proteins. Various cellular functions have been attributed to PML NBs, including the regulation of gene expression. We report here that induced expression of PML recruits Sp1 into PML NBs, leading to the reduction of Sp1 transactivation function. Specifically, Chromatin immunoprecipitation (ChIP) assay demonstrated that induced expression of PML significantly diminishes the amount of Sp1 binding to its target gene promoter, immunofluorescence staining showed dramatic increase in the co-localization between PML and Sp1 upon induction of PML expression, moreover, PML and Sp1 co-fractionated in the core nuclear matrix. Our study further showed that PML promotes SUMOylation of Sp1 in a RING-motif-dependent manner, SUMOylation of Sp1 facilitates physical interaction between Sp1 and PML and recruitment of Sp1 into the PML NBs, the SUMO binding motif of PML was also important for its interaction with Sp1. The results of this study demonstrate a novel mechanism by which PML regulates gene expression through sequestration of the transcription factor into PML NBs.
Collapse
Affiliation(s)
- June Li
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JL); (KC)
| | - Wen-Xin Zou
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kun-Sang Chang
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JL); (KC)
| |
Collapse
|
23
|
Vennemann A, Hofmann TG. SUMO regulates proteasome-dependent degradation of FLASH/Casp8AP2. Cell Cycle 2013; 12:1914-21. [PMID: 23673342 DOI: 10.4161/cc.24943] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
FLASH/Casp8AP2 is a huge multifunctional protein involved in multiple cellular processes, reaching from death receptor signaling to regulation of histone gene transcription and histone mRNA processing. Previous work has shown that FLASH localizes to Cajal bodies and promyelocytic leukemia (PML) bodies. However, the function of its nuclear body association remains unclear. Here we demonstrate that murine FLASH is covalently modified by SUMO at Lys residue 1792. Interestingly, ectopic expression of SUMO results in proteasome-dependent degradation of FLASH. A point mutant of FLASH with a mutated SUMO acceptor lysine residue, FLASH(K1792R), is resistant to SUMO-induced degradation. Finally, we show that arsenic trioxide, a drug known to potentiate SUMO modification and degradation of PML, triggers recruitment of FLASH to PML bodies and concomitant loss of FLASH protein. Our data suggest that SUMO targets FLASH for proteasome-dependent degradation, which is associated with recruitment of FLASH to PML bodies.
Collapse
Affiliation(s)
- Astrid Vennemann
- German Cancer Research Center (DKFZ), Research Group Cellular Senescence, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | |
Collapse
|
24
|
Pan WW, Zhou JJ, Liu XM, Xu Y, Guo LJ, Yu C, Shi QH, Fan HY. Death domain-associated protein DAXX promotes ovarian cancer development and chemoresistance. J Biol Chem 2013; 288:13620-30. [PMID: 23539629 DOI: 10.1074/jbc.m112.446369] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The role of DAXX in ovarian cancer development and metastasis has not been investigated before now. RESULTS Overexpression of DAXX enhanced ovarian cancer cell proliferation, colony formation, and migration, whereas Daxx depletion had the opposite effects. CONCLUSION DAXX promotes ovarian cancer cell proliferation and chemoresistance. SIGNIFICANCE ModulatingDAXXmay be an effective strategy for preventing the recurrence and chemoresistance of ovarian cancers. Understanding the genes involved in apoptosis and DNA damage responses may improve therapeutic strategies for ovarian cancer. The death domain-associated protein DAXX can be either a pro-apoptotic or an anti-apoptotic factor, depending on the cell type and context. In this study, we found that DAXX was highly expressed in human ovarian surface epithelial tumors but not in granulosa cell tumors. In cultured ovarian cancer cells, DAXX interacted with promyelocytic leukemia protein (PML) and localized to subnuclear domains (so-called PML nuclear bodies). A role for DAXX in ovarian cancer cell proliferation, metastasis, and radio/chemoresistance was examined. Overexpression of DAXX enhanced multiple ovarian cancer cell lines' proliferation, colony formation, and migration, whereas Daxx depletion by RNA interference had the opposite effects. When transplanted into nude mice, ovarian cancer cells that overexpressed DAXX displayed enhanced tumorigenesis capability in vivo, whereas Daxx depletion inhibited tumor development. Importantly, Daxx induced tumorigenic transformation of normal ovarian surface epithelial cells. Daxx also protected ovarian cancer cells against x-irradiation- and chemotherapy-induced DNA damage by interacting with PML. Taken together, our results suggest that DAXX is a novel ovarian cancer oncogene that promotes ovarian cancer cell proliferation and chemoresistance in ovarian cancer cells. Thus, modulating DAXX-PML nuclear body activity may be an effective strategy for preventing the recurrence and chemoresistance of ovarian cancers.
Collapse
Affiliation(s)
- Wei-Wei Pan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bartesaghi S, Salomoni P. Tumor suppressive pathways in the control of neurogenesis. Cell Mol Life Sci 2013; 70:581-97. [PMID: 22802124 PMCID: PMC11113109 DOI: 10.1007/s00018-012-1063-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 12/16/2022]
Abstract
The generation of specialized neural cells in the developing and postnatal central nervous system is a highly regulated process, whereby neural stem cells divide to generate committed neuronal progenitors, which then withdraw from the cell cycle and start to differentiate. Cell cycle checkpoints play a major role in regulating the balance between neural stem cell expansion and differentiation. Loss of tumor suppressors involved in checkpoint control can lead to dramatic alterations of neurogenesis, thus contributing to neoplastic transformation. Here we summarize and critically discuss the existing literature on the role of tumor suppressive pathways and their regulatory networks in the control of neurogenesis and transformation.
Collapse
Affiliation(s)
- Stefano Bartesaghi
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD UK
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6DD UK
| |
Collapse
|
26
|
Song H, Boo JH, Kim KH, Kim C, Kim YE, Ahn JH, Jeon GS, Ryu H, Kang DE, Mook-Jung I. Critical role of presenilin-dependent γ-secretase activity in DNA damage-induced promyelocytic leukemia protein expression and apoptosis. Cell Death Differ 2013; 20:639-48. [PMID: 23306558 DOI: 10.1038/cdd.2012.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Promyelocytic leukemia (PML) is a major component of macromolecular multiprotein complexes called PML nuclear-bodies (PML-NBs). These PML-NBs recruit numerous proteins including CBP, p53 and HIPK2 in response to DNA damage, senescence and apoptosis. In this study, we investigated the effect of presenilin (PS), the main component of the γ-secretase complex, in PML/p53 expression and downstream consequences during DNA damage-induced cell death using camptothecin (CPT). We found that the loss of PS in PS knockout (KO) MEFs (mouse embryonic fibroblasts) results in severely blunted PML expression and attenuated cell death upon CPT exposure, a phenotype that is fully reversed by re-expression of PS1 in PS KO cells and recapitulated by γ-secretase inhibitors in hPS1 MEFs. Interestingly, the γ-secretase cleavage product, APP intracellular domain (AICD), together with Fe65-induced PML expression at the protein and transcriptional levels in PS KO cells. PML and p53 reciprocally positively regulated each other during CPT-induced DNA damage, both of which were dependent on PS. Finally, elevated levels of PML-NB, PML protein and PML mRNA were detected in the brain tissues from Alzheimer's disease (AD) patients, where γ-secretase activity is essential for pathogenesis. Our data provide for the first time, a critical role of the PS/AICD-PML/p53 pathway in DNA damage-induced apoptosis, and implicate this pathway in AD pathogenesis.
Collapse
Affiliation(s)
- H Song
- Department of Biochemistry and Biomedical Sciences, WCU neurocytomics, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miki T, Matsumoto T, Zhao Z, Lee CC. p53 regulates Period2 expression and the circadian clock. Nat Commun 2013; 4:2444. [PMID: 24051492 PMCID: PMC3798035 DOI: 10.1038/ncomms3444] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/15/2013] [Indexed: 02/06/2023] Open
Abstract
The mechanistic interconnectivity between circadian regulation and the genotoxic stress response remains poorly understood. Here we show that the expression of Period 2 (Per2), a circadian regulator, is directly regulated by p53 binding to a response element in the Per2 promoter. This p53 response element is evolutionarily conserved and overlaps with the E-Box element critical for BMAL1/CLOCK binding and its transcriptional activation of Per2 expression. Our studies reveal that p53 blocks BMAL1/CLOCK binding to the Per2 promoter, leading to repression of Per2 expression. In the suprachiasmatic nucleus (SCN), p53 expression and its binding to the Per2 promoter are under circadian control. Per2 expression in the SCN is altered by p53 deficiency or stabilization of p53 by Nutlin-3. Behaviourally, p53⁻/⁻ mice have a shorter period length that lacks stability, and they exhibit impaired photo-entrainment to a light pulse under a free-running state. Our studies demonstrate that p53 modulates mouse circadian behaviour.
Collapse
Affiliation(s)
- Takao Miki
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, Texas 77030
| | - Tomoko Matsumoto
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, Texas 77030
| | - Zhaoyang Zhao
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, Texas 77030
| | - Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, Medical School, University of Texas Health Science Center-Houston, Houston, Texas 77030
| |
Collapse
|
28
|
Berscheminski J, Groitl P, Dobner T, Wimmer P, Schreiner S. The adenoviral oncogene E1A-13S interacts with a specific isoform of the tumor suppressor PML to enhance viral transcription. J Virol 2013; 87:965-77. [PMID: 23135708 PMCID: PMC3554061 DOI: 10.1128/jvi.02023-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/20/2012] [Indexed: 12/21/2022] Open
Abstract
PML nuclear bodies (PML NBs), also called ND10, are matrix-bound nuclear structures that have been implicated in a variety of functions, including DNA repair, transcriptional regulation, protein degradation, and tumor suppression. These domains are also known for their potential to mediate an intracellular defense mechanism against many virus types. This is likely why they are targeted and subsequently manipulated by numerous viral proteins. Paradoxically, the genomes of various DNA viruses become associated with PML NBs, and initial sites of viral transcription/replication centers are often juxtaposed to these domains. The question is why viruses start their transcription and replication next to their supposed antagonists. Here, we report that PML NBs are targeted by the adenoviral (Ad) transactivator protein E1A-13S. Alternatively spliced E1A isoforms (E1A-12S and E1A-13S) are the first proteins expressed upon Ad infection. E1A-13S is essential for activating viral transcription in the early phase of infection. Coimmunoprecipitation assays showed that E1A-13S preferentially interacts with only one (PML-II) of at least six nuclear human PML isoforms. Deletion mapping located the interaction site within E1A conserved region 3 (CR3), which was previously described as the transcription factor binding region of E1A-13S. Indeed, cooperation with PML-II enhanced E1A-mediated transcriptional activation, while deleting the SUMO-interacting motif (SIM) of PML proved even more effective. Our results suggest that in contrast to PML NB-associated antiviral defense, PML-II may help transactivate viral gene expression and therefore play a novel role in activating Ad transcription during the early viral life cycle.
Collapse
Affiliation(s)
- Julia Berscheminski
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Hofmann TG, Glas C, Bitomsky N. HIPK2: A tumour suppressor that controls DNA damage-induced cell fate and cytokinesis. Bioessays 2012; 35:55-64. [PMID: 23169233 DOI: 10.1002/bies.201200060] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In response to DNA-damage, cells have to decide between different cell fate programmes. Activation of the tumour suppressor HIPK2 specifies the DNA damage response (DDR) and tips the cell fate balance towards an apoptotic response. HIPK2 is activated by the checkpoint kinase ATM, and triggers apoptosis through regulatory phosphorylation of a set of cellular key molecules including the tumour suppressor p53 and the anti-apoptotic corepressor CtBP. Recent work has identified HIPK2 as a regulator of the ultimate step in cytokinesis: the abscission of the mother and daughter cells. Since proper cytokinesis is essential for genome stability and maintenance of correct ploidy, this finding sheds new light on the tumour suppressor function of HIPK2. Here we highlight the molecular mechanisms coordinating HIPK2 function and discuss its emerging role as a tumour suppressor.
Collapse
Affiliation(s)
- Thomas G Hofmann
- German Cancer Research Center (dkfz), DKFZ-ZMBH Alliance, Cellular Senescence Group, Heidelberg, Germany.
| | | | | |
Collapse
|
30
|
Herzer K, Carbow A, Sydor S, Sowa JP, Biesterfeld S, Hofmann TG, Galle PR, Gerken G, Canbay A. Deficiency of the promyelocytic leukemia protein fosters hepatitis C-associated hepatocarcinogenesis in mice. PLoS One 2012; 7:e44474. [PMID: 22984515 PMCID: PMC3439406 DOI: 10.1371/journal.pone.0044474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 08/08/2012] [Indexed: 12/20/2022] Open
Abstract
Overwhelming lines of epidemiological evidence have indicated that persistent infection with hepatitis C virus (HCV) is a major risk for the development of hepatocellular carcinoma (HCC). We have recently shown that HCV core protein mediates functional inactivation of the promyelocytic leukemia (PML) tumor suppressor pathway. However, the role of PML in HCC development yet remains unclear. To clarify the function of PML in liver carcinogenesis and HCV-associated pathogenesis we crossed PML-deficient mice with HCV transgene (HCV-Tg) expressing mice and treated the resulting animals with DEN/Phenobarbital, an established protocol for liver carcinogenesis. Seven months after treatment, livers were examined macroscopically and histologically. Genetic depletion of the tumor suppressor PML coincided with an increase in hepatocyte proliferation, resulting in development of multiple dysplastic nodules in 100% of the PML-deficient livers and of HCCs in 53%, establishing a tumor suppressive function of PML in the liver. In animals expressing the HCV-transgene in PML-deficient background, HCC development occurred even in 73%, while only 7% of their wildtype littermates developed HCC. The neoplastic nature of the tumors was confirmed by histology and expression of the HCC marker glutamine synthetase. Several pro- and antiapoptotic factors were tested for differential expression and liver carcinogenesis was associated with impaired expression of the proapoptotic molecule TRAIL in PML-deficient mice. In conclusion, this study provides first in vivo evidence that the tumor suppressor PML acts as an important barrier in liver carcinogenesis and HCV-dependent liver pathology.
Collapse
Affiliation(s)
- Kerstin Herzer
- Department of Gastroenterology and Hepatology, University Hospital, Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The promyelocytic leukaemia gene PML was originally identified at the t(15;17) translocation of acute promyelocytic leukaemia, which generates the oncogene PML-retinoic acid receptor α. PML epitomises a subnuclear structure called PML nuclear body. Current models propose that PML through its scaffold properties is able to control cell growth and survival at many different levels. Here we discuss the current literature and propose new avenues for investigation.
Collapse
|
32
|
Batty EC, Jensen K, Freemont PS. PML nuclear bodies and other TRIM-defined subcellular compartments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:39-58. [PMID: 23630999 DOI: 10.1007/978-1-4614-5398-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Tripartite motif (TRIM) proteins are defined by their possession of a RING, B-box and predicted coiled coil (RBCC) domain. The coiled-coil region facilitates the oligomerisation of TRIMs and contributes to the formation of high molecular weight complexes that show interesting subcellular compartmentalisations and structures. TRIM protein compartments include both nuclear and cytoplasmic filaments and aggregates (bodies), as well as diffuse subcellular distributions. TRIM 19, otherwise known as promyelocytic leukaemia (PML) protein forms nuclear aggregates termed PML nuclear bodies (PML NBs), at which a number of functionally diverse proteins transiently or covalently associate. PML NBs are therefore implicated in a wide variety of cellular functions such as transcriptional regulation, viral response, apoptosis and nuclear protein storage.
Collapse
Affiliation(s)
- Elizabeth C Batty
- Macromolecular Structure and Function Group, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | | | | |
Collapse
|
33
|
Cho S, Park JS, Kang YK. Dual functions of histone-lysine N-methyltransferase Setdb1 protein at promyelocytic leukemia-nuclear body (PML-NB): maintaining PML-NB structure and regulating the expression of its associated genes. J Biol Chem 2011; 286:41115-24. [PMID: 21921037 PMCID: PMC3220519 DOI: 10.1074/jbc.m111.248534] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/14/2011] [Indexed: 11/06/2022] Open
Abstract
Setdb1/Eset is a histone H3 lysine 9 (H3K9)-specific methyltransferase that associates with various transcription factors to regulate gene expression via chromatin remodeling. Here, we report that Setdb1 associates with promyelocytic leukemia (Pml) protein from the early stage of mouse development and is a constitutive member of promyelocytic leukemia (PML)-nuclear bodies (PML-NBs) that have been linked to many cellular processes such as apoptosis, DNA damage responses, and transcriptional regulation. Arsenic treatment, which induces Pml degradation, caused Setdb1 signals to disappear. Setdb1 knockdown resulted in dismantlement of PML-NBs. Immunoprecipitation results demonstrated physical interactions between Setdb1 and Pml. Chromatin immunoprecipitation revealed that, within the frame of PML-NBs, Setdb1 binds the promoter of Id2 and suppresses its expression through installing H3K9 methylation. Our findings suggest that Setdb1 performs dual, but inseparable, functions at PML-NBs to maintain the structural integrity of PML-NBs and to control PML-NB-associated genes transcriptionally.
Collapse
Affiliation(s)
- Sunwha Cho
- From the Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology and
- the Department of Functional Genomics, University of Science and Technology, 113 Gwahangno, Yuseong-gu, 305-806 Daejeon, South Korea
| | - Jung Sun Park
- From the Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology and
| | - Yong-Kook Kang
- From the Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology and
- the Department of Functional Genomics, University of Science and Technology, 113 Gwahangno, Yuseong-gu, 305-806 Daejeon, South Korea
| |
Collapse
|
34
|
Muschik D, Braspenning-Wesch I, Stockfleth E, Rösl F, Hofmann TG, Nindl I. Cutaneous HPV23 E6 prevents p53 phosphorylation through interaction with HIPK2. PLoS One 2011; 6:e27655. [PMID: 22110707 PMCID: PMC3218003 DOI: 10.1371/journal.pone.0027655] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 10/21/2011] [Indexed: 01/01/2023] Open
Abstract
Ultraviolet irradiation (UV) is the major risk factor for the development of skin cancer. Moreover, increasing evidence suggests cutaneotropic human papillomaviruses (HPV) from the beta genus to play a causal role as a co-factor in the development of cutaneous squamous cell carcinoma. Homeodomain-interacting protein kinase 2 (HIPK2) operates as a potential suppressor in skin tumorigenesis and is stabilized by UV-damage. HIPK2 is an important regulator of apoptosis, which forms a complex with the tumor suppressor p53, mediating p53 phosphorylation at Ser 46 and thus promoting pro-apoptotic gene expression. In our study, we demonstrate that cutaneous HPV23 E6 protein directly targets HIPK2 function. Accordingly, HPV23 E6 interacts with HIPK2 both in vitro and in vivo. Furthermore, upon massive UVB-damage HPV23 E6 co-localizes with endogenous HIPK2 at nuclear bodies. Functionally, we demonstrate that HPV23 E6 inhibits HIPK2-mediated p53 Ser 46 phosphorylation through enforcing dissociation of the HIPK2/p53 complex. In addition, HPV23 E6 co-accumulates with endogenous HIPK2 upon UV damage suggesting a mechanism by which HPV23 E6 keeps HIPK2 in check after UV damage. Thus, cutaneous HPV23 E6 prevents HIPK2-mediated p53 Ser 46 phosphorylation, which may favour survival of UV-damaged keratinocytes and skin carcinogenesis by apoptosis evasion.
Collapse
Affiliation(s)
- Dorothea Muschik
- Viral Skin Carcinogenesis Group, Division Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), DKFZ–Charité, Heidelberg, Germany
| | - Ilona Braspenning-Wesch
- Viral Skin Carcinogenesis Group, Division Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), DKFZ–Charité, Heidelberg, Germany
| | - Eggert Stockfleth
- Department of Dermatology, Venereology and Allergy, Skin Cancer Center Charité, Charité, University Hospital of Berlin, Berlin, Germany
| | - Frank Rösl
- Viral Skin Carcinogenesis Group, Division Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), DKFZ–Charité, Heidelberg, Germany
| | - Thomas G. Hofmann
- Cellular Senescence Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ingo Nindl
- Viral Skin Carcinogenesis Group, Division Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), DKFZ–Charité, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergy, Skin Cancer Center Charité, Charité, University Hospital of Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
35
|
Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 2011; 85:8752-65. [PMID: 21697482 DOI: 10.1128/jvi.00440-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription.
Collapse
|
36
|
Wethkamp N, Hanenberg H, Funke S, Suschek CV, Wetzel W, Heikaus S, Grinstein E, Ramp U, Engers R, Gabbert HE, Mahotka C. Daxx-beta and Daxx-gamma, two novel splice variants of the transcriptional co-repressor Daxx. J Biol Chem 2011; 286:19576-19588. [PMID: 21482821 PMCID: PMC3103337 DOI: 10.1074/jbc.m110.196311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/26/2011] [Indexed: 12/15/2022] Open
Abstract
Daxx is involved in transcriptional control and apoptosis. It comprises several domains, including a regulatory C terminus that is responsible for the interaction with numerous proteins such as p53, promyelocytic leukemia protein (PML), and Hsp27. Here, we describe the identification and characterization of two novel variants of Daxx termed Daxx-β and Daxx-γ, which are generated by alternative splicing. Alternative splicing results in a truncated regulatory C terminus in both proteins. As a consequence, Daxx-β and Daxx-γ show a markedly decreased affinity to PML, which in turn is associated with a different subnuclear localization of these proteins compared with Daxx. Although Daxx is localized mainly in PML-oncogenic domains (PODs) Daxx-β and Daxx-γ display a distinct distribution pattern. Furthermore, Daxx-β and Daxx-γ show a decreased affinity to p53 also due to the truncated C terminus. We provide evidence that the p53 recruitment into PODs is Daxx isoform-dependent. The decreased affinity of Daxx-β/-γ to p53 and PML results in a diffuse localization of p53 throughout the nucleus. In contrast to Daxx, Daxx-β and Daxx-γ are unable to repress p53-mediated transcription. Therefore, alternative splicing of Daxx might indicate an additional level in the cellular apoptosis network.
Collapse
Affiliation(s)
- Nils Wethkamp
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- the Department of Pediatrics, the Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana 46202
- the Department of Otorhinolaryngology, Heinrich Heine University School of Medicine, D-40225 Düsseldorf, Germany, and
| | - Sarah Funke
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | | | - Wiebke Wetzel
- the Institute of Molecular Biology and Biochemistry II and
| | - Sebastian Heikaus
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | - Edgar Grinstein
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University Medical Faculty, D-40225 Düsseldorf, Germany
| | - Uwe Ramp
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | - Rainer Engers
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | - Helmut E. Gabbert
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| | - Csaba Mahotka
- From the Institute of Pathology, Heinrich Heine University, University Hospital, Medical Faculty, D-40225 Düsseldorf, Germany
| |
Collapse
|
37
|
[Research progress and application of the homeodomain-interacting protein kinase-2]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:373-7. [PMID: 21496439 PMCID: PMC5999714 DOI: 10.3779/j.issn.1009-3419.2011.04.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
de Carvalho JTG, Dalboni MA, Watanabe R, Peres AT, Goes MA, Manfredi SR, Canziani ME, Cendoroglo GS, Guimarães-Souza N, Batista MC, Cendoroglo M. Effects of spermidine and p-cresol on polymorphonuclear cell apoptosis and function. Artif Organs 2011; 35:E27-32. [PMID: 21314835 DOI: 10.1111/j.1525-1594.2010.01116.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Polymorphonuclear leukocytes (PMNs) from chronic kidney disease (CKD) patients display accelerated apoptosis and dysfunction, which may predispose CKD patients to infections. In this study, we investigated the effect of spermidine and p-cresol on apoptosis and function on PMN from healthy subjects. We measured the effect of spermidine and p-cresol on apoptosis, ROS production unstimulated and stimulated (S. aureus and PMA) and expression of CD95, caspase 3, and CD11b on PMN. After incubation with p-cresol and spermidine, we did not observe any changes in apoptosis, viability or expression of caspase 3 and CD95 in PMN from healthy subjects. PMN incubated for 10 minutes with spermidine demonstrated a significant reduction in spontaneous, S. aureus and PMA-stimulated ROS production. p-cresol induced a decrease in PMA-stimulated ROS production. Spermidine and p-cresol also induced a decrease in the expression of CD11b on PMN. Spermidine and p-cresol decreased the expression of CD11b and oxidative burst of PMN from healthy subjects and had no effect on PMN apoptosis and viability.
Collapse
Affiliation(s)
- Jose Tarcisio G de Carvalho
- Department of Internal Medicine, Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Crone J, Glas C, Schultheiss K, Moehlenbrink J, Krieghoff-Henning E, Hofmann TG. Zyxin is a critical regulator of the apoptotic HIPK2-p53 signaling axis. Cancer Res 2011; 71:2350-9. [PMID: 21248071 DOI: 10.1158/0008-5472.can-10-3486] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HIPK2 activates the apoptotic arm of the DNA damage response by phosphorylating tumor suppressor p53 at serine 46. Unstressed cells keep HIPK2 levels low through targeted polyubiquitination and subsequent proteasomal degradation. Here we identify the LIM domain protein Zyxin as a novel regulator of the HIPK2-p53 signaling axis in response to DNA damage. Remarkably, depletion of endogenous Zyxin, which colocalizes with HIPK2 at the cytoskeleton and in the cell nucleus, stimulates proteasome-dependent HIPK2 degradation. In contrast, ectopic expression of Zyxin stabilizes HIPK2, even upon enforced expression of its ubiquitin ligase Siah-1. Consistently, Zyxin physically interacts with Siah-1, and knock-down of Siah-1 rescues HIPK2 expression in Zyxin-depleted cancer cells. Mechanistically, our data suggest that Zyxin regulates Siah-1 activity through interference with Siah-1 dimerization. Furthermore, we show that endogenous Zyxin coaccumulates with HIPK2 in response to DNA damage in cancer cells, and that depletion of endogenous Zyxin results in reduced HIPK2 protein levels and compromises DNA damage-induced p53 Ser46 phosphorylation and caspase activation. These findings suggest an unforeseen role for Zyxin in DNA damage-induced cell fate control through modulating the HIPK2-p53 signaling axis.
Collapse
Affiliation(s)
- Johanna Crone
- Cellular Senescence Group, Cell & Tumor Biology Program, Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Yip KW, Cuddy M, Pinilla C, Giulanotti M, Heynen-Genel S, Matsuzawa SI, Reed JC. A high-content screening (HCS) assay for the identification of chemical inducers of PML oncogenic domains (PODs). ACTA ACUST UNITED AC 2011; 16:251-8. [PMID: 21233309 DOI: 10.1177/1087057110394181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PML is a multi-functional protein with roles in tumor suppression and host defense against viruses. When active, PML localizes to subnuclear structures named PML oncogenic domains (PODs) or PML nuclear bodies (PML-NBs), whereas inactive PML is located diffusely throughout the nucleus of cells. The objective of the current study was to develop a high content screening (HCS) assay for the identification of chemical activators of PML. We describe methods for automated analysis of POD formation using high throughput microscopy (HTM) to localize PML immunofluorescence in conjunction with image analysis software for POD quantification. Using this HCS assay in 384 well format, we performed pilot screens of a small synthetic chemical library and mixture-based combinatorial libraries, demonstrating the robust performance of the assay. HCS counter-screening assays were also developed for hit characterization, based on immunofluorescence analyses of the subcellular location of phosphorylated H2AX or phosphorylated CHK1, which increase in a punctate nuclear pattern in response to DNA damage. Thus, the HCS assay devised here represents a high throughput screen that can be utilized to discover POD-inducing compounds that may restore the tumor suppressor activity of PML in cancers or possibly promote anti-viral states.
Collapse
Affiliation(s)
- Kenneth W Yip
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Guo Y, Dolinko AV, Chinyengetere F, Stanton B, Bomberger JM, Demidenko E, Zhou DC, Gallagher R, Ma T, Galimberti F, Liu X, Sekula D, Freemantle S, Dmitrovsky E. Blockade of the ubiquitin protease UBP43 destabilizes transcription factor PML/RARα and inhibits the growth of acute promyelocytic leukemia. Cancer Res 2010; 70:9875-85. [PMID: 20935222 PMCID: PMC2999664 DOI: 10.1158/0008-5472.can-10-1100] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
More effective treatments for acute promyelocytic leukemia (APL) are needed. APL cell treatment with all-trans-retinoic acid (RA) degrades the chimeric, dominant-negative-acting transcription factor promyelocytic leukemia gene (PML)/RARα, which is generated in APL by chromosomal translocation. The E1-like ubiquitin-activating enzyme (UBE1L) associates with interferon-stimulated gene ISG15 that binds and represses PML/RARα protein. Ubiquitin protease UBP43/USP18 removes ISG15 from conjugated proteins. In this study, we explored how RA regulates UBP43 expression and the effects of UBP43 on PML/RARα stability and APL growth, apoptosis, or differentiation. RA treatment induced UBE1L, ISG15, and UBP43 expression in RA-sensitive but not RA-resistant APL cells. Similar in vivo findings were obtained in a transgenic mouse model of transplantable APL, and in the RA response of leukemic cells harvested directly from APL patients. UBP43 knockdown repressed PML/RARα protein levels and inhibited RA-sensitive or RA-resistant cell growth by destabilizing the PML domain of PML/RARα. This inhibitory effect promoted apoptosis but did not affect the RA differentiation response in these APL cells. In contrast, elevation of UBP43 expression stabilized PML/RARα protein and inhibited apoptosis. Taken together, our findings define the ubiquitin protease UBP43 as a novel candidate drug target for APL treatment.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- COS Cells
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chlorocebus aethiops
- Endopeptidases/genetics
- Endopeptidases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunoblotting
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Tretinoin/pharmacology
- Tumor Burden/drug effects
- Ubiquitin Thiolesterase
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yongli Guo
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | | | - Fadzai Chinyengetere
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Bruce Stanton
- Department of Physiology, Dartmouth Medical School, Hanover, NH 03755
| | | | - Eugene Demidenko
- Department of Community and Family Medicine, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Da-Cheng Zhou
- Department of Medicine and Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, NY 10467
| | - Robert Gallagher
- Department of Medicine and Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, NY 10467
| | - Tian Ma
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Fabrizio Galimberti
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Xi Liu
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - David Sekula
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Sarah Freemantle
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Ethan Dmitrovsky
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Department of Medicine, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, and Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| |
Collapse
|
42
|
Wimmer P, Schreiner S, Everett RD, Sirma H, Groitl P, Dobner T. SUMO modification of E1B-55K oncoprotein regulates isoform-specific binding to the tumour suppressor protein PML. Oncogene 2010; 29:5511-22. [PMID: 20639899 DOI: 10.1038/onc.2010.284] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/23/2010] [Accepted: 06/09/2010] [Indexed: 01/20/2023]
Abstract
The E1B-55K product from human adenovirus is a substrate of the small ubiquitin-related modifier (SUMO)-conjugation system. SUMOylation of E1B-55K is required to transform primary mammalian cells in cooperation with adenovirus E1A and to repress p53 tumour suppressor functions. The biochemical consequences of SUMO1 conjugation of 55K have so far remained elusive. Here, we report that E1B-55K physically interacts with different isoforms of the tumour suppressor protein promyelocytic leukaemia (PML). We show that E1B-55K binds to PML isoforms IV and V in a SUMO1-dependent and -independent manner. Interaction with PML-IV promotes the localization of 55K to PML-containing subnuclear structures (PML-NBs). In virus-infected cells, this process is negatively regulated by other viral proteins, indicating that binding to PML is controlled through reversible SUMOylation in a timely coordinated manner. These results together with earlier work are consistent with the idea that SUMOylation regulates targeting of E1B-55K to PML-NBs, known to control transcriptional regulation, tumour suppression, DNA repair and apoptosis. Furthermore, they suggest that SUMO1-dependent modulation of p53-dependent growth suppression through E1B-55K PML-IV interaction has a key role in adenovirus-mediated cell transformation.
Collapse
Affiliation(s)
- P Wimmer
- Department of Molecular Virology, Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Bodén M, Dellaire G, Burrage K, Bailey TL. A Bayesian network model of proteins' association with promyelocytic leukemia (PML) nuclear bodies. J Comput Biol 2010; 17:617-30. [PMID: 20426694 DOI: 10.1089/cmb.2009.0140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The modularity that nuclear organization brings has the potential to explain the function of aggregates of proteins and RNA. Promyelocytic leukemia nuclear bodies are implicated in important regulatory processes. To understand the complement of proteins associated with these intra-nuclear bodies, we construct a Bayesian network model that integrates sequence and protein-protein interaction data. The model predicts association with promyelocytic leukemia nuclear bodies accurately when interaction data is available. At a false positive rate of 10%, the true positive rate is almost 50%, indicated by an independent nuclear proteome reference set. The model provides strong support for further expanding the protein complement with several important regulators and a richer functional repertoire. Using special support vector machine (SVM)-nodes (equipped with string kernels), the Bayesian network is also able to produce predictions on the basis of sequence only, with an accuracy superior to that of baseline models. Supplementary Material is available online at www.liebertonline.com.
Collapse
Affiliation(s)
- Mikael Bodén
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia.
| | | | | | | |
Collapse
|
44
|
García CC, Topisirovic I, Djavani M, Borden KLB, Damonte EB, Salvato MS. An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein. Biochem Biophys Res Commun 2010; 393:625-30. [PMID: 20152808 PMCID: PMC2852548 DOI: 10.1016/j.bbrc.2010.02.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/06/2010] [Indexed: 10/19/2022]
Abstract
The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.
Collapse
Affiliation(s)
- C C García
- Laboratory of Virology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Caspase-2 is the most evolutionarily conserved of all the caspases, yet it has a poorly defined role in apoptotic pathways. This is mainly due to a dearth of techniques to determine the activation status of caspase-2 and the lack of an abnormal phenotype in caspase-2 deficient mice. Nevertheless, emerging evidence suggests that caspase-2 may have important functions in a number of stress-induced cell death pathways, in cell cycle maintenance and regulation of tumour progression. This review discusses recent advances that have been made to help elucidate the true role of this elusive caspase and the potential contribution of caspase-2 to the pathology of human diseases including cancer.
Collapse
Affiliation(s)
- Lisa Bouchier-Hayes
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
46
|
Sinha S, Malonia SK, Mittal SPK, Singh K, Kadreppa S, Kamat R, Mukhopadhyaya R, Pal JK, Chattopadhyay S. Coordinated regulation of p53 apoptotic targets BAX and PUMA by SMAR1 through an identical MAR element. EMBO J 2010; 29:830-42. [PMID: 20075864 DOI: 10.1038/emboj.2009.395] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 12/10/2009] [Indexed: 12/13/2022] Open
Abstract
How tumour suppressor p53 bifurcates cell cycle arrest and apoptosis and executes these distinct pathways is not clearly understood. We show that BAX and PUMA promoters harbour an identical MAR element and are transcriptional targets of SMAR1. On mild DNA damage, SMAR1 selectively represses BAX and PUMA through binding to the MAR independently of inducing p53 deacetylation through HDAC1. This generates an anti-apoptotic response leading to cell cycle arrest. Importantly, knockdown of SMAR1 induces apoptosis, which is abrogated in the absence of p53. Conversely, apoptotic DNA damage results in increased size and number of promyelocytic leukaemia (PML) nuclear bodies with consequent sequestration of SMAR1. This facilitates p53 acetylation and restricts SMAR1 binding to BAX and PUMA MAR leading to apoptosis. Thus, our study establishes MAR as a damage responsive cis element and SMAR1-PML crosstalk as a switch that modulates the decision between cell cycle arrest and apoptosis in response to DNA damage.
Collapse
Affiliation(s)
- Surajit Sinha
- National Centre for Cell Science (NCCS), Pune University Campus, Ganeshkhind, Pune, India
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Araki S, Nakayama Y, Hori A, Yoshimura K. Biomarkers for predicting the sensitivity of cancer cells to TRAIL-R1 agonistic monoclonal antibody. Cancer Lett 2010; 292:269-79. [PMID: 20056315 DOI: 10.1016/j.canlet.2009.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/28/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and an agonistic monoclonal antibody to TRAIL-R1 (TRAIL-R1 mAb) induce apoptosis and show anti-proliferative activity in vitro and in vivo. However, some TRAIL-R1-expressing cell lines are not sensitive to either TRAIL-R1 mAb or TRAIL. We have identified four genes (STK17B, SP140L, CASP8, and AIM1) whose expression levels differ significantly between TRAIL-R1 mAb-sensitive and resistant cell lines. Using the expression levels of these genes, we predicted TRAIL-R1 mAb and TRAIL sensitivity in our test cell lines with 75% (9/12) and 84% (21/25) accuracy, respectively. Knockdown of STK17B in TRAIL-R1 mAb-sensitive cells augmented Bcl-2 expression and suppressed TRAIL-R1 mAb-induced apoptosis. Our results may be useful for predicting the response of cancers to TRAIL-agonistic drugs in the clinic.
Collapse
Affiliation(s)
- Shinsuke Araki
- Pharmaceutical Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 10 Wadai, Tsukuba, Ibaraki 300-4293, Japan
| | | | | | | |
Collapse
|
48
|
Chung YL, Tsai TY. Promyelocytic leukemia nuclear bodies link the DNA damage repair pathway with hepatitis B virus replication: implications for hepatitis B virus exacerbation during chemotherapy and radiotherapy. Mol Cancer Res 2009; 7:1672-85. [PMID: 19808906 DOI: 10.1158/1541-7786.mcr-09-0112] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanism responsible for hepatitis B virus (HBV) exacerbation during chemotherapy and radiotherapy remains unknown. We investigated whether the activation of DNA repair pathways influences HBV replication. The upregulation of the promyelocytic leukemia (PML) protein and its associated PML nuclear body (PML-NB) by chemotherapy and irradiation-induced DNA repair signaling correlated with the upregulation of HBV pregenomic transcription, HBV-core expression, and HBV DNA replication. The HBV-core protein and HBV DNA localized to PML-NBs, where they associated with PML and histone deacetylase 1 (HDAC1). Chemotherapy and radiotherapy affected the interactions between PML, HBV-core, and HDAC1. The enhanced protein-protein interaction between PML and HBV-core inhibited PML-mediated apoptosis and decreased PML-associated HDAC activity. The reversal of HDAC-mediated repression on the HBV covalently closed circular DNA basal core promoter resulted in the amplification of HBV-core and pregenomic expression. These results suggest that PML in PML-NBs links the DNA damage response with HBV replication and may cooperate with HBV-core and HDAC1 on the HBV covalently closed circular DNA basal core promoter to form a positive feedback loop for HBV exacerbation during chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yih-Lin Chung
- Department of Radiation Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan.
| | | |
Collapse
|
49
|
Bitomsky N, Hofmann TG. Apoptosis and autophagy: Regulation of apoptosis by DNA damage signalling - roles of p53, p73 and HIPK2. FEBS J 2009; 276:6074-83. [DOI: 10.1111/j.1742-4658.2009.07331.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Nojima T, Oshiro-Ideue T, Nakanoya H, Kawamura H, Morimoto T, Kawaguchi Y, Kataoka N, Hagiwara M. Herpesvirus protein ICP27 switches PML isoform by altering mRNA splicing. Nucleic Acids Res 2009; 37:6515-27. [PMID: 19729513 PMCID: PMC2770646 DOI: 10.1093/nar/gkp633] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Viruses use alternative splicing to produce a broad series of proteins from small genomes by utilizing the cellular splicing machinery. Since viruses use cellular RNA binding proteins for viral RNA processing, it is presumable that the splicing of cellular pre-mRNAs is affected by viral infection. Here, we showed that herpes simplex virus type 2 (HSV-2) modifies the expression of promyelocytic leukemia (PML) isoforms by altering pre-mRNA splicing. Using a newly developed virus-sensitive splicing reporter, we identified the viral protein ICP27 as an alternative splicing regulator of PML isoforms. ICP27 was found to bind preferentially to PML pre-mRNA and directly inhibit the removal of PML intron 7a in vitro. Moreover, we demonstrated that ICP27 functions as a splicing silencer at the 3' splice site of the PML intron 7a. The switching of PML isoform from PML-II to PML-V as induced by ICP27 affected HSV-2 replication, suggesting that the viral protein modulates the splicing code of cellular pre-mRNA(s) governing virus propagation.
Collapse
Affiliation(s)
- Takayuki Nojima
- Department of Functional Genomics, Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo
| | | | | | | | | | | | | | | |
Collapse
|