1
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
2
|
Natu K, Dutta S, Bose K. cFLIP - An interacting partner and a novel substrate for pro-apoptotic serine protease HtrA2. Biochem Biophys Rep 2024; 38:101682. [PMID: 38511187 PMCID: PMC10950699 DOI: 10.1016/j.bbrep.2024.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background HtrA2, a pro-apoptotic protease, plays a crucial role in apoptosis by cleaving inhibitory and anti-apoptotic proteins by translocating from mitochondria to the cytosol. Prior studies in ischemic cells have indicated that cytosolic HtrA2 triggers cFLIP degradation, plausibly through direct interaction. In this study, we have characterized the cFLIP protein, validated its interaction with HtrA2, and demonstrated that cFLIP is also a substrate of HtrA2. Methods We have identified the probable cleavage sites of cFLIP through gel-based assays and mass spectrometric analysis of the cleaved fragments. Results Our findings shed light on a key protein-protein interaction involving pro-apoptotic HtrA2, confirming cFLIP as its interacting partner and substrate. Conclusion Understanding the nuances of HtrA2's interaction with cFLIP (a decoy protein of the initiator procaspase-8 in the extrinsic apoptotic pathway) and deciphering the cFLIP's mode of cleavage, would provide an excellent alternative to modulate the pathway for therapeutic benefits toward diseases like ischemia and cancer.
Collapse
Affiliation(s)
- Kalyani Natu
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Mumbai, 400094, India
| | - Shubhankar Dutta
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Mumbai, 400094, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Mumbai, 400094, India
| |
Collapse
|
3
|
Aspholm EE, Lidman J, Burmann BM. Structural basis of substrate recognition and allosteric activation of the proapoptotic mitochondrial HtrA2 protease. Nat Commun 2024; 15:4592. [PMID: 38816423 PMCID: PMC11535027 DOI: 10.1038/s41467-024-48997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
The mitochondrial serine protease HtrA2 is a human homolog of the Escherichia coli Deg-proteins exhibiting chaperone and proteolytic roles. HtrA2 is involved in both apoptotic regulation via its ability to degrade inhibitor-of-apoptosis proteins (IAPs), as well as in cellular maintenance as part of the cellular protein quality control machinery, by preventing the possible toxic accumulation of aggregated proteins. In this study, we use advanced solution NMR spectroscopy methods combined with biophysical characterization and biochemical assays to elucidate the crucial role of the substrate recognizing PDZ domain. This domain regulates the protease activity of HtrA2 by triggering an intricate allosteric network involving the regulatory loops of the protease domain. We further show that divalent metal ions can both positively and negatively modulate the activity of HtrA2, leading to a refined model of HtrA2 regulation within the apoptotic pathway.
Collapse
Affiliation(s)
- Emelie E Aspholm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden
| | - Jens Lidman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
4
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
5
|
Abolfathi H, Arabi M, Sheikhpour M. A literature review of microRNA and gene signaling pathways involved in the apoptosis pathway of lung cancer. Respir Res 2023; 24:55. [PMID: 36800962 PMCID: PMC9938615 DOI: 10.1186/s12931-023-02366-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Lung cancer is one of the leading causes of death in the world and the deadliest of all cancers. Apoptosis is a key pathway in regulating the cell growth rate, proliferation, and occurrence of lung cancer. This process is controlled by many molecules, such as microRNAs and their target genes. Therefore, finding new medical approaches such as exploring diagnostic and prognostic biomarkers involved in apoptosis is needed for this disease. In the present study, we aimed to identify key microRNAs and their target genes that could be used in the prognosis and diagnosis of lung cancer. METHODS Signaling pathways, genes, and microRNAs involved in the apoptotic pathway were identified by bioinformatics analysis and recent clinical studies. Bioinformatics analysis was performed on databases including NCBI, TargetScan, UALCAN, UCSC, KEGG, miRPathDB, and Enrichr, and clinical studies were extracted from PubMed, web of science, and SCOPUS databases. RESULTS NF-κB, PI3K/AKT, and MAPK pathways play critical roles in the regulation of apoptosis. MiR-146b, 146a, 21, 23a, 135a, 30a, 202, and 181 were identified as the involved microRNAs in the apoptosis signaling pathway, and IRAK1, TRAF6, Bcl-2, PTEN, Akt, PIK3, KRAS, and MAPK1 were classified as the target genes of the mentioned microRNAs respectively. The essential roles of these signaling pathways and miRNAs/target genes were approved through both databases and clinical studies. Moreover, surviving, living, BRUCE, and XIAP was the main inhibitor of apoptosis which act by regulating the apoptosis-involved genes and miRNAs. CONCLUSION Identifying the abnormal expression and regulation of miRNAs and signaling pathways in apoptosis of lung cancer can represent a novel class of biomarkers that can facilitate the early diagnosis, personalized treatment, and prediction of drug response for lung cancer patients. Therefore, studying the mechanisms of apoptosis including signaling pathways, miRNAs/target genes, and the inhibitors of apoptosis are advantageous for finding the most practical approach and reducing the pathological demonstrations of lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Canada
| | - Mohadeseh Arabi
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran. .,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Dual role of an essential HtrA2/Omi protease in the human malaria parasite: Maintenance of mitochondrial homeostasis and induction of apoptosis-like cell death under cellular stress. PLoS Pathog 2022; 18:e1010932. [DOI: 10.1371/journal.ppat.1010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/09/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Members of the HtrA family of serine proteases are known to play roles in mitochondrial homeostasis as well as in programmed cell death. Mitochondrial homeostasis and metabolism are crucial for the survival and propagation of the malaria parasite within the host. Here we have functionally characterized a Plasmodium falciparum HtrA2 (PfHtrA2) protein, which harbours trypsin-like protease activity that can be inhibited by its specific inhibitor, ucf-101. A transgenic parasite line was generated, using the HA-glmS C-terminal tagging approach, for localization as well as for inducible knock-down of PfHtrA2. The PfHtrA2 was localized in the parasite mitochondrion during the asexual life cycle. Genetic ablation of PfHtrA2 caused significant parasite growth inhibition, decreased replication of mtDNA, increased mitochondrial ROS production, caused mitochondrial fission/fragmentation, and hindered parasite development. However, the ucf-101 treatment did not affect the parasite growth, suggesting the non-protease/chaperone role of PfHtrA2 in the parasite. Under cellular stress conditions, inhibition of PfHtrA2 by ucf-101 reduced activation of the caspase-like protease as well as parasite cell death, suggesting the involvement of protease activity of PfHtrA2 in apoptosis-like cell death in the parasite. Under these cellular stress conditions, the PfHtrA2 gets processed but remains localized in the mitochondrion, suggesting that it acts within the mitochondrion by cleaving intra-mitochondrial substrate(s). This was further supported by trans-expression of PfHtrA2 protease domain in the parasite cytosol, which was unable to induce any cell death in the parasite. Overall, we show the specific roles of PfHtrA2 in maintaining mitochondrial homeostasis as well as in regulating stress-induced cell death.
Collapse
|
7
|
Neel DV, Basu H, Gunner G, Chiu IM. Catching a killer: Mechanisms of programmed cell death and immune activation in Amyotrophic Lateral Sclerosis. Immunol Rev 2022; 311:130-150. [PMID: 35524757 PMCID: PMC9489610 DOI: 10.1111/imr.13083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
In the central nervous system (CNS), execution of programmed cell death (PCD) is crucial for proper neurodevelopment. However, aberrant activation of these pathways in adult CNS leads to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). How a cell dies is critical, as it can drive local immune activation and tissue damage. Classical apoptosis engages several mechanisms to evoke "immunologically silent" responses, whereas other forms of programmed death such as pyroptosis, necroptosis, and ferroptosis release molecules that can potentiate immune responses and inflammation. In ALS, a fatal neuromuscular disorder marked by progressive death of lower and upper motor neurons, several cell types in the CNS express machinery for multiple PCD pathways. The specific cell types engaging PCD, and ultimate mechanisms by which neuronal death occurs in ALS are not well defined. Here, we provide an overview of different PCD pathways implicated in ALS. We also examine immune activation in ALS and differentiate apoptosis from necrotic mechanisms based on downstream immunological consequences. Lastly, we highlight therapeutic strategies that target cell death pathways in the treatment of neurodegeneration and inflammation in ALS.
Collapse
Affiliation(s)
- Dylan V Neel
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Himanish Basu
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Georgia Gunner
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Isaac M Chiu
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
- Lead contact
| |
Collapse
|
8
|
Zhang Z, Xiang S, Cui R, Peng H, Mridul R, Xiang M. ILP-2: A New Bane and Therapeutic Target for Human Cancers. Front Oncol 2022; 12:922596. [PMID: 35814477 PMCID: PMC9260022 DOI: 10.3389/fonc.2022.922596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Inhibitor of apoptosis protein-related-like protein-2 (ILP-2), also known as BIRC-8, is a member of the inhibitor of apoptosis protein (IAPs) family, which mainly encodes the negative regulator of apoptosis. It is selectively overexpressed in a variety of human tumors and can help tumor cells evade apoptosis, promote tumor cell growth, increase tumor cell aggressiveness, and appears to be involved in tumor cell resistance to chemotherapeutic drugs. Several studies have shown that downregulation of ILP-2 expression increases apoptosis, inhibits metastasis, reduces cell growth potential, and sensitizes tumor cells to chemotherapeutic drugs. In addition, ILP-2 inhibits apoptosis in a unique manner; it does not directly inhibit the activity of caspases but induces apoptosis by cooperating with other apoptosis-related proteins. Here, we review the current understanding of the various roles of ILP-2 in the apoptotic cascade and explore the use of interfering ILP-2, and the combination of related anti-tumor agents, as a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhiliang Zhang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Siqi Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Ruxia Cui
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Hang Peng
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Roy Mridul
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Mingjun Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| |
Collapse
|
9
|
Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease. Proc Natl Acad Sci U S A 2022; 119:e2203172119. [PMID: 35452308 PMCID: PMC9170070 DOI: 10.1073/pnas.2203172119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein aggregates are often toxic, leading to impaired cellular activities and disease. The human HtrA2 trimeric enzyme cleaves such aggregates, and mutations in HtrA2 are causative for various neurodegenerative disorders, such as Parkinson’s disease and essential tremor. The mechanism by which cleavage occurs has been studied using small peptides, but little information is available as to how HtrA2 protects cells from the pathologic effects of aggregation involving protein molecules that can form well-folded structures. Using solution NMR spectroscopy, we investigated the structural dynamics of the interaction between HtrA2 and a model protein substrate, demonstrating that HtrA2 preferentially binds to an unfolded substrate ensemble and providing insights into how HtrA2 function is regulated. The human high-temperature requirement A2 (HtrA2) protein is a trimeric protease that cleaves misfolded proteins to protect cells from stresses caused by toxic, proteinaceous aggregates, and the aberrant function of HtrA2 is closely related to the onset of neurodegenerative disorders. Our methyl-transverse relaxation optimized spectroscopy (TROSY)–based NMR studies using small-peptide ligands have previously revealed a stepwise activation mechanism involving multiple distinct conformational states. However, very little is known about how HtrA2 binds to protein substrates and if the distinct conformational states observed in previous peptide studies might be involved in the processing of protein clients. Herein, we use solution-based NMR spectroscopy to investigate the interaction between the N-terminal Src homology 3 domain from downstream of receptor kinase (drk) with an added C-terminal HtrA2-binding motif (drkN SH3-PDZbm) that exhibits marginal folding stability and serves as a mimic of a physiological protein substrate. We show that drkN SH3-PDZbm binds to HtrA2 via a two-pronged interaction, involving both its C-terminal PDZ-domain binding motif and a central hydrophobic region, with binding occurring preferentially via an unfolded ensemble of substrate molecules. Multivalent interactions between several clients and a single HtrA2 trimer significantly stimulate the catalytic activity of HtrA2, suggesting that binding avidity plays an important role in regulating substrate processing. Our results provide a thermodynamic, kinetic, and structural description of the interaction of HtrA2 with protein substrates and highlight the importance of a trimeric architecture for function as a stress-protective protease that mitigates aggregation.
Collapse
|
10
|
Nam MK, Moon JM, Kim GY, Kim SM, Rhim H. The novel human HtrA2 ortholog in zebrafish: New molecular insight and challenges into the imbalance of homeostasis. Gene 2022; 819:146263. [PMID: 35121025 DOI: 10.1016/j.gene.2022.146263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
Abstract
High temperature requirement A2 (HtrA2) contributes to regulating mitochondrial quality control and maintaining the balance between the death and survival of cells and living organisms. However, the molecular mechanism of HtrA2 in physiological and pathophysiological processes remains unclear. HtrA2 exhibits multifaceted characteristics according to the expression levels and acts opposite functions depending on its subcellular localization. Thus, innovative technologies and systems that can be freely manipulated at the quantitative, biochemical, molecular and cellular levels are needed to address not only the challenges faced by HtrA2 research but also the general obstacles to protein research. Here, we are the first to identify zebrafish HtrA2 (zHtrA2) as the true ortholog of human HtrA2 (hHtrA2), by in silico sequence analysis of genomic DNA and molecular biological techniques, which is highly conserved structurally and functionally as a serine protease and cell death regulator. The zHtrA2 protein is primarily localized in the mitochondria, where alanine-exposed mature zHtrA2 ((A)-zHtrA2) is generated by removing 111 residues at the N-terminus of pro-zHtrA2. The (A)-zHtrA2 released from the mitochondria into the cytosol induces the caspase cascade by binding to and inhibiting hXIAP, a cognate partner of hHtrA2. Notably, zHtrA2 has well conserved properties of serine protease that specifically cleaves hParkin, a cognate substrate of hHtrA2. Interestingly, cytosolic (M)-zHtrA2, which does not bind hXIAP, induces atypical cell death in a serine protease-dependent manner, as occurs in hHtrA2. Thus, the zebrafish-zHtrA2 system can be used to clarify the crucial role of HtrA2 in maintaining the survival of living organisms and provide an opportunity to develop novel therapeutics for HtrA2-associated diseases, such as neurodegenerative diseases and cancer, which are caused by dysregulation of HtrA2.
Collapse
Affiliation(s)
- Min-Kyung Nam
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea.
| | - Jeong-Mi Moon
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Goo-Young Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sung Min Kim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea
| | - Hyangshuk Rhim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seocho-gu, Seoul 06591, Republic of Korea.
| |
Collapse
|
11
|
Alaqel SI, Dlamini S, Almarghalani DA, Shettigar A, Alhadidi Q, Kodithuwakku SH, Stary C, Tillekeratne LMV, Shah ZA. Synthesis and Development of a Novel First-in-Class Cofilin Inhibitor for Neuroinflammation in Hemorrhagic Brain Injury. ACS Chem Neurosci 2022; 13:1014-1029. [PMID: 35302736 PMCID: PMC9996837 DOI: 10.1021/acschemneuro.2c00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is devastating among stroke types with high mortality. To date, not a single therapeutic intervention has been successful. Cofilin plays a critical role in inflammation and cell death. In the current study, we embarked on designing and synthesizing a first-in-class small-molecule inhibitor of cofilin to target secondary complications of ICH, mainly neuroinflammation. A series of compounds were synthesized, and two lead compounds SZ-3 and SK-1-32 were selected for further studies. Neuronal and microglial viabilities were assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay using neuroblastoma (SHSY-5Y) and human microglial (HMC-3) cell lines, respectively. Lipopolysaccharide (LPS)-induced inflammation in HMC-3 cells was used for neurotoxicity assay. Other assays include nitric oxide (NO) by Griess reagent, cofilin inhibition by F-actin depolymerization, migration by scratch wound assay, tumor necrosis factor (TNF-α) by enzyme-linked immunosorbent assay (ELISA), protease-activated receptor-1 (PAR-1) by immunocytochemistry and Western blotting (WB), and protein expression levels of several proteins by WB. SK-1-32 increased neuronal/microglial survival, reduced NO, and prevented neurotoxicity. However, SZ-3 showed no effect on neuronal/microglial survival but prevented microglia from LPS-induced inflammation by decreasing NO and preventing neurotoxicity. Therefore, we selected SZ-3 for further molecular studies, as it showed potent anti-inflammatory activities. SZ-3 decreased cofilin severing activity, and its treatment of LPS-activated HMC-3 cells attenuated microglial activation and suppressed migration and proliferation. HMC-3 cells subjected to thrombin, as an in vitro model for hemorrhagic stroke, and treated with SZ-3 after 3 h showed significantly decreased NO and TNF-α, significantly increased protein expression of phosphocofilin, and decreased PAR-1. In addition, SZ-3-treated SHSY-5Y showed a significant increase in cell viability by significantly reducing nuclear factor-κ B (NF-κB), caspase-3, and high-temperature requirement (HtrA2). Together, our results support the novel idea of targeting cofilin to counter neuroinflammation during secondary injury following ICH.
Collapse
Affiliation(s)
- Saleh I. Alaqel
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Samkeliso Dlamini
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Daniyah A. Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH, USA 43614
| | - Arjun Shettigar
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Sinali H. Kodithuwakku
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Creed Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA 94305
| | | | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| |
Collapse
|
12
|
Kenanoglu S, Kandemir N, Akalin H, Gokce N, Gol MF, Gultekin M, Koseoglu E, Mirza M, Dundar M. Evaluation of Utilizing the Distinct Genes as Predictive Biomarkers in Late-Onset Alzheimer's Disease. Glob Med Genet 2022; 9:110-117. [PMID: 35707770 PMCID: PMC9192179 DOI: 10.1055/s-0042-1743570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by a devastating decline in cognitive activities among all types of dementia, and it severely affects the quality of life. Late-onset AD (LOAD) occurs after the age of 65 years and develops sporadically. Although aging comes first along the main risk factors underlying LOAD, disease-causing susceptibility genes have been associated with disease pathogenesis. In our study, we included the genes
PARP1
,
POLB
,
HTRA2
,
SLC1A2
,
HS1BP3
, and
DRD3
to be investigated in LOAD patients based on their expression levels. Within this framework, we aimed to determine the possible functions of these genes in the pathophysiology of the disease. We investigated whether the utilization of these genes as biomarkers in the early diagnosis of LOAD may help the treatment scheme to be applied in the clinic. We involved 50 individuals in the study and collected peripheral blood samples from the patients and control groups for molecular genetic analysis. Subsequently, RNA was extracted from the peripheral blood samples, and expression analyzes were performed using qualitative reverse transcription polymerase chain reaction. The results obtained were evaluated by using proper statistical methods. Our results demonstrated that there was no difference between patient and control groups in terms of
HTRA2
,
DRD3
,
HS1BP3
, and
POLB
genes. The expression levels of the
SLC1A2
and
PARP1
genes were significantly lower in the patient group compared with the control group. In conclusion, we presume that the
PARP1
and
SLC1A2
genes can be utilized as molecular biomarkers for LOAD.
Collapse
Affiliation(s)
- Sercan Kenanoglu
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nefise Kandemir
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nuriye Gokce
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet F. Gol
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Murat Gultekin
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emel Koseoglu
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Meral Mirza
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
13
|
Chakraborty A, Bose R, Bose K. Unraveling the Dichotomy of Enigmatic Serine Protease HtrA2. Front Mol Biosci 2022; 9:824846. [PMID: 35187085 PMCID: PMC8850690 DOI: 10.3389/fmolb.2022.824846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial high-temperature requirement protease A2 (HtrA2) is an integral member of the HtrA family of serine proteases that are evolutionarily conserved from prokaryotes to humans. Involvement in manifold intricate cellular networks and diverse pathophysiological functions make HtrA2 the most enigmatic moonlighting protease amongst the human HtrAs. Despite perpetuating the oligomeric architecture and overall structural fold of its homologs that comprises serine protease and regulatory PDZ domains, subtle conformational alterations and dynamic enzymatic regulation through the distinct allosteric mode of action lead to its functional diversity. This mitochondrial protease upon maturation, exposes its one-of-a-kind N-terminal tetrapeptide (AVPS) motif that binds and subsequently cleaves Inhibitor of Apoptosis Proteins (IAPs) thus promoting cell death, and posing as an important molecule for therapeutic intervention. Interestingly, unlike its other human counterparts, HtrA2 has also been implicated in maintaining the mitochondrial integrity through a bi-functional chaperone-protease activity, the on-off switch of which is yet to be identified. Furthermore, its ability to activate a wide repertoire of substrates through both its N- and C-terminal regions presumably has calibrated its association with several cellular pathways and hence diseases including neurodegenerative disorders and cancer. Therefore, the exclusive structural attributes of HtrA2 that involve multimodal activation, intermolecular PDZ-protease crosstalk, and an allosterically-modulated trimeric active-site ensemble have enabled the protease to evolve across species and partake functions that are fine-tuned for maintaining cellular homeostasis and mitochondrial proteome quality control in humans. These unique features along with its multitasking potential make HtrA2 a promising therapeutic target both in cancer and neurodegeneration.
Collapse
Affiliation(s)
- Ayon Chakraborty
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Roshnee Bose
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, BARC Training School Complex, Mumbai, India
| |
Collapse
|
14
|
The Improvement of Sepsis-Associated Encephalopathy by P2X7R Inhibitor through Inhibiting the Omi/HtrA2 Apoptotic Signaling Pathway. Behav Neurol 2022; 2022:3777351. [PMID: 35126784 PMCID: PMC8813303 DOI: 10.1155/2022/3777351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of sepsis-associated encephalopathy (SAE) involves many aspects, including intracellular peroxidative stress damage, mitochondrial dysfunction, and cell apoptosis. In this study, we mainly explored the influence of P2X7R on the cognitive function of SAE and its molecular mechanism. We established a sepsis model using lipopolysaccharide (LPS) stimulation, followed by an assessment of cognitive function using Morris water maze, and then Western Blot was used to analyze the expression of tight junction proteins ZO-1 and Occludin in the hippocampus of mice. TUNEL assay was used to analyze the apoptosis of brain cells in frozen brain slices of mice during sepsis. Human brain microvascular endothelial cells (HBMECs) were used to research the molecular mechanism of brain cell damage induced by P2X7R. The results showed that P2X7R inhibitors dramatically improved the survival rate of mice, relieved the cognitive dysfunction caused by LPS stimulation, and significantly reduced the brain cell apoptosis caused by LPS. In addition, the inhibition of P2X7R can also reduce the production and accumulation of reactive oxygen species (ROS) in HBMECs in vitro and inhibit the apoptosis signaling pathway associated with mitochondrial serine protease Omi/HtrA2 in HBMECs in vitro. These results suggest that P2X7R has strong value as a potential target for the treatment of SAE.
Collapse
|
15
|
Roberts JZ, Crawford N, Longley DB. The role of Ubiquitination in Apoptosis and Necroptosis. Cell Death Differ 2021; 29:272-284. [PMID: 34912054 PMCID: PMC8817035 DOI: 10.1038/s41418-021-00922-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Cell death pathways have evolved to maintain tissue homoeostasis and eliminate potentially harmful cells from within an organism, such as cells with damaged DNA that could lead to cancer. Apoptosis, known to eliminate cells in a predominantly non-inflammatory manner, is controlled by two main branches, the intrinsic and extrinsic apoptotic pathways. While the intrinsic pathway is regulated by the Bcl-2 family members, the extrinsic pathway is controlled by the Death receptors, members of the tumour necrosis factor (TNF) receptor superfamily. Death receptors can also activate a pro-inflammatory type of cell death, necroptosis, when Caspase-8 is inhibited. Apoptotic pathways are known to be tightly regulated by post-translational modifications, especially by ubiquitination. This review discusses research on ubiquitination-mediated regulation of apoptotic signalling. Additionally, the emerging importance of ubiquitination in regulating necroptosis is discussed.
Collapse
Affiliation(s)
- Jamie Z Roberts
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| | - Nyree Crawford
- Almac Discovery Laboratories, Health Sciences Building, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
16
|
de la Ballina NR, Villalba A, Cao A. Shotgun analysis to identify differences in protein expression between granulocytes and hyalinocytes of the European flat oyster Ostrea edulis. FISH & SHELLFISH IMMUNOLOGY 2021; 119:678-691. [PMID: 34748932 DOI: 10.1016/j.fsi.2021.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Recovery of wild populations of the European flat oyster Ostrea edulis is important for ecosystem health and conservation of this species, because native oyster populations have dramatically declined or disappeared in most European waters. Diseases have contributed to oyster decline and are important constrains for oyster recovery. Understanding oyster immune system should contribute to design effective strategies to fight oyster diseases. Haemocytes play a pivotal role in mollusc immune responses protecting from infection. Two main types of haemocytes, granulocytes and hyalinocytes, are distinguished in O. edulis. A study aiming to explore differential functions between both haemocyte types and, thus, to enrich the knowledge of Ostrea edulis immune system, was performed by comparing the proteome of the two haemolymph cell types, using a shotgun approach through liquid chromatography (LC) coupled to mass spectrometry (MS). Cells from oyster haemolymph were differentially separated by Percoll density gradient centrifugation. Shotgun LC-MS/MS performance allowed the identification of 145 proteins in hyalinocytes and 138 in the proteome of granulocytes. After a comparative analysis, 55 proteins with main roles in defence were identified, from which 28 were representative of granulocytes and 27 of hyalinocytes, plus 11 proteins shared by both cell types. Different proteins involved in signal transduction, apoptosis, oxidative response, processes related with the cytoskeleton and structure, recognition and wound healing were identified as representatives of each haemocyte type. Important signalling pathways in the immune response such as MAPK, Ras and NF-κβ seemed to be more relevant for granulocytes, while the Wnt signalling pathway, particularly relevant for wound healing, more relevant in hyalinocytes. The differences in proteins involved in recognition and in cytoskeleton and structure suggest differential specialisation in processes of phagocytosis and internalisation of pathogens between haemocyte types. Apoptosis seemed more active in granulocytes. The differences in proteins involved in oxidative response also suggest different redox processes in each cell type.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Spain.
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| |
Collapse
|
17
|
Thielhelm TP, Goncalves S, Welford SM, Mellon EA, Cohen ER, Nourbakhsh A, Fernandez-Valle C, Telischi F, Ivan ME, Dinh CT. Understanding the Radiobiology of Vestibular Schwannomas to Overcome Radiation Resistance. Cancers (Basel) 2021; 13:4575. [PMID: 34572805 PMCID: PMC8467596 DOI: 10.3390/cancers13184575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Vestibular schwannomas (VS) are benign tumors arising from cranial nerve VIII that account for 8-10% of all intracranial tumors and are the most common tumors of the cerebellopontine angle. These tumors are typically managed with observation, radiation therapy, or microsurgical resection. Of the VS that are irradiated, there is a subset of tumors that are radioresistant and continue to grow; the mechanisms behind this phenomenon are not fully understood. In this review, the authors summarize how radiation causes cellular and DNA injury that can activate (1) checkpoints in the cell cycle to initiate cell cycle arrest and DNA repair and (2) key events that lead to cell death. In addition, we discuss the current knowledge of VS radiobiology and how it may contribute to clinical outcomes. A better understanding of VS radiobiology can help optimize existing treatment protocols and lead to new therapies to overcome radioresistance.
Collapse
Affiliation(s)
- Torin P Thielhelm
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stefania Goncalves
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Scott M Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erin R Cohen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32816, USA
| | - Fred Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
18
|
Oligomeric assembly regulating mitochondrial HtrA2 function as examined by methyl-TROSY NMR. Proc Natl Acad Sci U S A 2021; 118:2025022118. [PMID: 33692127 DOI: 10.1073/pnas.2025022118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human High temperature requirement A2 (HtrA2) is a mitochondrial protease chaperone that plays an important role in cellular proteostasis and in regulating cell-signaling events, with aberrant HtrA2 function leading to neurodegeneration and parkinsonian phenotypes. Structural studies of the enzyme have established a trimeric architecture, comprising three identical protomers in which the active sites of each protease domain are sequestered to form a catalytically inactive complex. The mechanism by which enzyme function is regulated is not well understood. Using methyl transverse relaxation optimized spectroscopy (TROSY)-based solution NMR in concert with biochemical assays, a functional HtrA2 oligomerization/binding cycle has been established. In the absence of substrates, HtrA2 exchanges between a heretofore unobserved hexameric conformation and the canonical trimeric structure, with the hexamer showing much weaker affinity toward substrates. Both structures are substrate inaccessible, explaining their low basal activity in the absence of the binding of activator peptide. The binding of the activator peptide to each of the protomers of the trimer occurs with positive cooperativity and induces intrasubunit domain reorientations to expose the catalytic center, leading to increased proteolytic activity. Our data paint a picture of HtrA2 as a finely tuned, stress-protective enzyme whose activity can be modulated both by oligomerization and domain reorientation, with basal levels of catalysis kept low to avoid proteolysis of nontarget proteins.
Collapse
|
19
|
Dissecting the role of interprotomer cooperativity in the activation of oligomeric high-temperature requirement A2 protein. Proc Natl Acad Sci U S A 2021; 118:2111257118. [PMID: 34446566 DOI: 10.1073/pnas.2111257118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human high-temperature requirement A2 (HtrA2) mitochondrial protease is critical for cellular proteostasis, with mutations in this enzyme closely associated with the onset of neurodegenerative disorders. HtrA2 forms a homotrimeric structure, with each subunit composed of protease and PDZ (PSD-95, DLG, ZO-1) domains. Although we had previously shown that successive ligand binding occurs with increasing affinity, and it has been suggested that allostery plays a role in regulating catalysis, the molecular details of how this occurs have not been established. Here, we use cysteine-based chemistry to generate subunits in different conformational states along with a protomer mixing strategy, biochemical assays, and methyl-transverse relaxation optimized spectroscopy-based NMR studies to understand the role of interprotomer allostery in regulating HtrA2 function. We show that substrate binding to a PDZ domain of one protomer increases millisecond-to-microsecond timescale dynamics in neighboring subunits that prime them for binding substrate molecules. Only when all three PDZ-binding sites are substrate bound can the enzyme transition into an active conformation that involves significant structural rearrangements of the protease domains. Our results thus explain why when one (or more) of the protomers is fixed in a ligand-binding-incompetent conformation or contains the inactivating S276C mutation that is causative for a neurodegenerative phenotype in mouse models of Parkinson's disease, transition to an active state cannot be formed. In this manner, wild-type HtrA2 is only active when substrate concentrations are high and therefore toxic and unregulated proteolysis of nonsubstrate proteins can be suppressed.
Collapse
|
20
|
Alsherbiny MA, Bhuyan DJ, Radwan I, Chang D, Li CG. Metabolomic Identification of Anticancer Metabolites of Australian Propolis and Proteomic Elucidation of Its Synergistic Mechanisms with Doxorubicin in the MCF7 Cells. Int J Mol Sci 2021; 22:ijms22157840. [PMID: 34360606 PMCID: PMC8346082 DOI: 10.3390/ijms22157840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
The combination of natural products with standard chemotherapeutic agents offers a promising strategy to enhance the efficacy or reduce the side effects of standard chemotherapy. Doxorubicin (DOX), a standard drug for breast cancer, has several disadvantages, including severe side effects and the development of drug resistance. Recently, we reported the potential bioactive markers of Australian propolis extract (AP-1) and their broad spectrum of pharmacological activities. In the present study, we explored the synergistic interactions between AP-1 and DOX in the MCF7 breast adenocarcinoma cells using different synergy quantitation models. Biochemometric and metabolomics-driven analysis was performed to identify the potential anticancer metabolites in AP-1. The molecular mechanisms of synergy were studied by analysing the apoptotic profile via flow cytometry, apoptotic proteome array and measuring the oxidative status of the MCF7 cells treated with the most synergistic combination. Furthermore, label-free quantification proteomics analysis was performed to decipher the underlying synergistic mechanisms. Five prenylated stilbenes were identified as the key metabolites in the most active AP-1 fraction. Strong synergy was observed when AP-1 was combined with DOX in the ratio of 100:0.29 (w/w) as validated by different synergy quantitation models implemented. AP-1 significantly enhanced the inhibitory effect of DOX against MCF7 cell proliferation in a dose-dependent manner with significant inhibition of the reactive oxygen species (p < 0.0001) compared to DOX alone. AP-1 enabled the reversal of DOX-mediated necrosis to programmed cell death, which may be advantageous to decline DOX-related side effects. AP-1 also significantly enhanced the apoptotic effect of DOX after 24 h of treatment with significant upregulation of catalase, HTRA2/Omi, FADD together with DR5 and DR4 TRAIL-mediated apoptosis (p < 0.05), contributing to the antiproliferative activity of AP-1. Significant upregulation of pro-apoptotic p27, PON2 and catalase with downregulated anti-apoptotic XIAP, HSP60 and HIF-1α, and increased antioxidant proteins (catalase and PON2) may be associated with the improved apoptosis and oxidative status of the synergistic combination-treated MCF7 cells compared to the mono treatments. Shotgun proteomics identified 21 significantly dysregulated proteins in the synergistic combination-treated cells versus the mono treatments. These proteins were involved in the TP53/ATM-regulated non-homologous end-joining pathway and double-strand breaks repairs, recruiting the overexpressed BRCA1 and suppressed RIF1 encoded proteins. The overexpression of UPF2 was noticed in the synergistic combination treatment, which could assist in overcoming doxorubicin resistance-associated long non-coding RNA and metastasis of the MCF7 cells. In conclusion, we identified the significant synergy and highlighted the key molecular pathways in the interaction between AP-1 and DOX in the MCF7 cells together with the AP-1 anticancer metabolites. Further in vivo and clinical studies are warranted on this synergistic combination.
Collapse
Affiliation(s)
- Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Ibrahim Radwan
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| |
Collapse
|
21
|
Tuerdi M, Hu S, Wang Y, Zhou Y, Cao J, Zhang H, Zhou J. Engorgement of Rhipicephalus haemaphysaloides ticks blocked by silencing a protein inhibitor of apoptosis. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:623-636. [PMID: 34136982 DOI: 10.1007/s10493-021-00637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Inhibitors of apoptosis (IAPs) are regulators of cell death and may play a role in the salivary glands of ticks during blood-feeding. We cloned the open reading frame (ORF) sequence of the IAP gene in Rhipicephalus haemaphysaloides (RhIAP). The RhIAP ORF of 1887 bp encodes a predicted protein of 607 amino acids, which contains three baculovirus IAP repeat domains and a RING finger motif. A real-time PCR assay showed that RhIAP mRNA was expressed in all the tick developmental stages (eggs, larvae, nymphs, and adults) and in all tissues examined (midgut, ovary, salivary glands, fat body, and hemolymph). Western blot showed that the protein level of RhIAP in salivary glands increased during tick blood-feeding and decreased towards the end of tick engorgement. RhIAP gene silencing in vitro experiments with salivary glands demonstrated that RhIAP could be effectively knocked down within 48 h after dsRNA treatment, and as a consequence, salivary glands displayed apoptotic morphology. RhIAP gene silencing also inhibited tick blood-feeding and decreased the engorgement rate. These data suggest that RhIAP might be a suitable RNAi target for tick control.
Collapse
Affiliation(s)
- Mayinuer Tuerdi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shanming Hu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
22
|
Mehrzadi S, Pourhanifeh MH, Mirzaei A, Moradian F, Hosseinzadeh A. An updated review of mechanistic potentials of melatonin against cancer: pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Cancer Cell Int 2021; 21:188. [PMID: 33789681 PMCID: PMC8011077 DOI: 10.1186/s12935-021-01892-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cancers are serious life-threatening diseases which annually are responsible for millions of deaths across the world. Despite many developments in therapeutic approaches for affected individuals, the rate of morbidity and mortality is high. The survival rate and life quality of cancer patients is still low. In addition, the poor prognosis of patients and side effects of the present treatments underscores that finding novel and effective complementary and alternative therapies is a critical issue. Melatonin is a powerful anticancer agent and its efficiency has been widely documented up to now. Melatonin applies its anticancer abilities through affecting various mechanisms including angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Regarding the implication of mentioned cellular processes in cancer pathogenesis, we aimed to further evaluate the anticancer effects of melatonin via these mechanisms.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Moradian
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Elucidating the role of GRIM-19 as a substrate and allosteric activator of pro-apoptotic serine protease HtrA2. Biochem J 2021; 478:1241-1259. [PMID: 33650635 DOI: 10.1042/bcj20200923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
HtrA2 (high-temperature requirement A2) and GRIM-19 (gene associated with retinoic and interferon-induced mortality 19 protein) are involved in various biological functions with their deregulation leading to multiple diseases. Although it is known that the interaction between GRIM-19 with HtrA2 promotes the pro-apoptotic activity of the latter, the mechanistic details remained elusive till date. Moreover, designing allosteric modulators of HtrA2 remains obscure due to lack of adequate information on the mode of interaction with its natural substrates cum binding partners. Therefore, in this study, we have unfolded the interaction between HtrA2 and GRIM-19 so as to understand its subsequent functional repercussions. Using in silico analyses and biochemical assays, we identified the region in GRIM-19 that is involved in protein-protein interaction with HtrA2. Furthermore, we have presented a comprehensive illustration of HtrA2's cleavage site specificity. Quantitative analysis using enzyme kinetics underscored the role of GRIM-19 in significant allosteric activation of HtrA2. Overall, this is an extensive study that not only defines HtrA2-GRIM-19 interaction, but also creates a framework for developing strategies toward allosteric regulation of HtrA2 for future therapeutic interventions.
Collapse
|
24
|
Lin KL, Chen SD, Lin KJ, Liou CW, Chuang YC, Wang PW, Chuang JH, Lin TK. Quality Matters? The Involvement of Mitochondrial Quality Control in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:636295. [PMID: 33829016 PMCID: PMC8019794 DOI: 10.3389/fcell.2021.636295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide. Multiple factors are known to affect the cardiovascular system from lifestyles, genes, underlying comorbidities, and age. Requiring high workload, metabolism of the heart is largely dependent on continuous power supply via mitochondria through effective oxidative respiration. Mitochondria not only serve as cellular power plants, but are also involved in many critical cellular processes, including the generation of intracellular reactive oxygen species (ROS) and regulating cellular survival. To cope with environmental stress, mitochondrial function has been suggested to be essential during bioenergetics adaptation resulting in cardiac pathological remodeling. Thus, mitochondrial dysfunction has been advocated in various aspects of cardiovascular pathology including the response to ischemia/reperfusion (I/R) injury, hypertension (HTN), and cardiovascular complications related to type 2 diabetes mellitus (DM). Therefore, mitochondrial homeostasis through mitochondrial dynamics and quality control is pivotal in the maintenance of cardiac health. Impairment of the segregation of damaged components and degradation of unhealthy mitochondria through autophagic mechanisms may play a crucial role in the pathogenesis of various cardiac disorders. This article provides in-depth understanding of the current literature regarding mitochondrial remodeling and dynamics in cardiovascular diseases.
Collapse
Affiliation(s)
- Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Gu X, Wang D, Xu Z, Wang J, Guo L, Chai R, Li G, Shu Y, Li H. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol 2021; 22:86. [PMID: 33752742 PMCID: PMC7983387 DOI: 10.1186/s13059-021-02311-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Aging, noise, infection, and ototoxic drugs are the major causes of human acquired sensorineural hearing loss, but treatment options are limited. CRISPR/Cas9 technology has tremendous potential to become a new therapeutic modality for acquired non-inherited sensorineural hearing loss. Here, we develop CRISPR/Cas9 strategies to prevent aminoglycoside-induced deafness, a common type of acquired non-inherited sensorineural hearing loss, via disrupting the Htra2 gene in the inner ear which is involved in apoptosis but has not been investigated in cochlear hair cell protection. RESULTS The results indicate that adeno-associated virus (AAV)-mediated delivery of CRISPR/SpCas9 system ameliorates neomycin-induced apoptosis, promotes hair cell survival, and significantly improves hearing function in neomycin-treated mice. The protective effect of the AAV-CRISPR/Cas9 system in vivo is sustained up to 8 weeks after neomycin exposure. For more efficient delivery of the whole CRISPR/Cas9 system, we also explore the AAV-CRISPR/SaCas9 system to prevent neomycin-induced deafness. The in vivo editing efficiency of the SaCas9 system is 1.73% on average. We observed significant improvement in auditory brainstem response thresholds in the injected ears compared with the non-injected ears. At 4 weeks after neomycin exposure, the protective effect of the AAV-CRISPR/SaCas9 system is still obvious, with the improvement in auditory brainstem response threshold up to 50 dB at 8 kHz. CONCLUSIONS These findings demonstrate the safe and effective prevention of aminoglycoside-induced deafness via Htra2 gene editing and support further development of the CRISPR/Cas9 technology in the treatment of non-inherited hearing loss as well as other non-inherited diseases.
Collapse
Affiliation(s)
- Xi Gu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- Department of Otolaryngology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Daqi Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Zhijiao Xu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Jinghan Wang
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Luo Guo
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096 China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
| | - Genglin Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Yilai Shu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
| | - Huawei Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031 China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031 China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
26
|
Bose K, Wagh A, Mishra V, Dutta S, Parui AL, Puja R, Mudrale SP, Kulkarni SS, Gai PB, Sarin R. Loss of GSK-3β mediated phosphorylation in HtrA2 contributes to uncontrolled cell death with Parkinsonian phenotype. Int J Biol Macromol 2021; 180:97-111. [PMID: 33716130 DOI: 10.1016/j.ijbiomac.2021.03.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
HtrA2, a proapoptotic mitochondrial serine protease, promotes cellular protection against oxidative damage. Literature reports show positive correlation between loss of HtrA2 protease activity and Parkinson's Disease (PD) susceptibility. Homozygous loss-of-function mutations in murine-HtrA2, and when they rarely occur in humans result in severe neurodegeneration and infantile death. Here, we report a novel heterozygous pathogenic HTRA2 variant, c.725C > T (p.T242M) in Indian PD patients. Although, this mutation exhibits no significant conformational changes compared to the wild-type, functional studies with HtrA2-T242M transfected neurons reveal common features of PD pathogenesis such as dysfunction, altered morphology and mitochondrial membrane depolarization. Despite exhibiting two-fold decrease in enzyme activity, observation of excessive cell-death due to over-expression of the mutant has been correlated with it being constitutively active. This interesting behavioral anomaly has been attributed to the loss of phosphorylation-mediated regulatory checkpoint at the T242M mutation site that is otherwise controlled by glycogen synthase kinase-3β (GSK-3β). This study, with seamless amalgamation of biophysical and biomedical research unravels a mechanistic pathway of HtrA2 regulation and delineates its biological role in PD. Therefore, this investigation will not only prove beneficial toward devising therapeutic strategies against HtrA2-associated diseases mediated by GSK-3β but also suggest new avenues for treatment of Parkinsonian phenotype.
Collapse
Affiliation(s)
- Kakoli Bose
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India.
| | - Ajay Wagh
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vasudha Mishra
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shubhankar Dutta
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Aasna L Parui
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Rashmi Puja
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Snehal Pandav Mudrale
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | - Pramod B Gai
- Karnataka Institute for DNA Research, Pavate Nagar, Dharwad, Karnataka, India
| | - Rajiv Sarin
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
27
|
You H, Jin Y, Kang J, Mao Y, Su J, Sun L, Wang L, Meng H. Mitochondrial serine protease Omi/HtrA2 accentuates brain ischemia/reperfusion injury in rats and oxidative stress injury in vitro by modulating mitochondrial stress proteins CHOP and ClpP and physically interacting with mitochondrial fusion protein OPA1. Bioengineered 2020; 11:1058-1070. [PMID: 33016225 PMCID: PMC8291814 DOI: 10.1080/21655979.2020.1822105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Serine protease Omi/HtrA2, a member of the HtrA family, is closely related to the maintenance of mitochondrial integrity and participates in apoptosis but its role in cerebral ischemia/reperfusion (I/R) injury and cellular oxidative stress response remains unclear. In this study, we found that I/R injury resulted in a time-dependent increase in Omi/HtrA2 expression in rat brain tissue. Inhibition of Omi/HtrA2 significantly inhibited XIAP cleavage in H2O2-induced PC12 cells. In addition, inhibition of Omi/HtrA2 significantly inhibited the up-regulation of mitochondrial stress proteins CHOP and ClpP, significantly reduced mitochondrial aggregation, and attenuated the decline of mitochondrial ΔΨm in PC12 cells. Studies show that there is a physical interaction between Omi/HtrA2 and OPA1. We found that Omi/HtrA2 and OPA1 are closely related to the oxidative stress mitochondrial response in PC12 cells. The current study has demonstrated that Omi/HtrA2 is upregulated in brain I/R injury in vivo and is implicated in mitochondrial response to oxidative stress in vitro by regulating mitochondrial stress proteins CHOP and CLpP and by interacting with mitochondrial cristae remodeling protein OPA1. These findings suggest that Omi/HtrA2 could be a candidate molecular target in diseases that involve oxidative stress such as in I/R injury. Abbreviation: ATP: Adenosine tripHospHate; Bax: BCL2-Associated X; Bcl-2: B-cell lympHoma-2; BSA: Albumin from bovine serum; DMEM: Dulbecco’s Minimum Essential Medium; DMSO: Dimethyl sulfoxide; HSP60: Heat shock protein60, 70; L-OPA1: Long forms of OPA1; Omi/HtrA2: high-temperature-regulated A2; MCAO: Middle cerebral artery occlusion; OPA1: Optic AtropHy; PBS: PHospHate buffered saline; PMSF: pHenylmethyl sulfonylfluoride; ROS: reactive oxygen species; SDS: Sodium dodecyl sulfate; S-OPA1: Short forms of OPA1; TTC: TripHenyltetrazalium chloride; XIAP: X-linked inhibitor apoptosis protein
Collapse
Affiliation(s)
- Hailong You
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University , Changchun, China
| | - Yao Jin
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University , Changchun, China
| | - Jinsong Kang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University , Changchun, China
| | - Ying Mao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University , Changchun, China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University , Changchun, China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University , Changchun, China
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University , Changchun, China
| | - Hao Meng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University , Changchun, China.,Department of Neurosurgery, The First Hospital of Jilin University , Changchun, China
| |
Collapse
|
28
|
Abdel Ghafar MT, Gharib F, Al-Ashmawy GM, Mariah RA. Serum high-temperature-required protein A2: A potential biomarker for the diagnosis of breast cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100706] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Wu D, Wang C, Zhang W, Peng K, Sheng J, Wang J, Jain A, Hong Y. Molecular characterization of an inhibitor of apoptosis protein ( IAPs) in freshwater pearl mussel, Hyriopsis schlegelii. Bioengineered 2020; 10:365-373. [PMID: 31446833 PMCID: PMC6738449 DOI: 10.1080/21655979.2019.1653738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The inhibitor of apoptosis proteins (IAPs) played important roles in inhibiting the apoptosis of tumor cells by regulating caspase activity in mammals. In this study, we first cloned the full-length cDNA sequence of IAPs gene (designated as Hs-IAPs) in Hyriopsis schlegelii. The Hs-IAPs gene contained an open reading frame of 1719 nucleotides, encoding a predicted protein of 572 amino acids. qRT-PCR assay indicated that the Hs-IAPs gene was ubiquitously expressed in different tissues, and the highest expression level was in gills. Furthermore, we purified and obtained the recombinant protein of Hs-IAPs which showed a molecular weight of 82.5 kDa. We used H2O2 stimulation experiment to explore the possible function of Hs-IAPs. The results showed that the percentage of viable cells significantly increased following the Hs-IAPs concentration. These indicated that the Hs-IAPs may play a role in anti-oxidation causing by H2O2, and its anti-oxidative may be crucial in the process of apoptosis.
Collapse
Affiliation(s)
- Di Wu
- School of Life Sciences, Nanchang University , Nanchang , China
| | - Chengyuan Wang
- School of Life Sciences, Nanchang University , Nanchang , China.,Jiangzhong dietary therapy technology Co. LTD , Jiangxi , China
| | - Wanchang Zhang
- School of Life Sciences, Nanchang University , Nanchang , China
| | - Kou Peng
- School of Life Sciences, Nanchang University , Nanchang , China
| | - Junqing Sheng
- School of Life Sciences, Nanchang University , Nanchang , China
| | - Junhua Wang
- School of Life Sciences, Nanchang University , Nanchang , China
| | - Archana Jain
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Guizhou , China
| | - Yijiang Hong
- School of Life Sciences, Nanchang University , Nanchang , China.,Key Lab of Aquatic Resources and Utilization of Jiangxi , Nanchang , China
| |
Collapse
|
30
|
Tan HY, Ng KY, Koh RY, Chye SM. Pharmacological Effects of Melatonin as Neuroprotectant in Rodent Model: A Review on the Current Biological Evidence. Cell Mol Neurobiol 2020; 40:25-51. [PMID: 31435851 PMCID: PMC11448813 DOI: 10.1007/s10571-019-00724-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
The progressive loss of structure and functions of neurons, including neuronal death, is one of the main factors leading to poor quality of life. Promotion of functional recovery of neuron after injury is a great challenge in neuroregenerative studies. Melatonin, a hormone is secreted by pineal gland and has antioxidative, anti-inflammatory, and anti-apoptotic properties. Besides that, melatonin has high cell permeability and is able to cross the blood-brain barrier. Apart from that, there are no reported side effects associated with long-term usage of melatonin at both physiological and pharmacological doses. Thus, in this review article, we summarize the pharmacological effects of melatonin as neuroprotectant in central nervous system injury, ischemic-reperfusion injury, optic nerve injury, peripheral nerve injury, neurotmesis, axonotmesis, scar formation, cell degeneration, and apoptosis in rodent models.
Collapse
Affiliation(s)
- Hui Ying Tan
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia.
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
31
|
Napolitano F, Terracciano C, Bruno G, Nesti C, Barillari MR, Barillari U, Santorelli FM, Melone MAB, Esposito T, Sampaolo S. Intrafamilial "DOA-plus" phenotype variability related to different OMI/HTRA2 expression. Am J Med Genet A 2019; 182:176-182. [PMID: 31609081 DOI: 10.1002/ajmg.a.61381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/18/2019] [Accepted: 09/18/2019] [Indexed: 11/07/2022]
Abstract
Dominant Optic Atrophy and Deafness (DOAD) may be associated with one or more of the following disorders such as myopathy, progressive external ophthalmoplegia, peripheral neuropathy, and cerebellar atrophy ("DOA-plus"). Intra- and interfamilial variability of the "DOA-plus" phenotype is frequently observed in the majority of the patients carrying the same mutation in the OPA1 gene. We are describing two familial cases of "DOA-plus" carrying the same c.1334G>A (p.Arg445His) mutation in OPA1 and disclosing different clinical, pathological and biochemical features. The two patients showed different expression levels of the mitochondrial OMI/HTRA2 molecule, which acts as a mitochondrial stress sensor and has been described to interplay with OPA1 in in vitro studies. Our data offer the cue to inquire the role of OMI/HTRA2 as a modifier gene in determining the "DOAplus" phenotype variability.
Collapse
Affiliation(s)
- Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Chiara Terracciano
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Giorgia Bruno
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudia Nesti
- Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Maria R Barillari
- Division of Phoniatrics and Audiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Barillari
- Division of Phoniatrics and Audiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Mariarosa A B Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Teresa Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy.,IRCCS INM Neuromed, Pozzilli, IS, Italy
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
32
|
Wang Q, Zou C, Wang L, Gao X, Wu J, Tan S, Wu G. Doxorubicin and adjudin co-loaded pH-sensitive nanoparticles for the treatment of drug-resistant cancer. Acta Biomater 2019; 94:469-481. [PMID: 31141733 DOI: 10.1016/j.actbio.2019.05.061] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
Multi-drug resistance (MDR) of tumor is a major cause of chemotherapy failure. In this study, a pH-sensitive graft copolymer, poly(β-amino ester)-g-β-cyclodextrin (PBAE-g-β-CD), was synthesized via Michael addition polymerization and was employed to co-deliver doxorubicin (DOX), a chemotherapy agent, and adjudin (ADD), a mitochondrial inhibitor, in the form of dual-drug co-loaded nanoparticles (NPs). Specifically, DOX was conjugated to 1-adamantaneacetic acid (Aa) to generate a prodrug that was subsequently encapsulated in the cavity of cyclodextrin via host-guest interactions. In addition, ADD was encapsulated by poly(β-aminoester) (PBAE). The introduction of the Aa-d-α-tocopheryl polyethylene glycolsuccinate (TPGS) conjugate enhanced the biocompatibility and serum stability of the resulting NPs. The NPs can realize precise ratiometric control of drugs being loaded, increase cellular uptake of the drugs, induce mitochondrial dysfunction and augment tumor treatment efficiency by inducing apoptosis. Western blot and polymerase chain reaction analyses showed that inhibition of P-glycoprotein and X-linked inhibitor of apoptosis protein expression may underlie inhibition of tumor resistance mediated by NPs. The MCF-7/ADR xenograft tumor model also revealed that in comparison with DOX, the NPs exhibited satisfactory performance in promoting apoptosis of tumor cells and achieved high therapeutic outcomes for MDR tumors. STATEMENT OF SIGNIFICANCE: Combination chemotherapy is an effective way to overcome MDR of tumor. However, one of the major obstacles for successful combination chemotherapy is the co-loading, co-delivery and controlled release of two different drugs, whose chemo-physical properties may be totally different. In this study, a pH-sensitive NP system was designed to realize the co-loading and precise ratiometric control of DOX and ADD, as well as the programmed drug release. That is, ADD release was triggered by low pH in endo/lysosome after endocytosis and then DOX was hydrolyzed to achieve a sustained release in tumor cells. Therefore, the NPs exhibited an effectively growth inhibition against MDR cells both in vitro and in vivo via the synergistic effect of ADD and DOX, which provided a promising strategy for treatment of MDR cancer.
Collapse
|
33
|
Hu Y, Bi Y, Yao D, Wang P, Li Y. Omi/HtrA2 Protease Associated Cell Apoptosis Participates in Blood-Brain Barrier Dysfunction. Front Mol Neurosci 2019; 12:48. [PMID: 30853894 PMCID: PMC6395387 DOI: 10.3389/fnmol.2019.00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/07/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Omi/HtrA2 is a proapoptotic mitochondrial serine protease involved in caspase-dependent cell apoptosis, translocating from mitochondria to the cytosol after an apoptotic insult. Our previous study indicated pre-treatment with UCF-101, a specific inhibitor of Omi/HtrA2, could significantly reduce neuronal apoptosis and attenuate sepsis-induced cognitive dysfunction. Various hypotheses involving blood-brain-barrier (BBB) disruption have been proposed to account for sepsis-associated encephalopathy (SAE). Here, we attempted to explore whether interference of Omi/HtrA2 by RNA interference or UCF-101 pre-treatment can improve sepsis-induced disruption of BBB using human cerebral microvascular endothelial cell line (hCMEC/D3) in vitro and if so, to explore mechanisms involved Omi/HtrA2 protease mediates BBB disruption in SAE. Methods: hCMEC/D3 cell monolayers were intervened by different concentrations of LPS (0–50 μg/mL) over experimental period. Pharmacological or gene interventions (by silencing RNA of Omi/HtrA2) were used to study molecular mechanisms involved in sepsis-associated Omi/HtrA2 translocation, cell apoptosis and BBB dysfunction. BBB function was assessed by trans-endothelial electrical resistance (TEER) and permeability to labeled dextrans (FITC-4kDa). Tight junction (TJ) integrity was assessed by immunofluorescence, western blotting and transmission electron microscopic (TEM) analyses. Apoptosis was determined using flow cytometry and TUNEL assay. Mitochondrial membrane potential (MMP) and oxidative stress were also investigated. Results: LPS affects hCMEC/D3 TJ permeability in a concentration- and time-dependent manner. LPS intervention resulted in a significant disruption of BBB, as manifested by decreased TEER (by ~26%) and a parallel increased paracellular permeability to FITC- (4kDa) dextrans through hCMEC/D3 monolayers. The inhibition of Omi/HtrA2 by UCF-101 or Omi/HtrA2 shRNA reduced LPS-induced brain endothelial cell apoptosis, and resulted in significant improvement on LPS-induced BBB disruption as well as decreased occludin, claudin-5 and ZO-1 expressions. Omi/HtrA2 manipulated endothelial cell apoptosis by shifting into cytosol and inducing X-linked inhibitor of apoptosis protein (XIAP) degradation. UCF-101 administration or Omi/HtrA2 shRNA intervention did attenuate the degradation of XIAP, Poly ADP-ribose polymerase (PARP) cleavage, and caspase-3 cleavage. However, only UCF-101 partly prevented the mobilization of Omi/HtrA2 from the mitochondria to the cytosol after LPS intervention. That abrogation of Omi/HtrA2 by UCF-101 or Omi/HtrA2 shRNA resulted in a significant improvement on LPS-induced decrease of MMP. Oxidative stress was significantly increased in the LPS treated group compared to the control or NC-shRNA group. However, abrogation of Omi/HtrA2 by UCF-101 or Omi/HtrA2 shRNA did not significantly improve oxidative injury. Conclusions: Our study indicated an important role of Omi/HtrA2 in manipulating LPS-induced cell apoptosis and BBB integrity by translocating from mitochondria into cytosol in brain endothelial cells. Omi/HtrA2 induced mitochondrial pathway apoptosis, which involves inhibition of an important antiapoptotic protein XIAP and influence on MMP. Therapeutic methods that inhibit Omi/HtrA2 function may provide a novel therapeutic measure to septic encephalopathy.
Collapse
Affiliation(s)
- Yueyu Hu
- Department of Neurology, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yong Bi
- Department of Neurology, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Danhua Yao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pengfei Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Increased Active OMI/HTRA2 Serine Protease Displays a Positive Correlation with Cholinergic Alterations in the Alzheimer's Disease Brain. Mol Neurobiol 2018; 56:4601-4619. [PMID: 30361890 PMCID: PMC6657433 DOI: 10.1007/s12035-018-1383-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
OMI/HTRA2 (high-temperature requirement serine protease A2) is a mitochondrial serine protease involved in several cellular processes, including autophagy, chaperone activity, and apoptosis. Few studies on the role of OMI/HTRA2 in Alzheimer's disease (AD) are available, but none on its relationship with the cholinergic system and neurotrophic factors as well as other AD-related proteins. In this study, immunohistochemical analyses revealed that AD patients had a higher cytosolic distribution of OMI/HTRA2 protein compared to controls. Quantitative analyses on brain extracts indicated a significant increase in the active form of OMI/HTRA2 in the AD brain. Activated OMI/HTRA2 protein positively correlated with stress-associated read-through acetylcholinesterase activity. In addition, α7 nicotinic acetylcholine receptor gene expression, a receptor also known to be localized on the outer membrane of mitochondria, showed a strong correlation with OMI/HTRA2 gene expression in three different brain regions. Interestingly, the activated OMI/HTRA2 levels also correlated with the activity of the acetylcholine-biosynthesizing enzyme, choline acetyltransferase (ChAT); with levels of the neurotrophic factors, NGF and BDNF; with levels of the soluble fragments of amyloid precursor protein (APP); and with gene expression of the microtubule-associated protein tau in the examined brain regions. Overall, the results demonstrate increased levels of the mitochondrial serine protease OMI/HTRA2, and a coherent pattern of association between the activated form of OMI/HTRA2 and several key proteins involved in AD pathology. In this paper, we propose a new hypothetical model to highlight the importance and needs of further investigation on the role of OMI/HTRA2 in the mitochondrial function and AD.
Collapse
|
35
|
Wang S, Xu Y, Li C, Tao H, Wang A, Sun C, Zhong Z, Wu X, Li P, Wang Y. Gambogic acid sensitizes breast cancer cells to TRAIL-induced apoptosis by promoting the crosstalk of extrinsic and intrinsic apoptotic signalings. Food Chem Toxicol 2018; 119:334-341. [DOI: 10.1016/j.fct.2018.02.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 02/08/2023]
|
36
|
Li F, Li X, Yang J, Guo X, Zheng X, Lv Z, Shi C. Increased Expression of Apo-J and Omi/HtrA2 After Intracerebral Hemorrhage in Rats. World Neurosurg 2018; 116:e26-e34. [PMID: 29581019 DOI: 10.1016/j.wneu.2018.03.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To investigate the changes of Apo-J and Omi/HtrA2 protein expression in rats with intracerebral hemorrhage. METHODS 150 Sprague-Dawley adult rats were randomly divided into 3 groups: (1) normal control (NC) group, (2) sham group, and (3) intracerebral hemorrhage (ICH) group. The data were collected at 6 hours, 12 hours, 1 day, 2 days, 3 days, 5 days, and 7 days. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling staining. The distributions of the Apo-J and Omi/HtrA2 proteins were determined by immunohistochemical staining. The levels of Apo-J mRNA and Omi/HtrA2 mRNA expressions were examined by real-time polymerase chain reaction. RESULTS Apoptosis in the ICH group was higher than in the sham and NC groups (P < 0.05). Both the Apo-J and Omi/HtrA2 expression levels were increased in the peripheral region of hemorrhage, with a peak at 3 days. The Apo-J mRNA level positively correlated with the HtrA2 mRNA level in the ICH group (r = 0.883, P < 0.001). CONCLUSION The expressions of Apo-J and Omi/HtrA2 increased in parallel in the peripheral region of rat cerebral hemorrhage. Local high expression of Apo-J in the peripheral regions may play a neuroprotective role by inhibiting apoptosis via the Omi/HtrA2 pathway after hemorrhage.
Collapse
Affiliation(s)
- Feng Li
- Department of Neurology, Wenjiang District People's Hospital, Chengdu, China
| | - Xiaogang Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Yang
- Department of Neurology, Wenjiang District People's Hospital, Chengdu, China
| | - Xiaoyan Guo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Zheng
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhiyu Lv
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Changqing Shi
- Department of Neurosurgery, Wenjiang District People's Hospital, Chengdu, China.
| |
Collapse
|
37
|
Tang Y, Zhong ZY, Liu YF, Sheng GT. Obtusifolin inhibits high glucose‑induced mitochondrial apoptosis in human umbilical vein endothelial cells. Mol Med Rep 2018; 18:3011-3019. [PMID: 30015829 DOI: 10.3892/mmr.2018.9251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
DM is often accompanied by macrovascular complications. Obtusifolin, which is an anthraquinone‑based compound with antioxidant activity, is obtained from the seeds of Cassia obtusifolia. In this study, the potential effect of obtusifolin was investigated in human umbilical vein endothelial cells. The results from flow cytometry analysis revealed that pretreatment with obtusifolin depressed the production of cellular reactive oxygen species that was induced by high glucose content. Moreover, the results showed that pretreatment with obtusifolin reduced the level of malondialdehyde, as well as recovered the activities of mitochondrial complex I/III, catalase and superoxide dismutase. Furthermore, flow cytometry analysis also revealed that mitochondrial membrane potential and cell apoptosis were recovered, and inhibited by obtusifolin, respectively. The expression of X chromosome‑linked IAP was upregulated, whereas the expressions of poly ADP‑ribose polymerase and cysteinyl aspartate specific proteinase‑3/9 were downregulated by the pretreatment with obtusifolin. Notably, the western blot analyses showed that the release of Omi/HtrA2 into the cytosol was prevented by the pretreatment with obtusifolin. Conclusively, it was suggested that obtusifolin may provide protection against mitochondrial apoptosis largely through inhibition of the release of Omi/HtrA2 from mitochondria into cytosol.
Collapse
Affiliation(s)
- Yu Tang
- Department of Cardiology, People's Hospital of Jiangxi, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Ying Zhong
- Department of Cardiology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330003, P.R. China
| | - Yan-Feng Liu
- Department of Cardiology, People's Hospital of Jiangxi, Nanchang, Jiangxi 330006, P.R. China
| | - Gou-Tai Sheng
- Department of Cardiology, People's Hospital of Jiangxi, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
38
|
Curcumin Analog DK1 Induces Apoptosis in Human Osteosarcoma Cells In Vitro through Mitochondria-Dependent Signaling Pathway. Molecules 2018; 23:molecules23010075. [PMID: 29303982 PMCID: PMC6017915 DOI: 10.3390/molecules23010075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/13/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is one of the primary malignant bone tumors that confer low survival rates for patients even with intensive regime treatments. Therefore, discovery of novel anti-osteosarcoma drugs derived from natural products that are not harmful to the normal cells remains crucial. Curcumin is one of the natural substances that have been extensively studied due to its anti-cancer properties and is pharmacologically safe considering its ubiquitous consumption for centuries. However, curcumin suffers from a poor circulating bioavailability, which has led to the development of a chemically synthesized curcuminoid analog, namely (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (DK1). In this study, the cytotoxic effects of the curcumin analog DK1 was investigated in both U-2OS and MG-63 osteosarcoma cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell death was microscopically examined via acridine orange/propidium iodide (AO/PI) double staining. Flow cytometer analysis including Annexin V/Fluorescein isothiocyanate (FITC), cell cycle analysis and JC-1 were adapted to determine the mode of cell death. Subsequently in order to determine the mechanism of cell death, quantitative polymerase chain reaction (qPCR) and proteome profiling was carried out to measure the expression of several apoptotic-related genes and proteins. Results indicated that DK1 induced U-2 OS and MG-63 morphological changes and substantially reduced cell numbers through induction of apoptosis. Several apoptotic genes and proteins were steadily expressed after treatment with DK1; including caspase 3, caspase 9, and BAX, which indicated that apoptosis occurred through a mitochondria-dependent signaling pathway. In conclusion, DK1 could be considered as a potential candidate for an anti-osteosarcoma drug in the near future, contingent upon its ability to induce apoptosis in osteosarcoma cell lines.
Collapse
|
39
|
Familial Parkinson's Disease-Associated L166P Mutant DJ-1 is Cleaved by Mitochondrial Serine Protease Omi/HtrA2. Neurosci Bull 2017; 33:685-694. [PMID: 29177768 DOI: 10.1007/s12264-017-0196-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Mutations in the DJ-1, including L166P, are responsible for recessive early-onset PD. Many lines of evidence have shown that L166P is not only a loss-of-function mutant, but also a pro-apoptotic-like protein that results in mitochondrial dysfunction. L166P has been reported to be unstable and to mislocalize to mitochondria. However, the mechanisms underlying the instability of L166P compared to wild-type DJ-1 remain largely unknown. Here, we showed that Omi/HtrA2, a mitochondrial serine protease that has also been linked to the pathogenesis of PD, contributed to L166P instability. Omi directly interacted with and cleaved L166P in mitochondria to decrease the L166P level. However, Omi did not bind and cleave wild-type DJ-1. Moreover, Omi cleaved L166P at both serine residues 3 and 121, while L166P-induced cell death under H2O2 treatment was alleviated by over-expression of Omi. Our data reveal a bridge between DJ-1 and Omi, two PD-associated genetic factors, which contributes to our understanding of the pathogenesis of PD.
Collapse
|
40
|
Liu X, Lei J, Wang K, Ma L, Liu D, Du Y, Wu Y, Zhang S, Wang W, Ma X, Liu H. Mitochondrial Omi/HtrA2 Promotes Caspase Activation Through Cleavage of HAX-1 in Aging Heart. Rejuvenation Res 2017; 20:183-192. [PMID: 27998213 DOI: 10.1089/rej.2016.1861] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial homeostasis is a key process involved in cellular destiny and organic function. When mitochondrial status is abnormal, it will become a "death motor." Impaired mitochondria lead to the release of cytochrome c, and then trigger mitochondria-induced caspase activation. Omi/HtrA2, a serine protease, locates in mitochondria and involves in mitochondrial homeostasis. Increased Omi/HtrA2 is observed in aging cardiac tissues, and whether this has effects on mitochondrial status has not been reported. In this study, natural Sprague-Dawley rats (22 months) were used. We detected markedly increased proteolytic activity of Omi/HtrA2 and obvious activation of caspase-9 and caspase-3 in their myocardium. Then, we constructed stably transfected mitochondrial Omi/HtrA2 cells, and decreased mitochondrial membrane potential was detected by JC-1 (a probe for mitochondria) and tetramethylrhodamine methyl ester (TMRM) dyeing and significant release of cytochrome c was observed after separation of mitochondrial fraction and cytosolic fraction. Furthermore, ucf-101 (a special inhibitor of Omi/HtrA2) and HAX-1 siRNA could ameliorate those phenomena above. In conclusion, excessive Omi/HtrA2 in mitochondria induced decreased mitochondrial membrane potential by its proteolytic activity, followed by cytochrome c released from mitochondria into cytosol where cytochrome c promoted caspase activation. Also, Omi/HtrA2-HAX-1 chain played a significant role in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Xin Liu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, China
| | - Jinghui Lei
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, China
| | - Ke Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, China
| | - Lu Ma
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, China
| | - Dan Liu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, China
| | - Yunhui Du
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, China
| | - Ye Wu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, China .,2 Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease , Beijing, China
| | - Suli Zhang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, China .,2 Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease , Beijing, China
| | - Wen Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, China
| | - Xinliang Ma
- 2 Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease , Beijing, China .,3 Department of Emergency Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Huirong Liu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, China .,2 Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease , Beijing, China
| |
Collapse
|
41
|
Cardiac Specific Overexpression of Mitochondrial Omi/HtrA2 Induces Myocardial Apoptosis and Cardiac Dysfunction. Sci Rep 2016; 6:37927. [PMID: 27924873 PMCID: PMC5141441 DOI: 10.1038/srep37927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
Myocardial apoptosis is a significant problem underlying ischemic heart disease. We previously reported significantly elevated expression of cytoplasmic Omi/HtrA2, triggers cardiomyocytes apoptosis. However, whether increased Omi/HtrA2 within mitochondria itself influences myocardial survival in vivo is unknown. We aim to observe the effects of mitochondria-specific, not cytoplasmic, Omi/HtrA2 on myocardial apoptosis and cardiac function. Transgenic mice overexpressing cardiac-specific mitochondrial Omi/HtrA2 were generated and they had increased myocardial apoptosis, decreased systolic and diastolic function, and decreased left ventricular remodeling. Transiently or stably overexpression of mitochondria Omi/HtrA2 in H9C2 cells enhance apoptosis as evidenced by elevated caspase-3, -9 activity and TUNEL staining, which was completely blocked by Ucf-101, a specific Omi/HtrA2 inhibitor. Mechanistic studies revealed mitochondrial Omi/HtrA2 overexpression degraded the mitochondrial anti-apoptotic protein HAX-1, an effect attenuated by Ucf-101. Additionally, transfected cells overexpressing mitochondrial Omi/HtrA2 were more sensitive to hypoxia and reoxygenation (H/R) induced apoptosis. Cyclosporine A (CsA), a mitochondrial permeability transition inhibitor, blocked translocation of Omi/HtrA2 from mitochondrial to cytoplasm, and protected transfected cells incompletely against H/R-induced caspase-3 activation. We report in vitro and in vivo overexpression of mitochondrial Omi/HtrA2 induces cardiac apoptosis and dysfunction. Thus, strategies to directly inhibit Omi/HtrA2 or its cytosolic translocation from mitochondria may protect against heart injury.
Collapse
|
42
|
Cloning and Transcriptional Activity of the Mouse Omi/HtrA2 Gene Promoter. Int J Mol Sci 2016; 17:ijms17010119. [PMID: 26784188 PMCID: PMC4730360 DOI: 10.3390/ijms17010119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023] Open
Abstract
HtrA serine peptidase 2 (HtrA2), also named Omi, is a pro-apoptotic protein that exhibits dramatic changes in expression levels in a variety of disorders, including ischemia/reperfusion injury, cancer, and neurodegeneration. In our study, Omi/HtrA2 protein levels were high in the heart, brain, kidney and liver, with elevated heart/brain expression in aging mice. A similar expression pattern was observed at the mRNA level, which suggests that the regulation of Omi/HtrA2 is predominately transcriptional. Promoter binding by transcription factors is the main influencing factor of transcription, and to identify specific promoter elements that contribute to the differential expression of mouse Omi/HtrA2, we constructed truncated Omi/HtrA2 promoter/luciferase reporter vectors and analyzed their relative luciferase activity; it was greatest in the promoter regions at -1205~-838 bp and -146~+93 bp, with the -838~-649 bp region exhibiting negative regulatory activity. Bioinformatics analysis suggested that the Omi/HtrA2 gene promoter contains a CpG island at -709~+37 bp, and eight heat shock transcription factor 1 (HSF1) sites, two Sp1 transcription factor (SP1)sites, one activator protein (AP) site, seven p53 sites, and four YY1 transcription factor(YY1) sites were predicted in the core areas. Furthermore, we found that p53 and HSF1 specifically binds to the Omi/HtrA2 promoter using chromatin immunoprecipitation analysis. These results provide a foundation for understanding Omi/HtrA2 regulatory mechanisms, which could further understanding of HtrA-associated diseases.
Collapse
|
43
|
Casadei N, Sood P, Ulrich T, Fallier-Becker P, Kieper N, Helling S, May C, Glaab E, Chen J, Nuber S, Marcus K, Rapaport D, Ott T, Riess O, Krüger R, Fitzgerald JC. Mitochondrial defects and neurodegeneration in mice overexpressing wild-type or G399S mutant HtrA2. Hum Mol Genet 2015; 25:459-71. [DOI: 10.1093/hmg/ddv485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022] Open
|
44
|
Ma Q, Hu QS, Xu RJ, Zhen XC, Wang GH. Protease Omi facilitates neurite outgrowth in mouse neuroblastoma N2a cells by cleaving transcription factor E2F1. Acta Pharmacol Sin 2015; 36:966-75. [PMID: 26238290 DOI: 10.1038/aps.2015.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/28/2015] [Indexed: 12/13/2022]
Abstract
AIM Omi is an ATP-independent serine protease that is necessary for neuronal function and survival. The aim of this study was to investigate the role of protease Omi in regulating differentiation of mouse neuroblastoma cells and to identify the substrate of Omi involved in this process. METHODS Mouse neuroblastoma N2a cells and Omi protease-deficient mnd2 mice were used in this study. To modulate Omi and E2F1 expression, N2a cells were transfected with expression plasmids, shRNA plasmids or siRNA. Protein levels were detected using immunoblot assays. The interaction between Omi and E2F1 was studied using immunoprecipitation, GST pulldown and in vitro cleavage assays. N2a cells were treated with 20 μmol/L retinoic acid (RA) and 1% fetal bovine serum to induce neurite outgrowth, which was measured using Image J software. RESULTS E2F1 was significantly increased in Omi knockdown cells and in brain lysates of mnd2 mice, and was decreased in cells overexpressing wild-type Omi, but not inactive Omi S276C. In brain lysates of mnd2 mice, endogenous E2F1 was co-immunoprecipitated with endogenous Omi. In vitro cleavage assay demonstrated that Omi directly cleaved E2F1. Treatment of N2a cells with RA induced marked differentiation and neurite outgrowth accompanied by significantly increased Omi and decreased E2F1 levels, which were suppressed by pretreatment with the specific Omi inhibitor UCF-101. Knockdown of Omi in N2a cells suppressed RA-induced neurite outgrowth, which was partially restored by knockdown of E2F1. CONCLUSION Protease Omi facilitates neurite outgrowth by cleaving the transcription factor E2F1 in differentiated neuroblastoma cells; E2F1 is a substrate of Omi.
Collapse
|
45
|
Gmeiner WH, Boyacioglu O, Stuart CH, Jennings-Gee J, Balaji K. The cytotoxic and pro-apoptotic activities of the novel fluoropyrimidine F10 towards prostate cancer cells are enhanced by Zn(2+) -chelation and inhibiting the serine protease Omi/HtrA2. Prostate 2015; 75:360-9. [PMID: 25408502 PMCID: PMC4293244 DOI: 10.1002/pros.22922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intracellular Zn(2+) levels decrease during prostate cancer progression and agents that modulate intracellular Zn(2+) are cytotoxic to prostate cancer cells by an incompletely described mechanism. F10 is a new polymeric fluoropyrimidine drug-candidate that displays strong activity with minimal systemic toxicity in pre-clinical models of prostate cancer and other malignancies. The effects of exogenous Zn(2+) or Zn(2+) chelation for enhancing F10 cytotoxicity are investigated as is the role of Omi/HtrA2, a serine protease that promotes apoptosis in response to cellular stress. METHODS To test the hypothesis that the pro-apoptotic effects of F10 could be enhanced by modulating intracellular Zn(2+) we investigated cell-permeable and cell-impermeable Zn(2+) chelators and exogenous Zn(2+) and evaluated cell viability and apoptosis in cellular models of castration-resistant prostate cancer (CRPC; PC3, C4-2). The role of Omi/HtrA2 for modulating apoptosis was evaluated by pharmacological inhibition and Western blotting. RESULTS Exogenous Zn(2+) initially reduced prostate cancer cell viability but these effects were transitory and were ineffective at enhancing F10 cytotoxicity. The cell-permeable Zn(2+) -chelator tetrakis-(2-pyridylmethl) ethylenediamine (TPEN) induced apoptosis in prostate cancer cells and enhanced the pro-apoptotic effects of F10. The pro-apoptotic effects of Zn(2+) -chelation in combination with F10 treatment were enhanced by inhibiting Omi/HtrA2 implicating this serine protease as a novel target for prostate cancer treatment. CONCLUSIONS Zn(2+) -chelation enhances the pro-apoptotic effects of F10 and may be useful for enhancing the effectiveness of F10 for treatment of advanced prostate cancer. The serine protease Omi/HtrA2 modulates Zn(2+) -dependent apoptosis in prostate cancer cells and represents a new target for treatment of CRPC. Prostate 75:360-369, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- William H. Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
- Address correspondence to this author: Phone: (336) 716-6216, Fax: (336) 716-0255,
| | - Olcay Boyacioglu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Christopher H. Stuart
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
- Program in Molecular Medicine and Translational Science, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Jamie Jennings-Gee
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - K.C. Balaji
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
46
|
Xu Z, Chen Y, Xu G, Peng C, Liu E, Li Y, Niu J, Li C. Omi/HtrA2 pro-apoptotic marker differs in various hepatocellular carcinoma cell lines owing to ped/pea-15 expression level. Oncol Rep 2015; 33:905-12. [PMID: 25484138 DOI: 10.3892/or.2014.3656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/08/2014] [Indexed: 11/05/2022] Open
Abstract
Omi/HtrA2 promotes cell apoptosis in human cancer cells. Early studies showed that primary hepatocellular carcinoma requires Omi/HtrA2 expression for cell apoptosis. Additionally, the Omi/HtrA2 pro-apoptotic marker demonstrated a difference in some cell types. However, how the Omi/HtrA2 pro-apoptotic marker reacts during the process of hepatocellular carcinoma cell apoptosis remains to be determined. Thus, we investigated the role and possible mechanism of Omi/HtrA2 on hepatocellular carcinoma cell apoptosis using various hepatocellular carcinoma cell lines. The results were analyzed using RT‑qPCR and western blot analysis. In the present study, we found that Omi/HtrA2 was overexpressed in hepatocellular carcinoma cell lines and induced hepatocellular carcinoma cell apoptosis. Additiionally, the only manner in which Omi/HtrA2 participated in cell death in PLC cells may be dependent on IAP-binding. Omi/HtrA2‑inducing HepG2 cell apoptosis may mainly depend on its serine protease activity while both IAP-binding and its serine protease activity participated in Hep3B cell apoptosis. This result suggested that Omi/HtrA2 pro-apoptotic marker differs in various hepatocellular carcinoma cell lines. PLC cells were also devoid of the expression of ped/pea-15 as the substrate of Omi/HtrA2 serine protease while ped/pea-15 was overexpressed in HepG2 and Hep3B cells and ped/pea-15 expression was higher in HepG2 cells than that in Hep3B cells. These results showed that Omi/HtrA2 overexpression promotes hepatocellular carcinoma cell apoptosis and the ped/pea-15 expression level causes this difference of the Omi/HtrA2 pro-apoptotic marker in the various hepatocellular carcinoma cell lines.
Collapse
Affiliation(s)
- Zongquan Xu
- Deparment of Hepatic Oncology, Jiangxi Provincial Cancer Hospital, Nanchang 330029, P.R. China
| | - Yu Chen
- Deparment of Hepatic Oncology, Jiangxi Provincial Cancer Hospital, Nanchang 330029, P.R. China
| | - Guohui Xu
- Deparment of Hepatic Oncology, Jiangxi Provincial Cancer Hospital, Nanchang 330029, P.R. China
| | - Cheng Peng
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Enyu Liu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Yunguang Li
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Jun Niu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250012, P.R. China
| | - Changhai Li
- Hepatic Surgery Center Affiliated Tongji Hospital, Tongji Medical College of HuaZhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
47
|
Miyamoto M, Takano M, Iwaya K, Shinomiya N, Goto T, Kato M, Suzuki A, Aoyama T, Hirata J, Nagaoka I, Tsuda H, Furuya K. High-temperature-required protein A2 as a predictive marker for response to chemotherapy and prognosis in patients with high-grade serous ovarian cancers. Br J Cancer 2015; 112:739-44. [PMID: 25628093 PMCID: PMC4333506 DOI: 10.1038/bjc.2015.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/29/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022] Open
Abstract
Background: High-temperature-required protein A2 (HtrA2), a protein relating with apoptosis in a caspases-dependent and non-dependent manner, has been reported to be associated with chemosensitivity in several human cancers. Methods: Tissue microarrays made from 142 patients with high-grade serous ovarian adenocarcinoma were evaluated to assess whether HtrA2 expression was related with several clinical parameters. Results: Negative HtrA2 expression was observed in 36 cases (25%) of the patients, and related with significantly lower response rates of primary chemotherapy than those with positive HtrA2 expression (56% vs 83%, P<0.01). In addition, negative HtrA2 expression was identified as an independent worse prognostic factor for progression-free survival and overall survival by multivariate analyses. Furthermore, HtrA2 downregulation modulated sensitivity to platinum in serous ovarian cancer cells in vitro. Conclusions: HtrA2 expression was a predictor for sensitivity to chemotherapy, and could be a candidate of molecular target in the treatment of high-grade serous ovarian cancers.
Collapse
Affiliation(s)
- M Miyamoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - M Takano
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - K Iwaya
- Department of Basic Pathology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - N Shinomiya
- Department of Molecular Biology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - T Goto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - M Kato
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - A Suzuki
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - T Aoyama
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - J Hirata
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - I Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - H Tsuda
- Department of Basic Pathology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - K Furuya
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
48
|
Baker MJ, Palmer CS, Stojanovski D. Mitochondrial protein quality control in health and disease. Br J Pharmacol 2014; 171:1870-89. [PMID: 24117041 DOI: 10.1111/bph.12430] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022] Open
Abstract
Progressive mitochondrial dysfunction is linked with the onset of many age-related pathologies and neurological disorders. Mitochondrial damage can come in many forms and be induced by a variety of cellular insults. To preserve organelle function during biogenesis or times of stress, multiple surveillance systems work to ensure the persistence of a functional mitochondrial network. This review provides an overview of these processes, which collectively contribute to the maintenance of a healthy mitochondrial population, which is critical for cell physiology and survival.
Collapse
Affiliation(s)
- Michael J Baker
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia; ARC Centre of Excellence for Coherent X-ray Science, Melbourne, VIC, Australia
| | | | | |
Collapse
|
49
|
Stress Conditions Increase Vimentin Cleavage by Omi/HtrA2 Protease in Human Primary Neurons and Differentiated Neuroblastoma Cells. Mol Neurobiol 2014; 52:1077-1092. [DOI: 10.1007/s12035-014-8906-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
|
50
|
Singh H, Nero TL, Wang Y, Parker MW, Nie G. Activity-modulating monoclonal antibodies to the human serine protease HtrA3 provide novel insights into regulating HtrA proteolytic activities. PLoS One 2014; 9:e108235. [PMID: 25248123 PMCID: PMC4172569 DOI: 10.1371/journal.pone.0108235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022] Open
Abstract
Mammalian HtrA (high temperature requirement factor A) proteases, comprising 4 multi-domain members HtrA1-4, play important roles in a number of normal cellular processes as well as pathological conditions such as cancer, arthritis, neurodegenerative diseases and pregnancy disorders. However, how HtrA activities are regulated is not well understood, and to date no inhibitors specific to individual HtrA proteins have been identified. Here we investigated five HtrA3 monoclonal antibodies (mAbs) that we have previously produced, and demonstrated that two of them regulated HtrA3 activity in an opposing fashion: one inhibited while the other stimulated. The inhibitory mAb also blocked HtrA3 activity in trophoblast cells and enhanced migration and invasion, confirming its potential in vivo utility. To understand how the binding of these mAbs modulated HtrA3 protease activity, their epitopes were visualized in relation to a 3-dimensional HtrA3 homology model. This model suggests that the inhibitory HtrA3 mAb blocks substrate access to the protease catalytic site, whereas the stimulatory mAb may bind to the PDZ domain alone or in combination with the N-terminal and protease domains. Since HtrA1, HtrA3 and HtrA4 share identical domain organization, our results establish important foundations for developing potential therapeutics to target these HtrA proteins specifically for the treatment of a number of diseases, including cancer and pregnancy disorders.
Collapse
Affiliation(s)
- Harmeet Singh
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
- * E-mail: (GN); (HS)
| | - Tracy L. Nero
- ACRF Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Yao Wang
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
| | - Michael W. Parker
- ACRF Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Parkville, Victoria, Australia
| | - Guiying Nie
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
- Monash University, Clayton, Victoria, Australia
- * E-mail: (GN); (HS)
| |
Collapse
|