1
|
Mujal AM, Owyong M, Santosa EK, Sauter JC, Grassmann S, Pedde AM, Meiser P, Wingert CK, Pujol M, Buchholz VR, Lau CM, Böttcher JP, Sun JC. Splenic TNF-α signaling potentiates the innate-to-adaptive transition of antiviral NK cells. Immunity 2025; 58:585-600.e6. [PMID: 40023159 DOI: 10.1016/j.immuni.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2024] [Accepted: 02/07/2025] [Indexed: 03/04/2025]
Abstract
Natural killer (NK) cells possess both innate and adaptive features. Here, we investigated NK cell activation across tissues during cytomegalovirus infection, which generates antigen-specific clonal expansion and long-lived memory responses. Longitudinal tracking and single-cell RNA sequencing of NK cells following infection revealed enhanced activation in the spleen, as well as early formation of a CD69lo precursor population that preferentially gave rise to adaptive NK cells. Splenic NK cells demonstrated heightened tumor necrosis factor alpha (TNF-α) signaling and increased expression of the receptor TNFR2, which coincided with elevated TNF-α production by splenic myeloid cells. TNFR2-deficient NK cells exhibited impaired interferon gamma (IFN-γ) production and expansion. TNFR2 signaling engaged two distinct nuclear factor κB (NF-κB) signaling arms-innate effector NK cell responses required canonical NF-κB signaling, whereas non-canonical NF-κB signaling enforced differentiation of CD69lo adaptive NK cell precursors. Thus, NK cell priming in the spleen during viral infection promotes an innate-to-adaptive transition, providing insight into avenues for generating adaptive NK cell immunity across diverse settings.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Animals
- Mice
- Signal Transduction/immunology
- Spleen/immunology
- Immunity, Innate
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/immunology
- NF-kappa B/metabolism
- Adaptive Immunity
- Mice, Inbred C57BL
- Lymphocyte Activation/immunology
- Cytomegalovirus Infections/immunology
- Mice, Knockout
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Interferon-gamma/metabolism
- Muromegalovirus/immunology
- Antigens, Differentiation, T-Lymphocyte
- Antigens, CD
- Lectins, C-Type
Collapse
Affiliation(s)
- Adriana M Mujal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Mark Owyong
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Endi K Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - John C Sauter
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna-Marie Pedde
- Department of Experimental Immunology, Institute of Immunology, University of Tübingen, Tübingen, Germany; M3 Research Center, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Philippa Meiser
- Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Claire K Wingert
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marine Pujol
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan P Böttcher
- Department of Experimental Immunology, Institute of Immunology, University of Tübingen, Tübingen, Germany; M3 Research Center, University Hospital Tübingen, University of Tübingen, Tübingen, Germany; Institute of Molecular Immunology, TUM University Hospital, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Sarna NS, Desai SH, Kaufman BG, Curry NM, Hanna AM, King MR. Enhanced and sustained T cell activation in response to fluid shear stress. iScience 2024; 27:109999. [PMID: 38883838 PMCID: PMC11177201 DOI: 10.1016/j.isci.2024.109999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The efficacy of T cell therapies in treating solid tumors is limited by poor in vivo persistence, proliferation, and cytotoxicity, which can be attributed to limited and variable ex vivo activation. Herein, we present a 10-day kinetic profile of T cells subjected to fluid shear stress (FSS) ex vivo, with and without stimulation utilizing bead-conjugated anti-CD3/CD28 antibodies. We demonstrate that mechanical stimulation via FSS combined with bead-bound anti-CD3/CD28 antibodies yields a synergistic effect, resulting in amplified and sustained downstream signaling (NF-κB, c-Fos, and NFAT), expression of activation markers (CD69 and CD25), proliferation and production of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2). This study represents the first characterization of the dynamic response of primary T cells to FSS. Collectively, our findings underscore the critical role of mechanosensitive ion channel-mediated mechanobiological signaling in T cell activation and fitness, enabling the development of strategies to address the current challenges associated with poor immunotherapy outcomes.
Collapse
Affiliation(s)
- Nicole S Sarna
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Shanay H Desai
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
- Department of Neuroscience, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Benjamin G Kaufman
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Natalie M Curry
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Anne M Hanna
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, United States
| |
Collapse
|
3
|
Fisher JS, Adán‐Barrientos I, Kumar NR, Lancaster JN. The aged microenvironment impairs BCL6 and CD40L induction in CD4 + T follicular helper cell differentiation. Aging Cell 2024; 23:e14140. [PMID: 38481058 PMCID: PMC11296098 DOI: 10.1111/acel.14140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 06/13/2024] Open
Abstract
Weakened germinal center responses by the aged immune system result in diminished immunity against pathogens and reduced efficacy of vaccines. Prolonged contacts between activated B cells and CD4+ T cells are crucial to germinal center formation and T follicular helper cell (Tfh) differentiation, but it is unclear how aging impacts the quality of this interaction. Peptide immunization confirmed that aged mice have decreased expansion of antigen-specific germinal center B cells and reduced antibody titers. Furthermore, aging was associated with accumulated Tfh cells, even in naïve mice. Despite increased numbers, aged Tfh had reduced expression of master transcription factor BCL6 and increased expression of the ectonucleotidase CD39. In vitro activation revealed that proliferative capacity was maintained in aged CD4+ T cells, but not the costimulatory molecule CD40L. When activated in vitro by aged antigen-presenting cells, young CD4+ naïve T cells generated reduced numbers of activated cells with upregulated CD40L. To determine the contribution of cell-extrinsic influences on antigen-specific Tfh induction, young, antigen-specific B and CD4+ T cells were adoptively transferred into aged hosts prior to peptide immunization. Transferred cells had reduced expansion and differentiation into germinal center B cell and Tfh and reduced antigen-specific antibody titers when compared to young hosts. Young CD4+ T cells transferred aged hosts differentiated into Tfh cells with reduced PD-1 and BCL6 expression, and increased CD39 expression, though they maintained their mitochondrial capacity. These results highlight the role of the lymphoid microenvironment in modulating CD4+ T cell differentiation, which contributes to impaired establishment and maintenance of germinal centers.
Collapse
Affiliation(s)
| | - Irene Adán‐Barrientos
- Immunobiology LaboratoryCentro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Naveen R. Kumar
- Department of ImmunologyMayo ClinicScottsdaleArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Jessica N. Lancaster
- Department of ImmunologyMayo ClinicScottsdaleArizonaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Department of Cancer BiologyMayo ClinicScottsdaleArizonaUSA
| |
Collapse
|
4
|
Wu J, Jin YY, Mo X, Chen TX. T-cell Defects in a Patient with NFKBIA Gene Mutation. J Clin Immunol 2024; 44:110. [PMID: 38676832 DOI: 10.1007/s10875-024-01703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Affiliation(s)
- Jing Wu
- Division of Immunology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
- Laboratory of Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China
| | - Ying-Ying Jin
- Department of Rheumatology/Immunology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Mo
- Laboratory of Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.
| | - Tong-Xin Chen
- Division of Immunology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
5
|
Sirpilla O, Sakemura RL, Hefazi M, Huynh TN, Can I, Girsch JH, Tapper EE, Cox MJ, Schick KJ, Manriquez-Roman C, Yun K, Stewart CM, Ogbodo EJ, Kimball BL, Mai LK, Gutierrez-Ruiz OL, Rodriguez ML, Gluscevic M, Larson DP, Abel AM, Wierson WA, Olivier G, Siegler EL, Kenderian SS. Mesenchymal stromal cells with chimaeric antigen receptors for enhanced immunosuppression. Nat Biomed Eng 2024; 8:443-460. [PMID: 38561490 PMCID: PMC12080371 DOI: 10.1038/s41551-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.
Collapse
Affiliation(s)
- Olivia Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - R Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Truc N Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - James H Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Erin E Tapper
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Michelle J Cox
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kendall J Schick
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Claudia Manriquez-Roman
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Ekene J Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Long K Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Omar L Gutierrez-Ruiz
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Makena L Rodriguez
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Daniel P Larson
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Alex M Abel
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Wesley A Wierson
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Gloria Olivier
- Department of Business Development, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Kanaoka D, Yamada M, Yokoyama H, Nishino S, Kunimura N, Satoyoshi H, Wakabayashi S, Urabe K, Ishii T, Nakanishi M. FPFT-2216, a Novel Anti-lymphoma Compound, Induces Simultaneous Degradation of IKZF1/3 and CK1α to Activate p53 and Inhibit NFκB Signaling. CANCER RESEARCH COMMUNICATIONS 2024; 4:312-327. [PMID: 38265263 PMCID: PMC10846380 DOI: 10.1158/2767-9764.crc-23-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/03/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Reducing casein kinase 1α (CK1α) expression inhibits the growth of multiple cancer cell lines, making it a potential therapeutic target for cancer. Herein, we evaluated the antitumor activity of FPFT-2216-a novel low molecular weight compound-in lymphoid tumors and elucidated its molecular mechanism of action. In addition, we determined whether targeting CK1α with FPFT-2216 is useful for treating hematopoietic malignancies. FPFT-2216 strongly degraded CK1α and IKAROS family zinc finger 1/3 (IKZF1/3) via proteasomal degradation. FPFT-2216 exhibited stronger inhibitory effects on human lymphoma cell proliferation than known thalidomide derivatives and induced upregulation of p53 and its transcriptional targets, namely, p21 and MDM2. Combining FPFT-2216 with an MDM2 inhibitor exhibited synergistic antiproliferative activity and induced rapid tumor regression in immunodeficient mice subcutaneously transplanted with a human lymphoma cell line. Nearly all tumors in mice disappeared after 10 days; this was continuously observed in 5 of 7 mice up to 24 days after the final FPFT-2216 administration. FPFT-2216 also enhanced the antitumor activity of rituximab and showed antitumor activity in a patient-derived diffuse large B-cell lymphoma xenograft model. Furthermore, FPFT-2216 decreased the activity of the CARD11/BCL10/MALT1 (CBM) complex and inhibited IκBα and NFκB phosphorylation. These effects were mediated through CK1α degradation and were stronger than those of known IKZF1/3 degraders. In conclusion, FPFT-2216 inhibits tumor growth by activating the p53 signaling pathway and inhibiting the CBM complex/NFκB pathway via CK1α degradation. Therefore, FPFT-2216 may represent an effective therapeutic agent for hematopoietic malignancies, such as lymphoma. SIGNIFICANCE We found potential vulnerability to CK1α degradation in certain lymphoma cells refractory to IKZF1/3 degraders. Targeting CK1α with FPFT-2216 could inhibit the growth of these cells by activating p53 signaling. Our study demonstrates the potential therapeutic application of CK1α degraders, such as FPFT-2216, for treating lymphoma.
Collapse
Affiliation(s)
- Daiki Kanaoka
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Mitsuo Yamada
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Hironori Yokoyama
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Satoko Nishino
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Naoshi Kunimura
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Hiroshi Satoyoshi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Shota Wakabayashi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Kazunori Urabe
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Takafumi Ishii
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Masato Nakanishi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| |
Collapse
|
7
|
Tserunyan V, Finley SD. A systems and computational biology perspective on advancing CAR therapy. Semin Cancer Biol 2023; 94:34-49. [PMID: 37263529 PMCID: PMC10529846 DOI: 10.1016/j.semcancer.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
In the recent decades, chimeric antigen receptor (CAR) therapy signaled a new revolutionary approach to cancer treatment. This method seeks to engineer immune cells expressing an artificially designed receptor, which would endue those cells with the ability to recognize and eliminate tumor cells. While some CAR therapies received FDA approval and others are subject to clinical trials, many aspects of their workings remain elusive. Techniques of systems and computational biology have been frequently employed to explain the operating principles of CAR therapy and suggest further design improvements. In this review, we sought to provide a comprehensive account of those efforts. Specifically, we discuss various computational models of CAR therapy ranging in scale from organismal to molecular. Then, we describe the molecular and functional properties of costimulatory domains frequently incorporated in CAR structure. Finally, we describe the signaling cascades by which those costimulatory domains elicit cellular response against the target. We hope that this comprehensive summary of computational and experimental studies will further motivate the use of systems approaches in advancing CAR therapy.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Pani G. Fusobacterium & Co. at the Stem of Cancer: Microbe-Cancer Stem Cell Interactions in Colorectal Carcinogenesis. Cancers (Basel) 2023; 15:cancers15092583. [PMID: 37174049 PMCID: PMC10177588 DOI: 10.3390/cancers15092583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Adult stem cells lie at the crossroads of tissue repair, inflammation, and malignancy. Intestinal microbiota and microbe-host interactions are pivotal to maintaining gut homeostasis and response to injury, and participate in colorectal carcinogenesis. Yet, limited knowledge is available on whether and how bacteria directly crosstalk with intestinal stem cells (ISC), particularly cancerous stem-like cells (CR-CSC), as engines for colorectal cancer initiation, maintenance, and metastatic dissemination. Among several bacterial species alleged to initiate or promote colorectal cancer (CRC), the pathobiont Fusobacterium Nucleatum has recently drawn significant attention for its epidemiologic association and mechanistic linkage with the disease. We will therefore focus on current evidence for an F. nucleatum-CRCSC axis in tumor development, highlighting the commonalities and differences between F. nucleatum-associated colorectal carcinogenesis and gastric cancer driven by Helicobacter Pylori. We will explore the diverse facets of the bacteria-CSC interaction, analyzing the signals and pathways whereby bacteria either confer "stemness" properties to tumor cells or primarily target stem-like elements within the heterogeneous tumor cell populations. We will also discuss the extent to which CR-CSC cells are competent for innate immune responses and participate in establishing a tumor-promoting microenvironment. Finally, by capitalizing on the expanding knowledge of how the microbiota and ISC crosstalk in intestinal homeostasis and response to injury, we will speculate on the possibility that CRC arises as an aberrant repair response promoted by pathogenic bacteria upon direct stimulation of intestinal stem cells.
Collapse
Affiliation(s)
- Giovambattista Pani
- Department of Translational Medicine and Surgery, Section of General Pathology, Faculty of Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, L. go A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
9
|
Lo WL, Kuhlmann M, Rizzuto G, Ekiz HA, Kolawole EM, Revelo MP, Andargachew R, Li Z, Tsai YL, Marson A, Evavold BD, Zehn D, Weiss A. A single-amino acid substitution in the adaptor LAT accelerates TCR proofreading kinetics and alters T-cell selection, maintenance and function. Nat Immunol 2023; 24:676-689. [PMID: 36914891 PMCID: PMC10063449 DOI: 10.1038/s41590-023-01444-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/25/2023] [Indexed: 03/14/2023]
Abstract
Mature T cells must discriminate between brief interactions with self-peptides and prolonged binding to agonists. The kinetic proofreading model posits that certain T-cell antigen receptor signaling nodes serve as molecular timers to facilitate such discrimination. However, the physiological significance of this regulatory mechanism and the pathological consequences of disrupting it are unknown. Here we report that accelerating the normally slow phosphorylation of the linker for activation of T cells (LAT) residue Y136 by introducing an adjacent Gly135Asp alteration (LATG135D) disrupts ligand discrimination in vivo. The enhanced self-reactivity of LATG135D T cells triggers excessive thymic negative selection and promotes T-cell anergy. During Listeria infection, LATG135D T cells expand more than wild-type counterparts in response to very weak stimuli but display an imbalance between effector and memory responses. Moreover, despite their enhanced engagement of central and peripheral tolerance mechanisms, mice bearing LATG135D show features associated with autoimmunity and immunopathology. Our data reveal the importance of kinetic proofreading in balancing tolerance and immunity.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Miriam Kuhlmann
- Division of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gabrielle Rizzuto
- Human Oncology and Pathogenesis Program, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, Turkey
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Rakieb Andargachew
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Zhongmei Li
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Yuan-Li Tsai
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Fathi N, Mojtahedi H, Nasiri M, Abolhassani H, Yousefpour Marzbali M, Esmaeili M, Salami F, Biglari F, Rezaei N. How do nuclear factor kappa B (NF-κB)1 and NF-κB2 defects lead to the incidence of clinical and immunological manifestations of inborn errors of immunity? Expert Rev Clin Immunol 2023; 19:329-339. [PMID: 36706462 DOI: 10.1080/1744666x.2023.2174105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Genetic defects affect the manner of the immune system's development, activation, and function. Nuclear factor-kappa B subunit 1 (NF-κB1) and NF-κB2 are involved in different biological processes, and deficiency in these transcription factors may reveal clinical and immunological difficulties. AREAS COVERED This review article gathers the most frequent clinical and immunological remarkable characteristics of NF-κB1 and NF-κB2 deficiencies. Afterward, an effort is made to describe the biological mechanism, which is likely to be the cause of these clinical and immunological abnormalities. EXPERT OPINION The present review article has explained the mechanism of contributions of the NF-κB1 and NF-κB2 deficiency in revealing immunodeficiency symptoms, specifically immunological and clinical manifestations. These mechanisms demonstrate the importance of NF-κB1 and NF-κB2 signaling pathways for B and T cell development, activation, antibody production, and immunotolerance. The manifestation of a mutation can range from no symptoms to severe complications in a family.
Collapse
Affiliation(s)
- Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Mojtahedi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Nasiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Mahsa Yousefpour Marzbali
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,International Network of Stem Cell (INSC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Furozan Biglari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Joseph J, Rahmani B, Cole Y, Puttagunta N, Lin E, Khan ZK, Jain P. Can Soluble Immune Checkpoint Molecules on Exosomes Mediate Inflammation? J Neuroimmune Pharmacol 2022; 17:381-397. [PMID: 34697721 PMCID: PMC10128092 DOI: 10.1007/s11481-021-10018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023]
Abstract
Immune checkpoints (ICPs) are major co-signaling pathways that trigger effector functions in immune cells, with isoforms that are either membrane bound, engaging in direct cell to cell activation locally, or soluble, acting at distant sites by circulating freely or potentially via extracellular vesicles (EVs). Exosomes are small EVs secreted by a variety of cells carrying various proteins and nucleic acids. They are distributed extensively through biological fluids and have major impacts on infectious diseases, cancer, and neuroinflammation. Similarly, ICPs play key roles in a variety of disease conditions and have been extensively utilized as a prognostic tool for various cancers. Herein, we explored if the association between exosomes and ICPs could be a significant contributor of inflammation, particularly in the setting of cancer, neuroinflammation and viral infections, wherein the up regulation in both exosomal proteins and ICPs correlate with immunosuppressive effects. The detailed literature review of existing data highlights the significance and complexity of these two important pathways in mediating cancer and potentiating neuroinflammation via modulating overall immune response. Cells increasingly secret exosomes in response to intracellular signals from invading pathogens or cancerous transformations. These exosomes can carry a variety of cargo including proteins, nucleic acids, cytokines, and receptors/ligands that have functional consequences on recipient cells. Illustration generated using BioRender software.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Benjamin Rahmani
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Yonesha Cole
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Neha Puttagunta
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Edward Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA. .,Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA.
| |
Collapse
|
12
|
Contribution of T- and B-cell intrinsic toll-like receptors to the adaptive immune response in viral infectious diseases. Cell Mol Life Sci 2022; 79:547. [PMID: 36224474 PMCID: PMC9555683 DOI: 10.1007/s00018-022-04582-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022]
Abstract
Toll-like receptors (TLRs) comprise a class of highly conserved molecules that recognize pathogen-associated molecular patterns and play a vital role in host defense against multiple viral infectious diseases. Although TLRs are highly expressed on innate immune cells and play indirect roles in regulating antiviral adaptive immune responses, intrinsic expression of TLRs in adaptive immune cells, including T cells and B cells, cannot be ignored. TLRs expressed in CD4 + and CD8 + T cells play roles in enhancing TCR signal-induced T-cell activation, proliferation, function, and survival, serving as costimulatory molecules. Gene knockout of TLR signaling molecules has been shown to diminish antiviral adaptive immune responses and affect viral clearance in multiple viral infectious animal models. These results have highlighted the critical role of TLRs in the long-term immunological control of viral infection. This review summarizes the expression and function of TLR signaling pathways in T and B cells, focusing on the in vitro and vivo mechanisms and effects of intrinsic TLR signaling in regulating T- and B-cell responses during viral infection. The potential clinical use of TLR-based immune regulatory drugs for viral infectious diseases is also explored.
Collapse
|
13
|
Papoutsopoulou S, Morris L, Bayliff A, Mair T, England H, Stagi M, Bergey F, Alam MT, Sheibani-Tezerji R, Rosenstiel P, Müller W, Martins Dos Santos VAP, Campbell BJ. Effects of Human RelA Transgene on Murine Macrophage Inflammatory Responses. Biomedicines 2022; 10:biomedicines10040757. [PMID: 35453507 PMCID: PMC9027775 DOI: 10.3390/biomedicines10040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
The NFκB transcription factors are major regulators of innate immune responses, and NFκB signal pathway dysregulation is linked to inflammatory disease. Here, we utilised bone marrow-derived macrophages from the p65-DsRedxp/IκBα-eGFP transgenic strain to study the functional implication of xenogeneic (human) RelA(p65) protein introduced into the mouse genome. Confocal imaging showed that human RelA is expressed in the cells and can translocate to the nucleus following activation of Toll-like receptor 4. RNA sequencing of lipid A-stimulated macrophages, revealed that human RelA impacts on murine gene transcription, affecting both non-NFκB and NFκB target genes, including immediate-early and late response genes, e.g., Fos and Cxcl10. Validation experiments on NFκB targets revealed markedly reduced mRNA levels, but similar kinetic profiles in transgenic cells compared to wild-type. Enrichment pathway analysis of differentially expressed genes revealed interferon and cytokine signaling were affected. These immune response pathways were also affected in macrophages treated with tumor necrosis factor. Data suggests that the presence of xenogeneic RelA protein likely has inhibitory activity, altering specific transcriptional profiles of key molecules involved in immune responses. It is therefore essential that this information be taken into consideration when designing and interpreting future experiments using this transgenic strain.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 413 34 Larissa, Greece
- Correspondence: (S.P.); (B.J.C.)
| | - Lorna Morris
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
| | - Andrew Bayliff
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
| | - Thomas Mair
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
| | - Hazel England
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
| | - Massimiliano Stagi
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK;
| | - François Bergey
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
| | - Mohammad Tauqeer Alam
- Warwick Medical School, Bioinformatics RTP, University of Warwick, Coventry CV4 7AL, UK;
- Department of Biology, College of Science, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Raheleh Sheibani-Tezerji
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, 6708 WE Kiel, Germany; (R.S.-T.); (P.R.)
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, 6708 WE Kiel, Germany; (R.S.-T.); (P.R.)
| | - Werner Müller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
| | - Vitor A. P. Martins Dos Santos
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, P.O. Box 8033, 6700 EJ Wageningen, The Netherlands
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
- Correspondence: (S.P.); (B.J.C.)
| |
Collapse
|
14
|
Surucu Yilmaz N, Bilgic Eltan S, Kayaoglu B, Geckin B, Heredia RJ, Sefer AP, Kiykim A, Nain E, Kasap N, Dogru O, Yucelten AD, Cinel L, Karasu G, Yesilipek A, Sozeri B, Kaya GG, Yilmaz IC, Baydemir I, Aydin Y, Cansen Kahraman D, Haimel M, Boztug K, Karakoc-Aydiner E, Gursel I, Ozen A, Baris S, Gursel M. Low Density Granulocytes and Dysregulated Neutrophils Driving Autoinflammatory Manifestations in NEMO Deficiency. J Clin Immunol 2022; 42:582-596. [PMID: 35028801 DOI: 10.1007/s10875-021-01176-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
NF-κB essential modulator (NEMO, IKK-γ) deficiency is a rare combined immunodeficiency caused by mutations in the IKBKG gene. Conventionally, patients are afflicted with life threatening recurrent microbial infections. Paradoxically, the spectrum of clinical manifestations includes severe inflammatory disorders. The mechanisms leading to autoinflammation in NEMO deficiency are currently unknown. Herein, we sought to investigate the underlying mechanisms of clinical autoinflammatory manifestations in a 12-years old male NEMO deficiency (EDA-ID, OMIM #300,291) patient by comparing the immune profile of the patient before and after hematopoietic stem cell transplantation (HSCT). Response to NF-kB activators were measured by cytokine ELISA. Neutrophil and low-density granulocyte (LDG) populations were analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMC) transcriptome before and after HSCT and transcriptome of sorted normal-density neutrophils and LDGs were determined using the NanoString nCounter gene expression panels. ISG15 expression and protein ISGylation was based on Immunoblotting. Consistent with the immune deficiency, PBMCs of the patient were unresponsive to toll-like and T cell receptor-activators. Paradoxically, LDGs comprised 35% of patient PBMCs and elevated expression of genes such as MMP9, LTF, and LCN2 in the granulocytic lineage, high levels of IP-10 in the patient's plasma, spontaneous ISG15 expression and protein ISGylation indicative of a spontaneous type I interferon (IFN) signature were observed, all of which normalized after HSCT. Collectively, our results suggest that type I IFN signature observed in the patient, dysregulated LDGs and spontaneously activated neutrophils, potentially contribute to tissue damage in NEMO deficiency.
Collapse
Affiliation(s)
- Naz Surucu Yilmaz
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Basak Kayaoglu
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Busranur Geckin
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kiykim
- Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ercan Nain
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Nurhan Kasap
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Omer Dogru
- Division of Pediatric Hematology-Oncology, Marmara University, Istanbul, Turkey
| | | | - Leyla Cinel
- Division of Pathology, Marmara University, Istanbul, Turkey
| | - Gulsun Karasu
- Goztepe Medicalpark Hospital, Pediatric Stem Cell Transplantation Unit, İstanbul, Turkey
| | - Akif Yesilipek
- Goztepe Medicalpark Hospital, Pediatric Stem Cell Transplantation Unit, İstanbul, Turkey
| | - Betul Sozeri
- Division of Pediatric Rheumatology, University of Health Sciences, Umraniye Research and Training Hospital, Istanbul, Turkey
| | - Goksu Gokberk Kaya
- Therapeutic ODN Research Lab, Department of Molecular Biology and Genetics, Bilkent University, Bilkent, 06800, Ankara, Turkey
| | - Ismail Cem Yilmaz
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Ilayda Baydemir
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Yagmur Aydin
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Deniz Cansen Kahraman
- KanSiL, Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Matthias Haimel
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ihsan Gursel
- Therapeutic ODN Research Lab, Department of Molecular Biology and Genetics, Bilkent University, Bilkent, 06800, Ankara, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey. .,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey. .,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| | - Mayda Gursel
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey.
| |
Collapse
|
15
|
Charab W, Rosenberger MG, Shivram H, Mirazee JM, Donkor M, Shekhar SR, Gjuka D, Khoo KH, Kim JE, Iyer VR, Georgiou G. IgG Immune Complexes Inhibit Naïve T Cell Proliferation and Suppress Effector Function in Cytotoxic T Cells. Front Immunol 2021; 12:713704. [PMID: 34447380 PMCID: PMC8383740 DOI: 10.3389/fimmu.2021.713704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023] Open
Abstract
Elevated levels of circulating immune complexes are associated with autoimmunity and with worse prognoses in cancer. Here, we examined the effects of well-defined, soluble immune complexes (ICs) on human peripheral T cells. We demonstrate that IgG-ICs inhibit the proliferation and differentiation of a subset of naïve T cells but stimulate the division of another naïve-like T cell subset. Phenotypic analysis by multi-parameter flow cytometry and RNA-Seq were used to characterize the inhibited and stimulated T cells revealing that the inhibited subset presented immature features resembling those of recent thymic emigrants and non-activated naïve T cells, whereas the stimulated subset exhibited transcriptional features indicative of a more differentiated, early memory progenitor with a naïve-like phenotype. Furthermore, we show that while IgG1-ICs do not profoundly inhibit the proliferation of memory T cells, IgG1-ICs suppress the production of granzyme-β and perforin in cytotoxic memory T cells. Our findings reveal how ICs can link humoral immunity and T cell function.
Collapse
Affiliation(s)
- Wissam Charab
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Matthew G. Rosenberger
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Haridha Shivram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Justin M. Mirazee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Moses Donkor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Soumya R. Shekhar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Donjeta Gjuka
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Kimberly H. Khoo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Jin Eyun Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Vishwanath R. Iyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
16
|
Liang X, Cao Y, Li C, Yu H, Yang C, Liu H. MALT1 as a promising target to treat lymphoma and other diseases related to MALT1 anomalies. Med Res Rev 2021; 41:2388-2422. [PMID: 33763890 DOI: 10.1002/med.21799] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a key adaptor protein that regulates the NF-κB pathway, in which MALT1 functions as a scaffold protein and protease to trigger downstream signals. The abnormal expression of MALT1 is closely associated with lymphomagenesis and other diseases, including solid tumors and autoimmune diseases. MALT1 is the only protease in the underlying pathogenesis of these diseases, and its proteolytic activity can be pharmacologically regulated. Therefore, MALT1 is a potential and promising target for anti-lymphoma and other MALT1-related disease treatments. Currently, the development of MALT1 inhibitors is still in its early stages. This review presents an overview of MALT1, particularly its X-ray structures and biological functions, and elaborates on the pathogenesis of diseases associated with its dysregulation. We then summarize previously reported MALT1 inhibitors, focusing on their molecular structure, biological activity, structure-activity relationship, and limitations. Finally, we propose future research directions to accelerate the discovery of novel MALT1 inhibitors with clinical applications. Overall, this review provides a comprehensive and systematic overview of MALT1-related research advances and serves as a theoretical basis for drug discovery and research.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - YiChun Cao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Lee HS, Jeong GS. Therapeutic effect of kaempferol on atopic dermatitis by attenuation of T cell activity via interaction with multidrug resistance-associated protein 1. Br J Pharmacol 2021; 178:1772-1788. [PMID: 33555623 DOI: 10.1111/bph.15396] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Kaempferol is a natural flavonoid widely investigated in various fields due to its antioxidant, anti-cancer, and anti-inflammatory activities, but few studies have shown its inhibitory effect on T cell activation. This study examined the therapeutic potential of kaempferol in atopic dermatitis by modulating T cell activation. EXPERIMENTAL APPROACH Effects of kaempferol on T cell activation and the underlying mechanisms were investigated in Jurkat cells and mouse CD4+ T cells. A model of atopic dermatitis in mice was used to determine its therapeutic potential on T cell-mediated conditions in vivo. Western blots, RT-PCR, pulldown assays and ELISA were used, along with histological analysis of skin. KEY RESULTS Pretreatment with kaempferol reduced CD69 expression and production of inflammatory cytokines including IL-2 from activated Jurkat cells and murine CD4+ T cells without cytotoxicity. Pulldown assays revealed that kaempferol physically binds to MRP-1 in T cells, inhibiting the action of MRP-1. In activated T cells, kaempferol suppressed JNK phosphorylation and the TAK1-IKKα mediated NF-κB pathway. Oral administration of kaempferol to mice showed improved manifestation of atopic dermatitis, a T cell-mediated condition. Western blot results showed that, as in the in vitro studies, decreased phosphorylation of JNK was associated with down-regulated MRP-1 activity in vivo, in the kaempferol-treated mice in the atopic dermatitis model. CONCLUSION AND IMPLICATIONS Kaempferol regulates T cell activation by inhibiting MRP-1 activity in activated T cells, thus showing protective effects against T cell mediated disease in vivo.
Collapse
Affiliation(s)
- Hyun-Su Lee
- College of Pharmacy, Keimyung University, Daegu, Korea
| | | |
Collapse
|
18
|
Freen-van Heeren JJ. Using CRISPR to enhance T cell effector function for therapeutic applications. Cytokine X 2021; 3:100049. [PMID: 33604565 PMCID: PMC7885876 DOI: 10.1016/j.cytox.2020.100049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
T cells are critical to fight pathogenic microbes and combat malignantly transformed cells in the fight against cancer. To exert their effector function, T cells produce effector molecules, such as the pro-inflammatory cytokines IFN-γ, TNF-α and IL-2. Tumors possess many inhibitory mechanisms that dampen T cell effector function, limiting the secretion of cytotoxic molecules. As a result, the control and elimination of tumors is impaired. Through recent advances in genomic editing, T cells can now be successfully modified via CRISPR/Cas9 technology. For instance, engaging (post-)transcriptional mechanisms to enhance T cell cytokine production, the retargeting of T cell antigen specificity or rendering T cells refractive to inhibitory receptor signaling can augment T cell effector function. Therefore, CRISPR/Cas9-mediated genome editing might provide novel strategies for cancer immunotherapy. Recently, the first-in-patient clinical trial was successfully performed with CRISPR/Cas9-modified human T cell therapy. In this review, a brief overview of currently available techniques is provided, and recent advances in T cell genomic engineering for the enhancement of T cell effector function for therapeutic purposes are discussed.
Collapse
Key Words
- AP-1, activator protein 1
- ARE, AU-rich element
- ARE-Del, deletion of the 3′UTR AREs from the Ifng/IFNG gene
- CAR T cells
- CAR, Chimeric Antigen Receptor
- CRISPR
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat
- CRS, cytokine release syndrome
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cas, CRISPR-associated
- Cas9
- Cytokines
- DGK, Diacylglycerol kinase
- DHX37, DEAH-box helicase 37
- EBV, Epstein Barr virus
- FOXP3, Forkhead box P3
- GATA, GATA binding protein
- Genome editing
- IFN, interferon
- IL, interleukin
- LAG-3, Lymphocyte Activating 3
- NF-κB, nuclear factor of activated B cells
- PD-1, Programmed cell Death 1
- PD-L1, Programmed Death Ligand 1
- PTPN2, Protein Tyrosine Phosphatase Non-Receptor 2
- Pdia3, Protein Disulfide Isomerase Family A Member 3
- RBP, RNA-binding protein
- RNP, ribonuclear protein
- T cell effector function
- T cells
- TCR, T cell receptor
- TGF, transforming growth factor
- TIL, Tumor Infiltrating Lymphocyte
- TLRs, Toll-like receptors
- TNF, tumor necrosis factor
- TRAC, TCR-α chain
- TRBC, TCR-β chain
- UTR, untranslated region
- tTCR, transgenic TCR
Collapse
|
19
|
Freen-van Heeren JJ. Toll-like receptor-2/7-mediated T cell activation: An innate potential to augment CD8 + T cell cytokine production. Scand J Immunol 2021; 93:e13019. [PMID: 33377182 DOI: 10.1111/sji.13019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022]
Abstract
CD8+ T cells are critical to combat pathogens and eradicate malignantly transformed cells. To exert their effector function and kill target cells, T cells produce copious amounts of effector molecules, including the pro-inflammatory cytokines interferon γ, tumour necrosis factor α and interleukin 2. TCR triggering alone is sufficient to induce cytokine secretion by effector and memory CD8+ T cells. However, T cells can also be directly activated by pathogen-derived molecules, such as through the triggering of Toll-like receptors (TLRs). TLR-mediated pathogen sensing by T cells results in the production of only interferon γ. However, in particular when the antigen load on target cells is low, or when TCR affinity to the antigen is limited, antigen-experienced T cells can benefit from costimulatory signals. TLR stimulation can also function in a costimulatory fashion to enhance TCR triggering. Combined TCR and TLR triggering enhances the proliferation, memory formation and effector function of T cells, resulting in enhanced production of interferon γ, tumour necrosis factor α and interleukin 2. Therefore, TLR ligands or the exploitation of TLR signalling could provide novel opportunities for immunotherapy approaches. In fact, CD19 CAR T cells bearing an intracellular TLR2 costimulatory domain were recently employed to treat cancer patients in a clinical trial. Here, the current knowledge regarding TLR2/7 stimulation-induced cytokine production by T cells is reviewed. Specifically, the transcriptional and post-transcriptional pathways engaged upon TLR2/7 sensing and TLR2/7 signalling are discussed. Finally, the potential uses of TLRs to enhance the anti-tumor effector function of T cells are explored.
Collapse
|
20
|
Wang D, Prager BC, Gimple RC, Aguilar B, Alizadeh D, Tang H, Lv D, Starr R, Brito A, Wu Q, Kim LJY, Qiu Z, Lin P, Lorenzini MH, Badie B, Forman SJ, Xie Q, Brown CE, Rich JN. CRISPR Screening of CAR T Cells and Cancer Stem Cells Reveals Critical Dependencies for Cell-Based Therapies. Cancer Discov 2020; 11:1192-1211. [PMID: 33328215 DOI: 10.1158/2159-8290.cd-20-1243] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/02/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) contains self-renewing GBM stem cells (GSC) potentially amenable to immunologic targeting, but chimeric antigen receptor (CAR) T-cell therapy has demonstrated limited clinical responses in GBM. Here, we interrogated molecular determinants of CAR-mediated GBM killing through whole-genome CRISPR screens in both CAR T cells and patient-derived GSCs. Screening of CAR T cells identified dependencies for effector functions, including TLE4 and IKZF2. Targeted knockout of these genes enhanced CAR antitumor efficacy. Bulk and single-cell RNA sequencing of edited CAR T cells revealed transcriptional profiles of superior effector function and inhibited exhaustion responses. Reciprocal screening of GSCs identified genes essential for susceptibility to CAR-mediated killing, including RELA and NPLOC4, the knockout of which altered tumor-immune signaling and increased responsiveness of CAR therapy. Overall, CRISPR screening of CAR T cells and GSCs discovered avenues for enhancing CAR therapeutic efficacy against GBM, with the potential to be extended to other solid tumors. SIGNIFICANCE: Reciprocal CRISPR screening identified genes in both CAR T cells and tumor cells regulating the potency of CAR T-cell cytotoxicity, informing molecular targeting strategies to potentiate CAR T-cell antitumor efficacy and elucidate genetic modifications of tumor cells in combination with CAR T cells to advance immuno-oncotherapy.This article is highlighted in the In This Issue feature, p. 995.
Collapse
Affiliation(s)
- Dongrui Wang
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, California.,Cleveland Clinic Lerner College of Medicine at Cleveland Clinic and Case Western Reserve University, Cleveland, Ohio.,Sanford Consortium for Regenerative Medicine, La Jolla, California
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, California.,Sanford Consortium for Regenerative Medicine, La Jolla, California.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Brenda Aguilar
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Darya Alizadeh
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Hongzhen Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, California.,Sanford Consortium for Regenerative Medicine, La Jolla, California
| | - Renate Starr
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Alfonso Brito
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, California.,Sanford Consortium for Regenerative Medicine, La Jolla, California
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, California.,Sanford Consortium for Regenerative Medicine, La Jolla, California.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, California.,Sanford Consortium for Regenerative Medicine, La Jolla, California
| | - Peng Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Michael H Lorenzini
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, California.,Sanford Consortium for Regenerative Medicine, La Jolla, California
| | - Behnam Badie
- Division of Neurosurgery, Department of Surgery, City of Hope, Duarte, California
| | - Stephen J Forman
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Qi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China. .,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Christine E Brown
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, California. .,Sanford Consortium for Regenerative Medicine, La Jolla, California.,University of Pittsburgh Medical Center Hillman Cancer Center, Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on the NF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci 2020; 21:E9407. [PMID: 33321885 PMCID: PMC7764163 DOI: 10.3390/ijms21249407] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.
Collapse
Affiliation(s)
- Aleksander J. Nowak
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
22
|
Oral Administration of Liquiritigenin Confers Protection from Atopic Dermatitis through the Inhibition of T Cell Activation. Biomolecules 2020; 10:biom10050786. [PMID: 32438694 PMCID: PMC7277419 DOI: 10.3390/biom10050786] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
While liquiritigenin, isolated from Spatholobus suberectus Dunn, is known to possess anti-inflammatory activities, it still remains to be known whether liquiritigenin has a suppressive effect on T cell activation and T cell-mediated disease. Here, we used Jurkat T cells to explore an underlying mechanism of pre-treatment with liquiritigenin in activated T cell in vitro and used atopic dermatitis (AD) in vivo to confirm it. We found liquiritigenin blocks IL-2 and CD69 expression from activated T cells by PMA/A23187 or anti-CD3/CD28 antibodies. The expressions of surface molecules, including CD40L and CD25, were also reduced in activated T cells pre-treated with liquiritigenin. Western blot analysis indicated repressive effects by liquiritigenin are involved in NFκB and MAPK pathways. To assess the effects of liquiritigenin in vivo, an AD model was applied as T cell-mediated disease. Oral administration of liquiritigenin attenuates AD manifestations, including ear thickness, IgE level, and thicknesses of dermis and epidermis. Systemic protections by liquiritigenin were observed to be declined in size and weight of draining lymph nodes (dLNs) and expressions of effector cytokines from CD4+ T cells in dLNs. These results suggest liquiritigenin has an anti-atopic effect via control of T cell activation and exhibits therapeutic potential for T cell-mediated disorders.
Collapse
|
23
|
Skånland SS, Taskén K. Carboxyl-Terminal Src Kinase Binds CD28 upon Activation and Mutes Downstream Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 203:1055-1063. [PMID: 31292214 DOI: 10.4049/jimmunol.1801660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Full T cell activation depends on stimulation of the TCR in conjunction with a costimulatory receptor. The involvement of costimulatory molecules is potent, and a mechanistic understanding of how downstream signaling is regulated is required to fully understand T cell responsiveness. In this study, a proteomic approach was taken to identify the interactomes of the coreceptors CD2 and CD28. These coreceptors are both positive regulators of T cell activation, but CD28 less potently induces TCR-proximal signaling. C-terminal Src kinase (CSK), a negative regulator of TCR signaling, was identified as a specific and direct interactor only of activated CD28. CSK is recruited to CD28 upon T cell activation, and the in vitro kinase activity of CSK is enhanced in the presence of phosphorylated CD28. Interruption of the CSK/CD28 interaction prior to TCR/CD28 costimulation induces a signaling response which mimics the more potent CD2-induced TCR-proximal pathway activation. Thus, CD28 functions as a novel adaptor protein for CSK, and CSK regulates signaling downstream of CD28.
Collapse
Affiliation(s)
- Sigrid S Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; .,K. G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0318 Oslo, Norway; and .,K. G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, N-0318 Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway.,K. G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0318 Oslo, Norway; and.,K. G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, N-0318 Oslo, Norway
| |
Collapse
|
24
|
The 135 Gene of Goatpox Virus Encodes an Inhibitor of NF-κB and Apoptosis and May Serve as an Improved Insertion Site To Generate Vectored Live Vaccine. J Virol 2018; 92:JVI.00190-18. [PMID: 29950422 DOI: 10.1128/jvi.00190-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 11/20/2022] Open
Abstract
Goatpox virus (GTPV) is an important member of the Capripoxvirus genus of the Poxviridae Capripoxviruses have large and complex DNA genomes encoding many unknown proteins that may contribute to virulence. We identified that the 135 open reading frame of GTPV is an early gene that encodes an ∼18-kDa protein that is nonessential for viral replication in cells. This protein functioned as an inhibitor of NF-κB activation and apoptosis and is similar to the N1L protein of vaccinia virus. In the natural host, sheep, deletion of the 135 gene from the GTPV live vaccine strain AV41 resulted in less attenuation than that induced by deletion of the tk gene, a well-defined nonessential gene in the poxvirus genome. Using the 135 gene as the insertion site, a recombinant AV41 strain expressing hemagglutinin of peste des petits ruminants virus (PPRV) was generated and elicited stronger neutralization antibody responses than those obtained using the traditional tk gene as the insertion site. These results suggest that the 135 gene of GTPV encodes an immunomodulatory protein to suppress host innate immunity and may serve as an optimized insertion site to generate capripoxvirus-vectored live dual vaccines.IMPORTANCE Capripoxviruses are etiological agents of important diseases in sheep, goats, and cattle. There are rare reports about viral protein function related to capripoxviruses. In the present study, we found that the 135 protein of GTPV plays an important role in inhibition of innate immunity and apoptosis in host cells. Use of the 135 gene as the insertion site to generate a vectored vaccine resulted in stronger adaptive immune responses than those obtained using the tk locus as the insertion site. As capripoxviruses are promising virus-vectored vaccines against many important diseases in small ruminants and cattle, the 135 gene may serve as an improved insertion site to generate recombinant capripoxvirus-vectored live dual vaccines.
Collapse
|
25
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
26
|
Hussman JP, Beecham AH, Schmidt M, Martin ER, McCauley JL, Vance JM, Haines JL, Pericak-Vance MA. GWAS analysis implicates NF-κB-mediated induction of inflammatory T cells in multiple sclerosis. Genes Immun 2016; 17:305-12. [PMID: 27278126 PMCID: PMC4956564 DOI: 10.1038/gene.2016.23] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
To identify genes and biologically relevant pathways associated with risk to develop multiple sclerosis (MS), the Genome-Wide Association Studies noise reduction method (GWAS-NR) was applied to MS genotyping data. Regions of association were defined based on the significance of linkage disequilibrium blocks. Candidate genes were cross-referenced based on a review of current literature, with attention to molecular function and directly interacting proteins. Supplementary annotations and pathway enrichment scores were generated using The Database for Annotation, Visualization and Integrated Discovery. The candidate set of 220 MS susceptibility genes prioritized by GWAS-NR was highly enriched with genes involved in biological pathways related to positive regulation of cell, lymphocyte and leukocyte activation (P=6.1E-15, 1.2E-14 and 5.0E-14, respectively). Novel gene candidates include key regulators of NF-κB signaling and CD4+ T helper type 1 (Th1) and T helper type 17 (Th17) lineages. A large subset of MS candidate genes prioritized by GWAS-NR were found to interact in a tractable pathway regulating the NF-κB-mediated induction and infiltration of pro-inflammatory Th1/Th17 T-cell lineages, and maintenance of immune tolerance by T-regulatory cells. This mechanism provides a biological context that potentially links clinical observations in MS to the underlying genetic landscape that may confer susceptibility.
Collapse
Affiliation(s)
| | - A H Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - M Schmidt
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - E R Martin
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J L McCauley
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J M Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J L Haines
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - M A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
27
|
Porciello N, Tuosto L. CD28 costimulatory signals in T lymphocyte activation: Emerging functions beyond a qualitative and quantitative support to TCR signalling. Cytokine Growth Factor Rev 2016; 28:11-9. [PMID: 26970725 DOI: 10.1016/j.cytogfr.2016.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/22/2016] [Indexed: 01/22/2023]
Abstract
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. By binding its cognate ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional antigen presenting cells (APC), CD28 initiates several signalling cascades, which qualitatively and quantitatively support T cell receptor (TCR) signalling. More recent data evidenced that human CD28 can also act as a TCR-independent signalling unit, by delivering specific signals, which regulate the expression of pro-inflammatory cytokine/chemokines. Despite the enormous progresses made in identifying the mechanisms and molecules involved in CD28 signalling properties, much remains to be elucidated, especially in the light of the functional differences observed between human and mouse CD28. In this review we provide an overview of the current mechanisms and molecules through which CD28 support TCR signalling and highlight recent findings on the specific signalling motifs that regulate the unique pro-inflammatory activity of human CD28.
Collapse
Affiliation(s)
- Nicla Porciello
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Loretta Tuosto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
28
|
Shi JH, Sun SC. TCR signaling to NF-κB and mTORC1: Expanding roles of the CARMA1 complex. Mol Immunol 2015; 68:546-57. [PMID: 26260210 PMCID: PMC4679546 DOI: 10.1016/j.molimm.2015.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/07/2015] [Accepted: 07/19/2015] [Indexed: 12/25/2022]
Abstract
Naïve T-cell activation requires signals from both the T-cell receptor (TCR) and the costimulatory molecule CD28. A central mediator of the TCR and CD28 signals is the scaffold protein CARMA1, which functions by forming a complex with partner proteins, Bcl10 and MALT1. A well-known function of the CARMA1 signaling complex is to mediate activation of IκB kinase (IKK) and its target transcription factor NF-κB, thereby promoting T-cell activation and survival. Recent evidence suggests that CARMA1 also mediates TCR/CD28-stimulated activation of the IKK-related kinase TBK1, which plays a role in regulating the homeostasis and migration of T cells. Moreover, the CARMA1 complex connects the TCR/CD28 signals to the activation of mTORC1, a metabolic kinase regulating various aspects of T-cell functions. This review will discuss the mechanism underlying the activation of the CARMA1-dependent signaling pathways and their roles in regulating T-cell functions.
Collapse
Affiliation(s)
- Jian-hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding 071000, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Zimmermann K, Liechti T, Haas A, Rehr M, Trkola A, Günthard HF, Oxenius A. The orientation of HIV-1 gp120 binding to the CD4 receptor differentially modulates CD4+ T cell activation. THE JOURNAL OF IMMUNOLOGY 2014; 194:637-49. [PMID: 25472996 DOI: 10.4049/jimmunol.1401863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Progressive quantitative and qualitative decline of CD4(+) T cell responses is one hallmark of HIV-1 infection and likely depends on several factors, including a possible contribution by the HIV-1 envelope glycoprotein gp120, which binds with high affinity to the CD4 receptor. Besides virion-associated and cell-expressed gp120, considerable amounts of soluble gp120 are found in plasma or lymphoid tissue, predominantly in the form of gp120-anti-gp120 immune complexes (ICs). Because the functional consequences of gp120 binding to CD4(+) T cells are controversially discussed, we investigated how gp120 affects TCR-mediated activation of human CD4(+) T cells by agonistic anti-CD3 mAb or by HLA class II-presented peptide Ags. We show that the spatial orientation of gp120-CD4 receptor binding relative to the site of TCR engagement differentially affects TCR signaling efficiency and hence CD4(+) T cell activation. Whereas spatially and temporally linked CD4 and TCR triggering at a defined site promotes CD4(+) T cell activation by exceeding local thresholds for signaling propagation, CD4 receptor engagement by gp120-containing ICs all around the CD4(+) T cell undermine its capacity in supporting proximal TCR signaling. In vitro, gp120 ICs are efficiently captured by CD4(+) T cells and thereby render them hyporesponsive to TCR stimulation. Consistent with these in vitro results we show that CD4(+) T cells isolated from HIV(+) individuals are covered with ICs, which at least partially contain gp120, and suggest that IC binding to CD4 receptors might contribute to the progressive decline of CD4(+) T cell function during HIV-1 infection.
Collapse
Affiliation(s)
- Kathrin Zimmermann
- Institute of Microbiology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Thomas Liechti
- Institute of Medical Virology, University of Zurich, 8006 Zurich, Switzerland; and
| | - Anna Haas
- Institute of Microbiology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Manuela Rehr
- Institute of Microbiology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, 8006 Zurich, Switzerland; and
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
30
|
T-cell co-stimulation through the CD2 and CD28 co-receptors induces distinct signalling responses. Biochem J 2014; 460:399-410. [PMID: 24665965 DOI: 10.1042/bj20140040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Full T-cell activation critically depends on the engagement of the TCR (T-cell receptor) in conjunction with a second signal by co-stimulatory receptors that boost the immune response. In the present study we have compared signalling patterns induced by the two co-receptors CD2 and CD28 in human peripheral blood T-cells. These co-receptors were previously suggested to be redundant in function. By a combination of multi-parameter phosphoflow cytometry, phosphokinase arrays and Western blot analyses, we demonstrate that CD2 co-stimulation induces phosphorylation of the TCR-proximal signalling complex, whereas CD28 activates distal signalling molecules, including the transcription factors NF-κB (nuclear factor κB), ATF (activating transcription factor)-2, STAT3/5 (signal transducer and activator of transcription 3/5), p53 and c-Jun. These signalling patterns were conserved in both naïve and effector/memory T-cell subsets. We show that free intracellular Ca(2+) and signalling through the PI3K (phosphoinositide 3-kinase)/Akt pathway are required for proper CD28-induced NF-κB activation. The signalling patterns induced by CD2 and CD28 co-stimulation lead to distinct functional immune responses in T-cell proliferation and cytokine production. In conclusion, CD2 and CD28 co-stimulation induces distinct signalling responses and functional outcomes in T-cells.
Collapse
|
31
|
Loss of TCR-beta F1 and/or EZRIN expression is associated with unfavorable prognosis in nodal peripheral T-cell lymphomas. Blood Cancer J 2013; 3:e111. [PMID: 23599023 PMCID: PMC3641318 DOI: 10.1038/bcj.2013.10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nodal peripheral T-cell lymphoma (nodal PTCL) has an unfavorable prognosis, and specific pathogenic alterations have not been fully identified. The biological and clinical relevance of the expression of CD30/T-cell receptor (TCR) genes is a topic under active investigation. One-hundred and ninety-three consecutive nodal PTCLs (89 angioimmunoblastic T-cell lymphomas (AITL) and 104 PTCL-unspecified (PTCL-not otherwise specified (NOS)) cases) were analyzed for the immunohistochemical expression of 19 molecules, involving TCR/CD30 pathways and the associations with standard prognostic indices. Mutually exclusive expression was found between CD3 and TCR-beta F1 with CD30 expression. Taking all PTCL cases together, logistic regression identified a biological score (BS) including TCR molecules (TCR-beta F1 and EZRIN) that separates two subgroups of patients with a median survival of 34.57 and 5.20 months (P<0.001). Multivariate analysis identified BS and the prognostic index for PTCL (PIT) score as independent prognostic factors. This BS maintained its significance in multivariate analysis only for the PTCL-NOS subgroup of tumors. In AITL cases, only a high level of ki67 expression was related to prognosis. A BS including molecules involved in the TCR signaling pathway proved to be an independent prognostic factor of poor outcome in a multivariate analysis, specifically in PTCL-NOS patients. Nevertheless, validation in an independent series of homogeneously treated PTCL patients is required to confirm these data.
Collapse
|
32
|
Regulation of nuclear factor-κB in autoimmunity. Trends Immunol 2013; 34:282-9. [PMID: 23434408 DOI: 10.1016/j.it.2013.01.004] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/04/2013] [Accepted: 01/18/2013] [Indexed: 12/11/2022]
Abstract
Nuclear factor (NF)-κB transcription factors are pivotal regulators of innate and adaptive immune responses, and perturbations of NF-κB signaling contribute to the pathogenesis of immunological disorders. NF-κB is a well-known proinflammatory mediator, and its deregulated activation is associated with the chronic inflammation of autoimmune diseases. Paradoxically, NF-κB plays a crucial role in the establishment of immune tolerance, including both central tolerance and the peripheral function of regulatory T (Treg) cells. Thus, defective or deregulated activation of NF-κB may contribute to autoimmunity and inflammation, highlighting the importance of tightly controlled NF-κB signaling. This review focuses on recent progress regarding NF-κB regulation and its association with autoimmunity.
Collapse
|
33
|
Serre K, Mohr E, Bénézech C, Bird R, Khan M, Caamaño JH, Cunningham AF, Maclennan ICM. Selective effects of NF-κB1 deficiency in CD4⁺ T cells on Th2 and TFh induction by alum-precipitated protein vaccines. Eur J Immunol 2011; 41:1573-82. [PMID: 21469117 DOI: 10.1002/eji.201041126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 02/11/2011] [Accepted: 03/24/2011] [Indexed: 01/14/2023]
Abstract
NF-κB1-dependent signaling directs the development of CD4(+) Th2 cells during allergic airway inflammation and protective responses to helminth infection. Here, we show that IL-4 and IL-13 production is NF-κB1-dependent in mouse OVA-specific CD4(+) (OTII) T cells responding to alum-precipitated OVA (alumOVA) immunization. More surprisingly, we found that NF-κB1 deficiency in OTII cells also selectively impairs their CXCR5 induction by alumOVA without affecting upregulation of BCL6, IL-21, OX40 and CXCR4 mRNA and PD-1 protein. This results in functional impairment of follicular helper T cells. Thus, fewer germinal center B cells develop in LN responses to alumOVA in T-cell-deficient mice reconstituted with NF-κB1(-/-) OTII cells as opposed to NF-κB1(+/+) OTII cells, while plasma cell numbers are comparable. Unlike CXCR5 induction in CD4(+) T cells, NF-κB1-deficient recirculating follicular B cells are shown to express normal levels of CXCR5. The selective effects of NF-κB1-deficiency on Th2 and follicular helper T cell induction do not appear to be due to altered expression of the Th2-associated transcription factors - GATA-3, c-Maf and Ikaros. Altogether, these results suggest that NF-κB1 regulates the expression of CXCR5 on CD4(+) T cells primed in vivo, and thus selectively controls the T-cell-dependent germinal center component of B-cell response to alumOVA.
Collapse
Affiliation(s)
- Karine Serre
- MRC Centre for Immune Regulation, IBR, School of Immunity and Infection, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tuosto L. NF-κB family of transcription factors: Biochemical players of CD28 co-stimulation. Immunol Lett 2011; 135:1-9. [DOI: 10.1016/j.imlet.2010.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 12/31/2022]
|
35
|
Lancioni CL, Li Q, Thomas JJ, Ding X, Thiel B, Drage MG, Pecora ND, Ziady AG, Shank S, Harding CV, Boom WH, Rojas RE. Mycobacterium tuberculosis lipoproteins directly regulate human memory CD4(+) T cell activation via Toll-like receptors 1 and 2. Infect Immun 2011; 79:663-73. [PMID: 21078852 PMCID: PMC3028837 DOI: 10.1128/iai.00806-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/02/2010] [Accepted: 10/31/2010] [Indexed: 12/26/2022] Open
Abstract
The success of Mycobacterium tuberculosis as a pathogen relies on its ability to regulate the host immune response. M. tuberculosis can manipulate adaptive T cell responses indirectly by modulating antigen-presenting cell (APC) function or by directly interacting with T cells. Little is known about the role of M. tuberculosis molecules in direct regulation of T cell function. Using a biochemical approach, we identified lipoproteins LprG and LpqH as major molecules in M. tuberculosis lysate responsible for costimulation of primary human CD4(+) T cells. In the absence of APCs, activation of memory CD4(+) T cells with LprG or LpqH in combination with anti-CD3 antibody induces Th1 cytokine secretion and cellular proliferation. Lipoprotein-induced T cell costimulation was inhibited by blocking antibodies to Toll-like receptor 2 (TLR2) and TLR1, indicating that human CD4(+) T cells can use TLR2/TLR1 heterodimers to directly respond to M. tuberculosis products. M. tuberculosis lipoproteins induced NF-κB activation in CD4(+) T cells in the absence of TCR co-engagement. Thus, TLR2/TLR1 engagement alone by M. tuberculosis lipoprotein triggered intracellular signaling, but upregulation of cytokine production and proliferation required co-engagement of the TCR. In conclusion, our results demonstrate that M. tuberculosis lipoproteins LprG and LpqH participate in the regulation of adaptive immunity not only by inducing cytokine secretion and costimulatory molecules in innate immune cells but also through directly regulating the activation of memory T lymphocytes.
Collapse
Affiliation(s)
- Christina L Lancioni
- Department of Pediatrics, Case Western Reserve School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xin A, Nutt SL, Belz GT, Kallies A. Blimp1: driving terminal differentiation to a T. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:85-100. [PMID: 21842367 DOI: 10.1007/978-1-4419-5632-3_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
B lymphocyte maturation-induced protein-1 (Blimp1) is a transcriptional repressor expressed in diverse cell types. In the adaptive immune system, Blimp1 is expressed in lymphocytes that have undergone effector differentiation. Blimp1 is a master regulator of plasma cell differentiation and plays important roles in controlling T cell homeostasis and effector differentiation. Blimp1 can be induced by a variety of cytokines including IL-2, IL-4, IL-12, and IL-21 in addition to TCR and co-stimulatory signals. Blimp1-deficient mice develop spontaneous inflammatory disease mediated by infiltration of activated T cells into tissues. During immune responses Blimp1 is required for the differentiation of plasma cells as well as short-lived CD8(+) cytotoxic T cells. Mounting evidence suggests that Blimp1 plays a common role in the terminal differentiation of multiple cell subsets.
Collapse
|
37
|
Jaceosidin inhibits contact hypersensitivity in mice via down-regulating IFN-γ/STAT1/T-bet signaling in T cells. Eur J Pharmacol 2011; 651:205-11. [DOI: 10.1016/j.ejphar.2010.10.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/08/2010] [Accepted: 10/29/2010] [Indexed: 01/10/2023]
|
38
|
Lupino E, Buccinnà B, Ramondetti C, Lomartire A, De Marco G, Ricotti E, Tovo PA, Rinaudo MT, Piccinini M. In CD28-costimulated human naïve CD4+ T cells, I-κB kinase controls the expression of cell cycle regulatory proteins via interleukin-2-independent mechanisms. Immunology 2010; 131:231-41. [PMID: 20465575 PMCID: PMC2967269 DOI: 10.1111/j.1365-2567.2010.03297.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/03/2010] [Accepted: 03/30/2010] [Indexed: 12/14/2022] Open
Abstract
Stimulation of naïve CD4(+) T cells through engagement of the T-cell receptor (TCR) and the CD28 co-receptor initiates cell proliferation which critically depends on interleukin (IL)-2 secretion and subsequent autocrine signalling via the IL-2 receptor. However, several studies indicate that in CD28-costimulated T cells additional IL-2-independent signals are also required for cell proliferation. In this study, using a neutralizing anti-human IL-2 antibody and two selective, structurally unrelated, cell-permeable I-κB kinase (IKK) inhibitors, BMS-345541 and PS-1145, we show that in human naïve CD4(+) T cells stimulated through a short engagement of the TCR and the CD28 co-receptor, IKK controls the expression of the cell cycle regulatory proteins cyclin D3, cyclin E and cyclin-dependent kinase 2 (CDK2) and the stability of the F-box protein S-phase kinase-associated protein 2 (SKP2) and its co-factor CDC28 protein kinase regulatory subunit 1B (CKS1B), through IL-2-independent mechanisms.
Collapse
Affiliation(s)
- Elisa Lupino
- Department of Medicine and Experimental Oncology, Section of Biochemistry, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Z, Rosenbaum JT, Zhong W, Lim C, Hinrichs DJ. Costimulation of Th17 cells: Adding fuel or putting out the fire in the inflamed gut? Semin Immunopathol 2010; 32:55-70. [PMID: 20119686 DOI: 10.1007/s00281-009-0190-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/21/2009] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease, typified by Crohn's disease and ulcerative colitis, is a common disorder characterized by recurrent and serious inflammation of the gastrointestinal tract. It is well documented that T cells play a pivotal role in the development of inflammatory bowel disease. Th17 cells are a unique T cell subpopulation implicated in inflammatory bowel disease and many other autoimmune/inflammatory diseases. However, the regulatory mechanism of Th17 activation and proliferation has not been defined completely. Recent studies have shown that the ligation of several costimulatory receptor-ligand pairs contributes to the activation, differentiation, and proliferation of T lymphocytes including the Th17 subset. In this review, we will discuss the emerging evidence on the role of Th17 cells in inflammatory bowel disease pathogenesis as well as the effect of costimulatory molecules on Th17 development and consider if the need for such costimulation of T lymphocytes provides a target for the development of novel therapeutic strategy.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pediatrics, Oregon Health & Science University, Portland, 97239, USA.
| | | | | | | | | |
Collapse
|
40
|
Streptococcus pneumoniae serotype 1 capsular polysaccharide induces CD8CD28 regulatory T lymphocytes by TCR crosslinking. PLoS Pathog 2009; 5:e1000596. [PMID: 19779562 PMCID: PMC2742891 DOI: 10.1371/journal.ppat.1000596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 08/28/2009] [Indexed: 01/07/2023] Open
Abstract
Zwitterionic capsular polysaccharides (ZPS) of commensal bacteria are characterized by having both positive and negative charged substituents on each repeating unit of a highly repetitive structure that has an α-helix configuration. In this paper we look at the immune response of CD8+ T cells to ZPSs. Intraperitoneal application of the ZPS Sp1 from Streptococcus pneumoniae serotype 1 induces CD8+CD28− T cells in the spleen and peritoneal cavity of WT mice. However, chemically modified Sp1 (mSp1) without the positive charge and resembling common negatively charged polysaccharides fails to induce CD8+CD28− T lymphocytes. The Sp1-induced CD8+CD28− T lymphocytes are CD122lowCTLA-4+CD39+. They synthesize IL-10 and TGF-β. The Sp1-induced CD8+CD28− T cells exhibit immunosuppressive properties on CD4+ T cells in vivo and in vitro. Experimental approaches to elucidate the mechanism of CD8+ T cell activation by Sp1 demonstrate in a dimeric MHC class I-Ig model that Sp1 induces CD8+ T cell activation by enhancing crosslinking of TCR. The expansion of CD8+CD28− T cells is independent, of direct antigen-presenting cell/T cell contact and, to the specificity of the T cell receptor (TCR). In CD8+CD28− T cells, Sp1 enhances Zap-70 phosphorylation and increasingly involves NF-κB which ultimately results in protection versus apoptosis and cell death and promotes survival and accumulation of the CD8+CD28− population. This is the first description of a naturally occurring bacterial antigen that is able to induce suppressive CD8+CD28− T lymphocytes in vivo and in vitro. The underlying mechanism of CD8+ T cell activation appears to rely on enhanced TCR crosslinking. The data provides evidence that ZPS of commensal bacteria play an important role in peripheral tolerance mechanisms and the maintenance of the homeostasis of the immune system. One of the most difficult challenges for the mammalian immune system is to protect its host from pathogens and cancer while at the same time avoiding a self-destructive or overwhelming immune response. In addition to so-called central tolerance induced in the thymus, the immune system relies on peripheral control mechanisms. One of the most important brakes of the peripheral tolerance system is constituted by so-called regulatory T lymphocytes. The predominately investigated regulatory T lymphocytes belong to the CD4+ subset but CD8+ regulatory T lymphocytes are now also believed to play a major role in controlling immune responses. Herein, we describe for the first time a natural occurring saccharide antigen from a commensal bacterium which induces the accumulation of a defined population of CD8+ regulatory T lymphocytes. These CD8+ regulatory lymphocytes suppress inflammatory immune responses in vivo and in in vitro assays. We also describe how the bacterial antigen induces the activation of CD8+ T cells. Our findings not only describe a novel mechanism of saccharide-mediated T cell activation but also provide evidence that commensal bacteria play an important role in the induction of peripheral tolerance and maintenance of the mammalian immune system.
Collapse
|
41
|
Baier G, Wagner J. PKC inhibitors: potential in T cell-dependent immune diseases. Curr Opin Cell Biol 2009; 21:262-7. [DOI: 10.1016/j.ceb.2008.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
|
42
|
Takeda K, Harada Y, Watanabe R, Inutake Y, Ogawa S, Onuki K, Kagaya S, Tanabe K, Kishimoto H, Abe R. CD28 stimulation triggers NF-kappaB activation through the CARMA1-PKCtheta-Grb2/Gads axis. Int Immunol 2008; 20:1507-15. [PMID: 18829987 DOI: 10.1093/intimm/dxn108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CD28 stimulation contributes to activation of the IL-2 promoter by up-regulating the activity of several transcription factors, including nuclear factor kappaB (NF-kappaB)/Rel family members. However, the signal-transducing cascades linking the CD28 molecule and activation of NF-kappaB remain unclear. Protein kinase C (PKC) , CARMA1 and Bcl10 have recently been reported to integrate TCR-mediated NF-kappaB activation. However, since the data in these studies were drawn from experiments in which T cells were usually stimulated with both TCR and CD28, the relative contributions of TCR- and CD28-mediated signals to initiation of the NF-kappaB pathway remain elusive. To examine the role of these molecules in NF-kappaB activation through CD28-mediated stimulation, Bcl10 was over-expressed in Jurkat cells and their NF-kappaB activation by CD28- or TCR-cross-linking was evaluated. We found that CD28 stimulation alone can induce NF-kappaB activation in Bcl10-over-expressing Jurkat cells, whereas TCR stimulation alone has only little effect. In addition, we found that Bcl10-induced NF-kappaB activation through CD28-mediated stimulation could be blocked by the dominant-negative form of PKC or CARMA1. Furthermore, genetic studies revealed that Grb2/Gads binding, but not phosphatidylinositol 3-kinase binding, is important in CD28-mediated NF-kappaB activation. These findings indicate that the PKC-CARMA1-Bcl10 signaling pathway participates in the CD28 co-stimulatory signal independently of the TCR-signaling pathway, which leads us to propose that the activation of the NF-kappaB-signaling pathway via PKC-CARMA1-Bcl10 may be markedly dependent on CD28 stimulation rather than TCR stimulation.
Collapse
Affiliation(s)
- Kei Takeda
- Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shen K, Thomas VK, Dustin ML, Kam LC. Micropatterning of costimulatory ligands enhances CD4+ T cell function. Proc Natl Acad Sci U S A 2008; 105:7791-6. [PMID: 18505845 PMCID: PMC2409411 DOI: 10.1073/pnas.0710295105] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Indexed: 12/24/2022] Open
Abstract
Spatial organization of signaling complexes is a defining characteristic of the immunological synapse (IS), but its impact on cell communication is unclear. In T cell-APC pairs, more IL-2 is produced when CD28 clusters are segregated from central supramolecular activation cluster (cSMAC)-localized CD3 and into the IS periphery. However, it is not clear in these cellular experiments whether the increased IL-2 is driven by the pattern itself or by upstream events that precipitate the patterns. In this article, we recapitulate key features of physiological synapses using planar costimulation arrays containing antibodies against CD3 and CD28, surrounded by ICAM-1, created by combining multiple rounds of microcontact printing on a single surface. Naïve T cells traverse these arrays, stopping at features of anti-CD3 antibodies and forming a stable synapse. We directly demonstrate that presenting anti-CD28 in the cell periphery, surrounding an anti-CD3 feature, enhances IL-2 secretion by naïve CD4(+) T cells compared with having these signals combined in the center of the IS. This increased cytokine production correlates with NF-kappaB translocation and requires PKB/Akt signaling. The ability to arbitrarily and independently control the locations of anti-CD3 and anti-CD28 offered the opportunity to examine patterns not precisely attainable in cell-cell interfaces. With these patterns, we show that the peripheral presentation of CD28 has a larger impact on IL-2 secretion than CD3 colocalization/segregation.
Collapse
Affiliation(s)
- Keyue Shen
- *Department of Biomedical Engineering, Columbia University, New York, NY 10027; and
| | - V. Kaye Thomas
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Michael L. Dustin
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Lance C. Kam
- *Department of Biomedical Engineering, Columbia University, New York, NY 10027; and
| |
Collapse
|
44
|
3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci U S A 2007; 104:18619-24. [PMID: 18003900 DOI: 10.1073/pnas.0709261104] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
3-Hydroxyanthranilic acid (HAA), a compound generated during tryptophan metabolism initiated by indoleamine 2,3-dioxygenase, is known to induce T cell death, but its molecular target is not known. Here we report that HAA inhibits NF-kappaB activation upon T cell antigen receptor engagement by specifically targeting PDK1. Inhibition of NF-kappaB by HAA leads to dysfunction and cell death of activated Th2 cells, which in turn suppresses experimental asthma. Inhibition of NF-kappaB and induction of apoptosis is specific to CD4 T cells because HAA does not inhibit NF-kappaB activation or induce cell death upon Toll-like receptor 4 stimulation in dendritic cells. Thus, HAA is a natural inhibitor that restrains T cell expansion and activation.
Collapse
|
45
|
Wang J, Ma H, Wang J, Li Q, Li Y, Li J. Long-term n-3 polyunsaturated fatty acids administration ameliorates arteriosclerosis by modulating T-cell activity in a rat model of small intestine transplantation. Clin Chim Acta 2007; 381:124-30. [PMID: 17395171 DOI: 10.1016/j.cca.2007.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/02/2007] [Accepted: 02/20/2007] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fish oil, rich in n-3 polyunsaturated fatty acids (n-3 PUFAs), has been found to reduce graft rejection and increase allografts survival. But these studies mainly focused on acute rejection. We imitated long-term fish oil administration to investigate the effects of n-3 PUFAs on graft arteriosclerosis, and T cells in a rat model of small intestine transplantation. METHODS From 2 weeks pre-transplantation to the 60th day post-transplantation, the Lewis rats were supplemented by gavage with phosphate buffer saline, corn oil and fish oil respectively. Total small intestine was heterotopically transplanted from F344 to Lewis rat. Graft arteriosclerosis was assessed by histological grading of intimal thickening. The expression of CD25 and CD154, IL-2 level, and NF-kappaB activation in T cells were analyzed by western blotting, ELISA, and electrophoretic mobility shift assay respectively. RESULTS Compared with corn oil, graft arteriosclerosis was ameliorated by fish oil significantly. The expression of CD25 and CD154, IL-2 level, and NF-kappaB activation were markedly reduced by fish oil. CONCLUSIONS Long-term n-3 PUFAs administration pre- and post-transplantation could inhibit T-cell activity by reducing CD154 expression and NF-kappaB activation, which might contribute to amelioration of graft arteriosclerosis.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu 210002, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
B cells maintain homeostasis by balancing cell viability and cell death. B lymphocytes are susceptible to mitochondria- and receptor-initiated cell death at various stages of peripheral differentiation and during immune responses. The inducible transcription factor NF-kappaB enhances cell viability by activating genes that counteract both cell-death pathways. This review uses characteristic features of NF-kappaB activation and downregulation to provide insight into the regulation of B cell apoptosis in the periphery. In particular, the temporal patterns of NF-kappaB induction, differences between Rel family members, and the intersection between canonical and noncanonical signaling pathways in keeping B cells alive are discussed.
Collapse
Affiliation(s)
- Ranjan Sen
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore, Maryland 21224, USA.
| |
Collapse
|
47
|
Abstract
Signal transduction events leading to the survival, differentiation, or apoptosis of cells of the innate or adaptive immune system must be properly coordinated to ensure the normal mounting and termination of immune responses. One of the key transcription factors in immune responses is nuclear factor kappaB (NF-kappaB), which has been the focus of intense investigation over the past two decades. With the identification of the CARMA1-BCL10-MALT1 complex and ongoing progress in understanding the molecular mechanisms connecting T cell and B cell receptor proximal signals to the IkappaB kinase (IKK) complex, a cohesive model of antigen receptor (AgR)-dependent signaling to NF-kappaB activation is beginning to emerge. In this review, we provide an overview of the current state of research into the mechanisms that regulate AgR-mediated NF-kappaB transcriptional activity, with particular focus on the events leading to activation of the IKK complex.
Collapse
Affiliation(s)
- Jan Schulze-Luehrmann
- Section of Immunobiology and Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|