1
|
Belayneh M, Mengesha M, Idosa BA, Fentaw S, Moges B, Tazu Z, Assefa M, Garpenholt Ö, Persson A, Särndahl E, Abate E, Säll O, Gelaw B. CARD8 polymorphisms among bacterial meningitis patients in North-West Ethiopia. BMC Infect Dis 2024; 24:1084. [PMID: 39354402 PMCID: PMC11443729 DOI: 10.1186/s12879-024-09953-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The severity of infectious disease outcomes is dependent on the virulence factors of the pathogen and the host immune response. CARD8 is a major regulator of the innate immune proinflammatory response and has been suggested to modulate the host response to common inflammatory diseases. In the present study, the C10X genetic polymorphism in the CARD8 gene was investigated in relation to bacterial meningitis. METHODS A total of 400 clinically suspected meningitis patients hospitalized at the University of Gondar Hospital were enrolled in the study. Cerebrospinal fluid (CSF) and blood samples were collected for laboratory investigations. The collected CSF was cultured, and all the results obtained from the culture were confirmed using direct RT‒PCR. Genotyping of whole-blood samples was performed using a TaqMan assay. The results were compared with apparently healthy controls and with PCR-negative meningitis suspected patients. RESULTS Of the included patients, 57% were men and the most common clinical signs and symptoms were fever (81%), headache (80%), neck stiffness (76%), nausea (68%), and vomiting (67%). Microbiology culture identified 7 patients with bacterial meningitis caused by Neisseria meningitidis (n = 4) and Streptococcus pneumoniae (n = 3). The RT-PCR revealed 39 positive samples for N. meningitidis (n = 10) and S. pneumoniae (n = 29). A total of 332 whole-blood samples were genotyped with the following results: 151 (45.5%) C10X heterozygotes, 59 (17.7%) C10X homozygotes and 122 (36.7%) wild genotypes. The polymorphic gene carriers among laboratory confirmed, clinically diagnosed meningitis and healthy controls were 23(46%), 246(40%), and 1526(39%), respectively with OR = 1.27 (0.7-2.3) and OR = 1.34 (0.76-2.4). The presence of the C10X polymorphism in the CARD8 gene was more prevalent in suspected meningitis patients than in healthy controls (OR 1.2; 1.00-1.5). Homozygote C10X polymorphic gene carriers were more susceptible to infectious disease. The presence of viable or active bacterial infection was found to be associated with the presence of heterozygous C10X carriers. CONCLUSIONS A greater proportion of C10X in the CARD8 gene in confirmed bacterial meningitis patients and clinically diagnosed meningitis patients than in healthy controls. Homozygote C10X polymorphic gene carriers were more susceptible to infectious disease than heterozygote gene carriers and healthy controls.
Collapse
Affiliation(s)
- Meseret Belayneh
- Department of Microbiology, University of Gondar, Gondar, Ethiopia.
- College of Health Sciences, Department of Medical Laboratory Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Mesfin Mengesha
- Armauer Hanssen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Berhane A Idosa
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University Hospital, Örebro, Sweden
| | - Surafel Fentaw
- Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Biniyam Moges
- Global One Health Initiative, Ohio State University, Addis Ababa, Ethiopia
| | - Zelalem Tazu
- Global One Health Initiative, Ohio State University, Addis Ababa, Ethiopia
| | - Meseret Assefa
- Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Örjan Garpenholt
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Olof Säll
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Baye Gelaw
- Department of Microbiology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Xiao Y, Fang H, Zhu Y, Zhou J, Dai Z, Wang H, Xia Z, Tu Z, Leong KW. Multifunctional Cationic Hyperbranched Polyaminoglycosides that Target Multiple Mediators for Severe Abdominal Trauma Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305273. [PMID: 37997512 PMCID: PMC10767409 DOI: 10.1002/advs.202305273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Indexed: 11/25/2023]
Abstract
Trauma and its associated complications, including dysregulated inflammatory responses, severe infection, and disseminated intravascular coagulation (DIC), continue to pose lethal threats worldwide. Following injury, cell-free nucleic acids (cfNAs), categorized as damage-associated molecular patterns (DAMPs), are released from dying or dead cells, triggering local and systemic inflammatory responses and coagulation abnormalities that worsen disease progression. Harnessing cfNA scavenging strategies with biomaterials has emerged as a promising approach for treating posttrauma systemic inflammation. In this study, the effectiveness of cationic hyperbranched polyaminoglycosides derived from tobramycin (HPT) and disulfide-included HPT (ss-HPT) in scavenging cfNAs to mitigate posttrauma inflammation and hypercoagulation is investigated. Both cationic polymers demonstrate the ability to suppress DAMP-induced toll-like receptor (TLR) activation, inflammatory cytokine secretion, and hypercoagulation by efficiently scavenging cfNAs. Additionally, HPT and ss-HPT exhibit potent antibacterial efficacy attributed to the presence of tobramycin in their chemical composition. Furthermore, HPT and ss-HPT exhibit favorable modulatory effects on inflammation and therapeutic outcomes in a cecal ligation puncture (CLP) mouse abdominal trauma model. Notably, in vivo studies reveal that ss-HPT displayed high accumulation and retention in injured organs of traumatized mice while maintaining a higher biodegradation rate in healthy mice, contrasting with findings for HPT. Thus, functionalized ss-HPT, a bioreducible polyaminoglycoside, holds promise as an effective option to enhance therapeutic outcomes for trauma patients by alleviating posttrauma inflammation and coagulation complications.
Collapse
Affiliation(s)
- Yongqiang Xiao
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- ENT InstituteDepartment of Facial Plastic and Reconstructive SurgeryEye & ENT HospitalFudan UniversityShanghai200031P. R. China
| | - He Fang
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Yuefei Zhu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jie Zhou
- Department of Breast SurgeryAffiliated Cancer Hospital and InstituteGuangzhou Medical UniversityGuangzhou510095P. R. China
| | - Zhanzhan Dai
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Hongxia Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zhaofan Xia
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Zhaoxu Tu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Systems BiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
3
|
Sahoo G, Samal D, Khandayataray P, Murthy MK. A Review on Caspases: Key Regulators of Biological Activities and Apoptosis. Mol Neurobiol 2023; 60:5805-5837. [PMID: 37349620 DOI: 10.1007/s12035-023-03433-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Caspases are proteolytic enzymes that belong to the cysteine protease family and play a crucial role in homeostasis and programmed cell death. Caspases have been broadly classified by their known roles in apoptosis (caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9 in mammals) and in inflammation (caspase-1, caspase-4, caspase-5, and caspase-12 in humans, and caspase-1, caspase-11, and caspase-12 in mice). Caspases involved in apoptosis have been subclassified by their mechanism of action as either initiator caspases (caspase-8 and caspase-9) or executioner caspases (caspase-3, caspase-6, and caspase-7). Caspases that participate in apoptosis are inhibited by proteins known as inhibitors of apoptosis (IAPs). In addition to apoptosis, caspases play a role in necroptosis, pyroptosis, and autophagy, which are non-apoptotic cell death processes. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits. This review covers the different types of caspases, their functions, and their physiological and biological activities and roles in different organisms.
Collapse
Affiliation(s)
- Gayatri Sahoo
- Department of Zoology, PSSJ College, Banarpal, 759128, Odisha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology (AMIT, affiliated to Utkal University), Khurda, 752057, Odisha, India
| | | | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
4
|
Ning B, Shen J, Liu F, Zhang H, Jiang X. Baicalein Suppresses NLRP3 and AIM2 Inflammasome-Mediated Pyroptosis in Macrophages Infected by Mycobacterium tuberculosis via Induced Autophagy. Microbiol Spectr 2023; 11:e0471122. [PMID: 37125940 PMCID: PMC10269511 DOI: 10.1128/spectrum.04711-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) continues to pose a significant threat to global health because it causes granulomas and systemic inflammatory responses during active tuberculosis (TB). Mtb can induce macrophage pyroptosis, which results in the release of IL-1β and causes tissue damage, thereby promoting its spread. In the absence of anti-TB drugs, host-directed therapy (HDT) has been demonstrated to be an effective strategy against TB. In this study, we used an in vitro Mtb-infected macrophage model to assess the effect of baicalein, derived from Scutellariae radix, on pyroptosis induced in Mtb-infected macrophages. Further, we investigated the molecular mechanisms underlying the actions of baicalein. The results of the study suggest that baicalein inhibits pyroptosis in Mtb-infected macrophages by downregulating the assembly of AIM2 and NLRP3 inflammasome and promoting autophagy. Further research has also shown that the mechanism by which baicalein promotes autophagy may involve the inhibition of the activation of the Akt/mTOR pathway and the inhibition of the AIM2 protein, which affects the levels of CHMP2A protein required to promote autophagy. Thus, our data show that baicalein can inhibit Mtb infection-induced macrophage pyroptosis and has the potential to be a new adjunctive HDT drug. IMPORTANCE Current strategies for treating drug-resistant tuberculosis have limited efficacy and undesirable side effects; hence, research on new treatments, including innovative medications, is required. Host-directed therapy (HDT) has emerged as a viable strategy for modulating host cell responses in order to enhance protective immunity against infections. Baicalein, extracted from Scutellariae radix, was shown to inhibit pyroptosis caused by Mycobacterium tuberculosis-infected macrophages and was associated with autophagy. Our findings reveal that baicalein can be used as an adjunctive treatment for tuberculosis or other inflammatory diseases by regulating immune function and enhancing the antibacterial ability of the host. It also provides a new idea for exploring the anti-inflammatory mechanism of baicalein.
Collapse
Affiliation(s)
- Bangzuo Ning
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Shen
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fanglin Liu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hemin Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Abdel Fattah HS, Omar EM. The protective role of curcumin nanoparticles on the submandibular salivary gland toxicity induced by methotrexate in male rats. Arch Oral Biol 2023; 152:105717. [PMID: 37182319 DOI: 10.1016/j.archoralbio.2023.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To evaluate the protective role of nanocurcumin on the toxicity induced by methotrexate in the submandibular glands of rats. DESIGN Twenty- four healthy male Wistar albino rats were randomly distributed into 3 groups, 8 rats each. Group I-control: rats received a single intraperitoneal injection of saline; Group II-methotrexate (MTX): rats received methotrexate 20 mg/ kg day 1 of the experiment; Group III-methotrexate and nanocurcumin (MTX+NCU): rats received methotrexate 20 mg/ kg on day 1 of the experimental period in addition to nanocurcumin 100 mg/kg/day for 7 days. After euthanasia, the submandibular salivary glands of all rats were collected and prepared for histological, histomorphometric, and immunohistochemical examination (Caspase 3, Bcl2), in addition to transmission electron microscopy. RESULTS Histological and ultrastructural assessment revealed less salivary gland damage in the nanocurcumin group in comparison to the methotrexate group, and the percentage of acinar vacuolization showed significantly lower values in the nanocurcumin group. Group III (MTX+NCU) showed lower immunoexpression of caspase 3 than group II (MTX), while Bcl2 immunoreactivity was higher in the MTX group than in the MTX+NCU group. CONCLUSIONS Our results suggest that simultaneous administration of nanocurcumin reduces apoptosis in salivary glands subjected to methotrexate.
Collapse
Affiliation(s)
- Hagar Sherif Abdel Fattah
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Champollion Street, Alexandria 21526, Egypt.
| | - Enas Magdi Omar
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Alexandria 21526, Egypt
| |
Collapse
|
6
|
Unnisa A, Greig NH, Kamal MA. Inhibition of Caspase 3 and Caspase 9 Mediated Apoptosis: A Multimodal Therapeutic Target in Traumatic Brain Injury. Curr Neuropharmacol 2023; 21:1001-1012. [PMID: 35339178 PMCID: PMC10227914 DOI: 10.2174/1570159x20666220327222921] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the significant causes of death and morbidity, and it is hence a focus of translational research. Apoptosis plays an essential part in the pathophysiology of TBI, and its inhibition may help overcome TBI's negative consequences and improve functional recovery. Although physiological neuronal death is necessary for appropriate embryologic development and adult cell turnover, it can also drive neurodegeneration. Caspases are principal mediators of cell death due to apoptosis and are critical for the required cleavage of intracellular proteins of cells committed to die. Caspase-3 is the major executioner Caspase of apoptosis and is regulated by a range of cellular components during physiological and pathological conditions. Activation of Caspase-3 causes proteolyzation of DNA repair proteins, cytoskeletal proteins, and the inhibitor of Caspase-activated DNase (ICAD) during programmed cell death, resulting in morphological alterations and DNA damage that define apoptosis. Caspase-9 is an additional crucial part of the intrinsic pathway, activated in response to several stimuli. Caspases can be altered post-translationally or by modulatory elements interacting with the zymogenic or active form of a Caspase, preventing their activation. The necessity of Caspase-9 and -3 in diverse apoptotic situations suggests that mammalian cells have at least four distinct apoptotic pathways. Continued investigation of these processes is anticipated to disclose new Caspase regulatory mechanisms with consequences far beyond apoptotic cell death control. The present review discusses various Caspase-dependent apoptotic pathways and the treatment strategies to inhibit the Caspases potentially.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, NSW, Australia
| |
Collapse
|
7
|
Dilucca M, Broz P. Caspase-4 Activation and Recruitment to Intracellular Gram-Negative Bacteria. Methods Mol Biol 2023; 2641:49-65. [PMID: 37074641 DOI: 10.1007/978-1-0716-3040-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The non-canonical inflammasome pathway functions as the primary cytosolic innate immune detection mechanism for Gram-negative bacterial lipopolysaccharide (LPS) in human and mouse cells and controls the proteolytic activation of the cell death executor gasdermin D (GSDMD). The main effectors of this pathways are the inflammatory proteases caspase-11 in mice and caspase-4/caspase-5 in humans. These caspases have been shown to bind LPS directly; however, the interaction between LPS and caspase-4/caspase-11 requires a set of interferon (IFN)-inducible GTPases, known as guanylate-binding proteins (GBPs). These GBPs assemble to form coatomers on cytosolic Gram-negative bacteria, which function as recruitment and activation platforms for caspase-11/caspase-4. Here we describe an assay to monitor caspase-4 activation in human cells by immunoblotting and its recruitment to intracellular bacteria using the model pathogen Burkholderia thailandensis.
Collapse
Affiliation(s)
- Marisa Dilucca
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
8
|
Wang X, Xu P, Liu Y, Wang Z, Lenahan C, Fang Y, Lu J, Zheng J, Wang K, Wang W, Zhou J, Chen S, Zhang J. New Insights of Early Brain Injury after Subarachnoid Hemorrhage: A Focus on the Caspase Family. Curr Neuropharmacol 2023; 21:392-408. [PMID: 35450528 PMCID: PMC10190145 DOI: 10.2174/1570159x20666220420115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/10/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH), primarily caused by ruptured intracranial aneurysms, remains a prominent clinical challenge with a high rate of mortality and morbidity worldwide. Accumulating clinical trials aiming at the prevention of cerebral vasospasm (CVS) have failed to improve the clinical outcome of patients with SAH. Therefore, a growing number of studies have shifted focus to the pathophysiological changes that occur during the periods of early brain injury (EBI). New pharmacological agents aiming to alleviate EBI have become a promising direction to improve outcomes after SAH. Caspases belong to a family of cysteine proteases with diverse functions involved in maintaining metabolism, autophagy, tissue differentiation, regeneration, and neural development. Increasing evidence shows that caspases play a critical role in brain pathology after SAH. Therefore, caspase regulation could be a potential target for SAH treatment. Herein, we provide an overview pertaining to the current knowledge on the role of caspases in EBI after SAH, and we discuss the promising therapeutic value of caspase-related agents after SAH.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Penglei Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zefeng Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Burrell College of Osteopathic Medicine, Las Cruces, New Mexico
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - Jianming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Wang S, Moreau F, Chadee K. Gasdermins in Innate Host Defense Against Entamoeba histolytica and Other Protozoan Parasites. Front Immunol 2022; 13:900553. [PMID: 35795683 PMCID: PMC9251357 DOI: 10.3389/fimmu.2022.900553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gasdermins (GSDMs) are a group of proteins that are cleaved by inflammatory caspases to induce pore formation in the plasma membrane to cause membrane permeabilization and lytic cell death or pyroptosis. All GSDMs share a conserved structure, containing a cytotoxic N-terminal (NT) pore-forming domain and a C-terminal (CT) repressor domain. Entamoeba histolytica (Eh) in contact with macrophages, triggers outside-in signaling to activate inflammatory caspase-4/1 via the noncanonical and canonical pathway to promote cleavage of gasdermin D (GSDMD). Cleavage of GSDMD removes the auto-inhibition that masks the active pore-forming NT domain in the full-length protein by interactions with GSDM-CT. The cleaved NT-GSDMD monomers then oligomerize to form pores in the plasma membrane to facilitate the release of IL-1β and IL-18 with a measured amount of pyroptosis. Pyroptosis is an effective way to counteract intracellular parasites, which exploit replicative niche to avoid killing. To date, most GSDMs have been verified to perform pore-forming activity and GSDMD-induced pyroptosis is rapidly emerging as a mechanism of anti-microbial host defence. Here, we review our comprehensive and current knowledge on the expression, activation, biological functions, and regulation of GSDMD cleavage with emphases on physiological scenario and related dysfunctions of each GSDM member as executioner of cell death, cytokine secretion and inflammation against Eh and other protozoan parasitic infections.
Collapse
Affiliation(s)
| | | | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Zeng C, Hou ZS, Zhao HK, Xin YR, Liu MQ, Yang XD, Wen HS, Li JF. Identification and characterization of caspases genes in rainbow trout (Oncorhynchus mykiss) and their expression profiles after Aeromonas salmonicida and Vibrio anguillarum infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103987. [PMID: 33359598 DOI: 10.1016/j.dci.2020.103987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Caspases are highly conserved cysteine-dependent aspartyl-specific proteases that play an important role in regulating cell death and inflammation. However, the caspase genes have not been systematically studied in rainbow trout (Oncorhynchus mykiss). Rainbow trout experienced 4 rounds (4R) of genome duplication in the evolutionary history. Thereby an increased numbers of paralogs are observed in trout, probably with more complicated gene functions. We identified 18 caspase genes in rainbow trout, including two inflammatory caspases (casp1a, casp1b), six apoptosis executioner caspases (casp3, casp3a1, casp3a2, casp3b, casp6, and casp7), nine apoptosis initiator caspases (casp2a, casp2b, casp8, casp9a, casp9b, casp10a, casp10b, casp20a, and casp20b) and one uncategorized caspase gene (casp17). To investigate the potentially physiological functions of caspase genes, we challenged the rainbow trout with Aeromonas salmonicida (A. salmonicida) and Vibrio anguillarum (V. anguillarum). Results showed that the CASP3-regulated intrinsic apoptosis was activated after A. salmonicida infection, while the CASP8 and CASP6-regulated extrinsic apoptosis exerted the greatest effect on trout challenged with V. anguillarum. In response to V. anguillarum infection, the data of RNA-Seq further showed the casp8 was tightly integrated with the significantly enriched Gene Ontology terms and functional pathways, including apoptosis regulation, pathogen detection and immunomodulation. Our study provides a foundation for the physiological functions and regulatory network of the caspase genes in teleosts.
Collapse
Affiliation(s)
- Chu Zeng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hong-Kui Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Yuan-Ru Xin
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Meng-Qun Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiao-Dong Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, China.
| |
Collapse
|
11
|
Agnew A, Nulty C, Creagh EM. Regulation, Activation and Function of Caspase-11 during Health and Disease. Int J Mol Sci 2021; 22:ijms22041506. [PMID: 33546173 PMCID: PMC7913190 DOI: 10.3390/ijms22041506] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/04/2023] Open
Abstract
Caspase-11 is a pro-inflammatory enzyme that is stringently regulated during its expression and activation. As caspase-11 is not constitutively expressed in cells, it requires a priming step for its upregulation, which occurs following the stimulation of pathogen and cytokine receptors. Once expressed, caspase-11 activation is triggered by its interaction with lipopolysaccharide (LPS) from Gram-negative bacteria. Being an initiator caspase, activated caspase-11 functions primarily through its cleavage of key substrates. Gasdermin D (GSDMD) is the primary substrate of caspase-11, and the GSDMD cleavage fragment generated is responsible for the inflammatory form of cell death, pyroptosis, via its formation of pores in the plasma membrane. Thus, caspase-11 functions as an intracellular sensor for LPS and an immune effector. This review provides an overview of caspase-11—describing its structure and the transcriptional mechanisms that govern its expression, in addition to its activation, which is reported to be regulated by factors such as guanylate-binding proteins (GBPs), high mobility group box 1 (HMGB1) protein, and oxidized phospholipids. We also discuss the functional outcomes of caspase-11 activation, which include the non-canonical inflammasome, modulation of actin dynamics, and the initiation of blood coagulation, highlighting the importance of inflammatory caspase-11 during infection and disease.
Collapse
|
12
|
Berntsen HF, Duale N, Bjørklund CG, Rangel-Huerta OD, Dyrberg K, Hofer T, Rakkestad KE, Østby G, Halsne R, Boge G, Paulsen RE, Myhre O, Ropstad E. Effects of a human-based mixture of persistent organic pollutants on the in vivo exposed cerebellum and cerebellar neuronal cultures exposed in vitro. ENVIRONMENT INTERNATIONAL 2021; 146:106240. [PMID: 33186814 DOI: 10.1016/j.envint.2020.106240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Exposure to persistent organic pollutants (POPs), encompassing chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) compounds is associated with adverse neurobehaviour in humans and animals, and is observed to cause adverse effects in nerve cell cultures. Most studies focus on single POPs, whereas studies on effects of complex mixtures are limited. We examined the effects of a mixture of 29 persistent compounds (Cl + Br + PFAA, named Total mixture), as well as 6 sub-mixtures on in vitro exposed rat cerebellar granule neurons (CGNs). Protein expression studies of cerebella from in vivo exposed mice offspring were also conducted. The selection of chemicals for the POP mixture was based on compounds being prominent in food, breast milk or blood from the Scandinavian human population. The Total mixture and sub-mixtures containing PFAAs caused greater toxicity in rat CGNs than the single or combined Cl/Br sub-mixtures, with significant impact on viability from 500x human blood levels. The potencies for these mixtures based on LC50 values were Br + PFAA mixture > Total mixture > Cl + PFAA mixture > PFAA mixture. These mixtures also accelerated induced lipid peroxidation. Protection by the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) indicated involvement of the NMDA receptor in PFAA and Total mixture-, but not Cl mixture-induced toxicity. Gene-expression studies in rat CGNs using a sub-toxic and marginally toxic concentration ((0.4 nM-5.5 µM) 333x and (1 nM-8.2 µM) 500x human blood levels) of the mixtures, revealed differential expression of genes involved in apoptosis, oxidative stress, neurotransmission and cerebellar development, with more genes affected at the marginally toxic concentration. The two important neurodevelopmental markers Pax6 and Grin2b were downregulated at 500x human blood levels, accompanied by decreases in PAX6 and GluN2B protein levels, in cerebellum of offspring mice from mothers exposed to the Total mixture throughout pregnancy and lactation. In rat CGNs, the glutathione peroxidase gene Prdx6 and the regulatory transmembrane glycoprotein gene Sirpa were highly upregulated at both concentrations. In conclusion, our results support that early-life exposure to mixtures of POPs can cause adverse neurodevelopmental effects.
Collapse
Affiliation(s)
- Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, 0304 Oslo, Norway.
| | - Nur Duale
- Section of Molecular Toxicology, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Cesilie Granum Bjørklund
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | | | - Kine Dyrberg
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Kirsten Eline Rakkestad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Gunn Østby
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ruth Halsne
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Gudrun Boge
- Department of Companion Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1072, Blindern, NO-0316 Oslo, Norway.
| | - Oddvar Myhre
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, NMBU-School of Veterinary Science, P.O. Box 369 sentrum, N-0102 Oslo, Norway.
| |
Collapse
|
13
|
Li J, Dong L, Zhu D, Zhang M, Wang K, Chen F. An effector caspase Sp-caspase first identified in mud crab Scylla paramamosain exhibiting immune response and cell apoptosis. FISH & SHELLFISH IMMUNOLOGY 2020; 103:442-453. [PMID: 32446967 DOI: 10.1016/j.fsi.2020.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Apoptosis plays a key role in the immune defense against pathogen infection, and caspase is one of the most important protease enzyme families, which could initiate and execute apoptosis. Among crustaceans, several caspase genes have been reported. However, caspase in mud crab Scylla paramamosain, have not been identified yet. Here, in the present study, we characterized a new caspase, named as Sp-caspase, from S. paramamosain. The full-length cDNA sequence of Sp-caspase contained 966 bp open reading frame, encoding 322 amino acids, and its molecular weight was 36 kDa. This gene has three conserved domains of the caspase family, a prodomain, a large subunit P20 and a small subunit P10. Phylogenetic analysis showed that Sp-caspase was clustered into an effector caspase group. Sp-caspase mainly distributed in midgut, hepatopancreas, hemocytes and female ovaries, and the transcript was significantly regulated in different tissues after being challenged with Vibrio parahaemolyticus, Vibrio alginolyticus or LPS. After infection with V. alginolyticus, the apoptosis rate of hemocytes notably increased, while the mRNA level of Sp-caspase and hydrolysis activity of caspase 3/7 significantly decreased. Furthermore, in vitro assays showed that the recombinant protein tSp-caspase (deletion of Sp-caspase prodomain) could efficiently recognize and cleave human caspase 3/7 substrate Ac-DEVD-pNA, functioning as an effector caspase. Meanwhile, heterologous expression of Sp-caspase in several cell lines (HEK293T cells, HeLa cells and HighFive cells) could specifically induce cell apoptosis. Taken together, these data demonstrated that Sp-caspase could perform apoptosis as an effector caspase. In addition, it might be a negative regulator of hemocytes apoptosis under pathogen infection, which would contribute to homeostasis and immune defense of hemocytes in S. paramamosain.
Collapse
Affiliation(s)
- Jishan Li
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lixia Dong
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Depeng Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Min Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
14
|
Wang Y, Hu S, Tuerdi M, Yu X, Zhang H, Zhou Y, Cao J, da Silva Vaz I, Zhou J. Initiator and executioner caspases in salivary gland apoptosis of Rhipicephalus haemaphysaloides. Parasit Vectors 2020; 13:288. [PMID: 32503655 PMCID: PMC7275347 DOI: 10.1186/s13071-020-04164-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Apoptosis is fundamental in maintaining cell balance in multicellular organisms, and caspases play a crucial role in apoptosis pathways. It is reported that apoptosis plays an important role in tick salivary gland degeneration. Several different caspases have been found in ticks, but the interactions between them are currently unknown. Here, we report three new caspases, isolated from the salivary glands of the tick Rhipicephalus haemaphysaloides. METHODS The full-length cDNA of the RhCaspases 7, 8 and 9 genes were obtained by transcriptome, and RhCaspases 7, 8 and 9 were expressed in E. coli; after protein purification and immunization in mice, specific polyclonal antibodies (PcAb) were created in response to the recombinant protein. Reverse-transcription quantitative PCR (RT-qPCR) and western blot were used to detect the existence of RhCaspases 7, 8 and 9 in ticks. TUNEL assays were used to determine the apoptosis level in salivary glands at different feeding times after gene silencing. The interaction between RhCaspases 7, 8 and 9 were identified by co-transfection assays. RESULTS The transcription of apoptosis-related genes in R. haemaphysaloides salivary glands increased significantly after tick engorgement. Three caspase-like molecules containing conserved caspase domains were identified and named RhCaspases 7, 8 and 9. RhCaspase8 and RhCaspase9 contain a long pro-domain at their N-terminals. An RT-qPCR assay demonstrated that the transcription of these three caspase genes increased significantly during the engorged periods of the tick developmental stages (engorged larval, nymph, and adult female ticks). Transcriptional levels of RhCaspases 7, 8 and 9 in salivary glands increased more significantly than other tissues post-engorgement. RhCaspase9-RNAi treatment significantly inhibited tick feeding. In contrast, knockdown of RhCaspase7 and RhCaspase8 had no influence on tick feeding. Compared to the control group, apoptosis levels were significantly reduced after interfering with RhCaspase 7, 8 and 9 expressions. Co-transfection assays showed RhCaspase7 was cleaved by RhCaspases 8 and 9, demonstrating that RhCaspases 8 and 9 are initiator caspases and RhCaspase7 is an executioner caspase. CONCLUSIONS To the best of our knowledge, this is the first study to identify initiator and executioner caspases in ticks, confirm the interaction among them, and associate caspase activation with tick salivary gland degeneration.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Shanming Hu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Mayinuer Tuerdi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Xinmao Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| |
Collapse
|
15
|
Carter KM, Lu M, Jiang H, An L. An Information-Based Approach for Mediation Analysis on High-Dimensional Metagenomic Data. Front Genet 2020; 11:148. [PMID: 32231681 PMCID: PMC7083016 DOI: 10.3389/fgene.2020.00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
The human microbiome plays a critical role in the development of gut-related illnesses such as inflammatory bowel disease and clinical pouchitis. A mediation model can be used to describe the interaction between host gene expression, the gut microbiome, and clinical/health situation (e.g., diseased or not, inflammation level) and may provide insights into underlying disease mechanisms. Current mediation regression methodology cannot adequately model high-dimensional exposures and mediators or mixed data types. Additionally, regression based mediation models require some assumptions for the model parameters, and the relationships are usually assumed to be linear and additive. With the microbiome being the mediators, these assumptions are violated. We propose two novel nonparametric procedures utilizing information theory to detect significant mediation effects with high-dimensional exposures and mediators and varying data types while avoiding standard regression assumptions. Compared with available methods through comprehensive simulation studies, the proposed method shows higher power and lower error. The innovative method is applied to clinical pouchitis data as well and interesting results are obtained.
Collapse
Affiliation(s)
- Kyle M Carter
- Interdiciplanary Program in Statistics and Data Science, The University of Arizona, Tucson, AZ, United States
| | - Meng Lu
- Interdiciplanary Program in Statistics and Data Science, The University of Arizona, Tucson, AZ, United States
| | - Hongmei Jiang
- Department of Statistics, Northwestern University, Evanston, IL, United States
| | - Lingling An
- Interdiciplanary Program in Statistics and Data Science, The University of Arizona, Tucson, AZ, United States.,Department of Epidemiology and Biostatistics, The University of Arizona, Tucson, AZ, United States.,Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
16
|
Yun M, Yi YS. Regulatory roles of ginseng on inflammatory caspases, executioners of inflammasome activation. J Ginseng Res 2019; 44:373-385. [PMID: 32372859 PMCID: PMC7195600 DOI: 10.1016/j.jgr.2019.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an immune response that protects against pathogens and cellular stress. The hallmark of inflammatory responses is inflammasome activation in response to various stimuli. This subsequently activates downstream effectors, that is, inflammatory caspases such as caspase-1, 4, 5, 11, and 12. Extensive efforts have been made on developing effective and safe anti-inflammatory therapeutics, and ginseng has long been traditionally used as efficacious and safe herbal medicine in treating various inflammatory and inflammation-mediated diseases. Many studies have successfully shown that ginseng plays an anti-inflammatory role by inhibiting inflammasomes and inflammasome-activated inflammatory caspases. This review discusses the regulatory roles of ginseng on inflammatory caspases in inflammatory responses and also suggests new research areas on the anti-inflammatory function of ginseng, which provides a novel insight into the development of ginseng as an effective and safe anti-inflammatory herbal medicine.
Collapse
Key Words
- AIM2, Absent in melanoma 2
- ASC, Apoptosis-associated speck-like protein containing CARD
- CARD, C-terminal caspase recruit domain
- COX-2, Cyclooxygenase-2
- Caspase, Cysteine aspartate–specific protease
- DAMP, Danger-associated molecular pattern
- FIIND, Functional-to-find domain
- GSDMD, Gasdermin D
- Ginseng
- Ginsenoside
- HIN, Hematopoietic interferon-inducible nuclear protein
- IL, Interleukin
- Inflammasome
- Inflammation
- Inflammatory caspase
- LPS, Lipopolysaccharide
- LRR, Leucine-rich repeat
- NACHT, Nucleotide-binding and oligomerization domain
- NF-κB, Nuclear factor-kappa B
- NLR, Nucleotide-binding oligomerization domain-like receptor
- NO, Nitric oxide
- PAMP, Pathogen-associated molecular pattern
- PGE2, Prostaglandin E2
- PRR, Pattern-recognition receptor
- PYD, N-terminal pyrin domain
- RGE, Korean Red Ginseng
- ROS, Reactive oxygen species
Collapse
Affiliation(s)
- Miyong Yun
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, Republic of Korea
| | - Young-Su Yi
- Department of Life Science, Kyonggi University, Suwon, Republic of Korea
| |
Collapse
|
17
|
Quach J, Moreau F, Sandall C, Chadee K. Entamoeba histolytica-induced IL-1β secretion is dependent on caspase-4 and gasdermin D. Mucosal Immunol 2019; 12:323-339. [PMID: 30361535 DOI: 10.1038/s41385-018-0101-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 02/04/2023]
Abstract
During invasion, Entamoeba histolytica (Eh) encounter macrophages and activate them to elicit tissue damaging pro-inflammatory responses. When Eh binds macrophages via the Gal-lectin, surface EhCP-A5 RGD sequence ligates α5β1 integrin to activate caspase-1 in a complex known as the NLRP3 inflammasome. In this study, we investigated Eh requirements underlying macrophage caspase-4 and -1 activation and the role caspase-4 and gasdermin D (GSDMD) play in augmenting pro-inflammatory cytokine responses. Caspase-4 activation was similar to caspase-1 requiring live Eh attachment via the Gal-lectin and EhCP-A5. However, unlike caspase-1, caspase-4 activation was independent of ASC and NLRP3. Using CRISPR/Cas9 gene editing of caspase-4 and -1 and GSDMD, we determined that caspase-1 and bioactive IL-1β release was highly dependent on caspase-4 activation and cleavage of GSDMD in response to Eh. Formaldehyde cross-linking to stabilize protein-protein interactions in transfected COS-7 cells stimulated with Eh revealed that caspase-4 specifically interacted with caspase-1 in a protein complex that enhanced the cleavage of caspase-1 CARD domains to augment IL-1β release. Activated caspase-4 and -1 cleaved GSDMD liberating the N-terminal p30 pore-forming fragment that caused the secretion of IL-1β. These findings reveal a novel role for caspase-4 as a sensor molecule to amplify pro-inflammatory responses when macrophage encounters Eh.
Collapse
Affiliation(s)
- Jeanie Quach
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Christina Sandall
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
18
|
Kim MK, Song JY, Koh DI, Kim JY, Hatano M, Jeon BN, Kim MY, Cho SY, Kim KS, Hur MW. Reciprocal negative regulation between the tumor suppressor protein p53 and B cell CLL/lymphoma 6 (BCL6) via control of caspase-1 expression. J Biol Chem 2018; 294:299-313. [PMID: 30409904 DOI: 10.1074/jbc.ra118.004204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/10/2018] [Indexed: 11/06/2022] Open
Abstract
Even in the face of physiological DNA damage or expression of the tumor suppressor protein p53, B cell CLL/lymphoma 6 (BCL6) increases proliferation and antagonizes apoptotic responses in B cells. BCL6 represses TP53 transcription and also appears to inactivate p53 at the protein level, and additional findings have suggested negative mutual regulation between BCL6 and p53. Here, using Bcl6 -/- knockout mice, HEK293A and HCT116 p53 -/- cells, and site-directed mutagenesis, we found that BCL6 interacts with p53 and thereby inhibits acetylation of Lys-132 in p53 by E1A-binding protein p300 (p300), a modification that normally occurs upon DNA damage-induced cellular stress and whose abrogation by BCL6 diminished transcriptional activation of p53 target genes, including that encoding caspase-1. Conversely, we also found that BCL6 protein is degraded via p53-induced, caspase-mediated proteolytic cleavage, and the formation of a BCL6-p53-caspase-1 complex. Our results suggest that p53 may block oncogenic transformation by decreasing BCL6 stability via caspase-1 up-regulation, whereas aberrant BCL6 expression inactivates transactivation of p53 target genes, either by inhibiting p53 acetylation by p300 or repressing TP53 gene transcription. These findings have implications for B cell development and lymphomagenesis.
Collapse
Affiliation(s)
- Min-Kyeong Kim
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Ji-Yang Song
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Dong-In Koh
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, 162 Yoengudanji-ro, Ochang, Chungbuk 28119, Korea
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba City, Chiba 260-0856, Japan
| | - Bu-Nam Jeon
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Min-Young Kim
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Su-Yeon Cho
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Kyung-Sup Kim
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea
| | - Man-Wook Hur
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, 50 Yonsei-ro, SeoDaeMoon-gu, Seoul 03722, Korea.
| |
Collapse
|
19
|
Wilson CH, Kumar S. Caspases in metabolic disease and their therapeutic potential. Cell Death Differ 2018; 25:1010-1024. [PMID: 29743560 PMCID: PMC5988802 DOI: 10.1038/s41418-018-0111-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Caspases, a family of cysteine-dependent aspartate-specific proteases, are central to the maintenance of cellular and organismal homoeostasis by functioning as key mediators of the inflammatory response and/or apoptosis. Both metabolic inflammation and apoptosis play a central role in the pathogenesis of metabolic disease such as obesity and the progression of nonalcoholic steatohepatisis (NASH) to more severe liver disease. Obesity and nonalcoholic fatty liver disease (NAFLD) are the leading global health challenges associated with the development of numerous comorbidities including insulin resistance, type-2 diabetes and early mortality. Despite the high prevalence, current treatment strategies including lifestyle, dietary, pharmaceutical and surgical interventions, are often limited in their efficacy to manage or treat obesity, and there are currently no clinical therapies for NAFLD/NASH. As mediators of inflammation and cell death, caspases are attractive therapeutic targets for the treatment of these metabolic diseases. As such, pan-caspase inhibitors that act by blocking apoptosis have reached phase I/II clinical trials in severe liver disease. However, there is still a lack of knowledge of the specific and differential functions of individual caspases. In addition, cross-talk between alternate cell death pathways is a growing concern for long-term caspase inhibition. Evidence is emerging of the important cell-death-independent, non-apoptotic functions of caspases in metabolic homoeostasis that may be of therapeutic value. Here, we review the current evidence for roles of caspases in metabolic disease and discuss their potential targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire H Wilson
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| |
Collapse
|
20
|
Chu WK, Hsu CC, Huang SF, Hsu CC, Chow SE. Caspase 12 degrades IκBα protein and enhances MMP-9 expression in human nasopharyngeal carcinoma cell invasion. Oncotarget 2017; 8:33515-33526. [PMID: 28380444 PMCID: PMC5464886 DOI: 10.18632/oncotarget.16535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/03/2017] [Indexed: 01/01/2023] Open
Abstract
Caspase-12 (Casp12), an inflammatory caspase, functions as a dominant-negative regulator of inflammatory responses and is associated with the signaling of apoptosis. However, the physiological function of Casp12 presented in cancer cells is still unclear. This study demonstrated that overexpression of Casp12 mediated IκBα degradation and significantly increased NF-κB activity. Exposure of human nasopharyngeal carcinoma (NPC) cells to phorbol-12-myristate-13-acetate (PMA) increased the levels of Casp12 and MMP-9 resulting in NPC cell invasion. Target suppression of Casp12 by small interfering RNA (siRNA) or an inhibitor of Casp12 markedly decreased the level of PMA-induced MMP-9 protein and cell invasion. Moreover, suppression of Casp12 significantly inhibited the basal activity of NF-κB and decreased the PMA-induced NF-κB reporter activity. The effect of Casp12 on NF-κB activation was indicated via the post-translational degradation of IκB. This study revealed that a critical role of Casp12 on the activation of NF-κB via IκBα degradation which provides a link between inflammatory and aggressive invasion in NPC cells.
Collapse
Affiliation(s)
- Wing-Keung Chu
- Department of Physiology, Chang Gung University, Taoyuan, Taiwan
- Center for Healthy and Aging Research, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
- Department of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shiang-Fu Huang
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chi Hsu
- Department of Nature Science, Center for General Studies, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Er Chow
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nature Science, Center for General Studies, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
21
|
Wang L, Ko ER, Gilchrist JJ, Pittman KJ, Rautanen A, Pirinen M, Thompson JW, Dubois LG, Langley RJ, Jaslow SL, Salinas RE, Rouse DC, Moseley MA, Mwarumba S, Njuguna P, Mturi N, Williams TN, Scott JAG, Hill AVS, Woods CW, Ginsburg GS, Tsalik EL, Ko DC. Human genetic and metabolite variation reveals that methylthioadenosine is a prognostic biomarker and an inflammatory regulator in sepsis. SCIENCE ADVANCES 2017; 3:e1602096. [PMID: 28345042 PMCID: PMC5342653 DOI: 10.1126/sciadv.1602096] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Sepsis is a deleterious inflammatory response to infection with high mortality. Reliable sepsis biomarkers could improve diagnosis, prognosis, and treatment. Integration of human genetics, patient metabolite and cytokine measurements, and testing in a mouse model demonstrate that the methionine salvage pathway is a regulator of sepsis that can accurately predict prognosis in patients. Pathway-based genome-wide association analysis of nontyphoidal Salmonella bacteremia showed a strong enrichment for single-nucleotide polymorphisms near the components of the methionine salvage pathway. Measurement of the pathway's substrate, methylthioadenosine (MTA), in two cohorts of sepsis patients demonstrated increased plasma MTA in nonsurvivors. Plasma MTA was correlated with levels of inflammatory cytokines, indicating that elevated MTA marks a subset of patients with excessive inflammation. A machine-learning model combining MTA and other variables yielded approximately 80% accuracy (area under the curve) in predicting death. Furthermore, mice infected with Salmonella had prolonged survival when MTA was administered before infection, suggesting that manipulating MTA levels could regulate the severity of the inflammatory response. Our results demonstrate how combining genetic data, biomolecule measurements, and animal models can shape our understanding of disease and lead to new biomarkers for patient stratification and potential therapeutic targeting.
Collapse
Affiliation(s)
- Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Emily R. Ko
- Duke Regional Hospital, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, School of Medicine, Duke University, Durham, NC 27708, USA
| | - James J. Gilchrist
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, U.K
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, U.K
| | - Kelly J. Pittman
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Anna Rautanen
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, U.K
| | - Matti Pirinen
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, U.K
| | - J. Will Thompson
- Proteomics and Metabolomics Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura G. Dubois
- Proteomics and Metabolomics Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Raymond J. Langley
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | - Sarah L. Jaslow
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Raul E. Salinas
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - D. Clayburn Rouse
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC 27710, USA
| | - M. Arthur Moseley
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, School of Medicine, Duke University, Durham, NC 27708, USA
- Proteomics and Metabolomics Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Salim Mwarumba
- Kenya Medical Research Institute–Wellcome Trust Clinical Research Programme, Kilifi 80108, Kenya
| | - Patricia Njuguna
- Kenya Medical Research Institute–Wellcome Trust Clinical Research Programme, Kilifi 80108, Kenya
| | - Neema Mturi
- Kenya Medical Research Institute–Wellcome Trust Clinical Research Programme, Kilifi 80108, Kenya
| | | | | | - Thomas N. Williams
- Kenya Medical Research Institute–Wellcome Trust Clinical Research Programme, Kilifi 80108, Kenya
- Department of Medicine, Imperial College, Norfolk Place, London W2 1PG, U.K
| | - J. Anthony G. Scott
- Kenya Medical Research Institute–Wellcome Trust Clinical Research Programme, Kilifi 80108, Kenya
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K
| | - Adrian V. S. Hill
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, U.K
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K
| | - Christopher W. Woods
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, School of Medicine, Duke University, Durham, NC 27708, USA
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
- Medical Service, Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
| | - Geoffrey S. Ginsburg
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Ephraim L. Tsalik
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, School of Medicine, Duke University, Durham, NC 27708, USA
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
- Emergency Medicine Service, Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
22
|
Liang Y, Xing X, Beamer MA, Swindell WR, Sarkar MK, Roberts LW, Voorhees JJ, Kahlenberg JM, Harms PW, Johnston A, Gudjonsson JE. Six-transmembrane epithelial antigens of the prostate comprise a novel inflammatory nexus in patients with pustular skin disorders. J Allergy Clin Immunol 2016; 139:1217-1227. [PMID: 27884600 DOI: 10.1016/j.jaci.2016.10.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/23/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Pustular skin disorders are a category of difficult-to-treat and potentially life-threatening conditions that involve the appearance of neutrophil-rich pustules. The molecular basis of most pustular skin conditions has remained unknown. OBJECTIVE We sought to investigate the molecular basis of 3 pustular skin disorders: generalized pustular psoriasis (GPP), palmoplantar pustulosis (PPP), and acute generalized exanthematous pustulosis (AGEP). METHODS Microarray analyses were performed to profile genome-wide gene expression of skin biopsy specimens obtained from patients with GPP, PPP, or AGEP and healthy control subjects. Functional enrichment, gene network, and k-means clustering analyses were used to identify molecular pathways dysregulated in patients with these disorders. Immunohistochemistry and immunofluorescence were used to determine protein localization. Quantitative RT-PCR and ELISA were used to determine transcript and secreted cytokine levels. Small interfering RNA was used to decrease transcript levels. RESULTS Molecules and pathways related to neutrophil chemotaxis emerged as common alterations in patients with GPP, PPP, and AGEP, which is consistent with the pustular phenotypes. Expression of two 6-transmembrane epithelial antigens of the prostate (STEAP) proteins, STEAP1 and STEAP4, was increased in patients' skin and colocalized with IL-36γ around neutrophilic pustules. STEAP1/4 expression clustered with and positively correlated with that of IL-1, the IL-36 family proteins, and CXCL1/8. STEAP4 expression was activated by cytokines and suppressed by inhibition of mitogen-activated protein kinase kinase 1/2, whereas STEAP1 expression appeared less prone to such dynamic regulation. Importantly, STEAP1/4 knockdown resulted in impaired induction of a broad spectrum of proinflammatory cytokines, including IL-1, IL-36, and the neutrophil chemotaxins CXCL1 and CXCL8. STEAP1/4 knockdown also reduced the ability of keratinocytes to induce neutrophil chemotaxis. CONCLUSION Transcriptomic changes in 3 pustular skin disorders, GPP, PPP, and AGEP, converged on neutrophil chemotaxis and diapedesis and cytokines known to drive neutrophil-rich inflammatory processes, including IL-1 and members of the IL-36 family. STEAP1 and STEAP4 positively regulate the induction of proinflammatory neutrophil-activating cytokines.
Collapse
Affiliation(s)
- Yun Liang
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Maria A Beamer
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Mich
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Mich; Department of Pathology, University of Michigan, Ann Arbor, Mich
| | - Andrew Johnston
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | |
Collapse
|
23
|
García de la Cadena S, Massieu L. Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12. Apoptosis 2016; 21:763-77. [DOI: 10.1007/s10495-016-1247-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Kang JW, Kim SJ, Cho HI, Lee SM. DAMPs activating innate immune responses in sepsis. Ageing Res Rev 2015; 24:54-65. [PMID: 25816752 DOI: 10.1016/j.arr.2015.03.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/09/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Sepsis refers to the deleterious and non-resolving systemic inflammatory response of the host to microbial infection and is the leading cause of death in intensive care units. The pathogenesis of sepsis is highly complex. It is principally attributable to dysregulation of the innate immune system. Damage-associated molecular patterns (DAMPs) are actively secreted by innate immune cells and/or released passively by injured or damaged cells in response to infection or injury. In the present review, we highlight emerging evidence that supports the notion that extracellular DAMPs act as crucial proinflammatory danger signals. Furthermore, we discuss the potential of a wide array of DAMPs as therapeutic targets in sepsis.
Collapse
Affiliation(s)
- Jung-Woo Kang
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea
| | - So-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea
| | - Hong-Ik Cho
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Gyeonggi-do, 440-746 South Korea.
| |
Collapse
|
25
|
Single-cell imaging of inflammatory caspase dimerization reveals differential recruitment to inflammasomes. Cell Death Dis 2015; 6:e1813. [PMID: 26158519 PMCID: PMC4650733 DOI: 10.1038/cddis.2015.186] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/22/2015] [Indexed: 01/08/2023]
Abstract
The human inflammatory caspases, including caspase-1, -4, -5 and -12, are considered as key regulators of innate immunity protecting from sepsis and numerous inflammatory diseases. Caspase-1 is activated by proximity-induced dimerization following recruitment to inflammasomes but the roles of the remaining inflammatory caspases in inflammasome assembly are unclear. Here, we use caspase bimolecular fluorescence complementation to visualize the assembly of inflammasomes and dimerization of inflammatory caspases in single cells. We observed caspase-1 dimerization induced by the coexpression of a range of inflammasome proteins and by lipospolysaccharide (LPS) treatment in primary macrophages. Caspase-4 and -5 were only dimerized by select inflammasome proteins, whereas caspase-12 dimerization was not detected by any investigated treatment. Strikingly, we determined that certain inflammasome proteins could induce heterodimerization of caspase-1 with caspase-4 or -5. Caspase-5 homodimerization and caspase-1/-5 heterodimerization was also detected in LPS-primed primary macrophages in response to cholera toxin subunit B. The subcellular localization and organization of the inflammasome complexes varied markedly depending on the upstream trigger and on which caspase or combination of caspases were recruited. Three-dimensional imaging of the ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain)/caspase-1 complexes revealed a large spherical complex of ASC with caspase-1 dimerized on the outer surface. In contrast, NALP1 (NACHT leucine-rich repeat protein 1)/caspase-1 complexes formed large filamentous structures. These results argue that caspase-1, -4 or -5 can be recruited to inflammasomes under specific circumstances, often leading to distinctly organized and localized complexes that may impact the functions of these proteases.
Collapse
|
26
|
Cortistatin Inhibits NLRP3 Inflammasome Activation of Cardiac Fibroblasts During Sepsis. J Card Fail 2015; 21:426-433. [DOI: 10.1016/j.cardfail.2015.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 01/17/2023]
|
27
|
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2014; 22:526-39. [PMID: 25526085 DOI: 10.1038/cdd.2014.216] [Citation(s) in RCA: 908] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
28
|
Wang X, Qian YJ, Zhou Q, Ye P, Duan N, Huang XF, Zhu YN, Li JJ, Hu LP, Zhang WY, Han XD, Wang WM. Caspase-12 silencing attenuates inhibitory effects of cigarette smoke extract on NOD1 signaling and hBDs expression in human oral mucosal epithelial cells. PLoS One 2014; 9:e115053. [PMID: 25503380 PMCID: PMC4263745 DOI: 10.1371/journal.pone.0115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022] Open
Abstract
Cigarette smoke exposure is associated with increased risk of various diseases. Epithelial cells-mediated innate immune responses to infectious pathogens are compromised by cigarette smoke. Although many studies have established that cigarette smoke exposure affects the expression of Toll-liked receptor (TLR), it remains unknown whether the nucleotide-binding oligomerization domain-containing protein 1 (NOD1) expression is affected by cigarette smoke exposure. In the study, we investigated effects of cigarette smoke extract (CSE) on NOD1 signaling in an immortalized human oral mucosal epithelial (Leuk-1) cell line. We first found that CSE inhibited NOD1 expression in a dose-dependent manner. Moreover, CSE modulated the expression of other crucial molecules in NOD1 signaling and human β defensin (hBD) 1, 2 and 3. We found that RNA interference-induced Caspase-12 silencing increased NOD1 and phospho-NF-κB (p-NF-κB) expression and down-regulated RIP2 expression. The inhibitory effects of CSE on NOD1 signaling can be attenuated partially through Caspase-12 silencing. Intriguingly, Caspase-12 silencing abrogated inhibitory effects of CSE on hBD1, 3 expression and augmented induced effect of CSE on hBD2 expression. Caspase-12 could play a vital role in the inhibitory effects of cigarette smoke on NOD1 signaling and hBDs expression in oral mucosal epithelial cells.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Ya-jie Qian
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Qian Zhou
- Department of Endodontics, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Pei Ye
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Ning Duan
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Xiao-feng Huang
- Department of Oral Pathology, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Ya-nan Zhu
- Department of Endodontics, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Jing-jing Li
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Li-ping Hu
- Department of Oral and Maxillofacial Surgery, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
| | - Wei-yun Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Xiao-dong Han
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- * E-mail: (WW); (XDH)
| | - Wen-mei Wang
- Department of Oral Medicine, Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, China
- * E-mail: (WW); (XDH)
| |
Collapse
|
29
|
Zhang W, Xu X, Kao R, Mele T, Kvietys P, Martin CM, Rui T. Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: the role of NLRP3 inflammasome activation. PLoS One 2014; 9:e107639. [PMID: 25216263 PMCID: PMC4162616 DOI: 10.1371/journal.pone.0107639] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/11/2014] [Indexed: 01/12/2023] Open
Abstract
Myocardial contractile dysfunction in sepsis is associated with the increased morbidity and mortality. Although the underlying mechanisms of the cardiac depression have not been fully elucidated, an exaggerated inflammatory response is believed to be responsible. Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome is an intracellular platform that is involved in the maturation and release of interleukin (IL)-1β. The aim of the present study is to evaluate whether sepsis activates NLRP3 inflammasome/caspase-1/IL-1β pathway in cardiac fibroblasts (CFs) and whether this cytokine can subsequently impact the function of cardiomyocytes (cardiac fibroblast-myocyte cross-talk). We show that treatment of CFs with lipopolysaccharide (LPS) induces upregulation of NLRP3, activation of caspase-1, as well as the maturation (activation) and release of IL-1β. In addition, the genetic (small interfering ribonucleic acid [siRNA]) and pharmacological (glyburide) inhibition of the NLRP3 inflammasome in CFs can block this signaling pathway. Furthermore, the inhibition of the NLRP3 inflammasome in cardiac fibroblasts ameliorated the ability of LPS-chalenged CFs to impact cardiomyocyte function as assessed by intracellular cyclic adenosine monophosphate (cAMP) responses in cardiomyocytes. Salient features of this the NLP3 inflammasome/ caspase-1 pathway were confirmed in in vivo models of endotoxemia/sepsis. We found that inhibition of the NLRP3 inflammasome attenuated myocardial dysfunction in mice with LPS and increased the survival rate in mice with feces-induced peritonitis. Our results indicate that the activation of the NLRP3 inflammasome in cardiac fibroblasts is pivotal in the induction of myocardial dysfunction in sepsis.
Collapse
Affiliation(s)
- Wenbo Zhang
- Departments of Medicine and Surgery, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Xuemei Xu
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Raymond Kao
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Tina Mele
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Peter Kvietys
- Department of Physiology & Biochemistry, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Claudio M. Martin
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Tao Rui
- Departments of Medicine and Surgery, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
- Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
- Critical Care Western, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Abstract
Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NLRs) are families of pattern recognition receptors that, together with inflammasomes, sense and respond to highly conserved pathogen motifs and endogenous molecules released upon cell damage or stress. Evidence suggests that TLRs, NLRs and the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome have important roles in kidney diseases through regulation of inflammatory and tissue-repair responses to infection and injury. In this Review, we discuss the pathological mechanisms that are related to TLRs, NLRs and NLRP3 in various kidney diseases. In general, these receptors are protective in the host defence against urinary tract infection, but can sustain and self-perpetuate tissue damage in sterile inflammatory and immune-mediated kidney diseases. TLRs, NLRs and NLRP3, therefore, have become promising drug targets to enable specific modulation of kidney inflammation and suppression of immunopathology in kidney disease.
Collapse
|
31
|
Exline MC, Justiniano S, Hollyfield JL, Berhe F, Besecker BY, Das S, Wewers MD, Sarkar A. Microvesicular caspase-1 mediates lymphocyte apoptosis in sepsis. PLoS One 2014; 9:e90968. [PMID: 24643116 PMCID: PMC3958341 DOI: 10.1371/journal.pone.0090968] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
Objective Immune dysregulation during sepsis is poorly understood, however, lymphocyte apoptosis has been shown to correlate with poor outcomes in septic patients. The inflammasome, a molecular complex which includes caspase-1, is essential to the innate immune response to infection and also important in sepsis induced apoptosis. Our group has recently demonstrated that endotoxin-stimulated monocytes release microvesicles (MVs) containing caspase-1 that are capable of inducing apoptosis. We sought to determine if MVs containing caspase-1 are being released into the blood during human sepsis and induce apoptosis.. Design Single-center cohort study Measurements 50 critically ill patients were screened within 24 hours of admission to the intensive care unit and classified as either a septic or a critically ill control. Circulatory MVs were isolated and analyzed for the presence of caspase-1 and the ability to induce lymphocyte apoptosis. Patients remaining in the ICU for 48 hours had repeated measurement of caspase-1 activity on ICU day 3. Main Results Septic patients had higher microvesicular caspase-1 activity 0.05 (0.04, 0.07) AFU versus 0.0 AFU (0, 0.02) (p<0.001) on day 1 and this persisted on day 3, 0.12 (0.1, 0.2) versus 0.02 (0, 0.1) (p<0.001). MVs isolated from septic patients on day 1 were able to induce apoptosis in healthy donor lymphocytes compared with critically ill control patients (17.8±9.2% versus 4.3±2.6% apoptotic cells, p<0.001) and depletion of MVs greatly diminished this apoptotic signal. Inhibition of caspase-1 or the disruption of MV integrity abolished the ability to induce apoptosis. Conclusion These findings suggest that microvesicular caspase-1 is important in the host response to sepsis, at least in part, via its ability to induce lymphocyte apoptosis. The ability of microvesicles to induce apoptosis requires active caspase-1 and intact microvesicles.
Collapse
Affiliation(s)
- Matthew C. Exline
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Steven Justiniano
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Jennifer L. Hollyfield
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Freweine Berhe
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Beth Y. Besecker
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Srabani Das
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Anasuya Sarkar
- Davis Heart and Lung Research Institute, Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
32
|
Yang C, diIorio P, Jurczyk A, O'Sullivan-Murphy B, Urano F, Bortell R. Pathological endoplasmic reticulum stress mediated by the IRE1 pathway contributes to pre-insulitic beta cell apoptosis in a virus-induced rat model of type 1 diabetes. Diabetologia 2013; 56:2638-46. [PMID: 24121653 PMCID: PMC4845659 DOI: 10.1007/s00125-013-3044-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/15/2013] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that pathological endoplasmic reticulum (ER) stress contributes to beta cell death during development of type 1 diabetes. In this study, we investigated the occurrence of beta cell ER stress and the signalling pathways involved during discrete stages of autoimmune diabetes progression. The virus-inducible BBDR rat model was used to systematically interrogate the three main ER stress signalling pathways (IRE1 [inositol-requiring protein-1], PERK [double-stranded RNA-dependent protein kinase (PKR)-like ER kinase] and ATF6 [activating transcription factor 6]) in pancreatic beta cells during type 1 diabetes development. METHODS ER stress and apoptotic markers were assessed by immunoblot analyses of isolated pancreatic islets and immunofluorescence staining of pancreas sections from control and virus-induced rats. Various time points were analysed: (1) early stages preceding the development of insulitis and (2) a late stage during onset and progression of insulitis, which precedes overt hyperglycaemia. RESULTS The IRE1 pathway, including its downstream component X-box-binding protein 1, was specifically activated in pancreatic beta cells of virus-induced rats at early stages preceding the development of insulitis. Furthermore, ER stress-specific pro-apoptotic caspase 12 and effector caspase 3 were also activated at this stage. Activation of PERK and its downstream effector pro-apoptotic CHOP (CCAAT/-enhancer-binding-protein homologous protein), only occurred during late stages of diabetes induction concurrent with insulitis, whereas ATF6 activation in pancreatic beta cells was similar in control and virus-induced rats. CONCLUSIONS/INTERPRETATION Activation of the IRE1 pathway and ER stress-specific pro-apoptotic caspase 12, before the development of insulitis, are indicative of ER stress-mediated beta cell damage. The early occurrence of pathological ER stress and death in pancreatic beta cells may contribute to the initiation and/or progression of virus-induced autoimmune diabetes.
Collapse
Affiliation(s)
- Chaoxing Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Philip diIorio
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Agata Jurczyk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Bryan O'Sullivan-Murphy
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Rita Bortell
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
- Correspondence should be addressed to Rita Bortell, PhD, Program in Molecular Medicine, 368 Plantation Street, AS7-2055, Worcester, MA 01605. Phone: 508-856-3788, Fax: 508-856-4093,
| |
Collapse
|
33
|
Asfaw Idosa B, Sahdo B, Balcha E, Kelly A, Söderquist B, Särndahl E. C10X polymorphism in the CARD8 gene is associated with bacteraemia. IMMUNITY INFLAMMATION AND DISEASE 2013; 2:13-20. [PMID: 25400921 PMCID: PMC4220665 DOI: 10.1002/iid3.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/19/2013] [Accepted: 09/27/2013] [Indexed: 01/27/2023]
Abstract
The NLRP3 inflammasome is an intracellular multi-protein complex that triggers caspase-1 mediated maturation of interleukin-1β (IL-1β); one of the most potent mediators of inflammation and a major cytokine produced during severe infections, like sepsis. However, the excessive cytokine levels seem to stage for tissue injury and organ failure, and high levels of IL-1β correlates with severity and mortality of sepsis. Instead, recent data suggest caspase-1 to function as a guardian against severe infections. CARD8 has been implied to regulate the synthesis of IL-1β via interaction to caspase-1. In recent years, polymorphism of CARD8 (C10X) per se or in combination with NLRP3 (Q705K) has been implicated with increased risk of inflammation. The aim was to investigate the correlation of these polymorphisms with severe blood stream infection. Human DNA was extracted from blood culture bottles that were found to be positive for microbial growth (i.e. patients with bacteraemia). Polymorphisms Q705K in the NLRP3 gene and C10X in the CARD8 gene were genotyped using TaqMan genotyping assay. The results were compared to healthy controls and to samples from patients with negative cultures. The polymorphism C10X was significantly over-represented among patients with bacteraemia as compared to healthy controls, whereas patients with negative blood culture were not associated with a higher prevalence. No association was observed with polymorphism Q705K of NLRP3 in either group of patients. Patients carrying polymorphism C10X in the CARD8 gene are at increased risk of developing bacteraemia and severe inflammation.
Collapse
Affiliation(s)
- Berhane Asfaw Idosa
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University SE-701 82, Örebro, Sweden
| | - Berolla Sahdo
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University SE-701 82, Örebro, Sweden
| | - Ermias Balcha
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University SE-701 82, Örebro, Sweden
| | - Anne Kelly
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University SE-701 82, Örebro, Sweden
| | - Bo Söderquist
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital SE-701 85, Örebro, Sweden ; Faculty of Medicine and Health, Örebro University SE-701 82, Örebro, Sweden
| | - Eva Särndahl
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University SE-701 82, Örebro, Sweden ; Faculty of Medicine and Health, Örebro University SE-701 82, Örebro, Sweden
| |
Collapse
|
34
|
Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3507-3517. [PMID: 23988738 DOI: 10.1016/j.bbamcr.2013.07.024] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress is a common feature of several physiological and pathological conditions affecting the function of the secretory pathway. To restore ER homeostasis, an orchestrated signaling pathway is engaged that is known as the unfolded protein response (UPR). The UPR has a primary function in stress adaptation and cell survival; however, under irreversible ER stress a switch to pro-apoptotic signaling events induces apoptosis of damaged cells. The mechanisms that initiate ER stress-dependent apoptosis are not fully understood. Several pathways have been described where we highlight the participation of the BCL-2 family of proteins and ER calcium release. In addition, recent findings also suggest that microRNAs and oxidative stress are relevant players on the transition from adaptive to cell death programs. Here we provide a global and integrated overview of the signaling networks that may determine the elimination of a cell under chronic ER stress. This article is part of a Special Section entitled: Cell Death Pathways.
Collapse
Affiliation(s)
- Hery Urra
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Estefanie Dufey
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernanda Lisbona
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Neurounion Biomedical Foundation, Santiago, Chile.
| |
Collapse
|
35
|
Abstract
Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation or activation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.
Collapse
Affiliation(s)
- David R McIlwain
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | | | | |
Collapse
|
36
|
Reis MIR, do Vale A, Pereira PJB, Azevedo JE, dos Santos NMS. Caspase-1 and IL-1β processing in a teleost fish. PLoS One 2012; 7:e50450. [PMID: 23226286 PMCID: PMC3511578 DOI: 10.1371/journal.pone.0050450] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/22/2012] [Indexed: 01/07/2023] Open
Abstract
Interleukine-1β (IL-1β) is the most studied pro-inflammatory cytokine, playing a central role in the generation of systemic and local responses to infection, injury, and immunological challenges. In mammals, IL-1β is synthesized as an inactive 31 kDa precursor that is cleaved by caspase-1 generating a 17.5 kDa secreted active mature form. The caspase-1 cleavage site strictly conserved in all mammalian IL-1β sequences is absent in IL-1β sequences reported for non-mammalian vertebrates. Recently, fish caspase-1 orthologues have been identified in sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) but very little is known regarding their processing and activity. In this work it is shown that sea bass caspase-1 auto-processing is similar to that of the human enzyme, resulting in active p24/p10 and p20/p10 heterodimers. Moreover, the presence of alternatively spliced variants of caspase-1 in sea bass is reported. The existence of caspase-1 isoforms in fish and in mammals suggests that they have been evolutionarily maintained and therefore are likely to play a regulatory role in the inflammatory response, as shown for other caspases. Finally, it is shown that sea bass and avian IL-1β are specifically cleaved by caspase-1 at different but phylogenetically conserved aspartates, distinct from the cleavage site of mammalian IL-1β.
Collapse
Affiliation(s)
- Marta I. R. Reis
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pedro J. B. Pereira
- Biomolecular Structure, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge E. Azevedo
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Organelle Biogenesis and Function, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nuno M. S. dos Santos
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
37
|
Wejda M, Impens F, Takahashi N, Van Damme P, Gevaert K, Vandenabeele P. Degradomics reveals that cleavage specificity profiles of caspase-2 and effector caspases are alike. J Biol Chem 2012; 287:33983-95. [PMID: 22825847 DOI: 10.1074/jbc.m112.384552] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Caspase-2 is considered an initiator caspase because its long prodomain contains a CARD domain that allows its recruitment and activation in several complexes by homotypic death domain-fold interactions. Because little is known about the function and specificity of caspase-2 and its physiological substrates, we compared the cleavage specificity profile of recombinant human caspase-2 with those of caspase-3 and -7 by analyzing cell lysates using N-terminal COmbined FRActional DIagonal Chromatography (COFRADIC). Substrate analysis of the 68 cleavage sites identified in 61 proteins revealed that the protease specificities of human caspases-2, -3, and -7 largely overlap, revealing the DEVD↓G consensus cleavage sequence. We confirmed that Asp(563) in eukaryotic translation initiation factor 4B (eIF4B) is a cleavage site preferred by caspase-2 not only in COFRADIC setup but also upon co-expression in HEK 293T cells. These results demonstrate that activated human caspase-2 shares remarkably overlapping protease specificity with the prototype apoptotic executioner caspases-3 and -7, suggesting that caspase-2 could function as a proapoptotic caspase once released from the activating complex.
Collapse
Affiliation(s)
- Magdalena Wejda
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), Ghent University, B-9052 Ghent (Zwijnaarde), Belgium
| | | | | | | | | | | |
Collapse
|
38
|
Hervella M, Plantinga TS, Alonso S, Ferwerda B, Izagirre N, Fontecha L, Fregel R, van der Meer JWM, de-la-Rúa C, Netea MG. The loss of functional caspase-12 in Europe is a pre-neolithic event. PLoS One 2012; 7:e37022. [PMID: 22615879 PMCID: PMC3353979 DOI: 10.1371/journal.pone.0037022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Caspase-12 (CASP12) modulates the susceptibility to sepsis. In humans, the "C" allele at CASP12 rs497116 has been associated with an increased risk of sepsis. Instead, the derived "T" allele encodes for an inactive caspase-12. Interestingly, Eurasians are practically fixed for the inactive variant, whereas in Sub-Saharan Africa the active variant is still common (~24%). This marked structure has been explained as a function of the selective advantage that the inactive caspase-12 confers by increasing resistance to infection. As regards to both when positive selection started acting and as to the speed with which fixation was achieved in Eurasia, estimates depend on the method and assumptions used, and can vary substantially. Using experimental evidence, we propose that, least in Eurasia, the increase in the frequency of the T allele might be related to the selective pressure exerted by the increase in zoonotic diseases transmission caused by the interplay between increased human population densities and a closer contact with animals during the Neolithic. METHODOLOG/PRINCIPAL FINDINGS: We genotyped CASP12 rs497116 in prehistoric individuals from 6 archaeological sites from the North of the Iberian Peninsula that date from Late Upper Paleolithic to Late Neolithic. DNA extraction was done from teeth lacking cavities or breakages using standard anti-contamination procedures, including processing of the samples in a positive pressure, ancient DNA-only chamber, quantitation of DNAs by qPCR, duplication, replication, genotyping of associated animals, or cloning of PCR products. Out of 50, 24 prehistoric individuals could finally be genotyped for rs497116. Only the inactive form of CASP12 was found. CONCLUSIONS/SIGNIFICANCE We demonstrate that the loss of caspase-12 in Europe predates animal domestication and that consequently CASP12 loss is unlikely to be related to the impact of zoonotic infections transmitted by livestock.
Collapse
Affiliation(s)
- Montserrat Hervella
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kempińska-Podhorodecka AD, Knap OM, Kobus K, Ciechanowicz A. Frequencies of functional caspase 12 genotypes in the North-Africa population. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412030040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Anhezini L, Saita AP, Costa MS, Ramos RGP, Simon CR. Fhosencodes aDrosophilaFormin-Like Protein participating in autophagic programmed cell death. Genesis 2012; 50:672-84. [DOI: 10.1002/dvg.22025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 01/12/2023]
|
41
|
Abstract
Programmed cell death is a necessary part of development and tissue homeostasis enabling the removal of unwanted cells. In the setting of infectious disease, cells that have been commandeered by microbial pathogens become detrimental to the host. When macrophages and dendritic cells are compromised in this way, they can be lysed by pyroptosis, a cell death mechanism that is distinct from apoptosis and oncosis/necrosis. Pyroptosis is triggered by Caspase-1 after its activation by various inflammasomes and results in lysis of the affected cell. Both pyroptosis and apoptosis are programmed cell death mechanisms but are dependent on different caspases, unlike oncosis. Similar to oncosis and unlike apoptosis, pyroptosis results in cellular lysis and release of the cytosolic contents to the extracellular space. This event is predicted to be inherently inflammatory and coincides with interleukin-1β (IL-1β) and IL-18 secretion. We discuss the role of distinct inflammasomes, including NLRC4, NLRP3, and AIM2, as well as the role of the ASC focus in Caspase-1 signaling. We further review the importance of pyroptosis in vivo as a potent mechanism to clear intracellular pathogens.
Collapse
Affiliation(s)
- Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
42
|
Ma YB, Chang HY. Caspase work model during pathogen infection. Virol Sin 2011; 26:366-75. [PMID: 22160936 DOI: 10.1007/s12250-011-3218-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/26/2011] [Indexed: 12/16/2022] Open
Abstract
Caspases are an evolutionarily conserved family of aspartate-specific cystein-dependent proteases with essential functions in apoptosis and normally exist in cells as inactive proenzymes. In addition to the inflammatory caspases, the initiator and effector caspases have been shown to have an important role in regulating the immune response, but are involved in different ways. We give a brief introduction on the benefit of apoptosis on the clearance of invasive pathogens, and the caspase functions involved in the immune response. Then we construct a working model of caspases during pathogen invasion. A detailed description of the three modes is given in the discussion. These three modes are regulated by different inhibitors, and there may be a novel way to treat intracellular pathogen and autoimmune diseases based on the specific inhibitors.
Collapse
Affiliation(s)
- Yan-Bin Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | | |
Collapse
|
43
|
Bian ZM, Elner SG, Khanna H, Murga-Zamalloa CA, Patil S, Elner VM. Expression and functional roles of caspase-5 in inflammatory responses of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2011; 52:8646-56. [PMID: 21969293 DOI: 10.1167/iovs.11-7570] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To investigate the expression, activation, and functional involvement of caspase-5 in human retinal pigment epithelial (hRPE) cells. METHODS Expression and activation of caspase-5 in primary cultured hRPE cells, telomerase-immortalized hTERT-RPE1 cells (hTERT-RPE1), or both, were measured after stimulation with proinflammatory agents IL-1β, TNF-α, lipopolysaccharide (LPS), interferon-γ, monocyte coculture, adenosine triphosphate (ATP), or endoplasmic reticulum (ER) stress inducers. Immunomodulating agents dexamethasone (Dex), IL-10, and triamcinolone acetonide (TA) were used to antagonize proinflammatory stimulation. Cell death ELISA and TUNEL staining assays were used to assess apoptosis. RESULTS Caspase-5 mRNA expression and protein activation were induced by LPS and monocyte-hRPE coculture. Caspase-5 activation appeared as early as 2 hours after challenge by LPS and consistently increased to 24 hours. Meanwhile, caspase-1 expression and protein activation were induced by LPS. Activation of caspase-5 was blocked or reduced by Dex, IL-10, and TA. Activation of caspase-5 and -1 was also enhanced by ATP and ER stress inducers. Expression and activation of caspase-5 were inhibited by a caspase-1-specific inhibitor. Caspase-5 knockdown reduced caspase-1 protein expression and activation and inhibited TNF-α-induced IL-8 and MCP-1. In contrast to caspase-4, the contribution of caspase-5 to stress-induced apoptosis was moderate. CONCLUSIONS Caspase-5 mRNA synthesis, protein expression, and catalytic activation were highly regulated in response to various proinflammatory stimuli, ATP, and ER stress inducers. Mutual activation between caspase-5 and -1 suggests caspase-5 may work predominantly in concert with caspase-1 in modulating hRPE inflammatory responses.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | |
Collapse
|
44
|
A possible mechanism for maintenance of the deleterious allele of human CASPASE-12. Med Hypotheses 2011; 77:803-6. [DOI: 10.1016/j.mehy.2011.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 07/18/2011] [Indexed: 12/18/2022]
|
45
|
Lakshmanan AP, Thandavarayan RA, Palaniyandi SS, Sari FR, Meilei H, Giridharan VV, Soetikno V, Suzuki K, Kodama M, Watanabe K. Modulation of AT-1R/CHOP-JNK-Caspase12 pathway by olmesartan treatment attenuates ER stress-induced renal apoptosis in streptozotocin-induced diabetic mice. Eur J Pharm Sci 2011; 44:627-34. [PMID: 22033153 DOI: 10.1016/j.ejps.2011.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/03/2011] [Accepted: 10/11/2011] [Indexed: 01/01/2023]
Abstract
There is evidence that the activation of renal angiotensin (Ang)-II plays a critical role in the pathogenesis of diabetic kidney diseases (DN) via the ER stress-induced renal apoptosis. Since, the potential negative role of Ang-II in the pathogenesis of ER stress-mediated apoptosis is poorly understood; we evaluated whether treatment of mice with AT-1R specific blocker, olmesartan is associated with the reduction of ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic animal model. We employed western blot analysis to measure the renal protein expressions level of NADPH oxidase subunits, ER chaperone GRP78 and the ER-associated apoptosis proteins. Furthermore, TUNEL staining was used to measure the renal apoptosis. Additionally, dihydroethidium staining and TBARS assay, and immunohistochemistry were performed to measure the renal superoxide radical production and lipid peroxidation, and activation of an Ang-II, respectively. The diabetic kidney mice were found to have increased protein expressions of NADPH oxidase subunits, GRP78 and ER-associated apoptosis proteins, such as TRAF2, IRE-1α, CHOP, p-JNK and procaspase-12, in comparison to normal mice, and which were significantly blunted by the olmesartan treatment in diabetic kidney mice. Furthermore, the diabetic kidney mice were found to have significant increment in renal apoptosis, superoxide radical production, MDA level and activation of an Ang-II and which were also attenuated by the olmesartan treatment. Considering all the findings, it is suggested that the AT-1R specific blocker-olmesartan treatment could be a potential therapy in treating ER stress-induced renal apoptosis via the modulation of AT-1R/CHOP-JNK-Caspase12 pathway in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Arun Prasath Lakshmanan
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gonçalves GM, Castoldi A, Braga TT, Câmara NOS. New roles for innate immune response in acute and chronic kidney injuries. Scand J Immunol 2011; 73:428-35. [PMID: 21272051 DOI: 10.1111/j.1365-3083.2011.02523.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The innate immune system plays an important role as a first response to tissue injury. This first response is carried out via germline-encoded receptors. They can recognize exogenous Pathogen-Associated Molecular Patterns and endogenous Dangers-Associated Molecular Patterns. The Toll-Like Receptor (TLR) family is well-studied, but more recently another family in the cytoplasmic compartment, called nod-like receptor (NLR), was discovered. In addition to being present in inflammatory cells, these receptors are widely distributed in various cell types, including renal tissue, where these receptors have an important role in triggering the inflammatory response during renal diseases. This review summarizes the present data regarding the role of TLRs and NLRs in the course and development of various kidney pathologies.
Collapse
Affiliation(s)
- G M Gonçalves
- Laboratory of Transplantation Immunobiology, Department of Immunology, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
47
|
Yessotoxin as an apoptotic inducer. Toxicon 2011; 57:947-58. [DOI: 10.1016/j.toxicon.2011.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 01/31/2011] [Accepted: 03/14/2011] [Indexed: 12/12/2022]
|
48
|
Abstract
Gout is an inflammatory arthritis characterized by abrupt self-limiting attacks of inflammation caused by precipitation of monosodium urate crystals (MSU) in the joint. Recent studies suggest that orchestration of the MSU-induced inflammatory response is dependent on the proinflammatory cytokine IL-1β, underlined by promising results in early IL-1 inhibitor trials in gout patients. This IL-1-dependent innate inflammatory phenotype, which is observed in a number of diseases in addition to gout, is now understood to rely on the formation of the macromolecular NLRP3 inflammasome complex in response to the MSU 'danger signal'. This review focuses on our current understanding of the NLRP3 inflammasome and its critical role in MSU-crystal induced inflammatory gout attacks. It also discusses the management of treatment-resistant acute and chronic tophaceous gout with IL-1 inhibitors; early clinical studies of rilonacept (IL-1 Trap), canakinumab (monoclonal anti-IL-1β antibody), and anakinra have all demonstrated treatment efficacy in such patients.
Collapse
Affiliation(s)
- Sarah R Kingsbury
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
49
|
Jones JW, Broz P, Monack DM. Innate immune recognition of francisella tularensis: activation of type-I interferons and the inflammasome. Front Microbiol 2011; 2:16. [PMID: 21687410 PMCID: PMC3109290 DOI: 10.3389/fmicb.2011.00016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/20/2011] [Indexed: 01/21/2023] Open
Abstract
Francisella tularensis is an intracellular pathogen that can cause severe disease in a wide range of mammalian hosts. Primarily residing in host macrophages, F. tularensis escapes phagosomal degradation, and replicates in the macrophage cytosol. The macrophage uses a series of pattern recognition receptors to detect conserved microbial molecules from invading pathogens, and initiates an appropriate host response. In the cytosol, F. tularensis is recognized by the inflammasome, a multiprotein complex responsible for the activation of the cysteine protease caspase-1. Caspase-1 activation leads to processing and release of proinflammatory cytokines and host cell death. Here we review recent work on the molecular mechanisms of inflammasome activation by F. tularensis, and its consequences both in vitro and in vivo. Finally, we discuss the coordination between the inflammasome and other cytosolic host responses, and the evidence for F. tularensis virulence factors that suppress inflammasome activation.
Collapse
Affiliation(s)
- Jonathan Wiley Jones
- Department of Microbiology and Immunology, School of Medicine, Stanford University Stanford, CA, USA
| | | | | |
Collapse
|
50
|
Kindermann M, Roschitzki-Voser H, Caglic D, Repnik U, Miniejew C, Mittl PRE, Kosec G, Grütter MG, Turk B, Wendt KU. Selective and sensitive monitoring of caspase-1 activity by a novel bioluminescent activity-based probe. ACTA ACUST UNITED AC 2011; 17:999-1007. [PMID: 20851349 DOI: 10.1016/j.chembiol.2010.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 07/05/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
Abstract
The role of caspase-1 in inflammation has been studied intensely over recent years. However, the research of caspase-1 has remained difficult mainly due to the lack of sensitive and selective tools to monitor not only its abundance but also its activity. Here we present a bioluminescent activity-based probe (ABP) for caspase-1, developed by the Reverse Design concept, where chemically optimized protease inhibitors are turned into selective substrate ABPs. The probe exhibits excellent selectivity for caspase-1 and ∼1000-fold increase in sensitivity compared to available fluorogenic peptidic caspase-1 substrates. Moreover, we have been able to monitor and quantify specific caspase-1 activity directly in cell lysates. The activity correlated well with processing of prointerleukin-1β and prointerleukin-18 in phorbol 12-myristate 13-acetate (PMA)-stimulated cells. A detectable caspase-1 activity was present also in nonstimulated cells, consistent with processing of constitutively expressed prointerleukin-18.
Collapse
Affiliation(s)
- Maik Kindermann
- Sanofi-Aventis Deutschland GmbH, R&D Chemical and Analytical Sciences, Industriepark Park Hoechst, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|