1
|
Malla WA, Arora R, Khan RIN, Mahajan S, Tiwari AK. Apoptin as a Tumor-Specific Therapeutic Agent: Current Perspective on Mechanism of Action and Delivery Systems. Front Cell Dev Biol 2020; 8:524. [PMID: 32671070 PMCID: PMC7330108 DOI: 10.3389/fcell.2020.00524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide in humans and animals. Conventional treatment regimens often fail to produce the desired outcome due to disturbances in cell physiology that arise during the process of transformation. Additionally, development of treatment regimens with no or minimum side-effects is one of the thrust areas of modern cancer research. Oncolytic viral gene therapy employs certain viral genes which on ectopic expression find and selectively destroy malignant cells, thereby achieving tumor cell death without harming the normal cells in the neighborhood. Apoptin, encoded by Chicken Infectious Anemia Virus' VP3 gene, is a proline-rich protein capable of inducing apoptosis in cancer cells in a selective manner. In normal cells, the filamentous Apoptin becomes aggregated toward the cell margins, but is eventually degraded by proteasomes without harming the cells. In malignant cells, after activation by phosphorylation by a cancer cell-specific kinase whose identity is disputed, Apoptin accumulates in the nucleus, undergoes aggregation to form multimers, and prevents the dividing cancer cells from repairing their DNA lesions, thereby forcing them to undergo apoptosis. In this review, we discuss the present knowledge about the structure of Apoptin protein, elaborate on its mechanism of action, and summarize various strategies that have been used to deliver it as an anticancer drug in various cancer models.
Collapse
Affiliation(s)
- Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
2
|
Bretscher C, Marchini A. H-1 Parvovirus as a Cancer-Killing Agent: Past, Present, and Future. Viruses 2019; 11:v11060562. [PMID: 31216641 PMCID: PMC6630270 DOI: 10.3390/v11060562] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
The rat protoparvovirus H-1PV is nonpathogenic in humans, replicates preferentially in cancer cells, and has natural oncolytic and oncosuppressive activities. The virus is able to kill cancer cells by activating several cell death pathways. H-1PV-mediated cancer cell death is often immunogenic and triggers anticancer immune responses. The safety and tolerability of H-1PV treatment has been demonstrated in early clinical studies in glioma and pancreatic carcinoma patients. Virus treatment was associated with surrogate signs of efficacy including immune conversion of tumor microenvironment, effective virus distribution into the tumor bed even after systemic administration, and improved patient overall survival compared with historical control. However, monotherapeutic use of the virus was unable to eradicate tumors. Thus, further studies are needed to improve H-1PV's anticancer profile. In this review, we describe H-1PV's anticancer properties and discuss recent efforts to improve the efficacy of H-1PV and, thereby, the clinical outcome of H-1PV-based therapies.
Collapse
Affiliation(s)
- Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, F011, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, F011, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
3
|
Preclinical Testing of an Oncolytic Parvovirus: Standard Protoparvovirus H-1PV Efficiently Induces Osteosarcoma Cell Lysis In Vitro. Viruses 2017; 9:v9100301. [PMID: 29039746 PMCID: PMC5691652 DOI: 10.3390/v9100301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/05/2023] Open
Abstract
Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV) in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS) was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo.
Collapse
|
4
|
Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci 2015; 72:1073-94. [PMID: 25408521 PMCID: PMC11113997 DOI: 10.1007/s00018-014-1782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. P. Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. K. Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| |
Collapse
|
5
|
Backendorf C, Noteborn MHM. Apoptin Towards Safe and Efficient Anticancer Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:39-59. [DOI: 10.1007/978-1-4471-6458-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
λ Phage nanobioparticle expressing apoptin efficiently suppress human breast carcinoma tumor growth in vivo. PLoS One 2013; 8:e79907. [PMID: 24278212 PMCID: PMC3838365 DOI: 10.1371/journal.pone.0079907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 10/02/2013] [Indexed: 12/21/2022] Open
Abstract
Using phages is a novel field of cancer therapy and phage nanobioparticles (NBPs) such as λ phage could be modified to deliver and express genetic cassettes into eukaryotic cells safely in contrast with animal viruses. Apoptin, a protein from chicken anemia virus (CAV) has the ability to specifically induce apoptosis only in carcinoma cells. We presented a safe method of breast tumor therapy via the apoptin expressing λ NBPs. Here, we constructed a λ ZAP-CMV-apoptin recombinant NBP and investigated the effectiveness of its apoptotic activity on BT-474, MDA-MB-361, SKBR-3, UACC-812 and ZR-75 cell lines that over-expressing her-2 marker. Apoptosis was evaluated via annexin-V fluorescent iso-thiocyanate/propidium iodide staining, flow-cytometric method and TUNEL assay. Transfection with NBPs carrying λ ZAP-CMV-apoptin significantly inhibited growth of all the breast carcinoma cell lines in vitro. Also nude mice model implanted BT-474 human breast tumor was successfully responded to the systemic and local injection of untargeted recombinant λ NBPs. The results presented here reveal important features of recombinant λ nanobioparticles to serve as safe delivery and expression platform for human cancer therapy.
Collapse
|
7
|
Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Oncolytic viruses for cancer therapy. Oncoimmunology 2013; 2:e24612. [PMID: 23894720 PMCID: PMC3716755 DOI: 10.4161/onci.24612] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy is emerging as a promising approach for the treatment of several neoplasms. The term "oncolytic viruses" is generally employed to indicate naturally occurring or genetically engineered attenuated viral particles that cause the demise of malignant cells while sparing their non-transformed counterparts. From a conceptual standpoint, oncolytic viruses differ from so-called "oncotropic viruses" in that only the former are able to kill cancer cells, even though both display a preferential tropism for malignant tissues. Of note, such a specificity can originate at several different steps of the viral cycle, including the entry of virions (transductional specificity) as well as their intracellular survival and replication (post-transcriptional and transcriptional specificity). During the past two decades, a large array of replication-competent and replication-incompetent oncolytic viruses has been developed and engineered to express gene products that would specifically promote the death of infected (cancer) cells. However, contrarily to long-standing beliefs, the antineoplastic activity of oncolytic viruses is not a mere consequence of the cytopathic effect, i.e., the lethal outcome of an intense, productive viral infection, but rather involves the elicitation of an antitumor immune response. In line with this notion, oncolytic viruses genetically modified to drive the local production of immunostimulatory cytokines exert more robust therapeutic effects than their non-engineered counterparts. Moreover, the efficacy of oncolytic virotherapy is significantly improved by some extent of initial immunosuppression (facilitating viral replication and spread) followed by the administration of immunostimulatory molecules (boosting antitumor immune responses). In this Trial Watch, we will discuss the results of recent clinical trials that have evaluated/are evaluating the safety and antineoplastic potential of oncolytic virotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Structural characterization of H-1 parvovirus: comparison of infectious virions to empty capsids. J Virol 2013; 87:5128-40. [PMID: 23449783 DOI: 10.1128/jvi.03416-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors.
Collapse
|
9
|
ZHANG MUCHUN, WANG JINHUI, LI CHANG, HU NINGNING, WANG KAI, JI HUIFAN, HE DONGYUN, QUAN CHENGSHI, LI XIAO, JIN NINGYI, LI YULIN. Potent growth-inhibitory effect of a dual cancer-specific oncolytic adenovirus expressing apoptin on prostate carcinoma. Int J Oncol 2013; 42:1052-60. [DOI: 10.3892/ijo.2013.1783] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/17/2012] [Indexed: 11/06/2022] Open
|
10
|
Dempe S, Lavie M, Struyf S, Bhat R, Verbeke H, Paschek S, Berghmans N, Geibig R, Rommelaere J, Van Damme J, Dinsart C. Antitumoral activity of parvovirus-mediated IL-2 and MCP-3/CCL7 delivery into human pancreatic cancer: implication of leucocyte recruitment. Cancer Immunol Immunother 2012; 61:2113-23. [PMID: 22576056 PMCID: PMC11028688 DOI: 10.1007/s00262-012-1279-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 04/28/2012] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the fourth leading cause of cancer-related death in western countries. The patients are often diagnosed in advanced metastatic stages, and the prognosis remains extremely poor with an overall 5-year survival rate less than 5 %. Currently, novel therapeutic strategies are being pursued to combat PDAC, including oncolytic viruses, either in their natural forms or armed with immunostimulatory molecules. Natural killer cells are critical players against tumours and infected cells. Recently, we showed that IL-2-activated human NK cells displayed killing activity against PDAC cells, which could further be enhanced through the infection of PDAC cells with the rodent parvovirus H-1PV. In this study, the therapeutic efficacy of parvovirus-mediated delivery of three distinct cyto/chemokines (Il-2, MCP-3/CCL7 and IP-10/CXCL10) was evaluated in xenograft models of human PDAC. We show here that activated NK and monocytic cells were found to be recruited by PDAC tumours upon infection with parvoviruses armed with IL-2 or the chemokine MCP-3/CCL7, resulting in a strong anti-tumour response.
Collapse
Affiliation(s)
- Sebastian Dempe
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
- Tumor Virology Division, Abt F010, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Muriel Lavie
- Tumor Virology Division, Abt F010, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
- INSERM U701, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
- Tumor Virology Division, Abt F010, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Rauf Bhat
- Tumor Virology Division, Abt F010, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Hannelien Verbeke
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
| | - Stephanie Paschek
- Tumor Virology Division, Abt F010, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
- INSERM U701, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
| | - Renate Geibig
- Tumor Virology Division, Abt F010, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Jean Rommelaere
- Tumor Virology Division, Abt F010, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
- INSERM U701, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven, Belgium
| | - Christiane Dinsart
- Tumor Virology Division, Abt F010, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
- INSERM U701, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Zhang KJ, Qian J, Wang SB, Yang Y. Targeting Gene-Viro-Therapy with AFP driving Apoptin gene shows potent antitumor effect in hepatocarcinoma. J Biomed Sci 2012; 19:20. [PMID: 22321574 PMCID: PMC3311074 DOI: 10.1186/1423-0127-19-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/09/2012] [Indexed: 12/18/2022] Open
Abstract
Background Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells. Methods By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay. Results The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro) than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects. Conclusion The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system.
Collapse
Affiliation(s)
- Kang-Jian Zhang
- State key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
12
|
Mechanisms of Apoptin-induced cell death. Med Oncol 2011; 29:2985-91. [DOI: 10.1007/s12032-011-0119-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022]
|
13
|
Activation of the human immune system by chemotherapeutic or targeted agents combined with the oncolytic parvovirus H-1. BMC Cancer 2011; 11:464. [PMID: 22029859 PMCID: PMC3234202 DOI: 10.1186/1471-2407-11-464] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/26/2011] [Indexed: 01/08/2023] Open
Abstract
Background Parvovirus H-1 (H-1PV) infects and lyses human tumor cells including melanoma, hepatoma, gastric, colorectal, cervix and pancreatic cancers. We assessed whether the beneficial effects of chemotherapeutic agents or targeted agents could be combined with the oncolytic and immunostimmulatory properties of H-1PV. Methods Using human ex vivo models we evaluated the biological and immunological effects of H-1PV-induced tumor cell lysis alone or in combination with chemotherapeutic or targeted agents in human melanoma cells +/- characterized human cytotoxic T-cells (CTL) and HLA-A2-restricted dendritic cells (DC). Results H-1PV-infected MZ7-Mel cells showed a clear reduction in cell viability of >50%, which appeared to occur primarily through apoptosis. This correlated with viral NS1 expression levels and was enhanced by combination with chemotherapeutic agents or sunitinib. Tumor cell preparations were phagocytosed by DC whose maturation was measured according to the treatment administered. Immature DC incubated with H-1PV-induced MZ7-Mel lysates significantly increased DC maturation compared with non-infected or necrotic MZ7-Mel cells. Tumor necrosis factor-α and interleukin-6 release was clearly increased by DC incubated with H-1PV-induced SK29-Mel tumor cell lysates (TCL) and was also high with DC-CTL co-cultures incubated with H-1PV-induced TCL. Similarly, DC co-cultures with TCL incubated with H-1PV combined with cytotoxic agents or sunitinib enhanced DC maturation to a greater extent than cytotoxic agents or sunitinib alone. Again, these combinations increased pro-inflammatory responses in DC-CTL co-cultures compared with chemotherapy or sunitinib alone. Conclusions In our human models, chemotherapeutic or targeted agents did not only interfere with the pronounced immunomodulatory properties of H-1PV, but also reinforced drug-induced tumor cell killing. H-1PV combined with cisplatin, vincristine or sunitinib induced effective immunostimulation via a pronounced DC maturation, better cytokine release and cytotoxic T-cell activation compared with agents alone. Thus, the clinical assessment of H-1PV oncolytic tumor therapy not only alone but also in combination strategies is warranted.
Collapse
|
14
|
Wu Y, Zhang X, Wang X, Wang L, Hu S, Liu X, Meng S. Apoptin enhances the oncolytic properties of Newcastle disease virus. Intervirology 2011; 55:276-86. [PMID: 21865658 DOI: 10.1159/000328325] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 03/28/2011] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Naturally occurring strains of Newcastle disease virus (NDV) have demonstrated the potential to kill cancer cells in both preclinical and clinical studies. Previous studies showed that apoptin, the VP3 protein of chicken infectious anemia virus, is a p53-independent, Bcl-2-insensitive apoptotic protein with the ability to specifically induce apoptosis in transformed cells. In this study, we tested the hypothesis that apoptin enhances NDV-mediated tumor cell death. METHODS Reverse genetics was used to engineer an oncolytic NDV strain, FMW, to express apoptin. The antitumor effects of the recombinant virus (rFMW/AP) were also evaluated in the tumor cell lines and tumor-bearing mice. RESULTS Compared to the parental strain FMW, rFMW/AP was more potent in killing A459 and SMMC7721 tumor cells. Recombinant NDV also exhibited higher efficacy in suppressing tumor growth in mice bearing A549-induced tumors. Furthermore, rFMW/AP did not display apparent toxic effects in either normal cells or control mice. CONCLUSION Our results suggest that the recombinant NDV expressing apoptin is a promising novel antitumor agent.
Collapse
Affiliation(s)
- Yantao Wu
- Ministry of Education Key Lab for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Novel adenovirus-based helper system to support production of recombinant parvovirus. Cancer Gene Ther 2010; 18:240-9. [PMID: 21102423 DOI: 10.1038/cgt.2010.73] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Preclinical studies using various cell culture and animal systems highlight the potential of recombinant rodent parvoviruses (recPVs) for cancer therapy. Production of these viruses is, however, not efficient and this hampers the clinical applications of these agents. In this study, we show that the adenovirus genes E2a, E4(orf6) and VA RNA increase the production of recPVs by more than 10-fold and reduce the time of production from 3 to 2 days in HEK293T cells. The helper effects of these genes can be observed with different recPVs, regardless of the nature and size of the inserted transgene. Furthermore, we generated a recombinant Adenovirus 5 carrying the parvovirus VP transcription unit. This helper, named Ad-VP, allows recPVs to be efficiently produced through a protocol based only on cell infection, making possible to use cell lines, such as NB324K, which are good producers of parvoviruses but are hardly transfectable. Hence, we could further improve viral titers and reduce time and costs of production. This Ad-VP helper-based protocol could be scaled up to a bioreactor format for the generation of the large amounts of recPVs needed for future clinical applications.
Collapse
|
16
|
Pan Y, Fang L, Fan H, Luo R, Zhao Q, Chen H, Xiao S. Antitumor effects of a recombinant pseudotype baculovirus expressing Apoptin in vitro and in vivo. Int J Cancer 2010; 126:2741-51. [PMID: 19824041 DOI: 10.1002/ijc.24959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apoptin, a chicken anemia virus-derived, p53-independent, bcl-2-insenstive apoptotic protein with the ability to specifically induce apoptosis in tumor or transformed cells, is a promising tool for cancer gene therapy. In this study, pseudotype baculovirus, a recently developed alternative gene delivery system, was used as a vector to express Apoptin. The resultant recombinant baculovirus (BV-Apoptin) efficiently expressed the Apoptin protein and induced apoptosis in HepG2 and H22 cells. Studies in vivo showed that intratumoral injection of BV-Apoptin into a xenogeneic tumor (derived from H22 murine hepatoma cells in C57BL/6 mice) significantly suppressed tumor growth, and significantly prolonged the survival of tumor-bearing mice compared to a control pseudotype baculovirus that expressed EGFP. Taken together, these results suggest that Apoptin, expressed from the pseudotype baculovirus vector, has the potential to become a therapeutic agent for the treatment of solid tumors.
Collapse
Affiliation(s)
- Yongfei Pan
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Potent anti-tumor effects of a dual specific oncolytic adenovirus expressing apoptin in vitro and in vivo. Mol Cancer 2010; 9:10. [PMID: 20085660 PMCID: PMC2818692 DOI: 10.1186/1476-4598-9-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 01/20/2010] [Indexed: 12/26/2022] Open
Abstract
Background Oncolytic virotherapy is an attractive drug platform of cancer gene therapy, but efficacy and specificity are important prerequisites for success of such strategies. Previous studies determined that Apoptin is a p53 independent, bcl-2 insensitive apoptotic protein with the ability to specifically induce apoptosis in tumor cells. Here, we generated a conditional replication-competent adenovirus (CRCA), designated Ad-hTERT-E1a-Apoptin, and investigated the effectiveness of the CRCA a gene therapy agent for further clinical trials. Results The observation that infection with Ad-hTERT-E1a-Apoptin significantly inhibited growth of the melanoma cells, protecting normal human epidermal melanocytes from growth inhibition confirmed cancer cell selective adenoviral replication, growth inhibition, and apoptosis induction of this therapeutic approach. The in vivo assays performed by using C57BL/6 mice containing established primary or metastatic tumors expanded the in vitro studies. When treated with Ad-hTERT-E1a-Apoptin, the subcutaneous primary tumor volume reduction was not only observed in intratumoral injection group but in systemic delivery mice. In the lung metastasis model, Ad-hTERT-E1a-Apoptin effectively suppressed pulmonary metastatic lesions. Furthermore, treatment of primary and metastatic models with Ad-hTERT-E1a-Apoptin increased mice survival. Conclusions These data further reinforce the previously research showing that an adenovirus expressing Apoptin is more effective and advocate the potential applications of Ad-hTERT-E1a-Apoptin in the treatment of neoplastic diseases in future clinical trials.
Collapse
|
18
|
Noteborn MHM. Proteins selectively killing tumor cells. Eur J Pharmacol 2009; 625:165-73. [PMID: 19836376 DOI: 10.1016/j.ejphar.2009.06.068] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 01/04/2023]
Abstract
All human cells have a genetic program that upon activation will cause cell death, named apoptosis. Cancer cells can grow due to unbalances in proliferation, cell cycle regulation and their apoptosis machinery: genomic mutations resulting in non-functional pro-apoptosis proteins or over-expression of anti-apoptosis proteins form the basis of tumor formation. Surprisingly, lessons learned from viruses show that cancer cannot be regarded simply as the opposite of apoptosis. For instance, adenovirus can only transform cells when both its anti- and pro-apoptotic proteins are produced. Oncolytic viruses are known to replicate selectively in tumor cells resulting in cell death. Proteins derived from viruses, i.e. chicken anemia virus (CAV)-derived apoptosis-inducing protein (apoptin), adenovirus early region 4 open reading frame (E4orf4) and parvovirus-H1 derived non-structural protein 1 (NS1), the human alpha-lactalbumin made lethal to tumor cells (HAMLET), which is present in human milk or the human cytokines melanoma differentiation-associated gene-7 (mda-7) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have all the ability to induce tumor-selective apoptosis. The tumor-selective apoptosis-inducing proteins seem to interact with transforming survival processes, which can become redirected by these proteins into cell death. Transformation-related processes have been identified, which seem to be crucial for the tumor-selectively killing activity of these proteins. For instance, the transformation-related protein phosphatase 2A (PP2A) plays a role in the induction of tumor-selective apoptosis. The proteins mda-7, TRAIL and HAMLET are already successfully tested in first clinical trials. Proteins harboring tumor-selective apoptosis characteristics represent, therefore, a therapeutic potential and a tool for unraveling tumor-related processes. Fundamental molecular and (pre)clinical therapeutic studies of the various tumor-selective apoptosis-inducing proteins apoptin, E4orf4, HAMLET, mda-7, NS1, TRAIL and related proteins will be discussed.
Collapse
Affiliation(s)
- Mathieu H M Noteborn
- Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
19
|
Angelova AL, Aprahamian M, Grekova SP, Hajri A, Leuchs B, Giese NA, Dinsart C, Herrmann A, Balboni G, Rommelaere J, Raykov Z. Improvement of gemcitabine-based therapy of pancreatic carcinoma by means of oncolytic parvovirus H-1PV. Clin Cancer Res 2009; 15:511-9. [PMID: 19147756 DOI: 10.1158/1078-0432.ccr-08-1088] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Pancreatic carcinoma is a gastrointestinal malignancy with poor prognosis. Treatment with gemcitabine, the most potent chemotherapeutic against this cancer up to date, is not curative, and resistance may appear. Complementary treatment with an oncolytic virus, such as the rat parvovirus H-1PV, which is infectious but nonpathogenic in humans, emerges as an innovative option. PURPOSE To prove that combining gemcitabine and H-1PV in a model of pancreatic carcinoma may reduce the dosage of the toxic drug and/or improve the overall anticancer effect. EXPERIMENTAL DESIGN Pancreatic tumors were implanted orthotopically in Lewis rats or subcutaneously in nude mice and treated with gemcitabine, H-1PV, or both according to different regimens. Tumor size was monitored by micro-computed tomography, whereas bone marrow, liver, and kidney functions were monitored by measuring clinically relevant markers. Human pancreatic cell lines and gemcitabine-resistant derivatives were tested in vitro for sensitivity to H-1PV infection with or without gemcitabine. RESULTS In vitro studies proved that combining gemcitabine with H-1PV resulted in synergistic cytotoxic effects and achieved an up to 15-fold reduction in the 50% effective concentration of the drug, with drug-resistant cells remaining sensitive to virus killing. Toxicologic screening showed that H-1PV had an excellent safety profile when applied alone or in combination with gemcitabine. The benefits of applying H-1PV as a second-line treatment after gemcitabine included reduction of tumor growth, prolonged survival of the animals, and absence of metastases on CT-scans. CONCLUSION In addition to their potential use as monotherapy for pancreatic cancer, parvoviruses can be best combined with gemcitabine in a two-step protocol.
Collapse
Affiliation(s)
- Assia L Angelova
- Infection and Cancer Programme F010 and INSERM U701, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen L, Jin NY, Li X, Liu LM, Jia P, Liu Y, Gao P, Lu YS, Chi BR. Construction and identification of the recombinant adenovirus expressing Apoptin gene of chicken anemia virus. Shijie Huaren Xiaohua Zazhi 2008; 16:3505-3509. [DOI: 10.11569/wcjd.v16.i31.3505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a recombinant adenovirus carrying Apoptin gene so as to provide a basis for further studying the molecular mechanism of Apoptin gene in inducing tumor cell apoptosis.
METHODS: The plasmid pVAX1-Apoptin was digested by endonuclease BamHⅠ and SpeⅠ, and the obtained Apoptin segment was inserted into vector pacAd5 CMV K-N pA to construct a shuttle plasmid pacAd5-Apoptin. After PacⅠ digestion and linearized process, the plasmid pacAd5-Apoptin and pAD (genome plasmid) were co-transfected into AAV-293 cells by liposome mediation. The DNA containing Apoptin gene of the recombinant adenovirus was identified by plaque purification, reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. The titer of the obtained adenovirus was also examined.
RESULTS: The recombinant adenovirus expressed Apoptin gene and the molecular weight of the protein was about 13 kDa, which was consistent with the CVA-positive control. The protein of Apoptin could be effectively expressed in the recombinant adenovirus, and this protein had response to the CAV-positive serum. The titer of the recombinant virus was 1011 PFU/L.
CONCLUSION: The adenovirus containing Apoptin gene is successfully constructed, and the virus titer is able to meet the requirements of in vitro and in vivo experiments.
Collapse
|
21
|
Regulated nucleocytoplasmic trafficking of viral gene products: a therapeutic target? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:213-27. [PMID: 17933596 DOI: 10.1016/j.bbapap.2007.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 08/16/2007] [Accepted: 08/24/2007] [Indexed: 12/25/2022]
Abstract
The study of viral proteins and host cell factors that interact with them has represented an invaluable contribution to understanding of the physiology as well as associated pathology of key eukaryotic cell processes such as cell cycle regulation, signal transduction and transformation. Similarly, knowledge of nucleocytoplasmic transport is based largely on pioneering studies performed on viral proteins that enabled the first sequences responsible for the facilitated transport through the nuclear pore to be identified. The study of viral proteins has also enabled the discovery of several nucleocytoplasmic regulatory mechanisms, the best characterized being through phosphorylation. Recent delineation of the mechanisms whereby phosphorylation regulates nuclear import and export of key viral gene products encoded by important human pathogens such as human cytomegalovirus dengue virus and respiratory syncytial virus has implications for the development of antiviral therapeutics. In particular, the development of specific and effective kinase inhibitors makes the idea of blocking viral infection by inhibiting the phosphorylation-dependent regulation of viral gene product nuclear transport a real possibility. Additionally, examination of a chicken anemia virus (CAV) protein able to target selectively into the nucleus of tumor but not normal cells, as specifically regulated by phosphorylation, opens the exciting possibility of cancer cell-specific nuclear targeting. The study of nucleoplasmic transport may thus enable the development not only of new antiviral approaches, but also contribute to anti-cancer strategies.
Collapse
|
22
|
Olijslagers SJ, Zhang YH, Backendorf C, Noteborn MHM. Additive cytotoxic effect of apoptin and chemotherapeutic agents paclitaxel and etoposide on human tumour cells. Basic Clin Pharmacol Toxicol 2007; 100:127-31. [PMID: 17244262 DOI: 10.1111/j.1742-7843.2006.00016.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gene therapy experiments in animal models have shown that apoptin expression results in tumour regression without any significant side effects. Therefore, apoptin is regarded as a potential anticancer drug for clinical applications. In this study, we analysed whether chemotherapeutic agents combined with apoptin treatment could result in enhanced cytotoxicity in human tumour cell cultures. Combined treatment with recombinant adenovirus AdAptVP3 expressing apoptin and etoposide clearly showed an additive cytotoxic effect on human osteosarcoma U2OS cells. Paclitaxel treatment combined with apoptin expression significantly inhibited the survival of p53-positive human osteosarcoma U2OS and non-small lung carcinoma A549 cells, p53-negative human osteosarcoma Saos-2 cells and p53-mutant human prostate cancer Du145 cells, already at low doses of the chemotherapeutic agent. Our results indicate that the cytotoxicity-enhancing action by the tumour-specific apoptin in combination with chemotherapeutic agents might offer an effective and safe antitumour therapeutics.
Collapse
|
23
|
Vähä-Koskela MJ, Heikkilä JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254:178-216. [PMID: 17383089 PMCID: PMC7126325 DOI: 10.1016/j.canlet.2007.02.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 12/26/2022]
Abstract
Oncolytic virotherapy is a promising form of gene therapy for cancer, employing nature’s own agents to find and destroy malignant cells. The purpose of this review is to provide an introduction to this very topical field of research and to point out some of the current observations, insights and ideas circulating in the literature. We have strived to acknowledge as many different oncolytic viruses as possible to give a broader picture of targeting cancer using viruses. Some of the newest additions to the panel of oncolytic viruses include the avian adenovirus, foamy virus, myxoma virus, yaba-like disease virus, echovirus type 1, bovine herpesvirus 4, Saimiri virus, feline panleukopenia virus, Sendai virus and the non-human coronaviruses. Although promising, virotherapy still faces many obstacles that need to be addressed, including the emergence of virus-resistant tumor cells.
Collapse
Affiliation(s)
- Markus J.V. Vähä-Koskela
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
- Turku Graduate School of Biomedical Sciences, Turku, Finland
- Corresponding author. Address: Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland. Tel.: +358 2 215 4018; fax: +358 2 215 4745.
| | - Jari E. Heikkilä
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| | - Ari E. Hinkkanen
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| |
Collapse
|
24
|
Li X, Jin N, Mi Z, Lian H, Sun L, Li X, Zheng H. Antitumor effects of a recombinant fowlpox virus expressing Apoptin in vivo and in vitro. Int J Cancer 2006; 119:2948-57. [PMID: 17036330 DOI: 10.1002/ijc.22215] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Apoptin is a chicken anemia virus-derived, p53-independent, bcl-2-insensitive apoptotic protein with the ability to specifically induce apoptosis in tumor cells. To explore the use of the Apoptin gene in cancer gene therapy, we constructed a recombinant fowlpox virus expressing the Apoptin protein (vFV-Apoptin) and compared the tumor-killing activity of the recombinant virus with that of wild-type fowlpox virus in the human hepatoma cell line HepG2. We found that although cells were somewhat resistant to the basal cytotoxic effect of wild-type fowlpox virus, infection with vFV-Apoptin caused a pronounced, additional cytotoxic effect. Furthermore, cell death and disruption of tumor integrity were apparent in the vFV-Apoptin-infected cells. We also tested whether fowlpox virus-mediated expression of Apoptin in tumor cells could stimulate an antitumor effect by injecting aggressive subcutaneous tumors derived from H22 mouse hepatoma cells in C57BL/6 mice with vFV-Apoptin. We found that fowlpox virus-mediated intratumoral expression of the Apoptin gene can induce protective and therapeutic antitumor effects and significantly increase survival. Taken together, these data indicate that infection of tumors with fowlpox virus expressing Apoptin inhibits tumor growth, induces apoptosis and may be an effective cancer treatment.
Collapse
Affiliation(s)
- Xiao Li
- Genetic Engineering Laboratory of PLA, The Eleventh Institute of Academy of Military Medical Sciences of PLA, Changchun, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Gastric cancer is one of the most common tumors worldwide. The therapeutic outcome of conventional therapies is inefficient. Thus, new therapeutic strategies are urgently needed. Gene therapy is a promising molecular alternative in the treatment of gastric cancer, including the replacement of defective tumor suppressor genes, the inactivation of oncogenes, the introduction of suicide genes, genetic immunotherapy, anti-angiogenetic gene therapy, and virotherapy. Improved molecular biological techniques and a better understanding of gastric carcinogenesis have allowed us to validate a variety of genes as molecular targets for gene therapy. This review provides an update of the new developments in cancer gene therapy, new principles, techniques, strategies and vector systems, and shows how they may be applied in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Andreas P Sutter
- Department of Gastroenterology/Infectious Diseases/Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|
26
|
Moehler MH, Zeidler M, Wilsberg V, Cornelis JJ, Woelfel T, Rommelaere J, Galle PR, Heike M. Parvovirus H-1-induced tumor cell death enhances human immune response in vitro via increased phagocytosis, maturation, and cross-presentation by dendritic cells. Hum Gene Ther 2005; 16:996-1005. [PMID: 16076257 DOI: 10.1089/hum.2005.16.996] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncotropic and oncolytic viruses have attracted high attention as antitumor agents because they preferentially kill cancer cells in vitro and reduce the incidence of spontaneous, induced, or implanted animal tumors. Some autonomous parvoviruses (H-1, minute virus of mice) and derived recombinant vectors are currently under preclinical evaluation. Still not fully understood, their antitumor properties involve more than just tumor cell killing. Because wild-type parvovirus-mediated tumor cell lysates (TCLs) may trigger antigen-presenting cells (APCs) to augment the host immune repertoire, we analyzed phagocytosis, maturation, and crosspresentation of H-1-induced TCLs by human dendritic cells (DCs). We first established H-1-mediated oncolysis in two HLA-A2(+) and A2(-) variant melanoma cell clones. Monocyte-derived immature DCs phagocytosed H- 1-infected TCLs as well as ultraviolet-induced apoptotic TCLs and better than freeze-thaw-induced necrotic TCLs. Immature DCs incubated with H-1-induced TCLs acquired specific maturation markers comparable to a standard cytokine cocktail. Furthermore, A2(+) DCs pulsed with H-1-infected A2(-) TCLs cross-presented melanoma antigens to specific cytotoxic T lymphocytes (CTLs) and released proinflammatory cytokines. This shows for the first time that tumor cell killing by a wild-type oncolytic virus directly stimulates human APCs and CTLs. Because H-1-infected tumors enhance the immune repertoire, the clinical perspectives of parvoviral vectors are even more promising.
Collapse
Affiliation(s)
- Markus H Moehler
- Department of Medicine I, Johannes Gutenberg University Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Moehler MH, Zeidler M, Wilsberg V, Cornelis JJ, Woelfel T, Rommelaere J, Galle PR, Heike M. Parvovirus H-1-Induced Tumor Cell Death Enhances Human Immune Response In Vitro via Increased Phagocytosis, Maturation, and Cross-Presentation by Dendritic Cells. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Moehler MH, Zeidler M, Wilsberg V, Cornelis JJ, Woelfel T, Rommelaere J, Galle PR, Heike M. Parvovirus H-1-Induced Tumor Cell Death Enhances Human Immune Response In Vitro via Increased Phagocytosis, Maturation, and Cross-Presentation by Dendritic Cells. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Everts B, van der Poel HG. Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Ther 2005; 12:141-61. [PMID: 15472714 DOI: 10.1038/sj.cgt.7700771] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the search for novel strategies, oncolytic virotherapy has recently emerged as a viable approach to specifically kill tumor cells. Unlike conventional gene therapy, it uses replication competent viruses that are able to spread through tumor tissue by virtue of viral replication and concomitant cell lysis. Recent advances in molecular biology have allowed the design of several genetically modified viruses, such as adenovirus and herpes simplex virus that specifically replicate in, and kill tumor cells. On the other hand, viruses with intrinsic oncolytic capacity are also being evaluated for therapeutic purposes. In this review, an overview is given of the general mechanisms and genetic modifications by which these viruses achieve tumor cell-specific replication and antitumor efficacy. However, although generally the oncolytic efficacy of these approaches has been demonstrated in preclinical studies the therapeutic efficacy in clinical trails is still not optimal. Therefore, strategies are evaluated that could further enhance the oncolytic potential of conditionally replicating viruses. In this respect, the use of tumor-selective viruses in conjunction with other standard therapies seems most promising. However, still several hurdles regarding clinical limitations and safety issues should be overcome before this mode of therapy can become of clinical relevance.
Collapse
Affiliation(s)
- Bart Everts
- Department of Biomedical sciences, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands
| | | |
Collapse
|
30
|
Raykov Z, Savelyeva L, Balboni G, Giese T, Rommelaere J, Giese NA. B1 lymphocytes and myeloid dendritic cells in lymphoid organs are preferential extratumoral sites of parvovirus minute virus of mice prototype strain expression. J Virol 2005; 79:3517-24. [PMID: 15731246 PMCID: PMC1075710 DOI: 10.1128/jvi.79.6.3517-3524.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Due to their oncolytic properties and apathogenicity, autonomous parvoviruses have attracted significant interest as possible anticancer agents. Recent preclinical studies provided evidence of the therapeutic potential of minute virus of mice prototype strain (MVMp) and its recombinant derivatives. In a murine model of hemangiosarcoma, positive therapeutic outcome correlated with high intratumoral expression of MVMp-encoded genes in tumors and lymphoid organs, especially in tumor-draining lymph nodes. The source and relevance of this extratumoral expression, which came as a surprise because of the known fibrotropism of MVMp, remained unclear. In the present study, we investigated (i) whether the observed expression pattern occurs in different tumor models, (ii) which cell population is targeted by the virus, and (iii) the immunological consequences of this infection. Significant MVMp gene expression was detected in lymphoid tissues from infected tumor-free as well as melanoma-, lymphoma-, and hemangiosarcoma-bearing mice. This expression was especially marked in lymph nodes draining virus-injected tumors. Fluorescent in situ hybridization analysis, multicolor fluorescence-activated cell sorting, and quantitative reverse transcription-PCR revealed that MVMp was expressed in rare subpopulations of CD11b (Mac1)-positive cells displaying CD11c+ (myeloid dendritic cells [MDC]) or CD45B (B220+ [B1 lymphocytes]) markers. Apart from the late deletion of cytotoxic memory cells (CD8+ CD44+ CD62L-), this infection did not lead to significant alteration of the immunological profile of cells populating lymphoid organs. However, subtle changes were detected in the production of specific proinflammatory cytokines in lymph nodes from virus-treated animals. Considering the role of B1 lymphocytes and MDC in cancer and immunological surveillance, the specific ability of these cell types to sustain parvovirus-driven gene expression may be exploited in gene therapy protocols.
Collapse
Affiliation(s)
- Zahari Raykov
- Department of Surgery, Medical School, University of Heidelberg, INF 116, 60120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:1913-1917. [DOI: 10.11569/wcjd.v12.i8.1913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
32
|
Ran ZH, Liu J, Feng Y, Zou J, Xiao SD. Investigation of the sensitivities of distinct gastric cancer cells to parvovirus H-1 induced cytotoxicity. ACTA ACUST UNITED AC 2004; 5:93-7. [PMID: 15612242 DOI: 10.1111/j.1443-9573.2004.00163.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the sensitivities of distinct gastric cancer cells to parvovirus H-1 induced cytotoxicity and the possible mechanism(s). METHODS There were six distinct differentiated gastric cancer cell lines: HGC27 (undifferentiated), BGC823 (undifferentiated), MKN45 (poorly differentiated), AGS (poorly differentiated), SGC7901 (moderately differentiated) and MKN28 (well differentiated). The cell cycle distributions were measured by flow cytometry and the differential sensitivities of the six distinct gastric cancer cells after H-1 virus infection were detected by MTT assay. RT-PCR was used to detect viral NS1 gene expression in all six gastric cancer cell lines. RESULTS The S phase ratios of HGC27, BGC823, MKN45, AGS, SGC7901 and MKN28 were 24.72%, 30.15%, 27.10%, 29.03%, 31.82% and 33.73%, respectively. HGC27 cells were sensitive to H-1 virus induced cytotoxicity, followed by SGC7901 cells. MKN45 and AGS cells were moderately sensitive and MKN28 cells were insensitive. However, BGC823 cells were resistant to H-1 virus induced cytotoxicity. The expressions of viral NS1 were higher in HGC27, BGC823, MKN45 and SGC7901 cells, and lower in AGS and MKN28 cells. CONCLUSIONS The sensitivities of the distinct gastric cancer cells to H-1 virus induced cytotoxicity were markedly different. In general, the poorly differentiated cells showed an enhanced sensitivity to H-1 virus attack compared with well-differentiated ones. The enhanced sensitivity of poorly versus well-differentiated gastric cancer cells to H-1 virus is related in part to the enhanced capacity of the former for NS1 protein production and accumulation. The undifferentiated BGC823 cells were resistant to H-1 virus triggered cytotoxicity. It may further verify that not all tumor cells are sensitive to H-1 virus lytic effects.
Collapse
Affiliation(s)
- Zhi Hua Ran
- Shanghai Second Medical University, Ren-Ji Hospital, Shanghai Institute of Digestive Disease, Shanghai, China.
| | | | | | | | | |
Collapse
|
33
|
Raykov Z, Balboni G, Aprahamian M, Rommelaere J. Carrier cell-mediated delivery of oncolytic parvoviruses for targeting metastases. Int J Cancer 2004; 109:742-9. [PMID: 14999784 DOI: 10.1002/ijc.20013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the last few years, naturally occurring or genetically manipulated oncolytic viruses gained increasing attention as novel therapeutics for cancer treatment. The present work provides proof of principle that an organotropic cell-based carrier system is suitable to deliver oncolytic parvoviruses to a tissue known to be a target for the formation of metastases. Carrier cells were inactivated by gamma-irradiation after infection, which was found not to affect the production and release of parvoviruses that were capable of lysing cocultured target neoplastic cells. Although systemically administered parvovirus H-1 showed a pronounced therapeutic effect against the development of established Morris hepatoma (MH3924A) lung metastases, the carrier cell strategy offered a number of advantages. Infected carriers were able to sustain H-1 virus expression for 6 days in the lungs of rats affected by metastatic disease and to reduce the spreading of the virus to peripheral organs. Compared to direct virus injection, the carrier cell protocol led to an improved therapeutic effect (metastases suppression) and a lesser generation of virus-neutralizing antibodies. These data support the use of carrier cells to deliver oncolytic viruses and/or viral vectors locally in tumors and, more particularly, metastases.
Collapse
Affiliation(s)
- Zahari Raykov
- Infection and Cancer Program, ATV-Abteilung F0100/INSERM U375, Deutsches Krebsforschungszentrum, Postfach 101949, D-69009 Heidelberg, Germany
| | | | | | | |
Collapse
|
34
|
Hendrie PC, Hirata RK, Russell DW. Chromosomal integration and homologous gene targeting by replication-incompetent vectors based on the autonomous parvovirus minute virus of mice. J Virol 2004; 77:13136-45. [PMID: 14645570 PMCID: PMC296056 DOI: 10.1128/jvi.77.24.13136-13145.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms responsible for random integration and gene targeting by recombinant adeno-associated virus (AAV) vectors are largely unknown, and whether vectors derived from autonomous parvoviruses transduce cells by similar pathways has not been investigated. In this report, we constructed vectors based on the autonomous parvovirus minute virus of mice (MVM) that were designed to introduce a neomycin resistance expression cassette (neo) into the X-linked human hypoxanthine phosphoribosyl transferase (HPRT) locus. High-titer, replication-incompetent MVM vector stocks were generated with a two-plasmid transfection system that preserved the wild-type characteristic of packaging only one DNA strand. Vectors with inserts in the forward or reverse orientations packaged noncoding or coding strands, respectively. In human HT-1080 cells, MVM vector random integration frequencies (neo(+) colonies) were comparable to those obtained with AAV vectors, and no difference was observed for noncoding and coding strands. HPRT gene-targeting frequencies (HPRT mutant colonies) were lower with MVM vectors, and the noncoding strand frequency was threefold greater than that of the coding strand. Random integration and gene-targeting events were confirmed by Southern blot analysis of G418- and 6-thioguanine (6TG)-resistant clones. In separate experiments, correction of an alkaline phosphatase (AP) gene by gene targeting was nine times more effective with a coding strand vector. The data suggest that single-stranded parvoviral vector genomes are substrates for gene targeting and possibly for random integration as well.
Collapse
Affiliation(s)
- Paul C Hendrie
- Department of Medicine, Division of Hematology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
35
|
Raykov Z, Aprahamian M, Galabov A, Rommelaere J. Oncolytic Parvoviruses as Tools for Cancer Gene Therapy. BIOTECHNOL BIOTEC EQ 2004. [DOI: 10.1080/13102818.2004.10819221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
36
|
Wrzesinski C, Tesfay L, Salomé N, Jauniaux JC, Rommelaere J, Cornelis J, Dinsart C. Chimeric and pseudotyped parvoviruses minimize the contamination of recombinant stocks with replication-competent viruses and identify a DNA sequence that restricts parvovirus H-1 in mouse cells. J Virol 2003; 77:3851-8. [PMID: 12610161 PMCID: PMC149498 DOI: 10.1128/jvi.77.6.3851-3858.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies demonstrated the ability of the recombinant autonomous parvoviruses MVMp (fibrotropic variant of the minute virus of mice) and H-1 to transduce therapeutic genes in tumor cells. However, recombinant vector stocks are contaminated by replication-competent viruses (RCVs) generated during the production procedure. To reduce the levels of RCVs, chimeric recombinant vector genomes were designed by replacing the right-hand region of H-1 virus DNA with that of the closely related MVMp virus DNA and conversely. Recombinant H-1 and MVMp virus pseudotypes were also produced with this aim. In both cases, the levels of RCVs contaminating the virus stocks were considerably reduced (virus was not detected in pseudotyped virus stocks, even after two amplification steps), while the yields of vector viruses produced were not affected. H-1 virus could be distinguished from MVMp virus by its restriction in mouse cells at an early stage of infection prior to detectable viral DNA replication and gene expression. The analysis of the composite viruses showed that this restriction could be assigned to a specific genomic determinant(s). Unlike MVMp virus, H-1 virus capsids were found to be a major determinant of the greater permissiveness of various human cell lines for this virus.
Collapse
Affiliation(s)
- Claudia Wrzesinski
- Applied Tumor Virology, Abteilung F0100 and INSERM U375, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Brown CS, DiSumma FM, Rommelaere J, Dege AY, Cornelis JJ, Dinsart C, Spaan WJM. Production of recombinant H1 parvovirus stocks devoid of replication-competent viruses. Hum Gene Ther 2002; 13:2135-45. [PMID: 12542845 DOI: 10.1089/104303402320987833] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vector and helper plasmids for the production of recombinant H1 (rH1) parvovirus, an oncolytic virus and candidate vector for cancer gene therapy, were constructed with the aim of reducing the contamination of these preparations with replication-competent viruses (RCV). Split-helper plasmids were constructed by manipulating the splicing signals for the capsid proteins such that VP1 and VP2 were expressed from separate plasmids. H1 vectors with similarly mutated splice sites were packaged, using the split-helper plasmids, and the resulting recombinant H1 viruses were completely free of RCV because the generation of recombinants expressing both capsid proteins was prevented. Vector yields of rH1 produced with split-helper plasmids in combination with splice site-modified vectors were similar (in the range of 10(7) replication units/ml) to yields of rH1 produced with the standard vector/helper pair, in which case significant levels of RCV were generated (10(4)-10(5) plaque-forming units/ml). To assess the functionality of this approach in vivo, rH1 was produced that contained the human interleukin 2 (IL-2) transgene and that was devoid of RCV. This IL-2-carrying rH1 vector expressed IL-2 efficiently in human tumor cells (HeLa) in vitro and generated antitumor responses in nude mice xenografted with HeLa cells that had been infected ex vivo with this virus. These results should allow the large-scale production of recombinant oncotropic parvoviruses and their assessment for the gene therapy of cancer in a clinical setting.
Collapse
Affiliation(s)
- Caroline S Brown
- Department of Medical Microbiology, Leiden University Medical Center, 2333 AZ Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhang HG, Xie J, Dmitriev I, Kashentseva E, Curiel DT, Hsu HC, Mountz JD. Addition of six-His-tagged peptide to the C terminus of adeno-associated virus VP3 does not affect viral tropism or production. J Virol 2002; 76:12023-31. [PMID: 12414944 PMCID: PMC136915 DOI: 10.1128/jvi.76.23.12023-12031.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of large quantities of recombinant adeno-associated virus (AAV) is difficult and not cost-effective. To overcome this problem, we have explored the feasibility of creating a recombinant AAV encoding a 6xHis tag on the VP3 capsid protein. We generated a plasmid vector containing a six-His (6xHis)-tagged AAV VP3. A second plasmid vector was generated that contained the full-length AAV capsid capable of producing VP1 and VP2, but not VP3 due to a mutation at position 2809 that encodes the start codon for VP3. These plasmids, necessary for production of AAV, were transfected into 293 cells to generate a 6xHis-tagged VP3mutant recombinant AAV. The 6xHis-tagged VP3 did not affect the formation of AAV virus, and the physical properties of the 6xHis-modified AAV were equivalent to those of wild-type particles. The 6xHis-tagged AAV did not affect the production titer of recombinant AAV and could be used to purify the recombinant AAV using an Ni-nitrilotriacetic acid column. Addition of the 6xHis tag did not alter the viral tropism compared to wild-type AAV. These observations demonstrate the feasibility of producing high-titer AAV containing a 6xHis-tagged AAV VP3 capsid protein and to utilize the 6xHis-tagged VP3 capsid to achieve high-affinity purification of this recombinant AAV.
Collapse
Affiliation(s)
- Huang-Ge Zhang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Parvoviruses are small, icosahedral viruses (approximately 25 nm) containing a single-strand DNA genome (approximately 5 kb) with hairpin termini. Autonomous parvoviruses (APVs) are found in many species; they do not require a helper virus for replication but they do require proliferating cells (S-phase functions) and, in some cases, tissue-specific factors. APVs can protect animals from spontaneous or experimental tumors, leading to consideration of these viruses, and vectors derived from them, as anticancer agents. Vector development has focused on three rodent APVs that can infect human cells, namely, LuIII, MVM, and H1. LuIII-based vectors with complete replacement of the viral coding sequences can direct transient or persistent expression of transgenes in cell culture. MVM-based and H1-based vectors with substitution of transgenes for the viral capsid sequences retain viral nonstructural (NS) coding sequences and express the NS1 protein. The latter serves to amplify the vector genome in target cells, potentially contributing to antitumor activity. APV vectors have packaging capacity for foreign DNA of approximately 4.8 kb, a limit that probably cannot be exceeded by more than a few percent. LuIII vectors can be pseudotyped with capsid proteins from related APVs, a promising strategy for controlling tissue tropism and circumventing immune responses to repeated administration. Initial success has been achieved in targeting such a pseudotyped vector by genetic modification of the capsid. Subject to advances in production and purification methods, APV vectors have potential as gene transfer agents for experimental and therapeutic use, particularly for cancer therapy.
Collapse
Affiliation(s)
- Ian H Maxwell
- Department of Dermatology and University of Colorado Cancer Center, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | | | |
Collapse
|