1
|
Blalock LT, Landsberg J, Messmer M, Shi J, Pardee AD, Haskell R, Vujanovic L, Kirkwood JM, Butterfield LH. Human dendritic cells adenovirally-engineered to express three defined tumor antigens promote broad adaptive and innate immunity. Oncoimmunology 2021; 1:287-357. [PMID: 22737604 PMCID: PMC3382861 DOI: 10.4161/onci.18628] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dendritic cell (DC) immunotherapy has shown a promising ability to promote anti-tumor immunity in vitro and in vivo. Many trials have tested single epitopes and single antigens to activate single T cell specificities, and often CD8(+) T cells only. We previously found that determinant spreading and breadth of antitumor immunity correlates with improved clinical response. Therefore, to promote activation and expansion of polyclonal, multiple antigen-specific CD8(+) T cells, as well as provide cognate help from antigen-specific CD4(+) T cells, we have created an adenovirus encoding three full length melanoma tumor antigens (tyrosinase, MART-1 and MAGE-A6, "AdVTMM"). We previously showed that adenovirus (AdV)-mediated antigen engineering of human DC is superior to peptide pulsing for T cell activation, and has positive biological effects on the DC, allowing for efficient activation of not only antigen-specific CD8(+) and CD4(+) T cells, but also NK cells. Here we describe the cloning and testing of "AdVTMM2," an E1/E3-deleted AdV encoding the three melanoma antigens. This novel three-antigen virus expresses mRNA and protein for all antigens, and AdVTMM-transduced DC activate both CD8(+) and CD4(+) T cells which recognize melanoma tumor cells more efficiently than single antigen AdV. Addition of physiological levels of interferon-α (IFNα) further amplifies melanoma antigen-specific T cell activation. NK cells are also activated, and show cytotoxic activity. Vaccination with multi-antigen engineered DC may provide for superior adaptive and innate immunity and ultimately, improved antitumor responses.
Collapse
Affiliation(s)
- Leeann T Blalock
- Department of Medicine; University of Pittsburgh; Pittsburgh, PA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Vujanovic L, Ballard W, Thorne SH, Vujanovic NL, Butterfield LH. Adenovirus-engineered human dendritic cells induce natural killer cell chemotaxis via CXCL8/IL-8 and CXCL10/IP-10. Oncoimmunology 2021; 1:448-457. [PMID: 22754763 PMCID: PMC3382881 DOI: 10.4161/onci.19788] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recombinant adenovirus-engineered dendritic cells (Ad.DC) are potent vaccines for induction of anti-viral and anti-cancer T cell immunity. The effectiveness of Ad.DC vaccines may depend on the newly described ability of Ad.DC to crosstalk with natural killer (NK) cells via cell-to-cell contact, and to mediate activation, polarization and bridging of innate and adaptive immunity. For this interaction to occur in vivo, Ad.DC must be able to attract NK cells from surrounding tissues or peripheral blood. We developed a novel live mouse imaging system-based NK-cell migration test, and demonstrated for the first time that human Ad.DC induced directional migration of human NK cells across subcutaneous tissues, indicating that Ad.DC-NK cell contact and interaction could occur in vivo. We examined the mechanism of Ad.DC-induced migration of NK cells in vitro and in vivo. Ad.DC produced multiple chemokines previously reported to recruit NK cells, including immunoregulatory CXCL10/IP-10 and proinflammatory CXCL8/IL-8. In vitro chemotaxis experiments utilizing neutralizing antibodies and recombinant human chemokines showed that CXCL10/IP-10 and CXCL8/IL-8 were critical for Ad.DC-mediated recruitment of CD56hiCD16- and CD56loCD16+ NK cells, respectively. The importance of CXCL8/IL-8 was further demonstrated in vivo. Pretreatment of mice with the neutralizing anti-CXCL8/IL-8 antibody led to significant inhibition of Ad.DC-induced migration of NK cells in vivo. These data show that Ad.DC can recruit spatially distant NK cells toward a vaccine site via specific chemokines. Therefore, an Ad.DC vaccine can likely induce interaction with endogenous NK cells via transmembrane mediators, and consequently mediate Th1 polarization and amplification of immune functions in vivo.
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Cancer Institute; Pittsburgh, PA USA ; Deparment of Medicine; University of Pittsburgh School of Medicine; University of Pittsburgh; Pittsburgh, PA USA
| | | | | | | | | |
Collapse
|
3
|
Wang S, Li Z, Xu R. Human Cancer and Platelet Interaction, a Potential Therapeutic Target. Int J Mol Sci 2018; 19:ijms19041246. [PMID: 29677116 PMCID: PMC5979598 DOI: 10.3390/ijms19041246] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/30/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction.
Collapse
Affiliation(s)
- Shike Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Zhenyu Li
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536, USA.
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
4
|
Collignon A, Perles-Barbacaru AT, Robert S, Silvy F, Martinez E, Crenon I, Germain S, Garcia S, Viola A, Lombardo D, Mas E, Béraud E. A pancreatic tumor-specific biomarker characterized in humans and mice as an immunogenic onco-glycoprotein is efficient in dendritic cell vaccination. Oncotarget 2016; 6:23462-79. [PMID: 26405163 PMCID: PMC4695130 DOI: 10.18632/oncotarget.4359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/30/2015] [Indexed: 01/01/2023] Open
Abstract
Oncofetal fucose-rich glycovariants of the pathological bile salt-dependent lipase (pBSDL) appear during human pancreatic oncogenesis and are detected by themonoclonal antibody J28 (mAbJ28). We aimed to identify murine counterparts onpancreatic ductal adenocarcinoma (PDAC) cells and tissue and investigate the potential of dendritic cells (DC) loaded with this unique pancreatic tumor antigen to promote immunotherapy in preclinical trials. Pathological BSDLs purified from pancreatic juices of patients with PDAC were cleaved to generate glycosylated C-terminal moieties (C-ter) containing mAbJ28-reactive glycoepitopes. Immunoreactivity of the murine PDAC line Panc02 and tumor tissue to mAbJ28 was detected by immunohistochemistry and flow cytometry. C-ter-J28+ immunization promoted Th1-dominated immune responses. In vitro C-ter-J28+-loaded DCskewed CD3+ T-cells toward Th1 polarization. C-ter-J28+-DC-vaccinations selectively enhanced cell immunoreactivity to Panc02, as demonstrated by CD4+- and CD8+-T-cell activation, increased percentages of CD4+- and CD8+-T-cells and NK1.1+ cells expressing granzyme B, and T-cell cytotoxicity. Prophylactic and therapeutic C-ter-J28+-DC-vaccinations reduced ectopic Panc02-tumor growth, provided long-lasting protection from Panc02-tumor development in 100% of micebut not from melanoma, and attenuated progression of orthotopic tumors as revealed by MRI. Thusmurine DC loaded with pancreatic tumor-specific glycoepitope C-ter-J28+ induce efficient anticancer adaptive immunity and represent a potential adjuvant therapy for patients afflicted with PDAC.
Collapse
Affiliation(s)
- Aurélie Collignon
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Adriana Teodora Perles-Barbacaru
- Aix-Marseille UniversiteÌ, CNRS, CRMBM, Centre de ReÌsonance MagneÌtique Biologique et MeÌdicale, UMR 7339, Marseille, France
| | - Stéphane Robert
- Aix-Marseille Université, VRCM, Vascular Research Center of Marseilles, Marseille, France.,Inserm, UMR_S_1076, Marseille, France
| | - Françoise Silvy
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Emmanuelle Martinez
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Sébastien Germain
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Stéphane Garcia
- APHM, Hôpital Nord, Laboratoire d'Anatomie-Pathologie, Marseille, France.,Aix-Marseille Université, Marseille, France
| | - Angèle Viola
- Aix-Marseille UniversiteÌ, CNRS, CRMBM, Centre de ReÌsonance MagneÌtique Biologique et MeÌdicale, UMR 7339, Marseille, France
| | - Dominique Lombardo
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Eric Mas
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| | - Evelyne Béraud
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France.,Inserm, UMR_S 911, Marseille, France
| |
Collapse
|
5
|
Dendritic Cell-Based Immunotherapy Treatment for Glioblastoma Multiforme. BIOMED RESEARCH INTERNATIONAL 2015; 2015:717530. [PMID: 26167495 PMCID: PMC4488155 DOI: 10.1155/2015/717530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/08/2015] [Indexed: 12/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma and patients diagnosed with this disease had poor outcomes even treated with the combination of conventional treatment (surgery, chemotherapy, and radiation). Dendritic cells (DCs) are the most powerful antigen presenting cells and DC-based vaccination has the potential to target and eliminate GBM cells and enhance the responses of these cells to the existing therapies with minimal damage to the healthy tissues around them. It can enhance recognition of GBM cells by the patients' immune system and activate vast, potent, and long-lasting immune reactions to eliminate them. Therefore, this therapy can prolong the survival of GBM patients and has wide and bright future in the treatment of GBM. Also, the efficacy of this therapy can be strengthened in several ways at some degree: the manipulation of immune regulatory components or costimulatory molecules on DCs; the appropriate choices of antigens for loading to enhance the effectiveness of the therapy; regulation of positive regulators or negative regulators in GBM microenvironment.
Collapse
|
6
|
Lim O, Lee Y, Chung H, Her JH, Kang SM, Jung MY, Min B, Shin H, Kim TM, Heo DS, Hwang YK, Shin EC. GMP-compliant, large-scale expanded allogeneic natural killer cells have potent cytolytic activity against cancer cells in vitro and in vivo. PLoS One 2013; 8:e53611. [PMID: 23326467 PMCID: PMC3543306 DOI: 10.1371/journal.pone.0053611] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/29/2012] [Indexed: 12/27/2022] Open
Abstract
Ex vivo-expanded, allogeneic natural killer (NK) cells can be used for the treatment of various types of cancer. In allogeneic NK cell therapy, NK cells from healthy donors must be expanded in order to obtain a sufficient number of highly purified, activated NK cells. In the present study, we established a simplified and efficient method for the large-scale expansion and activation of NK cells from healthy donors under good manufacturing practice (GMP) conditions. After a single step of magnetic depletion of CD3(+) T cells, the depleted peripheral blood mononuclear cells (PBMCs) were stimulated and expanded with irradiated autologous PBMCs in the presence of OKT3 and IL-2 for 14 days, resulting in a highly pure population of CD3(-)CD16(+)CD56(+) NK cells which is desired for allogeneic purpose. Compared with freshly isolated NK cells, these expanded NK cells showed robust cytokine production and potent cytolytic activity against various cancer cell lines. Of note, expanded NK cells selectively killed cancer cells without demonstrating cytotoxicity against allogeneic non-tumor cells in coculture assays. The anti-tumor activity of expanded human NK cells was examined in SCID mice injected with human lymphoma cells. In this model, expanded NK cells efficiently controlled lymphoma progression. In conclusion, allogeneic NK cells were efficiently expanded in a GMP-compliant facility and demonstrated potent anti-tumor activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Okjae Lim
- BioMedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Cell Therapy Team, Mogam Biotechnology Research Institute, Yongin, Gyeonggi-do, Republic of Korea
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Yuna Lee
- Cell Therapy Team, Mogam Biotechnology Research Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Hyejin Chung
- Cell Therapy Team, Mogam Biotechnology Research Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Jung Hyun Her
- Cell Therapy Team, Mogam Biotechnology Research Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Sang Mi Kang
- Cell Therapy Team, Mogam Biotechnology Research Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Mi-young Jung
- Cell Therapy Division, Green Cross LabCell Corp., Yongin, Gyeonggi-do, Republic of Korea
| | - Bokyung Min
- Cell Therapy Team, Mogam Biotechnology Research Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Hyejin Shin
- Cell Therapy Division, Green Cross LabCell Corp., Yongin, Gyeonggi-do, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dae Seog Heo
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Kyeong Hwang
- Cell Therapy Team, Mogam Biotechnology Research Institute, Yongin, Gyeonggi-do, Republic of Korea
| | - Eui-Cheol Shin
- BioMedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Lion E, Smits ELJM, Berneman ZN, Van Tendeloo VFI. NK cells: key to success of DC-based cancer vaccines? Oncologist 2012; 17:1256-70. [PMID: 22907975 DOI: 10.1634/theoncologist.2011-0122] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cytotoxic and regulatory antitumor functions of natural killer (NK) cells have become attractive targets for immunotherapy. Manipulation of specific NK cell functions and their reciprocal interactions with dendritic cells (DCs) might hold therapeutic promise. In this review, we focus on the engagement of NK cells in DC-based cancer vaccination strategies, providing a comprehensive overview of current in vivo experimental and clinical DC vaccination studies encompassing the monitoring of NK cells. From these studies, it is clear that NK cells play a key regulatory role in the generation of DC-induced antitumor immunity, favoring the concept that targeting both innate and adaptive immune mechanisms may synergistically promote clinical outcome. However, to date, DC vaccination trials are only infrequently accompanied by NK cell monitoring. Here, we discuss different strategies to improve DC vaccine preparations via exploitation of NK cells and provide a summary of relevant NK cell parameters for immune monitoring. We underscore that the design of DC-based cancer vaccines should include the evaluation of their NK cell stimulating potency both in the preclinical phase and in clinical trials.
Collapse
Affiliation(s)
- Eva Lion
- Vaccine & Infectious Disease Institute (Vaxinfectio), Laboratory of Experimental Hematology, TIGR, University of Antwerp (UA), Antwerp University Hospital (UZA), Wilrijkstraat 10, B-2650 Antwerp, Belgium.
| | | | | | | |
Collapse
|
8
|
Abstract
Progress in vector design and an increased knowledge of mechanisms underlying tumor-induced immune suppression have led to a new and promising generation of Adenovirus (Ad)-based immunotherapies, which are discussed in this review. As vaccine vehicles Ad vectors (AdVs) have been clinically evaluated and proven safe, but a major limitation of the commonly used Ad5 serotype is neutralization by preexistent or rapidly induced immune responses. Genetic modifications in the Ad capsid can reduce intrinsic immunogenicity and facilitate escape from antibody-mediated neutralization. Further modification of the Ad hexon and fiber allows for liver and scavenger detargeting and selective targeting of, for example, dendritic cells. These next-generation Ad vaccines with enhanced efficacy are now becoming available for testing as tumor vaccines. In addition, AdVs encoding immune-modulating products may be used to convert the tumor microenvironment from immune-suppressive and proinvasive to proinflammatory, thus facilitating cell-mediated effector functions that can keep tumor growth and invasion in check. Oncolytic AdVs, that selectively replicate in tumor cells and induce an immunogenic form of cell death, can also be armed with immune-activating transgenes to amplify primed antitumor immune responses. These novel immunotherapy strategies, employing highly efficacious AdVs in optimized configurations, show great promise and warrant clinical exploration.
Collapse
|
9
|
Abstract
Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed.
Collapse
|
10
|
Shurin MR, Gregory M, Morris JC, Malyguine AM. Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow? Expert Opin Biol Ther 2011; 10:1539-53. [PMID: 20955111 DOI: 10.1517/14712598.2010.526105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE OF THE FIELD Dendritic cells (DC) are powerful antigen-presenting cells that induce and maintain primary cytotoxic T lymphocyte (CTL) responses directed against tumor antigens. Consequently, there has been much interest in their application as antitumor vaccines. AREAS COVERED IN THIS REVIEW A large number of DC-based vaccine trials targeting a variety of cancers have been conducted; however, the rate of reported clinically significant responses remains low. Modification of DC to express tumor antigens or immunostimulatory molecules through the transfer of genes or mRNA transfection offers a logical alternative with potential advantages over peptide- or protein antigen-loaded DC. In this article, we review the current results and future prospects for genetically modified DC vaccines for the treatment of cancer. WHAT THE READER WILL GAIN Genetically-modified dendritic cell-based vaccines represent a powerful tool for cancer therapy. Numerous preclinical and clinical studies have demonstrated the potential of dendritic cell vaccines alone or in combination with other therapeutic modalities. TAKE HOME MESSAGE Genetically modified DC-based anti-cancer vaccination holds promise, perhaps being best employed in the adjuvant setting with minimal residual disease after primary therapy, or in combination with other antitumor or immune-enhancing therapies.
Collapse
Affiliation(s)
- Michael R Shurin
- Department of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
11
|
Virally infected and matured human dendritic cells activate natural killer cells via cooperative activity of plasma membrane-bound TNF and IL-15. Blood 2010; 116:575-83. [PMID: 20430958 DOI: 10.1182/blood-2009-08-240325] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recombinant adenovirus-engineered dendritic cells (Ad.DCs) are potent immunologic adjuvants of antiviral and anticancer vaccines. The effectiveness of Ad.DC-based vaccines may depend on the ability of Ad.DCs to crosstalk with natural killer (NK) cells and to activate, polarize, and bridge innate and adaptive immunity. We investigated, for the first time, whether and how human Ad.DCs activate NK cells, and compared the Ad.DC function with that of immature DCs and matured DCs (mDCs). We found that adenovirus transduction and lipopolysaccharide/interferon-gamma-induced maturation increased expression of transmembrane tumor necrosis factor (TNF) and trans-presented (trans) interleukin-15 (IL-15) on DCs, leading to enhanced NK cell activation without enhancing DC susceptibility to NK cell-mediated killing. This crosstalk enhanced NK cell CD69 expression, interferon-gamma secretion, proliferation, and antitumor activities, with Ad.DCs being significantly more effective than immature DCs, but less effective than mDCs. The Ad.DC and mDC crosstalk with NK cells was largely prevented by physical separation of DCs and NK cells, and neutralization of total TNF and IL-15, but not by selective sequestration of soluble TNF. These findings demonstrate that both Ad.DCs and mDCs can efficiently promote innate immune functions by activation of NK cells through the cooperative activities of tmTNF and trans-IL-15 mediated by cell-to-cell contact.
Collapse
|
12
|
Smits EL, Anguille S, Cools N, Berneman ZN, Van Tendeloo VF. Dendritic Cell-Based Cancer Gene Therapy. Hum Gene Ther 2009; 20:1106-18. [DOI: 10.1089/hum.2009.145] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Evelien L.J.M. Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, B-2610 Wilrijk (Antwerp), Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, B-2610 Wilrijk (Antwerp), Belgium
- Center for Cell Therapy and Regenerative Medicine (CCTRM), Antwerp University Hospital, B-2650 Edegem (Antwerp), Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, B-2610 Wilrijk (Antwerp), Belgium
| | - Zwi N. Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, B-2610 Wilrijk (Antwerp), Belgium
- Center for Cell Therapy and Regenerative Medicine (CCTRM), Antwerp University Hospital, B-2650 Edegem (Antwerp), Belgium
| | - Viggo F.I. Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, B-2610 Wilrijk (Antwerp), Belgium
- Center for Cell Therapy and Regenerative Medicine (CCTRM), Antwerp University Hospital, B-2650 Edegem (Antwerp), Belgium
| |
Collapse
|
13
|
Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. J Immunother 2008; 31:294-309. [PMID: 18317358 DOI: 10.1097/cji.0b013e31816a8910] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We performed a phase 1/2 trial testing the safety, toxicity, and immune response of a vaccine consisting of autologous dendritic cells (DCs) transduced with a replication-defective adenovirus (AdV) encoding the full-length melanoma antigen MART-1/Melan-A (MART-1). This vaccine was designed to activate MART-1-specific CD+8 and CD4+ T cells. Metastatic melanoma patients received 3 injections of 10(6) or 10(7) DCs, delivered intradermally. Cell surface phenotype and cytokine production of the DCs used for the vaccines were tested, and indicated intermediate maturity. CD8+ T-cell responses to MART-1 27-35 were assessed by both major histocompatibility complex class I tetramer and interferon (IFN)-gamma enzyme-linked immunosorbent spot (ELISPOT) before, during, and after each vaccine and CD4+ T-cell responses to MART-1 51-73 were followed by IFN-gamma ELISPOT. We also measured antigen response breadth. Determinant spreading from the immunizing antigen MART-1 to other melanoma antigens [gp100, tyrosinase, human melanoma antigen-A3 (MAGE-A3)] was assessed by IFN-gamma ELISPOT. Twenty-three patients were enrolled and 14 patients received all 3 scheduled DC vaccines. Significant CD8+ and/or CD4+ MART-1-specific T-cell responses were observed in 6/11 and 2/4 patients evaluated, respectively, indicating that the E1-deleted adenovirus encoding the cDNA for MART-1/Melan-A (AdVMART1)/DC vaccine activated both helper and killer T cells in vivo. Responses in CD8+ and CD4+ T cells to additional antigens were noted in 2 patients. The AdVMART1-transduced DC vaccine was safe and immunogenic in patients with metastatic melanoma.
Collapse
|
14
|
Kochenderfer JN, Gress RE. A comparison and critical analysis of preclinical anticancer vaccination strategies. Exp Biol Med (Maywood) 2007; 232:1130-41. [PMID: 17895521 DOI: 10.3181/0702-mr-42] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Anticancer vaccines have been extensively studied in animal models and in clinical trials. While vaccination can lead to tumor protection in numerous murine models, objective tumor regressions after anticancer vaccination in clinical trials have been rare. B16 is a poorly immunogenic murine melanoma that has been extensively used in anticancer vaccination experiments. Because B16 has been widely used, different vaccination strategies can be compared. We reviewed the results obtained when B16 was treated with five common vaccine types: recombinant viral vaccines, DNA vaccines, dendritic cell vaccines, whole-tumor vaccines, and peptide vaccines. We also reviewed the results obtained when B16 was treated with vaccines combined with adoptive transfer of tumor antigen-specific T cells. We found several characteristics of vaccination regimens that were associated with antitumor efficacy. Many vaccines that incorporated xenogeneic antigens exhibited more potent anticancer activity than vaccines that were identical except that they incorporated the syngeneic version of the same antigen. Interleukin-2 enhanced the antitumor efficacy of several vaccines. Finally, several effective regimens generated large numbers of tumor antigen-specific CD8(+) T cells. Identification of vaccine characteristics that are associated with antitumor efficacy may aid in the development of more effective anticancer vaccination strategies.
Collapse
Affiliation(s)
- J N Kochenderfer
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
15
|
Zimmerer JM, Lesinski GB, Kondadasula SV, Karpa VI, Lehman A, Raychaudhury A, Becknell B, Carson WE. IFN-alpha-induced signal transduction, gene expression, and antitumor activity of immune effector cells are negatively regulated by suppressor of cytokine signaling proteins. THE JOURNAL OF IMMUNOLOGY 2007; 178:4832-45. [PMID: 17404264 DOI: 10.4049/jimmunol.178.8.4832] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteins belonging to the suppressors of cytokine signaling (SOCS) family have been shown to regulate cytokine signal transduction in various cell types but their role in modulating the response of immune cells to IFN-alpha has not been fully explored. We hypothesized that SOCS proteins would inhibit the antitumor activity of IFN-alpha-stimulated immune cells. Transcripts for SOCS1, SOCS2, SOCS3, and cytokine-inducible Src homology 2-containing protein were identified in total human PBMC (PBMCs, NK cells, and T cells) within 1-2 h of stimulation with IFN-alpha (10(3)-10(5) U/ml). Immunoblot analysis confirmed the expression of these factors at the protein level. Transcripts for SOCS proteins were rapidly but variably induced in PBMCs from patients with metastatic melanoma following the i.v. administration of IFN-alpha-2b (20 million units/m(2)). Overexpression of SOCS1 and SOCS3, but not SOCS2, in the Jurkat T cell line inhibited IFN-alpha-induced phosphorylated STAT1 and the transcription of IFN-stimulated genes. Conversely, small inhibitory RNA-mediated down-regulation of SOCS1 and SOCS3 in Jurkat cells and normal T cells enhanced the transcriptional response to IFN-alpha. Loss of SOCS1 or SOCS3 in murine immune effectors was associated with enhanced IFN-induced phosphorylated STAT1, transcription of IFN-stimulated genes, and antitumor activity. Of note, IFN-alpha treatment eliminated melanoma tumors in 70% of SOCS1-deficient mice, whereas IFN-treated SOCS-competent mice all died. The antitumor effects of IFN-alpha in tumor-bearing SOCS1-deficient mice were markedly inhibited following depletion of CD8(+) T cells. These results indicate that the antitumor response of immune effector cells to exogenous IFN-alpha is regulated by SOCS proteins.
Collapse
Affiliation(s)
- Jason M Zimmerer
- Integrated Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Solana R, Casado JG, Delgado E, DelaRosa O, Marín J, Durán E, Pawelec G, Tarazona R. Lymphocyte activation in response to melanoma: interaction of NK-associated receptors and their ligands. Cancer Immunol Immunother 2007; 56:101-9. [PMID: 16485126 PMCID: PMC11030256 DOI: 10.1007/s00262-006-0141-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Accepted: 01/22/2006] [Indexed: 12/17/2022]
Abstract
In recent years, studies on the molecular and cellular mechanisms of immune responses against melanoma have contributed to a better understanding of how these tumours can be recognised by cytotoxic cells and the mechanisms they have developed to escape from innate and adaptive immunity. Lysis of melanoma cells by natural killer (NK) cells and cytolytic T cells is the result of a fine balance between signals transmitted by activating and inhibitory receptors. In addition to the T cell receptor, these were initially described as NK cell-associated receptors (NKRs) and were later also found on subsets of T lymphocytes, particularly effector-memory and terminally differentiated CD8 T cells. An increase of NKR(+)CD8(+) T cells has been found in melanoma patients, correlating with the expansion of differentiated effector CD8(+)CD28(null) CD27(null) T cells. NKRs can regulate the lysis of target cells expressing appropriate ligands. Activating receptors recognise ligands on tumours whereas inhibitory receptors are specific for MHC class I antigens and sense missing self. Altered expression of MHC class I antigens is frequently found on melanoma cells, preventing recognition by specific cytolytic T cells but favouring NK cell recognition. Changes in the expression of NKR-ligands in melanoma contribute in explaining the differences in the capacity of cytotoxic immune cells to control melanoma growth and dissemination.
Collapse
Affiliation(s)
- Rafael Solana
- Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Javier G. Casado
- Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Elena Delgado
- Immunology Unit, Department of Physiology, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Olga DelaRosa
- Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Juan Marín
- Immunology Unit, Department of Physiology, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Esther Durán
- Histology and Pathological Anatomy Unit, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Graham Pawelec
- Center for Medical Research, University of Tubingen, Tubingen, Germany
| | - Raquel Tarazona
- Immunology Unit, Department of Physiology, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| |
Collapse
|
17
|
Prins RM, Vo DD, Khan-Farooqi H, Yang MY, Soto H, Economou JS, Liau LM, Ribas A. NK and CD4 Cells Collaborate to Protect against Melanoma Tumor Formation in the Brain. THE JOURNAL OF IMMUNOLOGY 2006; 177:8448-55. [PMID: 17142742 DOI: 10.4049/jimmunol.177.12.8448] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells represent a potent immune effector cell type that have the ability to recognize and lyse tumors. However, the existence and function of NK cells in the traditionally "immune-privileged" CNS is controversial. Furthermore, the cellular interactions involved in NK cell anti-CNS tumor immunity are even less well understood. We administered non-Ag-loaded, immature dendritic cells (DC) to CD8alpha knockout (KO) mice and studied their anti-CNS tumor immune responses. DC administration induced dramatic antitumor immune protection in CD8alpha KO mice that were challenged with B16 melanoma both s.c. and in the brain. The CNS antitumor immunity was dependent on both CD4+ T cells and NK cells. Administration of non-Ag-loaded, immature DC resulted in significant CD4+ T cell and NK cell expansion in the draining lymph nodes at 6 days postvaccination, which persisted for 2 wk. Finally, DC administration in CD8alpha KO mice was associated with robust infiltration of CD4+ T cells and NK cells into the brain tumor parenchyma. These results represent the first demonstration of a potent innate antitumor immune response against CNS tumors in the absence of toxicity. Thus, non-Ag-loaded, immature DC administration, in the setting of CD8 genetically deficient mice, can induce dramatic antitumor immune responses within the CNS that surpass the effects observed in wild-type mice. Our results suggest that a better understanding of the cross-talk between DC and innate immune cells may provide improved methods to vaccinate patients with tumors located both systemically and within the CNS.
Collapse
Affiliation(s)
- Robert M Prins
- Department of Surgery, Division of Neurosurgery, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lauzon NM, Mian F, MacKenzie R, Ashkar AA. The direct effects of Toll-like receptor ligands on human NK cell cytokine production and cytotoxicity. Cell Immunol 2006; 241:102-12. [PMID: 17049504 DOI: 10.1016/j.cellimm.2006.08.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 08/08/2006] [Indexed: 11/22/2022]
Abstract
Toll-like receptor (TLR) ligands are potent inducers of the innate immune system, of which NK and NKT cells play an important role. We examined the direct activation of highly purified human NK and/or NKT cells with known TLR ligands. NK/NKT cells were positive for all known TLR mRNA (TLR1-10). Ligands for TLR2-5 induced production of significant amounts of IFN-gamma by purified NK cells. However, a TLR9 ligand failed to induce significant levels of the cytokine. NK cells were depleted from PBMCs to confirm that they were the main source of IFN-gamma following treatment with TLR ligands, which resulted in a significant decrease in cytokines. The direct effects of TLR ligands on NK cytotoxicity were determined using 51Cr-labeled K562 target cells. Ligands for TLR2-5 were potent inducers of NK cell cytotoxicity, a TLR9 ligand was not. Our results suggest that TLR ligands can directly stimulate and enhance NK cell cytokine production and induce cytotoxic activities.
Collapse
Affiliation(s)
- Nicole M Lauzon
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ont., Canada L8N 3Z5
| | | | | | | |
Collapse
|
19
|
Ribas A, Vo DD, Weeks DL, Comin-Anduix B, Schumacher LY, Garban HJ, McLean C, Yang J, Dissette VB, Peraza P, Owens SK, McBride WH, Glaspy JA, Economou JS. Broad antitumor protection by dendritic cells administered to CD8alpha knock out mice. Cancer Immunol Immunother 2006; 55:663-71. [PMID: 16133107 PMCID: PMC11030267 DOI: 10.1007/s00262-005-0065-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
Dendritic cell (DC) administration to CD8alpha knock-out (CD8alphaKO) mice results in a strong antigen-non-specific protection to a B16 murine melanoma tumor challenge. This response is mediated by lytic NK cells and cytokine-producing CD4 cells. We aimed to determine the signals that guide tumor targeting of this response. CD8alphaKO mice in the C57BL/6 background received subcutaneous (s.c.) injections of immature DC. Mice were challenged in vivo or assayed for lytic activity in vitro to a panel of syngeneic tumors with different levels of MHC class I expression. These studies support the following conclusions: (1) DC administration to CD8alphaKO mice results in protective in vivo responses to syngeneic tumors from epithelial, neuroectodermal and hematopoietic origin; in vivo protection is independent of the level of MHC classes I and II expression. (2) The in vitro lytic activity of DC-activated NK cells from CD8alphaKO mice has sensitive and insensitive targets, which is independent of the cell lineage or the level of inhibitory self-MHC surface molecules. (3) In sensitive targets a putative activating NK ligand in DC-stimulated NK cells from CD8alphaKO mice signals directly to PI3-K, but is distinct from NKG2D.
Collapse
Affiliation(s)
- Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fushimi T, O'Connor TP, Crystal RG. Adenoviral gene transfer of stromal cell-derived factor-1 to murine tumors induces the accumulation of dendritic cells and suppresses tumor growth. Cancer Res 2006; 66:3513-22. [PMID: 16585175 DOI: 10.1158/0008-5472.can-05-1493] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human CXC chemokine, stromal cell-derived factor 1 (SDF-1alpha), is known to function in vitro as a chemotactic factor for lymphocytes, monocytes, and dendritic cells. In the context that dendritic cells are powerful antigen-presenting cells, we hypothesized that adenoviral gene transfer of SDF-1alpha to tumors might inhibit growth of preexisting tumors through attracting dendritic cells to the tumor. AdSDF-1alpha mediated the expression of SDF-1alpha mRNA and protein in A549 cells in vitro, and the supernatant of the AdSDF-1alpha-infected A549 cells showed chemotactic activity for dendritic cells. When syngeneic murine CT26 colon carcinoma tumors (BALB/c) and B16 melanoma and Lewis lung cell carcinoma (C57Bl/6) were injected with AdSDF-1alpha (5 x 10(8) plaque-forming units), there was an accumulation of dendritic cells and CD8(+) cells within the tumor and significant inhibition of tumor growth compared with tumors injected with PBS or AdNull (control vector). The injection of AdSDF-1alpha into tumors induced the inflammatory enlargement and the accumulation of dendritic cells in the draining lymph node. Intratumoral AdSDF-1alpha administration elicited tumor-specific CTLs and adoptive transfer of splenocytes from AdSDF-1alpha-treated mice resulted in the elongation of survival after tumor challenge. Interestingly, in wild-type and CD4(-/-) mice but not in CD8(-/-) mice, AdSDF-1alpha inhibited the growth of the tumor. These observations suggest that adenoviral gene transfer of SDF-1alpha may be a useful strategy to accumulate dendritic cells in tumors and evoke antitumor immune responses to inhibit tumor growth.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/immunology
- Adenoviridae/genetics
- Animals
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Cell Growth Processes/immunology
- Chemokine CXCL12
- Chemokines, CXC/genetics
- Chemokines, CXC/immunology
- Colonic Neoplasms/genetics
- Colonic Neoplasms/immunology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Female
- Gene Transfer Techniques
- Genetic Vectors/genetics
- Immunity, Cellular/genetics
- Immunity, Cellular/immunology
- Lymph Nodes/immunology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
Collapse
Affiliation(s)
- Toshiaki Fushimi
- Division of Pulmonary and Critical Care Medicine, Weill Medical College of Cornell University, 515 East 71st Street, New York, NY 10021, USA
| | | | | |
Collapse
|
21
|
Schumacher LY, Vo DD, Garban HJ, Comin-Anduix B, Owens SK, Dissette VB, Glaspy JA, McBride WH, Bonavida B, Economou JS, Ribas A. Immunosensitization of Tumor Cells to Dendritic Cell-Activated Immune Responses with the Proteasome Inhibitor Bortezomib (PS-341, Velcade). THE JOURNAL OF IMMUNOLOGY 2006; 176:4757-65. [PMID: 16585569 DOI: 10.4049/jimmunol.176.8.4757] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Proteasome inhibition results in proapoptotic changes in cancer cells, which may make them more sensitive to immune effector cells. We established a murine model to test whether the proteasome inhibitor bortezomib could sensitize established B16 melanoma tumors to dendritic cell (DC)-activated immune effector cells. Day 3-established s.c. B16 tumors had significantly decreased tumor outgrowth when treated with a combination of bortezomib and DC, regardless of whether the DC were loaded or not with a tumor Ag. In vivo Ab-depletion studies demonstrated that the effector cells were NK and CD8+ cells, but not CD4+ cells. NF-kappaB nuclear transcription factor assay and gene-expression profiling of B16 treated with bortezomib was consistent with inhibition of NF-kappaB target genes leading to a proapoptotic phenotype. In vitro lytic assays demonstrated that TNF-alpha, but not perforin, Fas-ligand, or TRAIL, was responsible for bortezomib-sensitized B16 cytotoxicity. In conclusion, the proteasome inhibitor bortezomib can pharmacologically sensitize tumor cells to the lytic effects of DC-activated immune effector cells.
Collapse
Affiliation(s)
- Lana Y Schumacher
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|