1
|
Lozano LP, Jensen R, Jennisch M, Pandala NG, Jamshidi F, Boldt HC, Tucker BA, Binkley EM. Genetics and current research models of Mendelian tumor predisposition syndromes with ocular involvement. Prog Retin Eye Res 2025; 106:101359. [PMID: 40274012 DOI: 10.1016/j.preteyeres.2025.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
In this review, we aim to provide a survey of hereditable tumor predisposition syndromes with a Mendelian inheritance pattern and ocular involvement. We focus our discussion on von Hippel-Lindau disease, neurofibromatosis type 1, NF2-related schwannomatosis, tuberous sclerosis complex, retinoblastoma, and the BAP1 tumor predisposition syndrome. For each of the six diseases, we discuss the clinical presentation and the molecular pathophysiology. We emphasize the genetics, current research models, and therapeutic developments. After reading each disease section, readers should possess an understanding of the clinical presentation, genetic causes and inheritance patterns, and current state of research in disease modeling and treatment.
Collapse
Affiliation(s)
- Lola P Lozano
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Renato Jensen
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Madeleine Jennisch
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Narendra G Pandala
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Farzad Jamshidi
- Department of Ophthalmology, University of Pittsburgh/UPMC, Pittsburgh, PA, 15213, USA.
| | - H Culver Boldt
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Budd A Tucker
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Elaine M Binkley
- Institute for Vision Research, The University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Nasar RT, Uche IK, Kousoulas KG. Targeting Cancers with oHSV-Based Oncolytic Viral Immunotherapy. Curr Issues Mol Biol 2024; 46:5582-5594. [PMID: 38921005 PMCID: PMC11201976 DOI: 10.3390/cimb46060334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The recent success of cancer immunotherapies, such as immune checkpoint inhibitor (ICIs), monoclonal antibodies (mAbs), cancer vaccines, and adoptive cellular therapies (ACTs), has revolutionized traditional cancer treatment. However, these immunotherapeutic modalities have variable efficacies, and many of them exhibit adverse effects. Oncolytic viral Immunotherapy (OViT), whereby viruses are used to directly or indirectly induce anti-cancer immune responses, is emerging as a novel immunotherapy for treating patients with different types of cancer. The herpes simplex virus type-1 (HSV-1) possesses many characteristics that inform its use as an effective OViT agents and remains a leading candidate. Its recent clinical success resulted in the Food and Drug Administration (FDA) approval of Talimogene laherparevec (T-VEC or Imlygic) in 2015 for the treatment of advanced melanoma. In this review, we discuss recent advances in the development of oncolytic HSV-1-based OViTs, their anti-tumor mechanism of action, and efficacy data from recent clinical trials. We envision this knowledge may be used to inform the rational design and application of future oHSV in cancer treatment.
Collapse
Affiliation(s)
- Rakin Tammam Nasar
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Ifeanyi Kingsley Uche
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Konstantin G. Kousoulas
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
Todo T, Ino Y, Ohtsu H, Shibahara J, Tanaka M. A phase I/II study of triple-mutated oncolytic herpes virus G47∆ in patients with progressive glioblastoma. Nat Commun 2022; 13:4119. [PMID: 35864115 PMCID: PMC9304402 DOI: 10.1038/s41467-022-31262-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Here, we report the results of a phase I/II, single-arm study (UMIN-CTR Clinical Trial Registry UMIN000002661) assessing the safety (primary endpoint) of G47∆, a triple-mutated oncolytic herpes simplex virus type 1, in Japanese adults with recurrent/progressive glioblastoma despite radiation and temozolomide therapies. G47Δ was administered intratumorally at 3 × 108 pfu (low dose) or 1 × 109 pfu (set dose), twice to identical coordinates within 5–14 days. Thirteen patients completed treatment (low dose, n = 3; set dose, n = 10). Adverse events occurred in 12/13 patients. The most common G47Δ-related adverse events were fever, headache and vomiting. Secondary endpoint was the efficacy. Median overall survival was 7.3 (95%CI 6.2–15.2) months and the 1-year survival rate was 38.5%, both from the last G47∆ administration. Median progression-free survival was 8 (95%CI 7–34) days from the last G47∆ administration, mainly due to immediate enlargement of the contrast-enhanced area of the target lesion on MRI. Three patients survived >46 months. One complete response (low dose) and one partial response (set dose) were seen at 2 years. Based on biopsies, post-administration MRI features (injection site contrast-enhancement clearing and entire tumor enlargement) likely reflected tumor cell destruction via viral replication and lymphocyte infiltration towards tumor cells, the latter suggesting the mechanism for “immunoprogression” characteristic to this therapy. This study shows that G47Δ is safe for treating recurrent/progressive glioblastoma and warrants further clinical development. G47Δ is a third-generation, triple-mutated oncolytic HSV-1 that has demonstrated anti-tumor efficacy in preclinical studies. Here the authors report the results of a phase I/II study of G47Δ in patients with recurrent or progressive glioblastoma.
Collapse
Affiliation(s)
- Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. .,Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan.
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroshi Ohtsu
- Department of Data Science, National Center for Global Health and Medicine in Japan, Tokyo, Japan.,Leading Center for the Development and Research of Cancer Medicine, Juntendo University, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Schwannoma Gene Therapy via Adeno-Associated Viral Vector Delivery of Apoptosis-Associated Speck-like Protein Containing CARD (ASC): Preclinical Efficacy and Safety. Int J Mol Sci 2022; 23:ijms23020819. [PMID: 35055004 PMCID: PMC8775599 DOI: 10.3390/ijms23020819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 11/17/2022] Open
Abstract
Schwannomas are tumors derived from Schwann-lineage cells, cells that protect and support myelinated nerves in the peripheral nervous system. They are typically slow-growing, encapsulated and benign. These tumors develop along peripheral, spinal and cranial nerves causing pain, sensory-motor dysfunction and death. Primary treatment for schwannoma is operative resection which can be associated with significant morbidity. Pharmacotherapy is largely restricted to bevacizumab, which has minimal or no efficacy for many patients and can be associated with treatment-limiting adverse effects. Given the suffering and morbidity associated with schwannoma and the paucity of therapeutic options, there is an urgent need for safe and effective therapies for schwannomas. We previously demonstrated that adeno-associated virus serotype 1 (AAV1) vector mediated delivery of the inflammasome adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) under the control of the P0 promoter, produced a prolonged reduction in tumor volume and tumor-associated pain in human xenograft and mouse syngeneic schwannoma models. Here, we present data essential for the translation of our AAV1-P0-ASC schwannoma gene therapy to clinical trials. We determine the minimum effective dose of AAV1-P0-hASC required to induce an anti-tumor effect in the xenograft human-schwannoma model. We also show that the presence of preexisting AAV1 immunity does not alter the antitumor efficacy of AAV-P0-mASC in a syngeneic mouse schwannoma model. Furthermore, the maximum deliverable intratumoral dose of AAV1-P0-ASC was not associated with neuronal toxicity in immunocompetent mice. Taken together, these safety and efficacy data support the translation of the AAV1-P0-ASC schwannoma gene therapy strategy to clinical trials.
Collapse
|
5
|
Ahmed SG, Abdelnabi A, Maguire CA, Doha M, Sagers JE, Lewis RM, Muzikansky A, Giovannini M, Stemmer-Rachamimov A, Stankovic KM, Fulci G, Brenner GJ. Gene therapy with apoptosis-associated speck-like protein, a newly described schwannoma tumor suppressor, inhibits schwannoma growth in vivo. Neuro Oncol 2020; 21:854-866. [PMID: 30977509 DOI: 10.1093/neuonc/noz065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We evaluated apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) as a schwannoma tumor suppressor and explored its utilization in a schwannoma gene therapy strategy that may be translated to clinical use. METHODS ASC protein expression and mRNA level were assessed in human schwannoma by immunohistochemistry and quantitative PCR, respectively. Methylation- specific PCR was used to assess ASC promoter methylation. The effect of ASC overexpression in schwannoma cells was evaluated through ATP-based viability, lactate dehydrogenase release, and apoptosis staining. Western blotting and colorimetric assay were used to test the effect of ASC overexpression on endogenous pro-apoptotic pathways. Bioluminescence imaging, behavioral testing, and immunohistochemistry in human xenograft and murine allograft schwannoma models were used to examine the efficacy and toxicity of intratumoral injection of adeno-associated virus (AAV) vector encoding ASC. RESULTS ASC expression was suppressed via promoter methylation in over 80% of the human schwannomas tested. ASC overexpression in schwannoma cells results in cell death and is associated with activation of endogenous caspase-9, caspase-3, and upregulation of BH3 interacting-domain death agonist. In a human xenograft schwannoma model, AAV1-mediated ASC delivery reduced tumor growth and resolved tumor-associated pain without detectable toxicity, and tumor control was associated with reduced Ki67 mitotic index and increased tumor-cell apoptosis. Efficacy of this schwannoma gene therapy strategy was confirmed in a murine schwannoma model. CONCLUSION We have identified ASC as a putative schwannoma tumor suppressor with high potential clinical utility for schwannoma gene therapy and generated a vector that treats schwannomas via a novel mechanism that does not overlap with current treatments.
Collapse
Affiliation(s)
- Sherif G Ahmed
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts
| | - Ahmed Abdelnabi
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts
| | - Casey A Maguire
- Department of Neurology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts
| | - Mohamed Doha
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts
| | - Jessica E Sagers
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear and Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts.,Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts
| | - Rebecca M Lewis
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear and Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Alona Muzikansky
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, California
| | | | - Konstantina M Stankovic
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear and Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts.,Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts
| | - Giulia Fulci
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts.,Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Gary J Brenner
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Taguchi S, Fukuhara H, Todo T. Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Jpn J Clin Oncol 2019; 49:201-209. [PMID: 30462296 DOI: 10.1093/jjco/hyy170] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/21/2018] [Indexed: 01/28/2023] Open
Abstract
Oncolytic virus therapy is a promising new option for cancer. It utilizes genetically engineered or naturally occurring viruses that selectively replicate in and kill cancer cells without harming normal cells. T-VEC (talimogene laherparepvec), a second-generation oncolytic herpes simplex virus type 1, was approved by the US Food and Drug Administration for the treatment of inoperable melanoma in 2015 and subsequently approved in Europe in 2016. Other oncolytic viruses using different parental viruses have also been tested in Phase III clinical trials and are ready for drug approval: Pexa-Vec (pexastimogene devacirepvec), an oncolytic vaccinia virus, CG0070, an oncolytic adenovirus, and REOLYSIN (pelareorep), an oncolytic reovirus. In Japan, as of May 2018, several oncolytic viruses have been developed, and some have already proceeded to clinical trials. In this review, we summarize clinical trials assessing oncolytic virus therapy that were conducted or are currently ongoing in Japan, specifically, T-VEC, the abovementioned oncolytic herpes simplex virus type 1, G47Δ, a third-generation oncolytic herpes simplex virus type 1, HF10, a naturally attenuated oncolytic herpes simplex virus type 1, Telomelysin, an oncolytic adenovirus, Surv.m-CRA, another oncolytic adenovirus, and Sendai virus particle. In the near future, oncolytic virus therapy may become an important and major treatment option for cancer in Japan.
Collapse
Affiliation(s)
- Satoru Taguchi
- Department of Urology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Ahmed SG, Hadaegh F, Brenner GJ. Developing myelin specific promoters for schwannoma gene therapy. J Neurosci Methods 2019; 323:77-81. [PMID: 31125589 DOI: 10.1016/j.jneumeth.2019.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/09/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Schwannomas are peripheral nerve sheath tumors composed entirely of Schwann-lineage cells that cause pain and sensory-motor dysfunction through compression of peripheral nerves, the spinal cord, and/or the brain stem. Treatment of schwannoma is largely limited to resection which itself has limited value. The goal of this study is to establish a technique to identify the most efficient and tissue-specific promoter for use in a schwannoma gene therapy construct. NEW METHOD This work involves transfection of schwannoma cells with adeno-associated viral vector plasmids expressing GFP under different myelin cell specific promoters. The transfected cells were evaluated for green fluorescence intensity in vitro, and in vivo after implantation into sciatic nerves of nude mice. RESULTS Our data demonstrate that myelin protein zero (MPZ, P0) and peripheral myelin protein 22 (PMP22) promoters produce greater GFP expression in schwannoma cell lines than myelin basic protein (MBP) promoter. In vitro, P0 promoter activity in schwannoma cell lines was shown to be less active than the cytomegalovirus and chicken β-actin (CBA) promoter. However, we did not observe any significant difference between the activity of the CBA and P0 promoters in a xenograft schwannoma model. COMPARISON WITH EXISTING METHODS(S) We show here the influence of the peripheral nerve microenvironment on promoter efficacy in expressing transgenes using simple transfection by lipofection followed by prompt implantation of the transfected cells into the sciatic nerve of nude mice. CONCLUSIONS We demonstrate that of the myelin specific promoters evaluated, P0 is optimal for driving expression of transgenes in schwannoma cells.
Collapse
Affiliation(s)
- Sherif G Ahmed
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Farnaz Hadaegh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Gary J Brenner
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States.
| |
Collapse
|
8
|
Schwannoma gene therapy by adeno-associated virus delivery of the pore-forming protein Gasdermin-D. Cancer Gene Ther 2019; 26:259-267. [PMID: 30622323 DOI: 10.1038/s41417-018-0077-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 11/09/2022]
Abstract
Schwannomas are peripheral nerve sheath tumors associated with three genetically distinct disease entities, namely sporadic schwannoma, neurofibromatosis type-2, and schwannomatosis. Schwannomas are associated with severe disability and in cases lead to death. The primary treatment is operative resection that itself can cause neurologic damage and is at times contra-indicated due to tumor location. Given their homogenous Schwann-lineage cellular composition, schwannomas are appealing targets for gene therapy. In the present study, we have generated an adeno-associated serotype 1 virus (AAV1)-based vector delivering N-terminal of the pyroptotic gene Gasdermin-D; (GSDMDNterm) under the control of the Schwann-cell specific promoter, P0. we have demonstrated that AAV1-P0-GSDMDNterm injection into intra-sciatic schwannomas reduces the growth of these tumors and resolves tumor-associated pain without causing neurologic damage. This AAV1-P0-GSDMDNterm vector holds promise for clinical treatment of schwannomas via direct intra-tumoral injection.
Collapse
|
9
|
Ma W, He H, Wang H. Oncolytic herpes simplex virus and immunotherapy. BMC Immunol 2018; 19:40. [PMID: 30563466 PMCID: PMC6299639 DOI: 10.1186/s12865-018-0281-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Oncolytic viruses have been proposed to be employed as a potential treatment of cancer. Well targeted, they will serve the purpose of cracking tumor cells without causing damage to normal cells. In this category of oncolytic viral drugs human pathogens herpes simplex virus (HSV) is especially suitable for the cause. Although most viral infection causes antiviral reaction in the host, HSV has multiple mechanisms to evade those responses. Powerful anti-tumor effect can thus be achieved via genetic manipulation of the HSV genes involved in this evading mechanism, namely deletions or mutations that adapt its function towards a tumor microenvironment. Currently, oncolytic HSV (oHSV) is widely use in clinical; moreover, there's hope that its curative effect will be further enhanced through the combination of oHSV with both traditional and emerging therapeutics. RESULTS In this review, we provide a summary of the HSV host antiviral response evasion mechanism, HSV expresses immune evasion genes such as ICP34.5, ICP0, Us3, which are involved in inducing and activating host responses, so that the virus can evade the immune system and establish effective long-term latent infection; we outlined details of the oHSV strains generated by removing genes critical to viral replication such as ICP34.5, ICP0, and inserting therapeutic genes such as LacZ, granulocyte macrophage colony-stimulating factor (GM-CSF); security and limitation of some oHSV such G207, 1716, OncoVEX, NV1020, HF10, G47 in clinical application; and the achievements of oHSV combined with immunotherapy and chemotherapy. CONCLUSION We reviewed the immunotherapy mechanism of the oHSV and provided a series of cases. We also pointed out that an in-depth study of the application of oHSV in cancer treatment will potentially benefits cancer patients more.
Collapse
Affiliation(s)
- Wenqing Ma
- Ruminant Diseases Research Center, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hongbin He
- Ruminant Diseases Research Center, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Hongmei Wang
- Ruminant Diseases Research Center, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
10
|
Nigim F, Wakimoto H, Kasper EM, Ackermans L, Temel Y. Emerging Medical Treatments for Meningioma in the Molecular Era. Biomedicines 2018; 6:biomedicines6030086. [PMID: 30082628 PMCID: PMC6165537 DOI: 10.3390/biomedicines6030086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Meningiomas are the most common type of primary central nervous system tumors. Approximately, 80% of meningiomas are classified by the World Health Organization (WHO) as grade I, and 20% of these tumors are grade II and III, considered high-grade meningiomas (HGMs). Clinical control of HGMs, as well as meningiomas that relapse after surgery, and radiation therapy is difficult, and novel therapeutic approaches are necessary. However, traditional chemotherapies, interferons, hormonal therapies, and other targeted therapies have so far failed to provide clinical benefit. During the last several years, next generation sequencing has dissected the genetic heterogeneity of meningioma and enriched our knowledge about distinct oncogenic pathways driving different subtypes of meningiomas, opening up a door to new personalized targeted therapies. Molecular classification of meningioma allows a new design of clinical trials that assign patients to corresponding targeted agents based on the tumor genetic subtypes. In this review, we will shed light on emerging medical treatments of meningiomas with a particular focus on the new targets identified with genomic sequencing that have led to clinical trials testing novel compounds. Moreover, we present recent development of patient-derived preclinical models that provide platforms for assessing targeted therapies as well as strategies with novel mechanism of action such as oncolytic viruses.
Collapse
Affiliation(s)
- Fares Nigim
- Brain Tumor Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Hiroaki Wakimoto
- Brain Tumor Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Ekkehard M Kasper
- Department of Neurosurgery, McMaster University, Hamilton, ON 8L8 2X2, Canada.
| | - Linda Ackermans
- Department of Neurosurgery and Neuroscience, Maastricht University Medical Center, 6229 HY Maastricht, The Netherlands.
| | - Yasin Temel
- Department of Neurosurgery and Neuroscience, Maastricht University Medical Center, 6229 HY Maastricht, The Netherlands.
| |
Collapse
|
11
|
Petrilli AM, Fernández-Valle C. Generation and Use of Merlin-Deficient Human Schwann Cells for a High-Throughput Chemical Genomics Screening Assay. Methods Mol Biol 2018; 1739:161-173. [PMID: 29546707 DOI: 10.1007/978-1-4939-7649-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Schwannomas are benign nerve tumors that occur sporadically in the general population and in those with neurofibromatosis type 2 (NF2), a tumor predisposition genetic disorder. NF2-associated schwannomas and most sporadic schwannomas are caused by inactivating mutations in Schwann cells in the neurofibromatosis type 2 gene (NF2) that encodes the merlin tumor suppressor. Despite their benign nature, schwannomas and especially vestibular schwannomas cause considerable morbidity. The primary available therapies are surgery or radiosurgery which usually lead to loss of function of the compromised nerve. Thus, there is a need for effective chemotherapies. We established an untransformed merlin-deficient human Schwann cell line for use in drug discovery studies for NF2-associated schwannomas. We describe the generation of human Schwann cells (HSCs) with depletion of merlin and their application in high-throughput screening of chemical libraries to identify compounds that decrease their viability. This NF2-HSC model is amenable for use in independent labs and high-throughput screening (HTS) facilities.
Collapse
Affiliation(s)
- Alejandra M Petrilli
- Neuroscience Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Cristina Fernández-Valle
- Neuroscience Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
12
|
Taguchi S, Fukuhara H, Homma Y, Todo T. Current status of clinical trials assessing oncolytic virus therapy for urological cancers. Int J Urol 2017; 24:342-351. [PMID: 28326624 DOI: 10.1111/iju.13325] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022]
Abstract
Oncolytic virus therapy has recently been recognized as a promising new option for cancer treatment. Oncolytic viruses replicate selectively in cancer cells, thus killing them without harming normal cells. Notably, T-VEC (talimogene laherparepvec, formerly called OncoVEXGM-CSF ), an oncolytic herpes simplex virus type 1, was approved by the US Food and Drug Administration for the treatment of inoperable melanoma in October 2015, and was subsequently approved in Europe and Australia in 2016. The efficacies of many types of oncolytic viruses against urological cancers have been investigated in preclinical studies during the past decade, and some have already been tested in clinical trials. For example, a phase I trial of the third-generation oncolytic Herpes simplex virus type 1, G47Δ, in patients with prostate cancer was completed in 2016. We summarize the current status of clinical trials of oncolytic virus therapy in patients with the three major urological cancers: prostate, bladder and renal cell cancers. In addition to Herpes simplex virus type 1, adenoviruses, reoviruses, vaccinia virus, Sendai virus and Newcastle disease virus have also been used as parental viruses in these trials. We believe that oncolytic virus therapy is likely to become an important and major treatment option for urological cancers in the near future.
Collapse
Affiliation(s)
- Satoru Taguchi
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci 2016; 107:1373-1379. [PMID: 27486853 PMCID: PMC5084676 DOI: 10.1111/cas.13027] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/31/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virus therapy is perhaps the next major breakthrough in cancer treatment following the success in immunotherapy using immune checkpoint inhibitors. Oncolytic viruses are defined as genetically engineered or naturally occurring viruses that selectively replicate in and kill cancer cells without harming the normal tissues. T‐Vec (talimogene laherparepvec), a second‐generation oncolytic herpes simplex virus type 1 (HSV‐1) armed with GM‐CSF, was recently approved as the first oncolytic virus drug in the USA and Europe. The phase III trial proved that local intralesional injections with T‐Vec in advanced malignant melanoma patients can not only suppress the growth of injected tumors but also act systemically and prolong overall survival. Other oncolytic viruses that are closing in on drug approval in North America and Europe include vaccinia virus JX‐594 (pexastimogene devacirepvec) for hepatocellular carcinoma, GM‐CSF‐expressing adenovirus CG0070 for bladder cancer, and Reolysin (pelareorep), a wild‐type variant of reovirus, for head and neck cancer. In Japan, a phase II clinical trial of G47∆, a third‐generation oncolytic HSV‐1, is ongoing in glioblastoma patients. G47∆ was recently designated as a “Sakigake” breakthrough therapy drug in Japan. This new system by the Japanese government should provide G47∆ with priority reviews and a fast‐track drug approval by the regulatory authorities. Whereas numerous oncolytic viruses have been subjected to clinical trials, the common feature that is expected to play a major role in prolonging the survival of cancer patients is an induction of specific antitumor immunity in the course of tumor‐specific viral replication. It appears that it will not be long before oncolytic virus therapy becomes a standard therapeutic option for all cancer patients.
Collapse
Affiliation(s)
- Hiroshi Fukuhara
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Nigim F, Esaki SI, Hood M, Lelic N, James MF, Ramesh V, Stemmer-Rachamimov A, Cahill DP, Brastianos PK, Rabkin SD, Martuza RL, Wakimoto H. A new patient-derived orthotopic malignant meningioma model treated with oncolytic herpes simplex virus. Neuro Oncol 2016; 18:1278-87. [PMID: 26951380 DOI: 10.1093/neuonc/now031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/06/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Higher-grade meningiomas (HGMs; World Health Organization grades II and III) pose a clinical problem due to high recurrence rates and the absence of effective therapy. Preclinical development of novel therapeutics requires a disease model that recapitulates the genotype and phenotype of patient HGM. Oncolytic herpes simplex virus (oHSV) has shown efficacy and safety in cancers in preclinical and clinical studies, but its utility for HGM has not been well characterized. METHODS Tumorsphere cultures and serial orthotopic xenografting in immunodeficient mice were used to establish a patient-derived HGM model. The model was pathologically and molecularly characterized by immunohistochemistry, western blot, and genomic DNA sequencing and compared with the patient tumor. Anti-HGM effects of oHSV G47Δ were assessed using cell viability and virus replication assays in vitro and animal survival analysis following intralesional injections of G47Δ. RESULTS We established a serially transplantable orthotopic malignant meningioma model, MN3, which was lethal within 3 months after tumorsphere implantation. MN3 xenografts exhibited the pathological hallmarks of malignant meningioma such as high Ki67 and vimentin expression. Both the patient tumor and xenografts were negative for neurofibromin 2 (merlin) and had the identical NF2 mutation. Oncolytic HSV G47Δ efficiently spread and killed MN3 cells, as well as other patient-derived HGM lines in vitro. Treatment with G47Δ significantly extended the survival of mice bearing subdural MN3 tumors. CONCLUSIONS We established a new patient-derived meningioma model that will enable the study of targeted therapeutic approaches for HGM. Based on these studies, it is reasonable to consider a clinical trial of G47Δ for HGM.
Collapse
Affiliation(s)
- Fares Nigim
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shin-Ichi Esaki
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael Hood
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nina Lelic
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marianne F James
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vijaya Ramesh
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anat Stemmer-Rachamimov
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Priscilla K Brastianos
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Samuel D Rabkin
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert L Martuza
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Department of Neurosurgery (F.N., S.-i.E., M.H., N.L., D.P.C., S.D.R., R.L.M., H.W.), Center for Human Genetic Research (M.F.J., V.R.), Department of Neuropathology (A.S.-R.), Division of Neuro-Oncology (P.K.B.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Antoszczyk S, Rabkin SD. Prospect and progress of oncolytic viruses for treating peripheral nerve sheath tumors. Expert Opin Orphan Drugs 2015; 4:129-138. [PMID: 27867771 PMCID: PMC5111812 DOI: 10.1517/21678707.2016.1128322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Peripheral nerve sheath tumors (PNSTs) are an assorted group of neoplasms originating from neuroectoderm and growing in peripheral nerves. Malignant transformation leads to a poor prognosis and is often lethal. Current treatment of PNSTs is predominantly surgical, which is often incomplete or accompanied by significant loss of function, in conjunction with radiotherapy and/or chemotherapy, for which the benefits are inconclusive. Oncolytic viruses (OVs) efficiently kill tumor cells while remaining safe for normal tissues, and are a novel antitumor therapy for patients with PNSTs. AREAS COVERED Because of the low efficacy of current treatments, new therapies for PNSTs are needed. Pre-clinically, OVs have demonstrated efficacy in treating PNSTs and perineural tumor invasion, as well as safety. We will discuss the various PNSTs and their preclinical models, and the OVs being tested for their treatment, including oncolytic herpes simplex virus (HSV), adenovirus (Ad), and measles virus (MV). OVs can be 'armed' to express therapeutic transgenes or combined with other therapeutics to enhance their activity. EXPERT OPINION Preclinical testing of OVs in PNST models has demonstrated their therapeutic potential and provided support for clinical translation. Clinical studies with other solid tumors have provided evidence that OVs are safe in patients and efficacious. The recent successful completion of a phase III clinical trial of oncolytic HSV paves the way for oncolytic virotherapy to enter clinical practice.
Collapse
Affiliation(s)
- Slawomir Antoszczyk
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital
- Department of Neurosurgery, Harvard Medical School, Boston MA
| | - Samuel D. Rabkin
- Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital
- Department of Neurosurgery, Harvard Medical School, Boston MA
| |
Collapse
|
16
|
Friedman GK, Beierle EA, Gillespie GY, Markert JM, Waters AM, Chen CY, Denton NL, Haworth KB, Hutzen B, Leddon JL, Streby KA, Wang PY, Cripe TP. Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30018-3. [PMID: 26436134 PMCID: PMC4589754 DOI: 10.1038/mto.2015.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oncolytic engineered herpes simplex viruses (HSVs) possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies. Many preclinical studies and early phase trials in adults demonstrated that oncolytic HSV can be safely used and are highly effective in killing tumor cells that comprise pediatric malignancies, without generating the toxic side effects of nondiscriminatory chemotherapy or radiation therapy. A variety of engineered viruses have been developed and tested in numerous preclinical models of pediatric cancers and initial trials in patients are underway. In Part II of this review series, we examine the preclinical evidence to support the further advancement of oncolytic HSV in the pediatric population. We discuss clinical advances made to date in this emerging era of oncolytic virotherapy.
Collapse
Affiliation(s)
- Gregory K Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth A Beierle
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alicia M Waters
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chun-Yu Chen
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Nicholas L Denton
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Kellie B Haworth
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Brian Hutzen
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Jennifer L Leddon
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Keri A Streby
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Pin-Yi Wang
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Timothy P Cripe
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
17
|
Antoszczyk S, Spyra M, Mautner VF, Kurtz A, Stemmer-Rachamimov AO, Martuza RL, Rabkin SD. Treatment of orthotopic malignant peripheral nerve sheath tumors with oncolytic herpes simplex virus. Neuro Oncol 2014; 16:1057-66. [PMID: 24470552 PMCID: PMC4096170 DOI: 10.1093/neuonc/not317] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS Malignant peripheral nerve sheath tumors (MPNSTs) are an aggressive and often lethal sarcoma that frequently develops in patients with neurofibromatosis type 1 (NF1). We developed new preclinical MPNST models and tested the efficacy of oncolytic herpes simplex viruses (oHSVs), a promising cancer therapeutic that selectively replicates in and kills cancer cells. METHODS Mouse NF1(-) MPNST cell lines and human NF1(-) MPNST stemlike cells (MSLCs) were implanted into the sciatic nerves of immunocompetent and athymic mice, respectively. Tumor growth was followed by external measurement and sciatic nerve deficit using a hind-limb scoring system. Oncolytic HSV G47Δ as well as "armed" G47Δ expressing platelet factor 4 (PF4) or interleukin (IL)-12 were injected intratumorally into established sciatic nerve tumors. RESULTS Mouse MPNST cell lines formed tumors with varying growth kinetics. A single intratumoral injection of G47Δ in sciatic nerve tumors derived from human S462 MSLCs in athymic mice or mouse M2 (37-3-18-4) cells in immunocompetent mice significantly inhibited tumor growth and prolonged survival. Local IL-12 expression significantly improved the efficacy of G47Δ in syngeneic mice, while PF4 expression prolonged survival. Injection of G47Δ directly into the sciatic nerve of athymic mice resulted in only mild symptoms that did not differ from phosphate buffered saline control. CONCLUSIONS Two new orthotopic MPNST models are described, including in syngeneic mice, expanding the options for preclinical testing. Oncolytic HSV G47Δ exhibited robust efficacy in both immunodeficient and immunocompetent MPNST models while maintaining safety. Interleukin-12 expression improved efficacy. These studies support the clinical translation of G47Δ for patients with MPNST.
Collapse
Affiliation(s)
- Slawomir Antoszczyk
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Melanie Spyra
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Victor Felix Mautner
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Andreas Kurtz
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Anat O Stemmer-Rachamimov
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Robert L Martuza
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| | - Samuel D Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (S.A., R.L.M., S.D.R.); Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (A.O.S.R.); Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.S., V.F.M.); Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University, Berlin, Germany (A.K.); College of Veterinary Medicine, Seoul National University, Seoul, Korea (A.K.)
| |
Collapse
|
18
|
Prabhakar S, Taherian M, Gianni D, Conlon TJ, Fulci G, Brockmann J, Stemmer-Rachamimov A, Sena-Esteves M, Breakefield XO, Brenner GJ. Regression of schwannomas induced by adeno-associated virus-mediated delivery of caspase-1. Hum Gene Ther 2013; 24:152-62. [PMID: 23140466 DOI: 10.1089/hum.2012.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Schwannomas are tumors formed by proliferation of dedifferentiated Schwann cells. Patients with neurofibromatosis 2 (NF2) and schwannomatosis develop multiple schwannomas in peripheral and cranial nerves. Although benign, these tumors can cause extreme pain and compromise sensory/motor functions, including hearing and vision. At present, surgical resection is the main treatment modality, but it can be problematic because of tumor inaccessibility and risk of nerve damage. We have explored gene therapy for schwannomas, using a model in which immortalized human NF2 schwannoma cells expressing a fluorescent protein and luciferase are implanted in the sciatic nerve of nude mice. Direct injection of an adeno-associated virus (AAV) serotype 1 vector encoding caspase-1 (ICE) under the Schwann-cell specific promoter, P0, leads to regression of these tumors with essentially no vector-mediated neuropathology, and no changes in sensory or motor function. In a related NF2 xenograft model designed to cause measurable pain behavior, the same gene therapy leads to tumor regression and concordant resolution of tumor-associated pain. This AAV1-P0-ICE vector holds promise for clinical treatment of schwannomas by direct intratumoral injection to achieve reduction in tumor size and normalization of neuronal function.
Collapse
Affiliation(s)
- Shilpa Prabhakar
- Neuroscience Center, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Merlin/NF2 regulates angiogenesis in schwannomas through a Rac1/semaphorin 3F-dependent mechanism. Neoplasia 2012; 14:84-94. [PMID: 22431917 DOI: 10.1593/neo.111600] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 12/14/2022] Open
Abstract
Neurofibromatosis type 2 (NF2) is an autosomal-dominant multiple neoplasia syndrome that results from mutations in the NF2 tumor suppressor gene. Patients with NF2 develop hallmark schwannomas that require surgery or radiation, both of which have significant adverse effects. Recent studies have indicated that the tumor microenvironment-in particular, tumor blood vessels-of schwannomas may be an important therapeutic target. Furthermore, although much has been done to understand how merlin, the NF2 gene product, functions as a tumor suppressor gene in schwannoma cells, the functional role of merlin in the tumor microenvironment and the mechanism(s) by which merlin regulates angiogenesis to support schwannoma growth is largely unexplored. Here we report that the expression of semaphorin 3F (SEMA3F) was specifically downregulated in schwannoma cells lacking merlin/NF2. When we reintroduced SEMA3F in schwannoma cells, we observed normalized tumor blood vessels, reduced tumor burden, and extended survival in nude mice bearing merlin-deficient brain tumors. Next, using chemical inhibitors and gene knockdown with RNA interference, we found that merlin regulated expression of SEMA3F through Rho GTPase family member Rac1. This study shows that, in addition to the tumor-suppressing activity of merlin, it also functions to maintain physiological angiogenesis in the nervous system by regulating antiangiogenic factors such as SEMA3F. Restoring the relative balance of proangiogenic and antiangiogenic factors, such as increases in SEMA3F, in schwannoma microenvironment may represent a novel strategy to alleviate the clinical symptoms of NF2-related schwannomas.
Collapse
|
20
|
Wang JN, Hu P, Zeng MS, Liu RB. Anti-tumor effect of oncolytic herpes simplex virus G47delta on human nasopharyngeal carcinoma. CHINESE JOURNAL OF CANCER 2011; 30:831-41. [PMID: 22059912 PMCID: PMC4013331 DOI: 10.5732/cjc.011.10301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oncolytic herpes simplex virus (HSV) can replicate in and kill cancer cells without harming normal tissue. G47Δ is a third-generation HSV vector. In this study, the therapeutic effects of G47Δ on human nasopharyngeal carcinoma (NPC) were determined in vitro and in vivo. The human NPC cell lines CNE-2 and SUNE-1, primary normal nasopharyngeal epithelial cells (NPECs), and immortalized nasopharyngeal cells NP-69 and NPEC2/Bmi1 were infected with G47Δ at different multiplicities of infection (MOIs). The survival of infected cells was observed daily. Two subcutaneous models of NPC were established with CNE-2 and SUNE-1 in Balb/c nude mice. G47Δ or virus buffer as control was injected into the subcutaneous tumors. Tumor size was measured twice a week, and animals were euthanized when the diameter of their tumors exceeded 18 mm or when the animals appeared moribund. For the NPC cell lines CNE-2 and SUNE-1, more than 85% and 95% of cells were killed on day 5 after G47Δ infection at MOI = 0.01 and MOI = 0.1, respectively. Similar results were observed for an immortalized cell line NPEC2/Bmi-1. A moderate effect of G47Δ was also found on another immortalized cell line NP-69, of which only 27.7% and 75.9% of cells were killed at MOI = 0.01 and MOI = 0.1, respectively. On the contrary, there was almost no effect observed on NPECs. The in vivo experiments showed that tumors in mice in the G47Δ-treated group regressed completely, and the mice exhibited much longer survival time than those in the control groups. Our results suggest that the potential therapeutic effects of G47Δ would be applicable for treatment of NPC patients in the future.
Collapse
Affiliation(s)
- Jia-Ni Wang
- Breast Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Yoo JY, Haseley A, Bratasz A, Chiocca EA, Zhang J, Powell K, Kaur B. Antitumor efficacy of 34.5ENVE: a transcriptionally retargeted and "Vstat120"-expressing oncolytic virus. Mol Ther 2011; 20:287-97. [PMID: 22031239 DOI: 10.1038/mt.2011.208] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Here, we describe the construction and testing of a novel herpes simplex virus type 1 (HSV-1) derived oncolytic virus (OV): 34.5ENVE (viral ICP34.5 Expressed by Nestin promotor and Vstat120 Expressing), for the treatment of cancer. This virus showed significant glioma-specific killing and antiangiogenic effects in vitro and in vivo. Treatment of subcutaneous and intracranial glioma-bearing mice with 34.5ENVE showed a significant increase in median survival of mice in four different glioma models. Histology and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) revealed reduced microvessel density (MVD) and increased tumoral necrosis in 34.5ENVE-treated tumor tissue compared to control OV-treated tumor tissue. Collectively, these results describe the construction, efficacy, and impact on tumor microenvironment of a transcriptionally driven OV armed with Vstat120 gene expression. These preclinical results will facilitate future clinical testing of 34.5ENVE.
Collapse
Affiliation(s)
- Ji Young Yoo
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Saydam O, Senol O, Würdinger T, Mizrak A, Ozdener GB, Stemmer-Rachamimov AO, Yi M, Stephens RM, Krichevsky AM, Saydam N, Brenner GJ, Breakefield XO. miRNA-7 attenuation in Schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer Res 2011; 71:852-61. [PMID: 21156648 PMCID: PMC3072568 DOI: 10.1158/0008-5472.can-10-1219] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Micro RNAs (miRNA) negatively regulate protein-coding genes at the posttranscriptional level and are critical in tumorigenesis. Schwannomas develop from proliferation of dedifferentiated Schwann cells, which normally wrap nerve fibers to help support and insulate nerves. In this study, we carried out high-throughput miRNA expression profiling of human vestibular schwannomas by using an array representing 407 known miRNAs to explore the role of miRNAs in tumor growth. Twelve miRNAs were found to be significantly deregulated in tumor samples as compared with control nerve tissue, defining a schwannoma-typical signature. Among these miRNAs, we focused on miR-7, which was one of the most downregulated in these tumors and has several known oncogene targets, including mRNAs for epidermal growth factor receptor (EGFR) and p21-activated kinase 1 (Pak1). We found that overexpression of miR-7 inhibited schwannoma cell growth both in culture and in xenograft tumor models in vivo, which correlated with downregulation of these signaling pathways. Furthermore, we identified a novel direct target of miR-7, the mRNA for associated cdc42 kinase 1 (Ack1), with the expression levels of miR-7 and Ack1 being inversely correlated in human schwannoma samples. These results represent the first miRNA profiling of schwannomas and the first report of a tumor suppressor function for miR-7 in these tumors that is mediated by targeting the EGFR, Pak1, and Ack1 oncogenes. Our findings suggest miR-7 as a potential therapeutic molecule for schwannoma treatment, and they prompt clinical evaluation of drugs that can inhibit the EGFR, Pak1, and Ack1 signaling pathways to treat this tumor type.
Collapse
Affiliation(s)
- Okay Saydam
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maldonado AR, Klanke C, Jegga AG, Aronow BJ, Mahller YY, Cripe TP, Crombleholme TM. Molecular engineering and validation of an oncolytic herpes simplex virus type 1 transcriptionally targeted to midkine-positive tumors. J Gene Med 2010; 12:613-23. [PMID: 20603890 DOI: 10.1002/jgm.1479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Expression profile analyses of midkine (MDK), a multifunctional protein important in development but repressed postnataly, indicate that it is highly expressed in approximately 80% of adult carcinomas and many childhood cancers including malignant peripheral nerve sheath tumors (MPNST). In the present study, we sought to leverage its selective expression to develop a novel oncolytic herpes simplex virus (oHSV) capable of targeting developmentally primitive cancers that express MDK. METHODS We sought to increase the oncolytic efficacy of the virus by fusing the human MDK promoter to the HSV type 1 neurovirulence gene, gamma(1)34.5, whose protein product increases viral replication. RESULTS Tissue-specific MDK promoter activity in human tumor cells and transgene biological activity was confirmed in human MPNST tumor cells. In vitro replication and cytotoxicity in human fibroblasts and MPNST cells by plaque and MTT assays showed that oHSV-MDK-34.5 increased replication and cytotoxicity compared to oHSV-MDK-Luc. By contrast, no significant difference in cytotoxicity was detected between these viruses in normal human fibroblasts. oHSV-MDK-34.5 impaired in vivo tumor growth and increased median survival of MPNST tumor-bearing nude mice. CONCLUSIONS The transcriptional targeting of HSV lytic infection to MDK-expressing tumor cells is feasible. oHSV-MDK-34.5 shows enhanced anti-tumor effects both in vitro and in vivo. Further studies are warranted and may lead to its use in clinical trials.
Collapse
Affiliation(s)
- Arturo R Maldonado
- Division of Pediatric General and Thoracic Surgery, The Center For Molecular Fetal Therapy, Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Wong HK, Lahdenranta J, Kamoun WS, Chan AW, McClatchey AI, Plotkin SR, Jain RK, di Tomaso E. Anti-vascular endothelial growth factor therapies as a novel therapeutic approach to treating neurofibromatosis-related tumors. Cancer Res 2010; 70:3483-93. [PMID: 20406973 DOI: 10.1158/0008-5472.can-09-3107] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Patients with bilateral vestibular schwannomas associated with neurofibromatosis type 2 (NF2) experience significant morbidity such as complete hearing loss. We have recently shown that treatment with bevacizumab provided tumor stabilization and hearing recovery in a subset of NF2 patients with progressive disease. In the current study, we used two animal models to identify the mechanism of action of anti-vascular endothelial growth factor (VEGF) therapy in schwannomas. The human HEI193 and murine Nf2(-/-) cell lines were implanted between the pia and arachnoid meninges as well as in the sciatic nerve to mimic central and peripheral schwannomas. Mice were treated with bevacizumab (10 mg/kg/wk i.v.) or vandetanib (50 mg/kg/d orally) to block the VEGF pathway. Using intravital and confocal microscopy, together with whole-body imaging, we measured tumor growth delay, survival rate, as well as blood vessel structure and function at regular intervals. In both models, tumor vessel diameter, length/surface area density, and permeability were significantly reduced after treatment. After 2 weeks of treatment, necrosis in HEI193 tumors and apoptosis in Nf2(-/-) tumors were significantly increased, and the tumor growth rate decreased by an average of 50%. The survival of mice bearing intracranial schwannomas was extended by at least 50%. This study shows that anti-VEGF therapy normalizes the vasculature of schwannoma xenografts in nude mice and successfully controls the tumor growth, probably by reestablishing a natural balance between VEGF and semaphorin 3 signaling.
Collapse
Affiliation(s)
- Hon Kit Wong
- Department of Radiation Oncology, Steele Laboratory, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Prabhakar S, Brenner GJ, Sung B, Messerli SM, Mao J, Sena-Esteves M, Stemmer-Rachamimov A, Tannous B, Breakefield XO. Imaging and therapy of experimental schwannomas using HSV amplicon vector-encoding apoptotic protein under Schwann cell promoter. Cancer Gene Ther 2010; 17:266-74. [PMID: 19834516 PMCID: PMC2857743 DOI: 10.1038/cgt.2009.71] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 07/04/2009] [Accepted: 09/04/2009] [Indexed: 12/27/2022]
Abstract
Schwannomas are benign tumors forming along peripheral nerves that can cause deafness, pain and paralysis. Current treatment involves surgical resection, which can damage associated nerves. To achieve tumor regression without damage to nerve fibers, we generated an HSV amplicon vector in which the apoptosis-inducing enzyme, caspase-1 (ICE), was placed under the Schwann cell-specific P0 promoter. Infection of schwannoma, neuroblastoma and fibroblastic cells in culture with ICE under the P0 promoter showed selective toxicity to schwannoma cells, while ICE under a constitutive promoter was toxic to all cell types. After direct intratumoral injection of the P0-ICE amplicon vector, we achieved marked regression of schwannoma tumors in an experimental xenograft mouse model. Injection of this amplicon vector into the sciatic nerve produced no apparent injury to the associated dorsal root ganglia neurons or myelinated nerve fibers. The P0-ICE amplicon vector provides a potential means of 'knifeless resection' of schwannoma tumors by injection of the vector into the tumor with low risk of damage to associated nerve fibers.
Collapse
Affiliation(s)
- S Prabhakar
- Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - GJ Brenner
- Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Anaesthesiology, Massachusetts General Hospital, Boston, MA, USA
| | - B Sung
- Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia and Critical Care, Pain Research Group, Massachusetts General Hospital, Boston, MA, USA
| | - SM Messerli
- Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - J Mao
- Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia and Critical Care, Pain Research Group, Massachusetts General Hospital, Boston, MA, USA
| | - M Sena-Esteves
- Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - A Stemmer-Rachamimov
- Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - B Tannous
- Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - XO Breakefield
- Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Cazzin C, Ring CJA. Recent advances in the manipulation of murine gene expression and its utility for the study of human neurological disease. Biochim Biophys Acta Mol Basis Dis 2009; 1802:796-807. [PMID: 20004244 DOI: 10.1016/j.bbadis.2009.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 12/11/2022]
Abstract
Transgenic mouse models have vastly contributed to our knowledge of the genetic and molecular pathways underlying the pathogenesis of neurological disorders that affect millions of people worldwide. Not only have they allowed the generation of disease models mimicking the human pathological state but they have also permitted the exploration of the pathological role of specific genes through the generation of knock-out and knock-in models. Classical constitutive transgenic mice have several limitations however, due to behavioral adaptation process occurring and conditional mouse models are time-consuming and often lack extensive spatial or temporal control of gene manipulation. These limitations could be overcome by means of innovative methods that are now available such as RNAi, viral vectors and large cloning DNA vectors. These tools have been extensively used for the generation of mouse models and are characterized by the superior control of transgene expression that has been proven invaluable in the assessment of novel treatments for neurological diseases and to further investigate the molecular processes underlying the etiopathology of neurological disorders. Furthermore, in association with classical transgenic mouse models, they have allowed the validation of innovative therapeutic strategies for the treatment of human neurological disorders. This review describes how these tools have overcome the limitations of classical transgenic mouse models and how they have been of value for the study of human neurological diseases.
Collapse
Affiliation(s)
- Chiara Cazzin
- Biology Department A&S DPU, Neuroscience CEDD, GlaxoSmithKline, Medicines Research Center, Verona, Italy.
| | | |
Collapse
|
27
|
Badr CE, Niers JM, Tjon-Kon-Fat LA, Noske DP, Wurdinger T, Tannous BA. Real-Time Monitoring of Nuclear Factor κB Activity in Cultured Cells and in Animal Models. Mol Imaging 2009. [DOI: 10.2310/7290.2009.00026] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nuclear factor κB (NF-κB) is a transcription factor that plays a major role in many human disorders, including immune diseases and cancer. We designed a reporter system based on NF-κB responsive promoter elements driving expression of the secreted Gaussia princeps luciferase (Gluc). We show that this bioluminescent reporter is a highly sensitive tool for noninvasive monitoring of the kinetics of NF-κB activation and inhibition over time, both in conditioned medium of cultured cells and in the blood and urine of animals. NF-κB activation was successfully monitored in real time in endothelial cells in response to tumor angiogenic signaling, as well as in monocytes in response to inflammation. Further, we demonstrated dual blood monitoring of both NF-κB activation during tumor development as correlated to tumor formation using the NF-κB Gluc reporter, as well as the secreted alkaline phosphatase reporter. This NF-κB reporter system provides a powerful tool for monitoring NF-κB activity in real time in vitro and in vivo.
Collapse
Affiliation(s)
- Christian E. Badr
- From the Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Charlestown, MA; Program in Neuroscience, Harvard Medical School, Boston, MA; and Neuro-oncology Research Group, Department of Neurosurgery, VU Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Johanna M. Niers
- From the Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Charlestown, MA; Program in Neuroscience, Harvard Medical School, Boston, MA; and Neuro-oncology Research Group, Department of Neurosurgery, VU Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Lee-Ann Tjon-Kon-Fat
- From the Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Charlestown, MA; Program in Neuroscience, Harvard Medical School, Boston, MA; and Neuro-oncology Research Group, Department of Neurosurgery, VU Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - David P. Noske
- From the Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Charlestown, MA; Program in Neuroscience, Harvard Medical School, Boston, MA; and Neuro-oncology Research Group, Department of Neurosurgery, VU Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Thomas Wurdinger
- From the Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Charlestown, MA; Program in Neuroscience, Harvard Medical School, Boston, MA; and Neuro-oncology Research Group, Department of Neurosurgery, VU Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Bakhos A. Tannous
- From the Neuroscience Center, Department of Neurology, and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Charlestown, MA; Program in Neuroscience, Harvard Medical School, Boston, MA; and Neuro-oncology Research Group, Department of Neurosurgery, VU Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Messerli SM, Ahn MR, Kunimasa K, Yanagihara M, Tatefuji T, Hashimoto K, Mautner V, Uto Y, Hori H, Kumazawa S, Kaji K, Ohta T, Maruta H. Artepillin C (ARC) in Brazilian green propolis selectively blocks oncogenic PAK1 signaling and suppresses the growth of NF tumors in mice. Phytother Res 2009; 23:423-7. [DOI: 10.1002/ptr.2658] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Demestre M, Messerli SM, Celli N, Shahhossini M, Kluwe L, Mautner V, Maruta H. CAPE (caffeic acid phenethyl ester)-based propolis extract (Bio 30) suppresses the growth of human neurofibromatosis (NF) tumor xenografts in mice. Phytother Res 2009; 23:226-30. [DOI: 10.1002/ptr.2594] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus. PLoS One 2009; 4:e4235. [PMID: 19156211 PMCID: PMC2626279 DOI: 10.1371/journal.pone.0004235] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 12/10/2008] [Indexed: 12/14/2022] Open
Abstract
Background Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers. Methodology/Principal Findings Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice. Conclusions/Significance These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.
Collapse
|
31
|
Mahller YY, Vaikunth SS, Ripberger MC, Baird WH, Saeki Y, Cancelas JA, Crombleholme TM, Cripe TP. Tissue inhibitor of metalloproteinase-3 via oncolytic herpesvirus inhibits tumor growth and vascular progenitors. Cancer Res 2008; 68:1170-9. [PMID: 18281493 PMCID: PMC2855837 DOI: 10.1158/0008-5472.can-07-2734] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Malignant solid tumors remain a significant clinical challenge, necessitating innovative therapeutic approaches. Oncolytic viral therapy is a nonmutagenic, biological anticancer therapeutic shown to be effective against human cancer in early studies. Because matrix metalloproteinases (MMP) play important roles in the pathogenesis and progression of cancer, we sought to determine if "arming" an oncolytic herpes simplex virus (oHSV) with an MMP-antagonizing transgene would increase virus-mediated antitumor efficacy. We generated oHSVs that express human tissue inhibitor of metalloproteinases 3 (TIMP3) or firefly luciferase and designated them rQT3 and rQLuc, respectively. We evaluated the antitumor efficacy of these viruses against neuroblastoma and malignant peripheral nerve sheath tumor (MPNST) xenografts. Relative to rQLuc, rQT3-infected primary human MPNST and neuroblastoma cells exhibited equivalent virus replication but increased cytotoxicity and reduced MMP activity. In vivo, rQT3-treated tumors showed delayed tumor growth, increased peak levels of infectious virus, immature collagen extracellular matrix, and reduced tumor vascular density. Remarkably, rQT3 treatment reduced circulating endothelial progenitors, suggesting virus-mediated antivasculogenesis. We conclude that rQT3 enhanced antitumor efficacy through multiple mechanisms, including direct cytotoxicity, elevated virus titer, and reduced tumor neovascularization. These findings support the further development of combined TIMP-3 and oncolytic virotherapy for cancer.
Collapse
Affiliation(s)
- Yonatan Y. Mahller
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Physician Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Graduate Program of Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sachin S. Vaikunth
- Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maria C. Ripberger
- Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - William H. Baird
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Physician Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Graduate Program of Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Yoshinaga Saeki
- Dardinger Laboratory for Neuro-Oncology and Neurosciences, Department of Neurological Surgery and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jose A. Cancelas
- Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Timothy M. Crombleholme
- Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Timothy P. Cripe
- Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
32
|
Jeyaretna DS, Rabkin SD, Martuza RL. Oncolytic herpes simplex virus therapy for peripheral nerve tumors. Neurosurg Focus 2007; 22:E4. [PMID: 17613221 DOI: 10.3171/foc.2007.22.6.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
✓Oncolytic viruses are one of many emerging cancer therapies. The surgical management of peripheral nerve tumors carries an inherent risk of damaging the nerves involved and so the search for novel therapies with reduced risk of morbidity continues. In this review the authors discuss the use of oncolytic herpes simplex virus (HSV) in the treatment of peripheral nerve tumors. Herpes simplex virus has a number of characteristics that make it a useful oncolytic vector, including its large, sequenced genome that can accommodate multiple transgenes, its lack of insertional mutagenesis, its ability to infect a wide array of cell types in various species, and the availability of well-established antiviral therapies to treat it. The efficacy of oncolytic HSV therapy against schwannomas and malignant peripheral nerve sheath tumors has been studied in multiple experimental models both in vitro and in vivo. The virus utilizes cell pathways unique to tumors to enhance its oncolytic efficacy, preferentially and effectively targeting and destroying peripheral nerve tumor cells without harming normal cells. This effect is augmented by trans-genes expressing antiangiogenic factors, such as dominant-negative fibroblast growth factor receptor and platelet factor 4, and displays synergy with chemotherapy. Different oncolytic HSV vectors have been tested, including hrR3, G207, and G47Δ. In addition, new animal models have been developed to test the efficacy of oncolytic HSV therapy in peripheral nerve tumors. The safety of oncolytic HSV is well-established and has been tested in nonhuman primates and in human clinical trials.
Collapse
Affiliation(s)
- Deva S Jeyaretna
- Molecular Neurosurgery Laboratory, Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|