1
|
Pacini S. Mesangiogenic progenitor cells: a mesengenic and vasculogenic branch of hemopoiesis? A story of neglected plasticity. Front Cell Dev Biol 2025; 13:1513440. [PMID: 40196849 PMCID: PMC11973335 DOI: 10.3389/fcell.2025.1513440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
Mesangiogenic progenitor cells (MPCs) are mesengenic and vasculogenic cells isolated from human bone marrow mononuclear cell cultures. Although MPCs were first described over two decades ago and have demonstrated promising differentiation capabilities, these cells did not attract sufficient attention from experts in the field of tissue regeneration. Several reports from the first decade of the 2000s showed MPC-like cells co-isolated in primary mesenchymal stromal cell (MSC) cultures, applying human serum. However, in most cases, these rounded and firmly attached cells were described as "contaminating" cells of hemopoietic origin. Indeed, MPC morphology, phenotype, and functional features evoke but do not completely overlap with those of cultured peripheral macrophages, and their hemopoietic origin should not be excluded. The plasticity of cells from the monocyte lineage is surprising but not completely unprecedented. Underestimated data demonstrated that circulating monocyte/macrophages could acquire broader plasticity under specific and different culture conditions, and this plasticity could be a consequence of in vitro de-differentiation. The evidence discussed here suggests that MPCs could represent the cell identity toward which the de-differentiation process reprograms the circulating mature phagocytic compartment.
Collapse
Affiliation(s)
- Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
de Castro JNP, da Silva Costa SM, Camargo ACL, Ito MT, de Souza BB, de Haidar E Bertozzo V, Rodrigues TAR, Lanaro C, de Albuquerque DM, Saez RC, Saad STO, Ozelo MC, Cendes F, Costa FF, de Melo MB. Comparative transcriptomic analysis of circulating endothelial cells in sickle cell stroke. Ann Hematol 2024; 103:1167-1179. [PMID: 38386032 DOI: 10.1007/s00277-024-05655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Ischemic stroke (IS) is one of the most impairing complications of sickle cell anemia (SCA), responsible for 20% of mortality in patients. Rheological alterations, adhesive properties of sickle reticulocytes, leukocyte adhesion, inflammation and endothelial dysfunction are related to the vasculopathy observed prior to ischemic events. The role of the vascular endothelium in this complex cascade of mechanisms is emphasized, as well as in the process of ischemia-induced repair and neovascularization. The aim of the present study was to perform a comparative transcriptomic analysis of endothelial colony-forming cells (ECFCs) from SCA patients with and without IS. Next, to gain further insights of the biological relevance of differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction network (PPI) construction and in silico prediction of regulatory factors were performed. Among the 2469 DEGs, genes related to cell proliferation (AKT1, E2F1, CDCA5, EGFL7), migration (AKT1, HRAS), angiogenesis (AKT1, EGFL7) and defense response pathways (HRAS, IRF3, TGFB1), important endothelial cell molecular mechanisms in post ischemia repair were identified. Despite the severity of IS in SCA, widely accepted molecular targets are still lacking, especially related to stroke outcome. The comparative analysis of the gene expression profile of ECFCs from IS patients versus controls seems to indicate that there is a persistent angiogenic process even after a long time this complication has occurred. Thus, this is an original study which may lead to new insights into the molecular basis of SCA stroke and contribute to a better understanding of the role of endothelial cells in stroke recovery.
Collapse
Affiliation(s)
- Júlia Nicoliello Pereira de Castro
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Sueli Matilde da Silva Costa
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Ana Carolina Lima Camargo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Mirta Tomie Ito
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Bruno Batista de Souza
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Victor de Haidar E Bertozzo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Thiago Adalton Rosa Rodrigues
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Carolina Lanaro
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | - Roberta Casagrande Saez
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Margareth Castro Ozelo
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Mônica Barbosa de Melo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil.
| |
Collapse
|
3
|
Potential contribution of early endothelial progenitor cell (eEPC)-to-macrophage switching in the development of pulmonary plexogenic lesion. Respir Res 2022; 23:290. [PMID: 36274148 PMCID: PMC9590182 DOI: 10.1186/s12931-022-02210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
Background Plexiform lesions, which have a dynamic appearance in structure and cellular composition, are the histological hallmark of severe pulmonary arterial hypertension in humans. The pathogenesis of the lesion development remains largely unknown, although it may be related to local inflammation and dysfunction in early progenitor endothelial cells (eEPCs). We tested the hypothesis that eEPCs contribute to the development of plexiform lesions by differentiating into macrophages in the setting of chronic inflammation. Methods The eEPC markers CD133 and VEGFR-2, macrophage lineage marker mannose receptor C-type 1 (MRC1), TNFα and nuclear factor erythroid 2-related factor 2 (Nrf2) in plexiform lesions in a broiler model were determined by immunohistochemistry. eEPCs derived from peripheral blood mononuclear cells were exposed to TNFα, and macrophage differentiation and angiogenic capacity of the cells were evaluated by phagocytotic and Matrigel plug assays, respectively. The role of Nrf2 in eEPC-to-macrophage transition as well as in MRC1 expression was also evaluated. Intratracheal installation of TNFα was conducted to determine the effect of local inflammation on the formation of plexiform lesions. Results Cells composed of the early lesions have a typical eEPC phenotype whereas those in more mature lesions display molecular and morphological characteristics of macrophages. Increased TNFα production in plexiform lesions was observed with lesion progression. In vitro studies showed that chronic TNFα challenge directed eEPCs to macrophage differentiation accompanied by hyperactivation of Nrf2, a stress-responsive transcription factor. Nrf2 activation (Keap1 knockdown) caused a marked downregulation in CD133 but upregulation in MRC1 mRNA. Dual luciferase reporter assay demonstrated that Nrf2 binds to the promoter of MRC1 to trigger its expression. In good agreement with the in vitro observation, TNFα exposure induced macrophage differentiation of eEPCs in Matrigel plugs, resulting in reduced neovascularization of the plugs. Intratracheal installation of TNFα resulted in a significant increase in plexiform lesion density. Conclusions This work provides evidence suggesting that macrophage differentiation of eEPCs resulting from chronic inflammatory stimulation contributes to the development of plexiform lesions. Given the key role of Nrf2 in the phenotypic switching of eEPCs to macrophages, targeting this molecular might be beneficial for intervention of plexiform lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02210-7.
Collapse
|
4
|
Ito MT, da Silva Costa SM, Baptista LC, Carvalho-Siqueira GQ, Albuquerque DM, Rios VM, Ospina-Prieto S, Saez RC, Vieira KP, Cendes F, Ozelo MC, Saad STO, Costa FF, Melo MB. Angiogenesis-Related Genes in Endothelial Progenitor Cells May Be Involved in Sickle Cell Stroke. J Am Heart Assoc 2020; 9:e014143. [PMID: 32009522 PMCID: PMC7033889 DOI: 10.1161/jaha.119.014143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background The clinical aspects of sickle cell anemia (SCA) are heterogeneous, and different patients may present significantly different clinical evolutions. Almost all organs can be affected, particularly the central nervous system. Transient ischemic events, infarcts, and cerebral hemorrhage can be observed and affect ≈25% of the patients with SCA. Differences in the expression of molecules produced by endothelial cells may be associated with the clinical heterogeneity of patients affected by vascular diseases. In this study, we investigated the differential expression of genes involved in endothelial cell biology in SCA patients with and without stroke. Methods and Results Endothelial progenitor cells from 4 SCA patients with stroke and 6 SCA patients without stroke were evaluated through the polymerase chain reaction array technique. The analysis of gene expression profiling identified 29 differentially expressed genes. Eleven of these genes were upregulated, and most were associated with angiogenesis (55%), inflammatory response (18%), and coagulation (18%) pathways. Downregulated expression was observed in 18 genes, with the majority associated with angiogenesis (28%), apoptosis (28%), and cell adhesion (22%) pathways. Remarkable overexpression of the MMP1 (matrix metalloproteinase 1) gene in the endothelial progenitor cells of all SCA patients with stroke (fold change: 204.64; P=0.0004) was observed. Conclusions Our results strongly suggest that angiogenesis is an important process in sickle cell stroke, and differences in the gene expression profile of endothelial cell biology, especially MMP1, may be related to stroke in SCA patients.
Collapse
Affiliation(s)
- Mirta T Ito
- Center for Molecular Biology and Genetic Engineering University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Sueli M da Silva Costa
- Center for Molecular Biology and Genetic Engineering University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Letícia C Baptista
- Center for Molecular Biology and Genetic Engineering University of Campinas-UNICAMP Campinas São Paulo Brazil
| | | | | | - Vinicius M Rios
- Center for Molecular Biology and Genetic Engineering University of Campinas-UNICAMP Campinas São Paulo Brazil
| | | | - Roberta C Saez
- Hematology and Hemotherapy Center University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Karla P Vieira
- Hematology and Hemotherapy Center University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory Department of Neurology University of Campinas, UNICAMP Campinas São Paulo Brazil
| | - Margareth C Ozelo
- Hematology and Hemotherapy Center University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Sara Teresinha O Saad
- Hematology and Hemotherapy Center University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Fernando F Costa
- Hematology and Hemotherapy Center University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Mônica B Melo
- Center for Molecular Biology and Genetic Engineering University of Campinas-UNICAMP Campinas São Paulo Brazil
| |
Collapse
|
5
|
Phenotypic differences in early outgrowth angiogenic cells based on in vitro cultivation. Cytotechnology 2019; 71:665-670. [PMID: 30756209 DOI: 10.1007/s10616-019-00305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022] Open
Abstract
Bone marrow-derived early outgrowth cells play an important role in endothelial repair. In vitro isolation techniques have identified two distinct morphological early outgrowth cell populations, but it is still unknown whether they present some functional phenotypic differences. Accordingly, the aim of the present study was to determine whether there are phenotypic differences in cellular function between two putative early outgrowth cells in culture. Peripheral blood samples were collected from 18 healthy adults. Thereafter, mononuclear cells were isolated by Ficoll density-gradient centrifugation and plated on 6-well plates coated with human fibronectin. After 2 and 7 days, respectively, non-adherent cells (NAC) and adherent cells (AC) underwent functional assays in order to measure the migratory capacity (Boyden chamber), angiogenic growth factor release (ELISA) and apoptosis (TUNEL). Migration to both VEGF (517 ± 74 vs. 273 ± 74 AU) and SDF-1 (517 ± 68 vs. 232 ± 68 AU) were approximately twofold higher (P < 0.05) in the NAC when compared to AC. Release of angiogenic factors, granulocyte colony-stimulating and hepatocyte growth factor, were not different between cell types. Apoptotic response to staurosporine was significantly lower in NAC (20 ± 32 vs. 125 ± 32%). In summary, NAC and AC demonstrated functional phenotypic differences in migratory capacity and apoptotic susceptibility, which makes it difficult to compare these two early outgrowth cell populations in literature.
Collapse
|
6
|
Verboket R, Leiblein M, Seebach C, Nau C, Janko M, Bellen M, Bönig H, Henrich D, Marzi I. Autologous cell-based therapy for treatment of large bone defects: from bench to bedside. Eur J Trauma Emerg Surg 2018; 44:649-665. [PMID: 29352347 PMCID: PMC6182650 DOI: 10.1007/s00068-018-0906-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Reconstruction of long segmental bone defects is demanding for patients and surgeons, and associated with long-term treatment periods and substantial complication rates in addition to high costs. While defects up to 4-5 cm length might be filled up with autologous bone graft, heterologous bone from cadavers, or artificial bone graft substitutes, current options to reconstruct bone defects greater than 5 cm consist of either vascularized free bone transfers, the Masquelet technique or the Ilizarov distraction osteogenesis. Alternatively, autologous cell transplantation is an encouraging treatment option for large bone defects as it eliminates problems such as limited autologous bone availability, allogenic bone immunogenicity, and donor-site morbidity, and might be used for stabilizing loose alloplastic implants. METHODS The authors show different cell therapies without expansion in culture, with ex vivo expansion and cell therapy in local bone defects, bone healing and osteonecrosis. Different kinds of cells and scaffolds investigated in our group as well as in vivo transfer studies and BMC used in clinical phase I and IIa clinical trials of our group are shown. RESULTS Our research history demonstrated the great potential of various stem cell species to support bone defect healing. It was clearly shown that the combination of different cell types is superior to approaches using single cell types. We further demonstrate that it is feasible to translate preclinically developed protocols from in vitro to in vivo experiments and follow positive convincing results into a clinical setting to use autologous stem cells to support bone healing.
Collapse
Affiliation(s)
- R. Verboket
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Leiblein
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - C. Seebach
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - C. Nau
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Janko
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Bellen
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - H. Bönig
- Department of Transfusion Medicine and Immune Hematology, University Hospital Frankfurt and DRK Blood Donor Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - D. Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - I. Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Del Papa N, Pignataro F. The Role of Endothelial Progenitors in the Repair of Vascular Damage in Systemic Sclerosis. Front Immunol 2018; 9:1383. [PMID: 29967618 PMCID: PMC6015881 DOI: 10.3389/fimmu.2018.01383] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/04/2018] [Indexed: 01/17/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by a complex pathological process where the main scenario is represented by progressive loss of microvascular bed, with the consequent progressive fibrotic changes in involved organ and tissues. Although most aspects of vascular injury in scleroderma are poorly understood, recent data suggest that the scleroderma impairment of neovascularization could be related to both angiogenesis and vasculogenesis failure. Particularly, compensatory angiogenesis does not occur normally in spite of an important increase in many angiogenic factors either in SSc skin or serum. Besides insufficient angiogenesis, the contribution of defective vasculogenesis to SSc vasculopathy has been extensively studied. Over the last decades, our understanding of the processes responsible for the formation of new vessels after tissue ischemia has increased. In the past, adult neovascularization was thought to depend mainly on angiogenesis (a process by which new vessels are formed by the proliferation and migration of mature endothelial cells). More recently, increased evidence suggests that stem cells mobilize from the bone marrow into the peripheral blood (PB), differentiate in circulating endothelial progenitors (EPCs), and home to site of ischemia to contribute to de novo vessel formation. Significant advances have been made in understanding the biology of EPCs, and molecular mechanisms regulating EPC function. Autologous EPCs now are becoming a novel treatment option for therapeutic vascularization and vascular repair, mainly in ischemic diseases. However, different diseases, such as cardiovascular diseases, diabetes, and peripheral artery ischemia are related to EPC dysfunction. Several studies have shown that EPCs can be detected in the PB of patients with SSc and are impaired in their function. Based on an online literature search (PubMed, EMBASE, and Web of Science, last updated December 2017) using keywords related to “endothelial progenitor cells” and “Systemic Sclerosis,” “scleroderma vasculopathy,” “angiogenesis,” “vasculogenesis,” this review gives an overview on the large body of data of current research in this issue, including controversies over the identity and functions of EPCs, their meaning as biomarker of SSc microangiopathy and their clinical potency.
Collapse
|
8
|
Olmer R, Engels L, Usman A, Menke S, Malik MNH, Pessler F, Göhring G, Bornhorst D, Bolten S, Abdelilah-Seyfried S, Scheper T, Kempf H, Zweigerdt R, Martin U. Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture. Stem Cell Reports 2018; 10:1657-1672. [PMID: 29681541 PMCID: PMC5995343 DOI: 10.1016/j.stemcr.2018.03.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. Efficient generation of hiPSC-derived ECs in scalable suspension culture High degree of chromosomal stability of hiPSC-ECs after in vitro expansion Generation of relevant numbers of hiPSC-ECs for regenerative approaches
Collapse
Affiliation(s)
- Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Lena Engels
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Abdulai Usman
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Sandra Menke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Muhammad Nasir Hayat Malik
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; Helmholtz-Centre for Infection Research Braunschweig, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine, 30625 Hannover, Germany
| | - Frank Pessler
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; Helmholtz-Centre for Infection Research Braunschweig, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine, 30625 Hannover, Germany
| | - Gudrun Göhring
- Institute of Cell and Molecular Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Dorothee Bornhorst
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Svenja Bolten
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany; Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Thomas Scheper
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
9
|
Shear stress: An essential driver of endothelial progenitor cells. J Mol Cell Cardiol 2018; 118:46-69. [PMID: 29549046 DOI: 10.1016/j.yjmcc.2018.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
The blood flow through vessels produces a tangential, or shear, stress sensed by their innermost layer (i.e., endothelium) and representing a major hemodynamic force. In humans, endothelial repair and blood vessel formation are mainly performed by circulating endothelial progenitor cells (EPCs) characterized by a considerable expression of vascular endothelial growth factor receptor 2 (VEGFR2), CD34, and CD133, pronounced tube formation activity in vitro, and strong reendothelialization or neovascularization capacity in vivo. EPCs have been proposed as a promising agent to induce reendothelialization of injured arteries, neovascularization of ischemic tissues, and endothelialization or vascularization of bioartificial constructs. A number of preconditioning approaches have been suggested to improve the regenerative potential of EPCs, including the use of biophysical stimuli such as shear stress. However, in spite of well-defined influence of shear stress on mature endothelial cells (ECs), articles summarizing how it affects EPCs are lacking. Here we discuss the impact of shear stress on homing, paracrine effects, and differentiation of EPCs. Unidirectional laminar shear stress significantly promotes homing of circulating EPCs to endothelial injury sites, induces anti-thrombotic and anti-atherosclerotic phenotype of EPCs, increases their capability to form capillary-like tubes in vitro, and enhances differentiation of EPCs into mature ECs in a dose-dependent manner. These effects are mediated by VEGFR2, Tie2, Notch, and β1/3 integrin signaling and can be abrogated by means of complementary siRNA/shRNA or selective pharmacological inhibitors of the respective proteins. Although the testing of sheared EPCs for vascular tissue engineering or regenerative medicine applications is still an unaccomplished task, favorable effects of unidirectional laminar shear stress on EPCs suggest its usefulness for their preconditioning.
Collapse
|
10
|
Abstract
BACKGROUND Burn blister fluid contains several angiogenic factors to promote wound neovascularization. In our previous study, we found that deep partial-thickness burn (DPTB) wounds showed higher expression levels of angiogenin to enhance vascularization compared with superficial partial-thickness burn wounds. Neovascularization is a complex process that involves an interaction between circulating angiogenic cells and mediators. We hypothesized that in addition to angiogenic factors burn blisters may contain specific cell types. The aim of the present study was to characterize the specific cells present in burn blisters. METHODS Twenty-four burn blister fluid samples were obtained with informed consent from patients with superficial partial-thickness burn (n = 16) or DPTB (n = 8) wounds. Blister cells were isolated from individual intact blisters and characterized with flow cytometry analysis using CD14, CD34, vascular endothelial growth factor receptor 2, and CD133 markers. CD14 and CD34 blister cells were also isolated using a magnetic-activated cell sorting system to examine their potential for endothelial differentiation. Angiogenin levels in the burn blister fluids were evaluated with enzyme-linked immunosorbent assay. RESULTS CD14 cells were the most highly represented cell type in the burn fluids of both groups, although a significantly greater percentage of CD14 cells were observed in DPTB fluids. CD14 blister cells had a higher potency to differentiate into functional endothelial cells as compared with CD34 cells. The proportion of CD14 cells gradually increased after burn injury. In contrast to CD14 cells, angiogenin showed the highest expression levels at day 1 postburn. With regard to burn wound neovascularization, angiogenin expression was partially correlated with CD14 blister cells in the burn fluids. CONCLUSIONS We provide the first report on the characterization of blister cells in burn fluids. Our data suggest that CD14 blister cells may play a role in burn wound neovascularization. Measurement of CD14 blister cells serves as a possible tool for assessing burn wound status.
Collapse
|
11
|
Chen W, Yang M, Bai J, Li X, Kong X, Gao Y, Bi L, Xiao L, Shi B. Exosome-Modified Tissue Engineered Blood Vessel for Endothelial Progenitor Cell Capture and Targeted siRNA Delivery. Macromol Biosci 2017; 18. [PMID: 29205878 DOI: 10.1002/mabi.201700242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/22/2017] [Indexed: 12/20/2022]
Abstract
Instability and poor targeting causes the long-term patency of RNA-modified tissue engineering blood vessels (TEBVs) remaining unsatisfactory. RNA can be enriched in exosome and then delivered into targeted cells while whether exosome-modified TEBVs achieve RNA targeted delivery is unclear. Here, to promote the expression of klotho protein on the mesenchymal stem cell (MSC)-derived exosomes, klotho plasmids are first transfected into MSCs, and adenosine kinase (ADK) siRNA is then loaded into exosome (klotho/ADK siRNA-exosome) using electrotransfection. Flow chamber results show that klotho/ADK siRNA-exosome can effectively capture circulating endothelial progenitor cells (EPCs). Besides, the captured EPCs can endocytose this exosome, and then decompose it into klotho protein and ADK siRNA. Moreover, ADK siRNA promotes the paracrine of proangiogenic factors and adenosine from EPCs, which further facilitate proliferation and migration of endothelial cells. Based on polyethyleneimine-capped gold nanoparticles, exosome-modified TEBVs are constructed through layer-by-layer assembly. Animal experimental results show that klotho/ADK siRNA-exosome-modified TEBVs can maintain the patency up to one month, and good endothelialization is observed. In short, one exosome-modified TEBV is constructed, capture molecules on the surface of exosome capture the circulating EPCs, and the loaded RNA achieves its purpose of accurate treatment depending on the needs of patients.
Collapse
Affiliation(s)
- Wen Chen
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Basic Research Lab of Organ Transplant Institute, 309th Hospital of the People's Liberation Army, Beijing, 100091, China
| | - Mingcan Yang
- Department of Anatomy, National & Regional Engineering Laboratory of Tissue Engineering, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Jian Bai
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Basic Research Lab of Organ Transplant Institute, 309th Hospital of the People's Liberation Army, Beijing, 100091, China
| | - Xiang Li
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Basic Research Lab of Organ Transplant Institute, 309th Hospital of the People's Liberation Army, Beijing, 100091, China
| | - Xiangrui Kong
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Basic Research Lab of Organ Transplant Institute, 309th Hospital of the People's Liberation Army, Beijing, 100091, China
| | - Yu Gao
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Basic Research Lab of Organ Transplant Institute, 309th Hospital of the People's Liberation Army, Beijing, 100091, China
| | - Lili Bi
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Basic Research Lab of Organ Transplant Institute, 309th Hospital of the People's Liberation Army, Beijing, 100091, China
| | - Li Xiao
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Basic Research Lab of Organ Transplant Institute, 309th Hospital of the People's Liberation Army, Beijing, 100091, China
| | - Bingyi Shi
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Basic Research Lab of Organ Transplant Institute, 309th Hospital of the People's Liberation Army, Beijing, 100091, China
| |
Collapse
|
12
|
Montali M, Panvini FM, Barachini S, Ronca F, Carnicelli V, Mazzoni S, Petrini I, Pacini S. Human adult mesangiogenic progenitor cells reveal an early angiogenic potential, which is lost after mesengenic differentiation. Stem Cell Res Ther 2017; 8:106. [PMID: 28464921 PMCID: PMC5414340 DOI: 10.1186/s13287-017-0562-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Background Mesangiogenic progenitor cells (MPCs) have shown the ability to differentiate in-vitro toward mesenchymal stromal cells (MSCs) as well as angiogenic potential. MPCs have so far been described in detail as progenitors of the mesodermal lineage and appear to be of great significance in tissue regeneration and in hemopoietic niche regulation. On the contrary, information regarding the MPC angiogenic process is still incomplete and requires further clarification. In particular, genuine MPC angiogenic potential should be confirmed in-vivo. Methods In the present article, markers and functions associated with angiogenic cells have been dissected. MPCs freshly isolated from human bone marrow have been induced to differentiate into exponentially growing MSCs (P2-MSCs). Cells have been characterized and angiogenesis-related gene expression was evaluated before and after mesengenic differentiation. Moreover, angiogenic potential has been tested by in-vitro and in-vivo functional assays. Results MPCs showed a distinctive gene expression profile, acetylated-low density lipoprotein uptake, and transendothelial migration capacity. However, mature endothelial markers and functions of endothelial cells, including the ability to form new capillaries, were absent, thus suggesting MPCs to be very immature endothelial progenitors. MPCs showed marked 3D spheroid sprouting activating the related molecular machinery, a clear in-vitro indication of early angiogenesis. Indeed, MPCs applied to chicken chorioallantoic membrane induced and participated in neovessel formation. All of these features were lost in mesengenic terminally differentiated P2-MSCs, showing definite separation of the two differentiation lineages. Conclusion Our results confirm the bona-fide angiogenic potential of MPCs and suggest that the high variability reported for MSC cultures, responsible for the controversies regarding MSC angiogenic potential, could be correlated to variable percentages of co-isolated MPCs in the different culture conditions so far used. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0562-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Montali
- Department of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Via Roma 56, 56126, Pisa, Italy
| | - Francesca M Panvini
- Department of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Via Roma 56, 56126, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Via Roma 56, 56126, Pisa, Italy
| | - Francesca Ronca
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Vittoria Carnicelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Stefano Mazzoni
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Technology in Medicine, University of Pisa, Pisa, Italy
| | - Simone Pacini
- Department of Clinical and Experimental Medicine, Hematology Division, University of Pisa, Via Roma 56, 56126, Pisa, Italy.
| |
Collapse
|
13
|
Zhao J, Mitrofan CG, Appleby SL, Morrell NW, Lever AML. Disrupted Endothelial Cell Layer and Exposed Extracellular Matrix Proteins Promote Capture of Late Outgrowth Endothelial Progenitor Cells. Stem Cells Int 2016; 2016:1406304. [PMID: 27413378 PMCID: PMC4927957 DOI: 10.1155/2016/1406304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/12/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023] Open
Abstract
Late outgrowth endothelial progenitor cells (LO-EPC) possess a high proliferative potential, differentiate into vascular endothelial cells (EC), and form networks, suggesting they play a role in vascular repair. However, due to their scarcity in the circulation there is a requirement for ex vivo expansion before they could provide a practical cell therapy and it is currently unclear if they would home and engraft to an injury site. Using an in vitro flow system we studied LO-EPC under simulated injury conditions including EC activation, ischaemia, disrupted EC integrity, and exposed basement membrane. Perfused LO-EPC adhered to discontinuous EC paracellularly at junctional regions between adjacent cells under shear stress 0.7 dyn/cm(2). The interaction was not adhesion molecule-dependent and not enhanced by EC activation. LO-EPC expressed high levels of the VE-Cadherin which may explain these findings. Ischaemia reperfusion injury decreased the interaction with LO-EPC due to cell retraction. LO-EPC interacted with exposed extracellular matrix (ECM) proteins, fibronectin and vitronectin. The interaction was mediated by integrins α5β3, αvβ1, and αvβ3. This study has demonstrated that an injured local environment presents sufficient adhesive signals to capture flow perfused LO-EPC in vitro and that LO-EPC have properties consistent with their potential role in vascular repair.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Sarah L. Appleby
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nicholas W. Morrell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Andrew M. L. Lever
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
14
|
Cantoni S, Bianchi F, Galletti M, Olivi E, Alviano F, Galiè N, Ventura C. Occurring of In Vitro Functional Vasculogenic Pericytes from Human Circulating Early Endothelial Precursor Cell Culture. Stem Cells Int 2015; 2015:943671. [PMID: 26064139 PMCID: PMC4438190 DOI: 10.1155/2015/943671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 12/21/2022] Open
Abstract
Pericytes are periendothelial cells of the microcirculation which contribute to tissue homeostasis and hemostasis by regulating microvascular morphogenesis and stability. Because of their multipotential ex vivo differentiation capabilities, pericytes are becoming very interesting in regenerative medicine field. Several studies address this issue by attempting to isolate pericyte/mesenchymal-like cells from peripheral blood; however the origin of these cells and their culture conditions are still debated. Here we showed that early Endothelial Progenitor Cells (EPCs) expressing CD45+/CD146+/CD31+ can be a source of cells with pericyte/mesenchymal phenotype and function, identified as human Progenitor Perivascular Cells (hPPCs). We provided evidence that hPPCs have an immunophenotype consistent with Mesenchymal Stem Cells (MSCs) from human adipose tissue (hASCs) and fetal membranes of term placenta (FM-hMSCs). In addition, hPPCs can be subcultured and exhibit expression of pluripotent genes (OCT-4, KLF-4, and NANOG) as well as a remarkable vasculogenic potential. Our findings could be helpful to develop innovative cell-based therapies for future clinical applications with distinct therapeutic purposes.
Collapse
Affiliation(s)
- Silvia Cantoni
- National Institute of Biostructures and Biosystems (NIBB), University of Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Francesca Bianchi
- National Institute of Biostructures and Biosystems (NIBB), University of Bologna, 40138 Bologna, Italy
- Stem Wave Institute for Tissue Healing (SWITH), Gruppo Villa Maria (GVM) and Ettore Sansavini Health Foundation-ONLUS, Lugo, 48022 Ravenna, Italy
| | - Margherita Galletti
- National Institute of Biostructures and Biosystems (NIBB), University of Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Elena Olivi
- National Institute of Biostructures and Biosystems (NIBB), University of Bologna, 40138 Bologna, Italy
- Stem Wave Institute for Tissue Healing (SWITH), Gruppo Villa Maria (GVM) and Ettore Sansavini Health Foundation-ONLUS, Lugo, 48022 Ravenna, Italy
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Nazzareno Galiè
- National Institute of Biostructures and Biosystems (NIBB), University of Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Carlo Ventura
- National Institute of Biostructures and Biosystems (NIBB), University of Bologna, 40138 Bologna, Italy
- Stem Wave Institute for Tissue Healing (SWITH), Gruppo Villa Maria (GVM) and Ettore Sansavini Health Foundation-ONLUS, Lugo, 48022 Ravenna, Italy
| |
Collapse
|
15
|
Moussa MD, Santonocito C, Fagnoul D, Donadello K, Pradier O, Gaussem P, De Backer D, Vincent JL. Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells. Intensive Care Med 2015; 41:231-8. [PMID: 25510299 DOI: 10.1007/s00134-014-3589-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Endothelial cell activation and dysfunction are involved in the pathophysiology of ARDS. Circulating endothelial cells (CECs) may be a useful marker of endothelial dysfunction and damage but have been poorly studied in ARDS. We hypothesized that the CEC count may be elevated in patients with sepsis-related ARDS compared to those with sepsis without ARDS. METHODS ARDS was defined according to the Berlin consensus definition. The study population included 17 patients with moderate or severe ARDS, 9 with mild ARDS, 13 with sepsis and no ARDS, 13 non-septic patients, and 12 healthy volunteers. Demographic, hemodynamic, and prognostic variables, including PaO(2)/FiO(2) ratio, 28-day survival, blood lactate, APACHE II, and SOFA score, were recorded. CECs were counted in arterial blood samples using the reference CD146 antibody-based immunomagnetic isolation and UEA1-FITC staining method. Measurements were performed 12-24 h after diagnosis of ARDS and repeated daily for 3 days. RESULTS The median day-1 CEC count was significantly higher in patients with moderate or severe ARDS than in mild ARDS or septic-control patients [27.2 (18.3-49.4) vs. 17.4 (11-24.5) cells/ml (p < 0.034), and 18.4 (9.1-31) cells/ml (p < 0.035), respectively]. All septic patients (with or without ARDS) had higher day-1 CEC counts than the non-septic patients [19.6 (14.2-30.6) vs. 10.8 (5.7-13.2) cells/ml, p = 0.002]. CONCLUSION The day-1 CEC count was significantly higher in ARDS patients than in other critically ill patients, and in moderate or severe ARDS patients compared to those with milder disease, making it a potentially useful marker of ARDS severity.
Collapse
Affiliation(s)
- Mouhamed Djahoum Moussa
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles (ULB), 808 Route de Lennik, 1070, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Spiller KL, Freytes DO, Vunjak-Novakovic G. Macrophages modulate engineered human tissues for enhanced vascularization and healing. Ann Biomed Eng 2014; 43:616-27. [PMID: 25331098 DOI: 10.1007/s10439-014-1156-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/08/2014] [Indexed: 01/01/2023]
Abstract
Tissue engineering is increasingly based on recapitulating human physiology, through integration of biological principles into engineering designs. In spite of all progress in engineering functional human tissues, we are just beginning to develop effective methods for establishing blood perfusion and controlling the inflammatory factors following implantation into the host. Functional vasculature largely determines tissue survival and function in vivo. The inflammatory response is a major regulator of vascularization and overall functionality of engineered tissues, through the activity of different types of macrophages and the cytokines they secrete. We discuss here the cell-scaffold-bioreactor systems for harnessing the inflammatory response for enhanced tissue vascularization and healing. To this end, inert scaffolds that have been considered for many decades a "gold standard" in regenerative medicine are beginning to be replaced by a new generation of "smart" tissue engineering systems designed to actively mediate tissue survival and function.
Collapse
|
17
|
Zhao J, Bolton EM, Randle L, Bradley JA, Lever AML. Functional characterization of late outgrowth endothelial progenitor cells in patients with end-stage renal failure. Transpl Int 2014; 27:437-51. [PMID: 24471420 PMCID: PMC4229358 DOI: 10.1111/tri.12277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/07/2013] [Accepted: 01/23/2014] [Indexed: 12/31/2022]
Abstract
Renal transplantation is potentially curative in renal failure, but long-term efficacy is limited by untreatable chronic rejection. Endothelial damage contributes to chronic rejection and is potentially repairable by circulating endothelial progenitor cells (EPC). The frequency and function of EPC are variably influenced by end-stage renal failure (ESRF). Here, we isolated and functionally characterized the late outgrowth EPC (LO-EPC) from ESRF patients to investigate their potential for endothelial repair. Patients with ESRF generated more LO-EPC colonies than healthy controls and had higher plasma levels of IL-1rα, IL-16, IL-6, MIF, VEGF, Prolactin, and PLGF. Patients' LO-EPC displayed normal endothelial cell morphology, increased secretion of PLGF, MCP-1, and IL-1β, and normal network formation in vitro and in vivo. They demonstrated decreased adhesion to extracellular matrix. Integrin gene profiles and protein expression were comparable in patients and healthy volunteers. In some patients, mesenchymal stem cells (MSC) were co-isolated and could be differentiated into adipocytes and osteocytes in vitro. This is the first study to characterize LO-EPC from patients with ESRF. Their behavior in vitro reflects the presence of elevated trophic factors; their ability to proliferate in vitro and angiogenic function makes them candidates for prevention of chronic rejection. Their impaired adhesion and the presence of MSC are areas for potential therapeutic intervention.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
18
|
Foresta C, De Toni L, Ferlin A, Di Mambro A. Clinical implication of endothelial progenitor cells. Expert Rev Mol Diagn 2014; 10:89-105. [DOI: 10.1586/erm.09.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Reynolds JA, Robertson AC, Bruce IN, Alexander MY. Improving cardiovascular outcomes in rheumatic diseases: therapeutic potential of circulating endothelial progenitor cells. Pharmacol Ther 2013; 142:231-43. [PMID: 24333265 DOI: 10.1016/j.pharmthera.2013.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 02/07/2023]
Abstract
Patients with Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE) have a significantly increased risk of cardiovascular disease (CVD). The reason for this is unclear but may be due, at least in part, to the failure of endothelial repair mechanisms. Over the last 15 years there has been much interest in the mechanisms of endothelial renewal and its potential as a therapy for CVD. In the circulation there are two distinct populations of cells; myeloid angiogenic cells (MACs) which augment repair by the paracrine secretion of angiogenic factors, and outgrowth endothelial cells (OECs) which are true endothelial progenitor cells (EPCs) and promote vasculogenesis by differentiating into mature endothelium. There are marked abnormalities in the number and function of these cells in patients with RA and SLE. Inflammatory cytokines including interferon-alpha (IFNα) and tumour-necrosis factor alpha (TNFα) both impair MAC and OEC function ex vivo and may therefore contribute to the CVD risk in these patients. Whilst administration of mononuclear cells, MACs and other progenitors has improved cardiovascular outcomes in the acute setting, this is not a viable option in chronic disease. The pharmacological manipulation of MAC/OEC function in vivo however has the potential to significantly improve endothelial repair and thus reduce CVD in this high risk population.
Collapse
Affiliation(s)
- John A Reynolds
- Arthritis Research UK Epidemiology Unit, Institute of Inflammation and Repair, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK.
| | - Abigail C Robertson
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, UK
| | - Ian N Bruce
- Arthritis Research UK Epidemiology Unit, Institute of Inflammation and Repair, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK; NIHR Manchester Musculoskeletal Biomedical Research Unit, and Kellgren Centre for Rheumatology, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - M Yvonne Alexander
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, UK; Healthcare Science Research Institute, Manchester Metropolitan University, UK Healthcare Science Research Institute, Manchester Metropolitan University, UK
| |
Collapse
|
20
|
Eldesoqi K, Seebach C, Nguyen Ngoc C, Meier S, Nau C, Schaible A, Marzi I, Henrich D. High calcium bioglass enhances differentiation and survival of endothelial progenitor cells, inducing early vascularization in critical size bone defects. PLoS One 2013; 8:e79058. [PMID: 24244419 PMCID: PMC3828289 DOI: 10.1371/journal.pone.0079058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/21/2013] [Indexed: 01/21/2023] Open
Abstract
Early vascularization is a prerequisite for successful bone healing and endothelial progenitor cells (EPC), seeded on appropriate biomaterials, can improve vascularization. The type of biomaterial influences EPC function with bioglass evoking a vascularizing response. In this study the influence of a composite biomaterial based on polylactic acid (PLA) and either 20 or 40% bioglass, BG20 and BG40, respectively, on the differentiation and survival of EPCs in vitro was investigated. Subsequently, the effect of the composite material on early vascularization in a rat calvarial critical size defect model with or without EPCs was evaluated. Human EPCs were cultured with β-TCP, PLA, BG20 or BG40, and seeding efficacy, cell viability, cell morphology and apoptosis were analysed in vitro. BG40 released the most calcium, and improved endothelial differentiation and vitality best. This effect was mimicked by adding an equivalent amount of calcium to the medium and was diminished in the presence of the calcium chelator, EGTA. To analyze the effect of BG40 and EPCs in vivo, a 6-mm diameter critical size calvarial defect was created in rats (n = 12). Controls (n = 6) received BG40 and the treatment group (n = 6) received BG40 seeded with 5×105 rat EPCs. Vascularization after 1 week was significantly improved when EPCs were seeded onto BG40, compared to implanting BG40 alone. This indicates that Ca2+ release improves EPC differentiation and is useful for enhanced early vascularization in critical size bone defects.
Collapse
Affiliation(s)
- Karam Eldesoqi
- Department of Trauma-, Hand- and Reconstructive Surgery, Hospital of the Goethe- University, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Janssen WJ, Yunt ZX, Muldrow A, Kearns MT, Kloepfer A, Barthel L, Bratton DL, Bowler RP, Henson PM. Circulating hematopoietic progenitor cells are decreased in COPD. COPD 2013; 11:277-89. [PMID: 24182349 DOI: 10.3109/15412555.2013.841668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Bone marrow derived progenitor cells participate in the repair of injured vessels. The lungs of individuals with emphysema have reduced alveolar capillary density and increased endothelial apoptosis. We hypothesized that circulating levels of endothelial and hematopoietic progenitor cells would be reduced in this group of patients. OBJECTIVES The goal of this study was to measure circulating levels of endothelial progenitor cells (EPCs) and hematopoietic progenitor cells (HPCs) in subjects with COPD and to determine if progenitor levels correlated with disease severity and the presence of emphysema. METHODS Peripheral blood mononuclear cells were isolated from 61 patients with COPD and 32 control subjects. Levels of EPCs (CD45(dim) CD34+) and HPCs (CD45(+) CD34(+) VEGF-R2(+)) were quantified using multi-parameter flow cytometry. Progenitor cell function was assessed using cell culture assays. All subjects were evaluated with spirometry and CT scanning. MEASUREMENTS AND MAIN RESULTS HPC levels were reduced in subjects with COPD compared to controls, whereas circulating EPC levels were similar between the two groups. HPC levels correlated with severity of obstruction and were lowest in subjects with severe emphysema. These associations remained after correction for factors known to affect progenitor cell levels including age, smoking status, the use of statin medications and the presence of coronary artery disease. The ability of mononuclear cells to form endothelial cell colony forming units (EC-CFU) was also reduced in subjects with COPD. CONCLUSIONS HPC levels are reduced in subjects with COPD and correlate with emphysema phenotype and severity of obstruction. Reduction of HPCs may disrupt maintenance of the capillary endothelium, thereby contributing to the pathogenesis of COPD.
Collapse
Affiliation(s)
- William J Janssen
- 1Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Balaji S, King A, Crombleholme TM, Keswani SG. The Role of Endothelial Progenitor Cells in Postnatal Vasculogenesis: Implications for Therapeutic Neovascularization and Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:283-295. [PMID: 24527350 DOI: 10.1089/wound.2012.0398] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Indexed: 01/16/2023] Open
Abstract
SIGNIFICANCE Postnatal vasculogenesis mediated via endothelial progenitor cells (EPCs) contributes to re-endothelialization and augments neovascularization after ischemia and tissue injury, providing a novel therapeutic application. However, controversy exists with respect to the origin, identification, and contributions of the EPCs to neovascularization, necessitating further study. RECENT ADVANCES Bone marrow (BM) or circulating cells expressing cd133/vascular endothelial growth factor receptor 2 include those with endothelial progenitor capacity. Increasing evidence suggests that there are additional BM-derived (myeloid; mesenchymal cells) and non-BM-derived (peripheral and cord-blood; tissue-resident) cell populations which also give rise to endothelial cells (ECs) and contribute to re-endothelialization and growth factor release after ischemia and tissue injury. Currently, EPCs are being used as diagnostic markers for the assessment of cardiovascular and tumor risk/progression. Techniques aimed at enhancing ex vivo expansion and the therapeutic potential of these cells are being optimized. CRITICAL ISSUES Mobilization and EPC-mediated neovascularization are critically regulated. Stimulatory (growth factors, statins, and exercise) or inhibitory factors (obesity, diabetes, and other cardiovascular diseases) modulate EPC numbers and function. Recruitment and incorporation of EPCs require a coordinated sequence of signaling events, including adhesion, migration (by integrins), and chemoattraction. Finally, EPCs differentiate into ECs and/or secrete angiogenic growth factors. These cells are highly plastic, and depending on the microenvironment and presence of other cells, EPCs transdifferentiate and/or undergo cell fusion and become cells of a different lineage. Therefore, in vitro culture conditions should be optimized to mimic the in vivo milieu to fully characterize the biological function and contribution of EPCs to postnatal vasculogenesis. FUTURE DIRECTIONS Advances in characterization of the EPC biology and enhancement of EPC functions are required. In addition, innovative tissue-engineered carrier matrices that permit embedding of EPCs and provide optimal conditions for EPC survival and endothelial outgrowth will further contribute to EPC-mediated therapeutic applications in wound healing and ischemia repair.
Collapse
Affiliation(s)
- Swathi Balaji
- Center for Molecular Fetal Therapy, Division of Pediatric, General, Thoracic, and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alice King
- Center for Molecular Fetal Therapy, Division of Pediatric, General, Thoracic, and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Timothy M. Crombleholme
- Center for Molecular Fetal Therapy, Division of Pediatric, General, Thoracic, and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati College of Medicine, Cincinnati, Ohio
- Center for Children's Surgery, Children's Hospital Colorado and the University of Colorado School of Medicine, Aurora, Colorado
| | - Sundeep G. Keswani
- Center for Molecular Fetal Therapy, Division of Pediatric, General, Thoracic, and Fetal Surgery, Cincinnati Children's Hospital and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
23
|
Human endothelial-like differentiated precursor cells maintain their endothelial characteristics when cocultured with mesenchymal stem cell and seeded onto human cancellous bone. Mediators Inflamm 2013; 2013:364591. [PMID: 23476102 PMCID: PMC3588182 DOI: 10.1155/2013/364591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 12/20/2012] [Accepted: 01/03/2013] [Indexed: 12/15/2022] Open
Abstract
Introduction. Cancellous bone is frequently used for filling bone defects in a clinical setting. It provides favourable conditions for regenerative cells such as MSC and early EPC. The combination of MSC and EPC results in superior bone healing in experimental bone healing models. Materials and Methods. We investigated the influence of osteogenic culture conditions on the endothelial properties of early EPC and the osteogenic properties of MSC when cocultured on cancellous bone. Additionally, cell adhesion, metabolic activity, and differentiation were assessed 2, 6, and 10 days after seeding. Results. The number of adhering EPC and MSC decreased over time; however the cells remained metabolically active over the 10-day measurement period. In spite of a decline of lineage specific markers, cells maintained their differentiation to a reduced level. Osteogenic stimulation of EPC caused a decline but not abolishment of endothelial characteristics and did not induce osteogenic gene expression. Osteogenic stimulation of MSC significantly increased their metabolic activity whereas collagen-1α and alkaline phosphatase gene expressions declined. When cocultured with EPC, MSC's collagen-1α gene expression increased significantly. Conclusion. EPC and MSC can be cocultured in vitro on cancellous bone under osteogenic conditions, and coculturing EPC with MSC stabilizes the latter's collagen-1α gene expression.
Collapse
|
24
|
Abstract
Peripheral blood is a large accessible source of adult stem cells for both basic research and clinical applications. Peripheral blood mononuclear cells (PBMCs) have been reported to contain a multitude of distinct multipotent progenitor cell populations and possess the potential to differentiate into blood cells, endothelial cells, hepatocytes, cardiomyogenic cells, smooth muscle cells, osteoblasts, osteoclasts, epithelial cells, neural cells, or myofibroblasts under appropriate conditions. Furthermore, transplantation of these PBMC-derived cells can regenerate tissues and restore function after injury. This mini-review summarizes the multi-differentiation potential of PBMCs reported in the past years, discusses the possible mechanisms for this multi-differentiation potential, and describes recent techniques for efficient PBMC isolation and purification.
Collapse
|
25
|
Chen JY, Feng L, Zhang HL, Li JC, Yang XW, Cao XL, Liu L, Qin HY, Liang YM, Han H. Differential regulation of bone marrow-derived endothelial progenitor cells and endothelial outgrowth cells by the Notch signaling pathway. PLoS One 2012; 7:e43643. [PMID: 23118846 PMCID: PMC3485270 DOI: 10.1371/journal.pone.0043643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are heterogeneous populations of cells that participate in vasculogenesis and promote tissue regeneration. However the different roles of EPC populations in vasculogenesis and tissue regeneration, as well as their regulation and mechanisms remain elusive. In the present study, we cultured bone marrow (BM)-derived early EPCs (EEPCs) and endothelial outgrowth cells (EOCs), and investigated their roles in liver regeneration and their regulation by the Notch signaling pathway. We found that Notch signaling exhibited different effects on the proliferation and migration of EEPCs and EOCs. Our results also showed that while EEPCs failed to form vessel-like structures in a three dimensional sprouting model in vitro, EOCs could sprout and form endothelial cords, and this was regulated by the Notch signaling. We further showed that, by using a conditional knockout model of RBP-J (the critical transcription factor mediating Notch signaling), Notch signaling differentially regulates EEPCs and EOCs. In a partial hepatectomy (PHx) model, EEPCs Notch-dependently benefitted liver regeneration with respect to liver function and hepatocyte proliferation and apoptosis. In contrast, EOCs appeared not directly involved in the recovery of liver function and the increase of hepatocytes. These data suggested that the RBP-J-mediated Notch signaling differentially regulated the two types of EPCs, which showed different roles in liver regeneration.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lei Feng
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Hai-Long Zhang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jun-Chang Li
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xin-Wei Yang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiu-Li Cao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Hong-Yan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Ying-Min Liang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
- * E-mail: (Y-ML); (HH)
| | - Hua Han
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, People's Republic of China
- * E-mail: (Y-ML); (HH)
| |
Collapse
|
26
|
Mavromatis K, Sutcliffe DJ, Joseph G, Alexander RW, Waller EK, Quyyumi AA, Taylor WR. Proangiogenic cell colonies grown in vitro from human peripheral blood mononuclear cells. ACTA ACUST UNITED AC 2012; 17:1128-35. [PMID: 22904201 DOI: 10.1177/1087057112457043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although multiple culture assays have been designed to identify endothelial progenitor cells (EPCs), the phenotype of cells grown in culture often remains undefined. We sought to define and characterize the proangiogenic cell population within human peripheral blood mononuclear cells. Mononuclear cells were isolated from peripheral blood and grown under angiogenic conditions for 7 days. Formed colonies (CFU-As) were identified and analyzed for proliferation, mRNA and surface antigen expression, tube-forming ability, and chromosomal content. Colonies were composed of a heterogeneous group of cells expressing the leukocyte antigens CD45, CD14, and CD3, as well as the endothelial proteins vascular endothelial (VE) cadherin, von Willebrand's factor (vWF), CD31, and endothelial nitric oxide synthase (eNOS). Colony cells expressed increased levels of proangiogenic growth factors, and they formed tubes in Matrigel. In comparison with colonies from the CFU-Hill assay, our assay resulted in a greater number of colonies (19 ± 9 vs. 13 ± 7; p < 0.0001) with a substantial number of cells expressing an endothelial phenotype (20.2% ± 7.4% vs. 2.2% ± 1.2% expressing eNOS, p = 0.0006). Chromosomal analysis indicated the colony cells were bone marrow derived. We, therefore, describe a colony-forming unit assay that measures bone marrow-derived circulating mononuclear cells with the capacity to proliferate and mature into proangiogenic leukocytic and endothelial-like cells. This assay, therefore, reflects circulating, bone marrow-derived proangiogenic activity.
Collapse
|
27
|
Barclay GR, Tura O, Samuel K, Hadoke PW, Mills NL, Newby DE, Turner ML. Systematic assessment in an animal model of the angiogenic potential of different human cell sources for therapeutic revascularization. Stem Cell Res Ther 2012; 3:23. [PMID: 22759659 PMCID: PMC3580461 DOI: 10.1186/scrt114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/03/2012] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Endothelial progenitor cells (EPC) capable of initiating or augmenting vascular growth were recently identified within the small population of CD34-expressing cells that circulate in human peripheral blood and which are considered hematopoietic progenitor cells (HPC). Soon thereafter human HPC began to be used in clinical trials as putative sources of EPC for therapeutic vascular regeneration, especially in myocardial and critical limb ischemias. However, unlike HPC where hematopoietic efficacy is related quantitatively to CD34+ cell numbers implanted, there has been no consensus on how to measure EPC or how to assess cellular graft potency for vascular regeneration. We employed an animal model of spontaneous neovascularization to simultaneously determine whether human cells incorporate into new vessels and to quantify the effect of different putative angiogenic cells on vascularization in terms of number of vessels generated. We systematically compared competence for therapeutic angiogenesis in different sources of human cells with putative angiogenic potential, to begin to provide some rationale for optimising cell procurement for this therapy. METHODS Human cells employed were mononuclear cells from normal peripheral blood and HPC-rich cell sources (umbilical cord blood, mobilized peripheral blood, bone marrow), CD34+ enriched or depleted subsets of these, and outgrowth cell populations from these. An established sponge implant angiogenesis model was adapted to determine the effects of different human cells on vascularization of implants in immunodeficient mice. Angiogenesis was quantified by vessel density and species of origin by immunohistochemistry. RESULTS CD34+ cells from mobilized peripheral blood or umbilical cord blood HPC were the only cells to promote new vessel growth, but did not incorporate into vessels. Only endothelial outgrowth cells (EOC) incorporated into vessels, but these did not promote vessel growth. CONCLUSIONS These studies indicate that, since EPC are very rare, any benefit seen in clinical trials of HPC in therapeutic vascular regeneration is predominantly mediated by indirect proangiogenic effects rather than through direct incorporation of any rare EPC contained within these sources. It should be possible to produce autologous EOC for therapeutic use, and evaluate the effect of EPC distinct from, or in synergy with, the proangiogenic effects of HPC therapies.
Collapse
|
28
|
Du F, Zhou J, Gong R, Huang X, Pansuria M, Virtue A, Li X, Wang H, Yang XF. Endothelial progenitor cells in atherosclerosis. Front Biosci (Landmark Ed) 2012; 17:2327-49. [PMID: 22652782 DOI: 10.2741/4055] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelial progenitor cells (EPCs) are involved in the maintenance of endothelial homoeostasis and in the process of new vessel formation. Experimental and clinical studies have shown that atherosclerosis is associated with reduced numbers and dysfunction of EPCs; and that medications alone are able to partially reverse the impairment of EPCs in patients with atherosclerosis. Therefore, novel EPC-based therapies may provide enhancement in restoring EPCs' population and improvement of vascular function. Here, for a better understanding of the molecular mechanisms underlying EPC impairment in atherosclerosis, we provide a comprehensive overview on EPC characteristics, phenotypes, and the signaling pathways underlying EPC impairment in atherosclerosis.
Collapse
Affiliation(s)
- Fuyong Du
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao J, Bolton EM, Ormiston ML, Bradley JA, Morrell NW, Lever AM. Late outgrowth endothelial progenitor cells engineered for improved survival and maintenance of function in transplant-related injury. Transpl Int 2011; 25:229-41. [PMID: 22117534 DOI: 10.1111/j.1432-2277.2011.01387.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic allograft vasculopathy (CAV) is a major cause of organ transplant failure that responds poorly to treatment. Endothelial activation, dysfunction and apoptosis contribute to CAV, whereas strategies for protecting endothelium and maximizing endothelial repair may diminish it. Late outgrowth endothelial progenitor cells (LO-EPC) can home to areas of injury and integrate into damaged vessels, implying a role in vascular repair; however, in an allograft, LO-EPC would be exposed to the hazardous microenvironment associated with transplant-related ischaemia reperfusion (I/R) injury and persistent inflammation. We evaluated the in vitro effect of I/R injury and the proinflammatory cytokine tumour necrosis factor (TNF)-α on LO-EPC phenotype and function. We show that LO-EPC are intrinsically more tolerant than mature EC to I/R injury induced apoptosis, maintaining their proliferative, migratory and network formation capacity. Under inflammatory conditions, LO-EPC were activated and released higher levels of inflammatory cytokines, upregulated adhesion molecule expression, and were more susceptible to apoptosis. Lentiviral vector-mediated overexpression of the protective gene A20 in LO-EPC maintained their angiogenic phenotype and function, and protected them against TNF-α-mediated apoptosis, reducing ICAM-1 expression and inflammatory cytokine secretion. Administration of ex vivo modified LO-EPC overexpressing A20 might effect vascular repair of damaged allografts and protect from CAV.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Punshon G, Vara DS, Sales KM, Seifalian AM. A novel method for the extraction and culture of progenitor stem cells from human peripheral blood for use in regenerative medicine. Biotechnol Appl Biochem 2011; 58:328-34. [PMID: 21995535 DOI: 10.1002/bab.47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/01/2011] [Indexed: 11/06/2022]
Abstract
Human peripheral blood (HPB) contains both circulating endothelial cells (CECs) and endothelial progenitor stem cells (EPCs), which may be suitable for use in regenerative medicine. There has been considerable interest in using these cells, but there is no "gold standard" technique for isolating these cells. The aim of this study was to characterize and compare a number of different extraction and culture techniques to develop a system to isolate and culture cells. EPC and CEC were isolated from HPB using either Histopaque-1077 or Lymphoprep. The two isolation methods were compared for the number of cells isolated, cell metabolism, and RNA expression. Both isolations produced viable cells and were comparable. The tissue culture method employed does have a significant effect on the cell population with regard to medium choice, fetal bovine serum concentration, and surface modification of the culture surface. In conclusion, it can be seen that although this study and previous work can suggest a basis for culture, further work to develop an optimized and agreed "gold standard" culture regime for EPC from HPB is required to maximize the potential of this source of cells for regenerative medicine and to translate its clinical use in the future.
Collapse
Affiliation(s)
- Geoffrey Punshon
- Centre for Nanotechnology and Regenerative Medicine, University College London Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
31
|
Gremmels H, Fledderus JO, van Balkom BWM, Verhaar MC. Transcriptome analysis in endothelial progenitor cell biology. Antioxid Redox Signal 2011; 15:1029-42. [PMID: 20812873 DOI: 10.1089/ars.2010.3594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of endothelial progenitor cells (EPCs) is a promising new treatment option for cardiovascular diseases. Many of the underlying mechanisms that result in an improvement of endothelial function in vivo remain poorly elucidated to this date, however. We summarize the current positions and potential applications of gene-expression profiling in the field of EPC biology. Based on our own and published gene-expression data, we demonstrate that gene-expression profiling can efficiently be used to characterize different EPC types. Furthermore, we highlight the potential of gene-expression profiling for the analysis of changes that EPCs undergo during culture and examine changes in gene transcription in diseased patients. Transcriptome profiling is a powerful tool for the characterization and functional analysis of EPCs in health and disease.
Collapse
Affiliation(s)
- Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
32
|
Ahmann KA, Johnson SL, Hebbel RP, Tranquillo RT. Shear stress responses of adult blood outgrowth endothelial cells seeded on bioartificial tissue. Tissue Eng Part A 2011; 17:2511-21. [PMID: 21599543 DOI: 10.1089/ten.tea.2011.0055] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human blood outgrowth endothelial cells (HBOECs) are expanded from circulating endothelial progenitor cells in peripheral blood and thus could provide a source of autologous endothelial cells for tissue-engineered vascular grafts. To examine the suitability of adult HBOECs for use in vascular tissue engineering, the shear stress responsiveness of these cells was examined on bioartificial tissue formed from dermal fibroblasts entrapped in tubular fibrin gels. HBOECs adhered to this surface, deposited collagen IV and laminin, and remained adherent when exposed to 15 dyn/cm(2) shear stress for 24 h. The shear stress responses of HBOECs were compared to human umbilical vein endothelial cells (HUVECs). As with HUVECs, HBOECs upregulated vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 when exposed to tumor necrosis factor (TNF)-α and shear stress decreased the expression of these adhesion molecules on TNF-α-activated monolayers. Nitric oxide production was elevated by shear stress, but did not vary between cell types. Both cell types decreased platelet adhesion to the bioartificial tissue, whereas pre-exposing the cells to flow decreased platelet adhesion further. These results illustrate the potential utility for HBOECs in vascular tissue engineering, as not only do the cells adhere to bioartificial tissue and remain adherent under physiological shear stress, they are also responsive to shear stress signaling.
Collapse
Affiliation(s)
- Katherine A Ahmann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
33
|
Schultheiss J, Seebach C, Henrich D, Wilhelm K, Barker JH, Frank J. Mesenchymal stem cell (MSC) and endothelial progenitor cell (EPC) growth and adhesion in six different bone graft substitutes. Eur J Trauma Emerg Surg 2011; 37:635-44. [DOI: 10.1007/s00068-011-0119-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
|
34
|
Shaw SY, Cheng S, Cupples LA, Larson MG, McCabe EL, Ngwa JS, Wang YA, Martin RP, Klein RJ, Hashmi B, Ajijola OA, Lau E, O’Donnell CJ, Vasan RS, Cohen KS, Wang TJ. Genetic and clinical correlates of early-outgrowth colony-forming units. CIRCULATION. CARDIOVASCULAR GENETICS 2011; 4:296-304. [PMID: 21493818 PMCID: PMC3339257 DOI: 10.1161/circgenetics.110.958470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Several bone marrow-derived cell populations may have angiogenic activity, including cells termed endothelial progenitor cells. Decreased numbers of circulating angiogenic cell populations have been associated with increased cardiovascular risk. However, few data exist from large, unselected samples, and the genetic determinants of these traits are unclear. METHODS AND RESULTS We examined the clinical and genetic correlates of early-outgrowth colony-forming units (CFUs) in 1799 participants of the Framingham Heart Study (mean age, 66 years; 54% women). Among individuals without cardiovascular disease (n = 1612), CFU number was inversely related to advanced age (P = 0.004), female sex (P = 0.04), and triglycerides (P = 0.008) and positively related to hormone replacement (P = 0.008) and statin therapy (P = 0.027) in stepwise multivariable analyses. Overall, CFU number was inversely related to the Framingham risk score (P = 0.01) but not with prevalent cardiovascular disease. In genome-wide association analyses in the entire sample, polymorphisms were associated with CFUs at the MOSC1 locus (P = 3.3 × 10(-7)) and at the SLC22A3-LPAL2-LPA locus (P = 4.9 × 10(-7)), a previously replicated susceptibility locus for myocardial infarction. Furthermore, alleles at the SLC22A3-LPAL2-LPA locus that were associated with decreased CFUs were also related to increased risk of myocardial infarction (P = 1.1 × 10(-4)). CONCLUSIONS In a community-based sample, early-outgrowth CFUs are inversely associated with select cardiovascular risk factors. Furthermore, genetic variants at the SLC22A3-LPAL2-LPA locus are associated with both decreased CFUs and an increased risk of myocardial infarction. These findings are consistent with the hypothesis that decreased circulating angiogenic cell populations promote susceptibility to myocardial infarction.
Collapse
Affiliation(s)
- Stanley Y. Shaw
- Cardiology Division, Mass Gen Hospital, Harvard Med School, Boston
- Ctr for Systems Biology, Mass Gen Hospital, Harvard Med School, Boston
| | - Susan Cheng
- Cardiology Division, Mass Gen Hospital, Harvard Med School, Boston
- Framingham Heart Study, Framingham
- Division of Cardiovascular Med, Brigham and Women’s Hospital, Harvard Med School, Boston
- Clinical Investigator Training Program, Beth Israel Deaconness Med Ctr, Harvard Med School, Boston
| | - L. Adrienne Cupples
- Framingham Heart Study, Framingham
- Dept of Mathematics and Statistics, Boston Univ School of Med, Boston
| | - Martin G. Larson
- Framingham Heart Study, Framingham
- Dept of Mathematics and Statistics, Boston Univ School of Med, Boston
| | - Elizabeth L. McCabe
- Cardiology Division, Mass Gen Hospital, Harvard Med School, Boston
- Framingham Heart Study, Framingham
| | - Julius S. Ngwa
- Framingham Heart Study, Framingham
- Dept of Mathematics and Statistics, Boston Univ School of Med, Boston
| | - Ying A. Wang
- Framingham Heart Study, Framingham
- Dept of Mathematics and Statistics, Boston Univ School of Med, Boston
| | - Roderick P. Martin
- Genzyme Corp, Cambridge
- Ctr for Regenerative Med, Mass Gen Hospital, Harvard Med School, Boston
| | - Rachael J. Klein
- Ctr for Regenerative Med, Mass Gen Hospital, Harvard Med School, Boston
| | | | | | - Evan Lau
- Cleveland Clinic Foundation, Cleveland, OH
| | - Christopher J. O’Donnell
- Framingham Heart Study, Framingham
- Ctr for Population Studies, National Heart, Lung, & Blood Institute, Bethesda, MD
| | - Ramachandran S. Vasan
- Framingham Heart Study, Framingham
- Dept of Medicine, Boston Univ School of Med, Boston
| | - Kenneth S. Cohen
- Ctr for Regenerative Med, Mass Gen Hospital, Harvard Med School, Boston
- Section of Hematology/Oncology, Univ of Chicago Med Center, Chicago, IL
| | - Thomas J. Wang
- Cardiology Division, Mass Gen Hospital, Harvard Med School, Boston
- Framingham Heart Study, Framingham
| |
Collapse
|
35
|
Mirsky R, Jahn S, Koskenvuo JW, Sievers RE, Yim SM, Ritner C, Bernstein HS, Angeli FS, Boyle AJ, De Marco T, Yeghiazarians Y. Treatment of pulmonary arterial hypertension with circulating angiogenic cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L12-9. [PMID: 21398496 DOI: 10.1152/ajplung.00215.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite advances in the treatment of pulmonary arterial hypertension, a truly restorative therapy has not been achieved. Attention has been given to circulating angiogenic cells (CACs, also termed early endothelial progenitor cells) because of their ability to home to sites of vascular injury and regenerate blood vessels. We studied the efficacy of human CAC therapy in the treatment of pulmonary arterial hypertension at two different stages of disease severity. Cells were isolated from peripheral blood and administered to nude rats on day 14 ("early") or day 21 ("late") after monocrotaline injection. The control group received monocrotaline but no cell treatment. Disease progression was assessed using right heart catheterization and echocardiography at multiple time points. Survival differences, right ventricular hypertrophy (RVH), and vascular hypertrophy were analyzed at the study endpoint. Quantitative PCR was performed to evaluate cell engraftment. Treatment with human CACs either at the early or late time points did not result in increased survival, and therapy did not prevent or reduce the severity of disease compared with control. Histological analysis of RVH and vascular muscularization showed no benefit with therapy compared with control. No detectable signal was seen of human transcript in transplanted lungs at 14 or 21 days after cell transplant. In conclusion, CAC therapy was not associated with increased survival and did not result in either clinical or histological benefits. Future studies should be geared toward either earlier therapeutic time points with varying doses of unmodified CACs or genetically modified cells as a means of delivery of factors to the pulmonary arterial circulation.
Collapse
Affiliation(s)
- Rachel Mirsky
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lenk K, Uhlemann M, Schuler G, Adams V. Role of endothelial progenitor cells in the beneficial effects of physical exercise on atherosclerosis and coronary artery disease. J Appl Physiol (1985) 2011; 111:321-8. [PMID: 21350026 DOI: 10.1152/japplphysiol.01464.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In clinical trials as well as in several animal experiments it is evident that physical exercise is a powerful tool to positively influence the development and/or progression of atherosclerosis and coronary artery disease (CAD). The main target of physical exercise seems to be the maintenance of an intact endothelial cell layer. Since the discovery that endothelial progenitor cells (EPCs) are present in the circulation and the knowledge that exercise, either as a single exercise bout or an exercise training program, have the potency to mobilize EPCs from the bone marrow, the contribution of the EPCs for the preservation or repair of the endothelial cell layer is still under debate. Either the EPCs differentiate into mature endothelial cells, or they stimulate via a paracrine mechanism mature endothelial cells to proliferate. It is still unclear, if the exercise-induced mobilization of EPCs is casually related to the improvement of endothelial function. This review will discuss the role of endothelial progenitor cells in the beneficial effects of physical exercise on atherosclerosis and coronary artery disease.
Collapse
Affiliation(s)
- Karsten Lenk
- University Leipzig, Heart Center, Department of Internal Medicine/Cardiology, Leipzig, Germany
| | | | | | | |
Collapse
|
37
|
Grazia TJ, Plenter RJ, Lepper HM, Victorino F, Miyamoto SD, Crossno JT, Pietra BA, Gill RG, Zamora MR. Prolongation of cardiac allograft survival by a novel population of autologous CD117+ bone marrow-derived progenitor cells. Am J Transplant 2011; 11:34-44. [PMID: 21114653 PMCID: PMC3059253 DOI: 10.1111/j.1600-6143.2010.03335.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autologous CD117(+) progenitor cells (PC) have been successfully utilized in myocardial infarction and ischemic injury, potentially through the replacement/repair of damaged vascular endothelium. To date, such cells have not been used to enhance solid organ transplant outcome. In this study, we determined whether autologous bone marrow-derived CD117(+) PC could benefit cardiac allograft survival, possibly by replacing donor vascular cells. Autologous, positively selected CD117(+) PC were administered posttransplantation and allografts were assessed for acute rejection. Although significant generation of recipient vascular cell chimerism was not observed, transferred PC disseminated both to the allograft and to peripheral lymphoid tissues and facilitated a significant, dose-dependent prolongation of allograft survival. While CD117(+) PC dramatically inhibited alloreactive T cell proliferation in vitro, this property did not differ from nonprotective CD117(-) bone marrow populations. In vivo, CD117(+) PC did not significantly inhibit T cell alloreactivity or increase peripheral regulatory T cell numbers. Thus, rather than inhibiting adaptive immunity to the allograft, CD117(+) PC may play a cytoprotective role in prolonging graft survival. Importantly, autologous CD117(+) PC appear to be distinct from bone marrow-derived mesenchymal stem cells (MSC) previously used to prolong allograft survival. As such, autologous CD117(+) PC represent a novel cellular therapy for promoting allograft survival.
Collapse
Affiliation(s)
- T J Grazia
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Effect of smoking cessation on the number and adhesive properties of early outgrowth endothelial progenitor cells. Int J Cardiol 2010; 152:61-9. [PMID: 21093936 DOI: 10.1016/j.ijcard.2010.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 05/11/2010] [Accepted: 07/02/2010] [Indexed: 01/10/2023]
Abstract
BACKGROUND Endothelial progenitor cells participate in angiogenesis and vascular repair, and cardiovascular risk factors may reduce their numbers or impair their functional properties. Cigarette smoking is a leading cause of preventable cardiovascular death, however, the functional properties of these cells before and after discontinuation of tobacco use have not been systematically analyzed. METHODS We examined changes in the number and function of early outgrowth endothelial progenitor cells (EPC), isolated from individuals (n=144; mean age, 47.8 ± 12.0 years; 43% males; more than 50% with additional cardiovascular risk factors or disease) who successfully completed a 5-week smoking cessation (SC) programme. RESULTS SC significantly reduced total white blood cell count (WBC; P<0.0001), plasma LDL cholesterol (P=0.0002) and fibrinogen (P<0.0001) levels, but did not alter the number of circulating CD34(+), VEGFR2(+) or CD34(+), CD133(+) cells (P=0.14 and 0.57, respectively). Fewer acLDL(+), lectin(+) cells could be expanded from peripheral blood mononuclear cells in comparison to baseline (P<0.001). Furthermore, SC was associated with reduced EPC adhesion to fibronectin (P<0.001) or TNFα-activated endothelial cells (P=0.003), and a diminished incorporation of EPC into endothelial cell networks (P=0.035). Mechanistically, significantly reduced β1- and β2-integrin expression (P<0.001 and 0.007) and lower contents of intracellular reactive oxygen species (P<0.007) were detected in EPC following SC, in addition to reduced plasma asymmetric dimethyl-L-arginine (ADMA) levels (P=0.0003). CONCLUSIONS Our findings suggest that the oxidative and inflammatory stress reduction associated with smoking cessation impair the adhesiveness of monocyte-derived EPC.
Collapse
|
39
|
Henrich D, Seebach C, Sterlepper E, Tauchmann C, Marzi I, Frank J. RIA reamings and hip aspirate: a comparative evaluation of osteoprogenitor and endothelial progenitor cells. Injury 2010; 41 Suppl 2:S62-8. [PMID: 21144931 DOI: 10.1016/s0020-1383(10)70012-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Autologous bone grafting represents the gold standard modality to treat atrophic non-unions by virtue of its osteoinductive and osteoconductive properties. The common harvest site is the iliac crest, but there are major concerns due to limited volume and considerable donor site morbidity. Alternative autologous bone graft can be harvested from the femoral bone cavity using a newly developed 'Reamer Irrigator Aspirator' (RIA). Osseous aspirated particles can be recovered with a filter and used as auto-graft. The purpose of this study was to compare the concentration and differentiation potential of mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) harvested with the RIA technique or from the iliac crest, respectively. RIA aspirate was collected from 26 patients undergoing intramedullary nailing of femur fractures. Iliac crest aspirate was collected from 38 patients undergoing bone graft transplantation. Concentration of MSC and EPC were assessed by means of the MSC colony assay, EPC culture assay and flowcytometry (CD34, CD133, VEGF-R2), respectively. Osteogenic differentiation of MSC's was measured by von Kossa staining. Patients in both groups did not significantly differ regarding their age, gender or pre-existing health conditions. In comparison to aspirates obtained from iliac crest the RIA aspirates from the femur contained a significantly higher percentage of CD34+ progenitor cells, a significantly higher concentration of MSC and a significantly higher concentration of early EPC. The percentage of late EPC did not differ between both sites. Moreover, the capability of MSC for calcium deposition was significantly enhanced in MSC obtained with RIA. Our results show that RIA aspirate is a rich source for different types of autologous progenitor cells, which can be used to accelerate healing of bone and other musculoskeletal tissues.
Collapse
Affiliation(s)
- Dirk Henrich
- Department of Trauma Surgery, Johann-Wolfgang-Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol 2010; 50:266-72. [PMID: 20673769 DOI: 10.1016/j.yjmcc.2010.07.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 01/13/2023]
Abstract
The term endothelial progenitor cell (EPC) was coined to refer to circulating cells that displayed the ability to display cell surface antigens similar to endothelial cells in vitro, to circulate and lodge in areas of ischemia or vascular injury, and to facilitate the repair of damaged blood vessels or augment development of new vessels as needed by a tissue. More than 10 years after the first report, the term EPC is used to refer to a host of circulating cells that display some or all of the qualities indicated above, however, essentially all of the cells are now known to be members of the hematopoietic lineage. The exception is a rare viable circulating endothelial cell with clonal proliferative potential that displays the ability to spontaneously form inosculating human blood vessels upon implantation into immunodeficient murine host tissues. This paper will review the current lineage relationships among all the cells called EPC and will propose that the term EPC be retired and that each of the circulating cell subsets be referred to according to the terms already existent for each subset. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
|
41
|
Jianguo W, Tianhang L, Hong Z, Zhengmao L, Jianwei B, Xuchao X, Guoen F. Optimization of culture conditions for endothelial progenitor cells from porcine bone marrow in vitro. Cell Prolif 2010; 43:418-26. [PMID: 20590667 DOI: 10.1111/j.1365-2184.2010.00688.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to determine an optimal culture method for porcine bone marrow-derived endothelial progenitor cells (EPCs). MATERIALS AND METHODS Mononuclear cells (MNCs) were isolated by density centrifugation and differentiated into EPCs in in vitro. At first-passage, EPCs were cultured at different cell densities (5 x 10(3), 1 x 10(4), 2 x 10(4) or 5 x 10(4)/cm(2)) and in basic medium (EGM, medium 199, DMEM or 1640) supplemented with FBS (2%, 5%, 10% or 20%) and different combinations of cytokines (VEGF, VEGF + bFGF, VEGF + bFGF + EGF, or VEGF + bFGF + EGF + IGF), the experiment being based on L(64) (4(21)) orthogonal design. RESULTS AND CONCLUSIONS This demonstrated that the optimal culture method for our EPCs displayed higher expansion and migration rates as compared to other groups, by analysis of variance; that is, cultured at 1 x 10(4)/cm(2) in M199 supplemented with 10% FBS and VEGF + bFGF + IGF + EGF. Furthermore, percentage of positive cells stained by Dil-ac-LDL and FITC-UEA-1 was more than 65%, and as shown by immunohistochemistry, these cells also stained positively for CD133, CD34 and KDR. The present study indicates that the number and function of porcine EPCs significantly increased when using our optimized culture parameters.
Collapse
Affiliation(s)
- W Jianguo
- Departments of General Surgery, Changhai Hospital, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Tura O, Crawford J, Barclay GR, Samuel K, Hadoke PWF, Roddie H, Davies J, Turner ML. Granulocyte colony-stimulating factor (G-CSF) depresses angiogenesis in vivo and in vitro: implications for sourcing cells for vascular regeneration therapy. J Thromb Haemost 2010; 8:1614-23. [PMID: 20456757 PMCID: PMC3404501 DOI: 10.1111/j.1538-7836.2010.03900.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SUMMARY BACKGROUND The most common source of hematopoietic progenitor cells (HPCs) for hematopoietic reconstitution comprises granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood stem cells (PBSCs). It has been proposed that endothelial progenitor cells (EPCs) share precursors with HPCs, and that EPC release may accompany HPC mobilization to the circulation following G-CSF administration. OBJECTIVE To investigate EPC activity following HPC mobilization, and the direct effects of exogenous G-CSF administration on human umbilical vein endothelial cells (HUVECs) and endothelial outgrowth cells (EOCs), using in vitro and in vivo correlates of angiogenesis. PATIENTS/METHODS Heparinized venous blood samples were collected from healthy volunteers and from cord blood at parturition. G-CSF-mobilized samples were collected before administration, at apheresis harvest, and at follow-up. PBSCs were phenotyped by flow cytometry, and cultured in standard colony-forming unit (CFU)-EPC and EOC assays. The effect of exogenous G-CSF was investigated by addition of it to HUVECs and EOCs in standard tubule formation and aortic ring assays, and in an in vivo sponge implantation model. RESULTS Our data show that G-CSF mobilization of PBSCs produces a profound, reversible depression of circulating CFU-EPCs. Furthermore, G-CSF administration did not mobilize CD34+CD133- cells, which include precursors of EOCs. No EOCs were cultured from any mobilized PBSCs studied. Exogenous G-CSF inhibited CFU-EPC generation, HUVEC and EOC tubule formation, microvessel outgrowth, and implanted sponge vascularization in mice. CONCLUSIONS G-CSF administration depresses both endothelial cell angiogenesis and monocyte proangiogenic activity, and we suggest that any angiogenic benefit observed following implantation of cells mobilized by G-CSF may come only from a paracrine effect from HPCs.
Collapse
Affiliation(s)
- O Tura
- SNBTS Cell Therapy Group, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pan SC, Wu LW, Chen CL, Shieh SJ, Chiu HY. Deep partial thickness burn blister fluid promotes neovascularization in the early stage of burn wound healing. Wound Repair Regen 2010; 18:311-8. [PMID: 20412554 DOI: 10.1111/j.1524-475x.2010.00586.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of burn blister fluid in neovascularization during burn wound healing is unknown. Burn blister fluid, containing a large amount of chemokines, is thought to play a role in the early stage of neovascularization. This process includes angiogenesis and vasculogenesis. Because of different healing time of burn wounds, we hypothesized that neovascularization in superficial partial thickness burn (SPTB) and deep partial thickness burn (DPTB) wounds were different. The neovasculogenic effects of two different burn blister fluids were also different. We found Day 7 DPTB wounds had a significant increase in blood vessels compared with SPTB wounds by immunohistochemistry. DPTB blister fluid significantly promoted neovascularization via increasing endothelial cell proliferation, and migration and differentiation of circulating angiogenic cells relative to SPTB blister fluids. In the animal study, DPTB blister fluids markedly promoted new blood vessel formation compared with those from SPTB blister fluids using in vivo Matrigel plug assay. These results suggest that DPTB wounds require more new vessel formation than SPTB. Furthermore, the measurement of angiogenic activities in burn blister fluids serves as a possible tool for assessing burn wound status.
Collapse
Affiliation(s)
- Shin-Chen Pan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Padfield GJ, Newby DE, Mills NL. Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. J Am Coll Cardiol 2010; 55:1553-65. [PMID: 20378071 DOI: 10.1016/j.jacc.2009.10.070] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/14/2009] [Accepted: 10/17/2009] [Indexed: 12/22/2022]
Abstract
Percutaneous coronary intervention is associated with mechanical endovascular injury and endothelial denudation. Re-endothelialization is essential for restoration of normal vascular homeostasis and regulation of neointimal hyperplasia. The endothelial progenitor cell recently emerged as an important component of the response to vascular injury, having the potential to accelerate vascular repair through rapid re-endothelialization. There remains considerable uncertainty over the precise identity and function of endothelial progenitor cells, and harnessing their therapeutic potential remains a challenge. A better understanding of the role of circulating progenitors in the response to vascular injury is necessary if we are to develop effective strategies to enhance vascular repair after percutaneous coronary intervention. In this review, we examine the preclinical and clinical evidence of a role for bone marrow-derived putative endothelial progenitor cells after iatrogenic vascular injury associated with balloon angioplasty and stent deployment. Therapies designed to mobilize endothelial progenitors or to increase their ability to home to the site of stent implantation may have a role in the future management of patients undergoing percutaneous coronary intervention.
Collapse
Affiliation(s)
- Gareth J Padfield
- Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom.
| | | | | |
Collapse
|
45
|
Ladhoff J, Fleischer B, Hara Y, Volk HD, Seifert M. Immune privilege of endothelial cells differentiated from endothelial progenitor cells. Cardiovasc Res 2010; 88:121-9. [PMID: 20388638 DOI: 10.1093/cvr/cvq109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIMS The application of autologous endothelial progenitor cells (EPC) is a promising approach in cardiovascular regeneration, but the availability of cells in appropriate numbers is the limiting factor. Allogeneic EPC would be an alternative, and we therefore analysed the immunogenicity of EPC-derived endothelial cells (EC) to evaluate their potential usefulness. METHODS AND RESULTS Circulating EPC from rat were differentiated into EC and characterized phenotypically and functionally. Major histocompatibility complex (MHC) expression in response to interferon-gamma was determined compared with rat aortic EC, and in vitro humoral and cellular allogeneic responses were analysed. To determine the in vivo effects, acellular aortic grafts were endothelialized in vitro with EPC-derived EC and transplanted in a complete allogeneic mismatch rat aortic interposition model. EPC-derived EC expressed endothelial-specific markers and low levels of MHC class I (MHC I), but no constitutive MHC class II (MHC II). When stimulated with interferon-gamma, they upregulated MHC I and moderately upregulated MHC II. They were protected against alloantibody/complement-mediated lysis and allospecific cytotoxic T lymphocyte activity. They were less potent in allogeneic stimulation of CD4 T cells than aortic EC. Seeding of EPC-derived EC into acellular grafts led to excellent endothelialization, and allogeneic aortic transplantation induced only mild inflammatory responses without signs of rejection. CONCLUSION EPC-derived EC are protected against allospecific cellular immune responses and humoral-mediated attacks in vitro. When transplanted in vivo as a component of vascular grafts, these cells are not rejected, which makes them useful in therapeutic applications, especially vascular reconstruction.
Collapse
Affiliation(s)
- Juliane Ladhoff
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
46
|
Kirton JP, Xu Q. Endothelial precursors in vascular repair. Microvasc Res 2010; 79:193-9. [PMID: 20184904 DOI: 10.1016/j.mvr.2010.02.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 02/15/2010] [Indexed: 11/24/2022]
Abstract
The endothelium is an essential component of the cardiovascular system, playing a vital role in blood vessel formation, vascular homeostasis, permeability and the regulation of inflammation. The integrity of the endothelial monolayer is also critical in the prevention of atherogenesis and as such, restoration of the monolayer is essential following damage or cell death. Over the past decade, data has suggested that progenitor cells from different origins within the body are released into the circulation and contribute to re-endothelialisation. These cells, termed endothelial progenitor cells (EPCs), also gave rise to the theory of new vessel formation within adults (vasculogenesis) without proliferation and migration of mature endothelial cells (angiogenesis). As such, intense research has been carried out identifying how these cells may be mobilised and contribute to vascular repair, either encouraging vasculogenesis into regions of ischemia or the re-endothelialisation of vessels with a dysfunctional endothelium. However, classification and isolation procedures have been a major problem in this area of research and beneficial use for therapeutic application has been controversial. In the present review we focus on the role of EPCs in vascular repair. We also provide an update on EPC classification and discuss autologous stem cell-derived endothelial cell (EC) as a functional source for therapy.
Collapse
Affiliation(s)
- John Paul Kirton
- Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, UK
| | | |
Collapse
|
47
|
Functional endothelial progenitor cells derived from adipose tissue show beneficial effect on cell therapy of traumatic brain injury. Neurosci Lett 2010; 473:186-91. [PMID: 20178832 DOI: 10.1016/j.neulet.2010.02.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 11/21/2022]
Abstract
Endothelial progenitor cells (EPCs) are responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Adipose tissue (AT) is an abundant source of mesenchymal stem cells (MSCs), which have multipotent differentiation ability. We successfully derived EPCs from AT, which maintained a strong proliferative capacity and demonstrated the characteristic endothelial function of uptaking of acetylated low-density lipoprotein. They formed tube-like structures in vitro. Endothelial nitric oxide synthase (eNOS) gene expression in EPCs was similar to that in mature endothelial cells. Transplantation of EPCs derived from AT after the acute phase was applied in rats with traumatic brain injury (TBI). Transplanted EPCs participated in the neovascularization of injured brain. Improving functional recovery, reducement of deficiency volume of brain, host astrogliosis and inflammation were found. These results suggest that adult AT derived stem cells can be induced to functional EPCs and have beneficial effect on cell therapy.
Collapse
|
48
|
Avci-Adali M, Nolte A, Simon P, Ziemer G, Wendel HP. Porcine EPCs downregulate stem cell markers and upregulate endothelial maturation markers during in vitro cultivation. J Tissue Eng Regen Med 2010; 3:512-20. [PMID: 19575394 DOI: 10.1002/term.189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In recent years, interest in endothelial progenitor cells (EPCs) in the field of tissue engineering and regenerative medicine has increased tremendously. However, each clinical stem cell application requires prior validation through animal experiments. This study investigates the isolation and characterization of porcine EPCs from peripheral blood and the change of their cell surface marker expression during in vitro cultivation. RT-PCR demonstrated that the EPCs express stem cell markers CD34 and CD133, which decrease with in vitro cultivation time. Throughout the cultivation process EPCs did not express monocytic (CD14) or haematopoietic marker (CD45). Surprisingly, the CD31 and VE-cadherin expression in EPCs was significantly higher than in endothelial cells (ECs). In contrast, the VEGFR2 and E-selectin expression was significantly lower than in ECs, but increased during the expansion process. This study clarifies the characteristic properties of porcine EPCs during cell culture and may help to improve the impact of EPC-based therapies in porcine animal studies.
Collapse
Affiliation(s)
- Meltem Avci-Adali
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Germany
| | | | | | | | | |
Collapse
|
49
|
Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization — A review of current strategies. Biotechnol Adv 2010; 28:119-29. [DOI: 10.1016/j.biotechadv.2009.10.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 12/20/2022]
|
50
|
Grimaldi A, Banfi S, Gerosa L, Tettamanti G, Noonan DM, Valvassori R, de Eguileor M. Identification, isolation and expansion of myoendothelial cells involved in leech muscle regeneration. PLoS One 2009; 4:e7652. [PMID: 19876402 PMCID: PMC2765724 DOI: 10.1371/journal.pone.0007652] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/07/2009] [Indexed: 01/23/2023] Open
Abstract
Adult skeletal muscle in vertebrates contains myoendothelial cells that express both myogenic and endothelial markers, and which are able to differentiate into myogenic cells to contribute to muscle regeneration. In spite of intensive research efforts, numerous questions remain regarding the role of cytokine signalling on myoendothelial cell differentiation and muscle regeneration. Here we used Hirudo medicinalis (Annelid, leech) as an emerging new model to study myoendothelial cells and muscle regeneration. Although the leech has relative anatomical simplicity, it shows a striking similarity with vertebrate responses and is a reliable model for studying a variety of basic events, such as tissue repair. Double immunohistochemical analysis were used to characterize myoendothelial cells in leeches and, by injecting in vivo the matrigel biopolymer supplemented with the cytokine Vascular Endothelial Growth Factor (VEGF), we were able to isolate this specific cell population expressing myogenic and endothelial markers. We then evaluated the effect of VEGF on these cells in vitro. Our data indicate that, similar to that proposed for vertebrates, myoendothelial cells of the leech directly participate in myogenesis both in vivo and in vitro, and that VEGF secretion is involved in the recruitment and expansion of these muscle progenitor cells.
Collapse
Affiliation(s)
- Annalisa Grimaldi
- Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy.
| | | | | | | | | | | | | |
Collapse
|